]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: kill most of ceph_msg_pos
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member)                                    \
25         list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77
78 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
83
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98                                        * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106         switch (con_flag) {
107         case CON_FLAG_LOSSYTX:
108         case CON_FLAG_KEEPALIVE_PENDING:
109         case CON_FLAG_WRITE_PENDING:
110         case CON_FLAG_SOCK_CLOSED:
111         case CON_FLAG_BACKOFF:
112                 return true;
113         default:
114                 return false;
115         }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120         BUG_ON(!con_flag_valid(con_flag));
121
122         clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127         BUG_ON(!con_flag_valid(con_flag));
128
129         set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134         BUG_ON(!con_flag_valid(con_flag));
135
136         return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140                                         unsigned long con_flag)
141 {
142         BUG_ON(!con_flag_valid(con_flag));
143
144         return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148                                         unsigned long con_flag)
149 {
150         BUG_ON(!con_flag_valid(con_flag));
151
152         return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* static tag bytes (protocol control messages) */
156 static char tag_msg = CEPH_MSGR_TAG_MSG;
157 static char tag_ack = CEPH_MSGR_TAG_ACK;
158 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160 #ifdef CONFIG_LOCKDEP
161 static struct lock_class_key socket_class;
162 #endif
163
164 /*
165  * When skipping (ignoring) a block of input we read it into a "skip
166  * buffer," which is this many bytes in size.
167  */
168 #define SKIP_BUF_SIZE   1024
169
170 static void queue_con(struct ceph_connection *con);
171 static void con_work(struct work_struct *);
172 static void con_fault(struct ceph_connection *con);
173
174 /*
175  * Nicely render a sockaddr as a string.  An array of formatted
176  * strings is used, to approximate reentrancy.
177  */
178 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
179 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
180 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
181 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
182
183 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184 static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186 static struct page *zero_page;          /* used in certain error cases */
187
188 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189 {
190         int i;
191         char *s;
192         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196         s = addr_str[i];
197
198         switch (ss->ss_family) {
199         case AF_INET:
200                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201                          ntohs(in4->sin_port));
202                 break;
203
204         case AF_INET6:
205                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206                          ntohs(in6->sin6_port));
207                 break;
208
209         default:
210                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211                          ss->ss_family);
212         }
213
214         return s;
215 }
216 EXPORT_SYMBOL(ceph_pr_addr);
217
218 static void encode_my_addr(struct ceph_messenger *msgr)
219 {
220         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221         ceph_encode_addr(&msgr->my_enc_addr);
222 }
223
224 /*
225  * work queue for all reading and writing to/from the socket.
226  */
227 static struct workqueue_struct *ceph_msgr_wq;
228
229 static void _ceph_msgr_exit(void)
230 {
231         if (ceph_msgr_wq) {
232                 destroy_workqueue(ceph_msgr_wq);
233                 ceph_msgr_wq = NULL;
234         }
235
236         BUG_ON(zero_page == NULL);
237         kunmap(zero_page);
238         page_cache_release(zero_page);
239         zero_page = NULL;
240 }
241
242 int ceph_msgr_init(void)
243 {
244         BUG_ON(zero_page != NULL);
245         zero_page = ZERO_PAGE(0);
246         page_cache_get(zero_page);
247
248         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249         if (ceph_msgr_wq)
250                 return 0;
251
252         pr_err("msgr_init failed to create workqueue\n");
253         _ceph_msgr_exit();
254
255         return -ENOMEM;
256 }
257 EXPORT_SYMBOL(ceph_msgr_init);
258
259 void ceph_msgr_exit(void)
260 {
261         BUG_ON(ceph_msgr_wq == NULL);
262
263         _ceph_msgr_exit();
264 }
265 EXPORT_SYMBOL(ceph_msgr_exit);
266
267 void ceph_msgr_flush(void)
268 {
269         flush_workqueue(ceph_msgr_wq);
270 }
271 EXPORT_SYMBOL(ceph_msgr_flush);
272
273 /* Connection socket state transition functions */
274
275 static void con_sock_state_init(struct ceph_connection *con)
276 {
277         int old_state;
278
279         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281                 printk("%s: unexpected old state %d\n", __func__, old_state);
282         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283              CON_SOCK_STATE_CLOSED);
284 }
285
286 static void con_sock_state_connecting(struct ceph_connection *con)
287 {
288         int old_state;
289
290         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292                 printk("%s: unexpected old state %d\n", __func__, old_state);
293         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294              CON_SOCK_STATE_CONNECTING);
295 }
296
297 static void con_sock_state_connected(struct ceph_connection *con)
298 {
299         int old_state;
300
301         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303                 printk("%s: unexpected old state %d\n", __func__, old_state);
304         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305              CON_SOCK_STATE_CONNECTED);
306 }
307
308 static void con_sock_state_closing(struct ceph_connection *con)
309 {
310         int old_state;
311
312         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314                         old_state != CON_SOCK_STATE_CONNECTED &&
315                         old_state != CON_SOCK_STATE_CLOSING))
316                 printk("%s: unexpected old state %d\n", __func__, old_state);
317         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318              CON_SOCK_STATE_CLOSING);
319 }
320
321 static void con_sock_state_closed(struct ceph_connection *con)
322 {
323         int old_state;
324
325         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327                     old_state != CON_SOCK_STATE_CLOSING &&
328                     old_state != CON_SOCK_STATE_CONNECTING &&
329                     old_state != CON_SOCK_STATE_CLOSED))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CLOSED);
333 }
334
335 /*
336  * socket callback functions
337  */
338
339 /* data available on socket, or listen socket received a connect */
340 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341 {
342         struct ceph_connection *con = sk->sk_user_data;
343         if (atomic_read(&con->msgr->stopping)) {
344                 return;
345         }
346
347         if (sk->sk_state != TCP_CLOSE_WAIT) {
348                 dout("%s on %p state = %lu, queueing work\n", __func__,
349                      con, con->state);
350                 queue_con(con);
351         }
352 }
353
354 /* socket has buffer space for writing */
355 static void ceph_sock_write_space(struct sock *sk)
356 {
357         struct ceph_connection *con = sk->sk_user_data;
358
359         /* only queue to workqueue if there is data we want to write,
360          * and there is sufficient space in the socket buffer to accept
361          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
362          * doesn't get called again until try_write() fills the socket
363          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364          * and net/core/stream.c:sk_stream_write_space().
365          */
366         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368                         dout("%s %p queueing write work\n", __func__, con);
369                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370                         queue_con(con);
371                 }
372         } else {
373                 dout("%s %p nothing to write\n", __func__, con);
374         }
375 }
376
377 /* socket's state has changed */
378 static void ceph_sock_state_change(struct sock *sk)
379 {
380         struct ceph_connection *con = sk->sk_user_data;
381
382         dout("%s %p state = %lu sk_state = %u\n", __func__,
383              con, con->state, sk->sk_state);
384
385         switch (sk->sk_state) {
386         case TCP_CLOSE:
387                 dout("%s TCP_CLOSE\n", __func__);
388         case TCP_CLOSE_WAIT:
389                 dout("%s TCP_CLOSE_WAIT\n", __func__);
390                 con_sock_state_closing(con);
391                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392                 queue_con(con);
393                 break;
394         case TCP_ESTABLISHED:
395                 dout("%s TCP_ESTABLISHED\n", __func__);
396                 con_sock_state_connected(con);
397                 queue_con(con);
398                 break;
399         default:        /* Everything else is uninteresting */
400                 break;
401         }
402 }
403
404 /*
405  * set up socket callbacks
406  */
407 static void set_sock_callbacks(struct socket *sock,
408                                struct ceph_connection *con)
409 {
410         struct sock *sk = sock->sk;
411         sk->sk_user_data = con;
412         sk->sk_data_ready = ceph_sock_data_ready;
413         sk->sk_write_space = ceph_sock_write_space;
414         sk->sk_state_change = ceph_sock_state_change;
415 }
416
417
418 /*
419  * socket helpers
420  */
421
422 /*
423  * initiate connection to a remote socket.
424  */
425 static int ceph_tcp_connect(struct ceph_connection *con)
426 {
427         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428         struct socket *sock;
429         int ret;
430
431         BUG_ON(con->sock);
432         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433                                IPPROTO_TCP, &sock);
434         if (ret)
435                 return ret;
436         sock->sk->sk_allocation = GFP_NOFS;
437
438 #ifdef CONFIG_LOCKDEP
439         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440 #endif
441
442         set_sock_callbacks(sock, con);
443
444         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446         con_sock_state_connecting(con);
447         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448                                  O_NONBLOCK);
449         if (ret == -EINPROGRESS) {
450                 dout("connect %s EINPROGRESS sk_state = %u\n",
451                      ceph_pr_addr(&con->peer_addr.in_addr),
452                      sock->sk->sk_state);
453         } else if (ret < 0) {
454                 pr_err("connect %s error %d\n",
455                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
456                 sock_release(sock);
457                 con->error_msg = "connect error";
458
459                 return ret;
460         }
461         con->sock = sock;
462         return 0;
463 }
464
465 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466 {
467         struct kvec iov = {buf, len};
468         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469         int r;
470
471         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472         if (r == -EAGAIN)
473                 r = 0;
474         return r;
475 }
476
477 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478                      int page_offset, size_t length)
479 {
480         void *kaddr;
481         int ret;
482
483         BUG_ON(page_offset + length > PAGE_SIZE);
484
485         kaddr = kmap(page);
486         BUG_ON(!kaddr);
487         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488         kunmap(page);
489
490         return ret;
491 }
492
493 /*
494  * write something.  @more is true if caller will be sending more data
495  * shortly.
496  */
497 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498                      size_t kvlen, size_t len, int more)
499 {
500         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501         int r;
502
503         if (more)
504                 msg.msg_flags |= MSG_MORE;
505         else
506                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
507
508         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509         if (r == -EAGAIN)
510                 r = 0;
511         return r;
512 }
513
514 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515                      int offset, size_t size, bool more)
516 {
517         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518         int ret;
519
520         ret = kernel_sendpage(sock, page, offset, size, flags);
521         if (ret == -EAGAIN)
522                 ret = 0;
523
524         return ret;
525 }
526
527
528 /*
529  * Shutdown/close the socket for the given connection.
530  */
531 static int con_close_socket(struct ceph_connection *con)
532 {
533         int rc = 0;
534
535         dout("con_close_socket on %p sock %p\n", con, con->sock);
536         if (con->sock) {
537                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538                 sock_release(con->sock);
539                 con->sock = NULL;
540         }
541
542         /*
543          * Forcibly clear the SOCK_CLOSED flag.  It gets set
544          * independent of the connection mutex, and we could have
545          * received a socket close event before we had the chance to
546          * shut the socket down.
547          */
548         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550         con_sock_state_closed(con);
551         return rc;
552 }
553
554 /*
555  * Reset a connection.  Discard all incoming and outgoing messages
556  * and clear *_seq state.
557  */
558 static void ceph_msg_remove(struct ceph_msg *msg)
559 {
560         list_del_init(&msg->list_head);
561         BUG_ON(msg->con == NULL);
562         msg->con->ops->put(msg->con);
563         msg->con = NULL;
564
565         ceph_msg_put(msg);
566 }
567 static void ceph_msg_remove_list(struct list_head *head)
568 {
569         while (!list_empty(head)) {
570                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571                                                         list_head);
572                 ceph_msg_remove(msg);
573         }
574 }
575
576 static void reset_connection(struct ceph_connection *con)
577 {
578         /* reset connection, out_queue, msg_ and connect_seq */
579         /* discard existing out_queue and msg_seq */
580         dout("reset_connection %p\n", con);
581         ceph_msg_remove_list(&con->out_queue);
582         ceph_msg_remove_list(&con->out_sent);
583
584         if (con->in_msg) {
585                 BUG_ON(con->in_msg->con != con);
586                 con->in_msg->con = NULL;
587                 ceph_msg_put(con->in_msg);
588                 con->in_msg = NULL;
589                 con->ops->put(con);
590         }
591
592         con->connect_seq = 0;
593         con->out_seq = 0;
594         if (con->out_msg) {
595                 ceph_msg_put(con->out_msg);
596                 con->out_msg = NULL;
597         }
598         con->in_seq = 0;
599         con->in_seq_acked = 0;
600 }
601
602 /*
603  * mark a peer down.  drop any open connections.
604  */
605 void ceph_con_close(struct ceph_connection *con)
606 {
607         mutex_lock(&con->mutex);
608         dout("con_close %p peer %s\n", con,
609              ceph_pr_addr(&con->peer_addr.in_addr));
610         con->state = CON_STATE_CLOSED;
611
612         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
613         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615         con_flag_clear(con, CON_FLAG_BACKOFF);
616
617         reset_connection(con);
618         con->peer_global_seq = 0;
619         cancel_delayed_work(&con->work);
620         con_close_socket(con);
621         mutex_unlock(&con->mutex);
622 }
623 EXPORT_SYMBOL(ceph_con_close);
624
625 /*
626  * Reopen a closed connection, with a new peer address.
627  */
628 void ceph_con_open(struct ceph_connection *con,
629                    __u8 entity_type, __u64 entity_num,
630                    struct ceph_entity_addr *addr)
631 {
632         mutex_lock(&con->mutex);
633         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635         WARN_ON(con->state != CON_STATE_CLOSED);
636         con->state = CON_STATE_PREOPEN;
637
638         con->peer_name.type = (__u8) entity_type;
639         con->peer_name.num = cpu_to_le64(entity_num);
640
641         memcpy(&con->peer_addr, addr, sizeof(*addr));
642         con->delay = 0;      /* reset backoff memory */
643         mutex_unlock(&con->mutex);
644         queue_con(con);
645 }
646 EXPORT_SYMBOL(ceph_con_open);
647
648 /*
649  * return true if this connection ever successfully opened
650  */
651 bool ceph_con_opened(struct ceph_connection *con)
652 {
653         return con->connect_seq > 0;
654 }
655
656 /*
657  * initialize a new connection.
658  */
659 void ceph_con_init(struct ceph_connection *con, void *private,
660         const struct ceph_connection_operations *ops,
661         struct ceph_messenger *msgr)
662 {
663         dout("con_init %p\n", con);
664         memset(con, 0, sizeof(*con));
665         con->private = private;
666         con->ops = ops;
667         con->msgr = msgr;
668
669         con_sock_state_init(con);
670
671         mutex_init(&con->mutex);
672         INIT_LIST_HEAD(&con->out_queue);
673         INIT_LIST_HEAD(&con->out_sent);
674         INIT_DELAYED_WORK(&con->work, con_work);
675
676         con->state = CON_STATE_CLOSED;
677 }
678 EXPORT_SYMBOL(ceph_con_init);
679
680
681 /*
682  * We maintain a global counter to order connection attempts.  Get
683  * a unique seq greater than @gt.
684  */
685 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686 {
687         u32 ret;
688
689         spin_lock(&msgr->global_seq_lock);
690         if (msgr->global_seq < gt)
691                 msgr->global_seq = gt;
692         ret = ++msgr->global_seq;
693         spin_unlock(&msgr->global_seq_lock);
694         return ret;
695 }
696
697 static void con_out_kvec_reset(struct ceph_connection *con)
698 {
699         con->out_kvec_left = 0;
700         con->out_kvec_bytes = 0;
701         con->out_kvec_cur = &con->out_kvec[0];
702 }
703
704 static void con_out_kvec_add(struct ceph_connection *con,
705                                 size_t size, void *data)
706 {
707         int index;
708
709         index = con->out_kvec_left;
710         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712         con->out_kvec[index].iov_len = size;
713         con->out_kvec[index].iov_base = data;
714         con->out_kvec_left++;
715         con->out_kvec_bytes += size;
716 }
717
718 #ifdef CONFIG_BLOCK
719
720 /*
721  * For a bio data item, a piece is whatever remains of the next
722  * entry in the current bio iovec, or the first entry in the next
723  * bio in the list.
724  */
725 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data *data,
726                                         size_t length)
727 {
728         struct ceph_msg_data_cursor *cursor = &data->cursor;
729         struct bio *bio;
730
731         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
732
733         bio = data->bio;
734         BUG_ON(!bio);
735         BUG_ON(!bio->bi_vcnt);
736
737         cursor->resid = length;
738         cursor->bio = bio;
739         cursor->vector_index = 0;
740         cursor->vector_offset = 0;
741         cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
742 }
743
744 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data *data,
745                                                 size_t *page_offset,
746                                                 size_t *length)
747 {
748         struct ceph_msg_data_cursor *cursor = &data->cursor;
749         struct bio *bio;
750         struct bio_vec *bio_vec;
751         unsigned int index;
752
753         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
754
755         bio = cursor->bio;
756         BUG_ON(!bio);
757
758         index = cursor->vector_index;
759         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
760
761         bio_vec = &bio->bi_io_vec[index];
762         BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
763         *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
764         BUG_ON(*page_offset >= PAGE_SIZE);
765         if (cursor->last_piece) /* pagelist offset is always 0 */
766                 *length = cursor->resid;
767         else
768                 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
769         BUG_ON(*length > PAGE_SIZE);
770         BUG_ON(*length > cursor->resid);
771
772         return bio_vec->bv_page;
773 }
774
775 static bool ceph_msg_data_bio_advance(struct ceph_msg_data *data, size_t bytes)
776 {
777         struct ceph_msg_data_cursor *cursor = &data->cursor;
778         struct bio *bio;
779         struct bio_vec *bio_vec;
780         unsigned int index;
781
782         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
783
784         bio = cursor->bio;
785         BUG_ON(!bio);
786
787         index = cursor->vector_index;
788         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
789         bio_vec = &bio->bi_io_vec[index];
790
791         /* Advance the cursor offset */
792
793         BUG_ON(cursor->resid < bytes);
794         cursor->resid -= bytes;
795         cursor->vector_offset += bytes;
796         if (cursor->vector_offset < bio_vec->bv_len)
797                 return false;   /* more bytes to process in this segment */
798         BUG_ON(cursor->vector_offset != bio_vec->bv_len);
799
800         /* Move on to the next segment, and possibly the next bio */
801
802         if (++index == (unsigned int) bio->bi_vcnt) {
803                 bio = bio->bi_next;
804                 index = 0;
805         }
806         cursor->bio = bio;
807         cursor->vector_index = index;
808         cursor->vector_offset = 0;
809
810         if (!cursor->last_piece) {
811                 BUG_ON(!cursor->resid);
812                 BUG_ON(!bio);
813                 /* A short read is OK, so use <= rather than == */
814                 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
815                         cursor->last_piece = true;
816         }
817
818         return true;
819 }
820 #endif
821
822 /*
823  * For a page array, a piece comes from the first page in the array
824  * that has not already been fully consumed.
825  */
826 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data *data,
827                                         size_t length)
828 {
829         struct ceph_msg_data_cursor *cursor = &data->cursor;
830         int page_count;
831
832         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
833
834         BUG_ON(!data->pages);
835         BUG_ON(!data->length);
836         BUG_ON(length != data->length);
837
838         cursor->resid = length;
839         page_count = calc_pages_for(data->alignment, (u64)data->length);
840         cursor->page_offset = data->alignment & ~PAGE_MASK;
841         cursor->page_index = 0;
842         BUG_ON(page_count > (int) USHRT_MAX);
843         cursor->page_count = (unsigned short) page_count;
844         cursor->last_piece = length <= PAGE_SIZE;
845 }
846
847 static struct page *ceph_msg_data_pages_next(struct ceph_msg_data *data,
848                                         size_t *page_offset,
849                                         size_t *length)
850 {
851         struct ceph_msg_data_cursor *cursor = &data->cursor;
852
853         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855         BUG_ON(cursor->page_index >= cursor->page_count);
856         BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858         *page_offset = cursor->page_offset;
859         if (cursor->last_piece)
860                 *length = cursor->resid;
861         else
862                 *length = PAGE_SIZE - *page_offset;
863
864         return data->pages[cursor->page_index];
865 }
866
867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data *data,
868                                                 size_t bytes)
869 {
870         struct ceph_msg_data_cursor *cursor = &data->cursor;
871
872         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
873
874         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
875
876         /* Advance the cursor page offset */
877
878         cursor->resid -= bytes;
879         cursor->page_offset += bytes;
880         if (!bytes || cursor->page_offset & ~PAGE_MASK)
881                 return false;   /* more bytes to process in the current page */
882
883         /* Move on to the next page */
884
885         BUG_ON(cursor->page_index >= cursor->page_count);
886         cursor->page_offset = 0;
887         cursor->page_index++;
888         cursor->last_piece = cursor->resid <= PAGE_SIZE;
889
890         return true;
891 }
892
893 /*
894  * For a pagelist, a piece is whatever remains to be consumed in the
895  * first page in the list, or the front of the next page.
896  */
897 static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data *data,
898                                         size_t length)
899 {
900         struct ceph_msg_data_cursor *cursor = &data->cursor;
901         struct ceph_pagelist *pagelist;
902         struct page *page;
903
904         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
905
906         pagelist = data->pagelist;
907         BUG_ON(!pagelist);
908         BUG_ON(length != pagelist->length);
909
910         if (!length)
911                 return;         /* pagelist can be assigned but empty */
912
913         BUG_ON(list_empty(&pagelist->head));
914         page = list_first_entry(&pagelist->head, struct page, lru);
915
916         cursor->resid = length;
917         cursor->page = page;
918         cursor->offset = 0;
919         cursor->last_piece = length <= PAGE_SIZE;
920 }
921
922 static struct page *ceph_msg_data_pagelist_next(struct ceph_msg_data *data,
923                                                 size_t *page_offset,
924                                                 size_t *length)
925 {
926         struct ceph_msg_data_cursor *cursor = &data->cursor;
927         struct ceph_pagelist *pagelist;
928
929         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
930
931         pagelist = data->pagelist;
932         BUG_ON(!pagelist);
933
934         BUG_ON(!cursor->page);
935         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
936
937         *page_offset = cursor->offset & ~PAGE_MASK;
938         if (cursor->last_piece) /* pagelist offset is always 0 */
939                 *length = cursor->resid;
940         else
941                 *length = PAGE_SIZE - *page_offset;
942
943         return data->cursor.page;
944 }
945
946 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data *data,
947                                                 size_t bytes)
948 {
949         struct ceph_msg_data_cursor *cursor = &data->cursor;
950         struct ceph_pagelist *pagelist;
951
952         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
953
954         pagelist = data->pagelist;
955         BUG_ON(!pagelist);
956
957         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
958         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
959
960         /* Advance the cursor offset */
961
962         cursor->resid -= bytes;
963         cursor->offset += bytes;
964         /* pagelist offset is always 0 */
965         if (!bytes || cursor->offset & ~PAGE_MASK)
966                 return false;   /* more bytes to process in the current page */
967
968         /* Move on to the next page */
969
970         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
971         cursor->page = list_entry_next(cursor->page, lru);
972         cursor->last_piece = cursor->resid <= PAGE_SIZE;
973
974         return true;
975 }
976
977 /*
978  * Message data is handled (sent or received) in pieces, where each
979  * piece resides on a single page.  The network layer might not
980  * consume an entire piece at once.  A data item's cursor keeps
981  * track of which piece is next to process and how much remains to
982  * be processed in that piece.  It also tracks whether the current
983  * piece is the last one in the data item.
984  */
985 static void ceph_msg_data_cursor_init(struct ceph_msg_data *data,
986                                         size_t length)
987 {
988         switch (data->type) {
989         case CEPH_MSG_DATA_PAGELIST:
990                 ceph_msg_data_pagelist_cursor_init(data, length);
991                 break;
992         case CEPH_MSG_DATA_PAGES:
993                 ceph_msg_data_pages_cursor_init(data, length);
994                 break;
995 #ifdef CONFIG_BLOCK
996         case CEPH_MSG_DATA_BIO:
997                 ceph_msg_data_bio_cursor_init(data, length);
998                 break;
999 #endif /* CONFIG_BLOCK */
1000         case CEPH_MSG_DATA_NONE:
1001         default:
1002                 /* BUG(); */
1003                 break;
1004         }
1005 }
1006
1007 /*
1008  * Return the page containing the next piece to process for a given
1009  * data item, and supply the page offset and length of that piece.
1010  * Indicate whether this is the last piece in this data item.
1011  */
1012 static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
1013                                         size_t *page_offset,
1014                                         size_t *length,
1015                                         bool *last_piece)
1016 {
1017         struct page *page;
1018
1019         switch (data->type) {
1020         case CEPH_MSG_DATA_PAGELIST:
1021                 page = ceph_msg_data_pagelist_next(data, page_offset, length);
1022                 break;
1023         case CEPH_MSG_DATA_PAGES:
1024                 page = ceph_msg_data_pages_next(data, page_offset, length);
1025                 break;
1026 #ifdef CONFIG_BLOCK
1027         case CEPH_MSG_DATA_BIO:
1028                 page = ceph_msg_data_bio_next(data, page_offset, length);
1029                 break;
1030 #endif /* CONFIG_BLOCK */
1031         case CEPH_MSG_DATA_NONE:
1032         default:
1033                 page = NULL;
1034                 break;
1035         }
1036         BUG_ON(!page);
1037         BUG_ON(*page_offset + *length > PAGE_SIZE);
1038         BUG_ON(!*length);
1039         if (last_piece)
1040                 *last_piece = data->cursor.last_piece;
1041
1042         return page;
1043 }
1044
1045 /*
1046  * Returns true if the result moves the cursor on to the next piece
1047  * of the data item.
1048  */
1049 static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
1050 {
1051         struct ceph_msg_data_cursor *cursor = &data->cursor;
1052         bool new_piece;
1053
1054         BUG_ON(bytes > cursor->resid);
1055         switch (data->type) {
1056         case CEPH_MSG_DATA_PAGELIST:
1057                 new_piece = ceph_msg_data_pagelist_advance(data, bytes);
1058                 break;
1059         case CEPH_MSG_DATA_PAGES:
1060                 new_piece = ceph_msg_data_pages_advance(data, bytes);
1061                 break;
1062 #ifdef CONFIG_BLOCK
1063         case CEPH_MSG_DATA_BIO:
1064                 new_piece = ceph_msg_data_bio_advance(data, bytes);
1065                 break;
1066 #endif /* CONFIG_BLOCK */
1067         case CEPH_MSG_DATA_NONE:
1068         default:
1069                 BUG();
1070                 break;
1071         }
1072
1073         return new_piece;
1074 }
1075
1076 static void prepare_message_data(struct ceph_msg *msg,
1077                                 struct ceph_msg_pos *msg_pos)
1078 {
1079         size_t data_len;
1080
1081         BUG_ON(!msg);
1082
1083         data_len = le32_to_cpu(msg->hdr.data_len);
1084         BUG_ON(!data_len);
1085
1086         /* Initialize data cursor */
1087
1088         ceph_msg_data_cursor_init(&msg->data, data_len);
1089
1090         msg_pos->did_page_crc = false;
1091 }
1092
1093 /*
1094  * Prepare footer for currently outgoing message, and finish things
1095  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1096  */
1097 static void prepare_write_message_footer(struct ceph_connection *con)
1098 {
1099         struct ceph_msg *m = con->out_msg;
1100         int v = con->out_kvec_left;
1101
1102         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1103
1104         dout("prepare_write_message_footer %p\n", con);
1105         con->out_kvec_is_msg = true;
1106         con->out_kvec[v].iov_base = &m->footer;
1107         con->out_kvec[v].iov_len = sizeof(m->footer);
1108         con->out_kvec_bytes += sizeof(m->footer);
1109         con->out_kvec_left++;
1110         con->out_more = m->more_to_follow;
1111         con->out_msg_done = true;
1112 }
1113
1114 /*
1115  * Prepare headers for the next outgoing message.
1116  */
1117 static void prepare_write_message(struct ceph_connection *con)
1118 {
1119         struct ceph_msg *m;
1120         u32 crc;
1121
1122         con_out_kvec_reset(con);
1123         con->out_kvec_is_msg = true;
1124         con->out_msg_done = false;
1125
1126         /* Sneak an ack in there first?  If we can get it into the same
1127          * TCP packet that's a good thing. */
1128         if (con->in_seq > con->in_seq_acked) {
1129                 con->in_seq_acked = con->in_seq;
1130                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1131                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1132                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1133                         &con->out_temp_ack);
1134         }
1135
1136         BUG_ON(list_empty(&con->out_queue));
1137         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1138         con->out_msg = m;
1139         BUG_ON(m->con != con);
1140
1141         /* put message on sent list */
1142         ceph_msg_get(m);
1143         list_move_tail(&m->list_head, &con->out_sent);
1144
1145         /*
1146          * only assign outgoing seq # if we haven't sent this message
1147          * yet.  if it is requeued, resend with it's original seq.
1148          */
1149         if (m->needs_out_seq) {
1150                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1151                 m->needs_out_seq = false;
1152         }
1153
1154         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d\n",
1155              m, con->out_seq, le16_to_cpu(m->hdr.type),
1156              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1157              le32_to_cpu(m->hdr.data_len));
1158         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1159
1160         /* tag + hdr + front + middle */
1161         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1162         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1163         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1164
1165         if (m->middle)
1166                 con_out_kvec_add(con, m->middle->vec.iov_len,
1167                         m->middle->vec.iov_base);
1168
1169         /* fill in crc (except data pages), footer */
1170         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1171         con->out_msg->hdr.crc = cpu_to_le32(crc);
1172         con->out_msg->footer.flags = 0;
1173
1174         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1175         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1176         if (m->middle) {
1177                 crc = crc32c(0, m->middle->vec.iov_base,
1178                                 m->middle->vec.iov_len);
1179                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1180         } else
1181                 con->out_msg->footer.middle_crc = 0;
1182         dout("%s front_crc %u middle_crc %u\n", __func__,
1183              le32_to_cpu(con->out_msg->footer.front_crc),
1184              le32_to_cpu(con->out_msg->footer.middle_crc));
1185
1186         /* is there a data payload? */
1187         con->out_msg->footer.data_crc = 0;
1188         if (m->hdr.data_len) {
1189                 prepare_message_data(con->out_msg, &con->out_msg_pos);
1190                 con->out_more = 1;  /* data + footer will follow */
1191         } else {
1192                 /* no, queue up footer too and be done */
1193                 prepare_write_message_footer(con);
1194         }
1195
1196         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1197 }
1198
1199 /*
1200  * Prepare an ack.
1201  */
1202 static void prepare_write_ack(struct ceph_connection *con)
1203 {
1204         dout("prepare_write_ack %p %llu -> %llu\n", con,
1205              con->in_seq_acked, con->in_seq);
1206         con->in_seq_acked = con->in_seq;
1207
1208         con_out_kvec_reset(con);
1209
1210         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1211
1212         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1213         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1214                                 &con->out_temp_ack);
1215
1216         con->out_more = 1;  /* more will follow.. eventually.. */
1217         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1218 }
1219
1220 /*
1221  * Prepare to share the seq during handshake
1222  */
1223 static void prepare_write_seq(struct ceph_connection *con)
1224 {
1225         dout("prepare_write_seq %p %llu -> %llu\n", con,
1226              con->in_seq_acked, con->in_seq);
1227         con->in_seq_acked = con->in_seq;
1228
1229         con_out_kvec_reset(con);
1230
1231         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1232         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1233                          &con->out_temp_ack);
1234
1235         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1236 }
1237
1238 /*
1239  * Prepare to write keepalive byte.
1240  */
1241 static void prepare_write_keepalive(struct ceph_connection *con)
1242 {
1243         dout("prepare_write_keepalive %p\n", con);
1244         con_out_kvec_reset(con);
1245         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1246         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1247 }
1248
1249 /*
1250  * Connection negotiation.
1251  */
1252
1253 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1254                                                 int *auth_proto)
1255 {
1256         struct ceph_auth_handshake *auth;
1257
1258         if (!con->ops->get_authorizer) {
1259                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1260                 con->out_connect.authorizer_len = 0;
1261                 return NULL;
1262         }
1263
1264         /* Can't hold the mutex while getting authorizer */
1265         mutex_unlock(&con->mutex);
1266         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1267         mutex_lock(&con->mutex);
1268
1269         if (IS_ERR(auth))
1270                 return auth;
1271         if (con->state != CON_STATE_NEGOTIATING)
1272                 return ERR_PTR(-EAGAIN);
1273
1274         con->auth_reply_buf = auth->authorizer_reply_buf;
1275         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1276         return auth;
1277 }
1278
1279 /*
1280  * We connected to a peer and are saying hello.
1281  */
1282 static void prepare_write_banner(struct ceph_connection *con)
1283 {
1284         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1285         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1286                                         &con->msgr->my_enc_addr);
1287
1288         con->out_more = 0;
1289         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1290 }
1291
1292 static int prepare_write_connect(struct ceph_connection *con)
1293 {
1294         unsigned int global_seq = get_global_seq(con->msgr, 0);
1295         int proto;
1296         int auth_proto;
1297         struct ceph_auth_handshake *auth;
1298
1299         switch (con->peer_name.type) {
1300         case CEPH_ENTITY_TYPE_MON:
1301                 proto = CEPH_MONC_PROTOCOL;
1302                 break;
1303         case CEPH_ENTITY_TYPE_OSD:
1304                 proto = CEPH_OSDC_PROTOCOL;
1305                 break;
1306         case CEPH_ENTITY_TYPE_MDS:
1307                 proto = CEPH_MDSC_PROTOCOL;
1308                 break;
1309         default:
1310                 BUG();
1311         }
1312
1313         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1314              con->connect_seq, global_seq, proto);
1315
1316         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1317         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1318         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1319         con->out_connect.global_seq = cpu_to_le32(global_seq);
1320         con->out_connect.protocol_version = cpu_to_le32(proto);
1321         con->out_connect.flags = 0;
1322
1323         auth_proto = CEPH_AUTH_UNKNOWN;
1324         auth = get_connect_authorizer(con, &auth_proto);
1325         if (IS_ERR(auth))
1326                 return PTR_ERR(auth);
1327
1328         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1329         con->out_connect.authorizer_len = auth ?
1330                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1331
1332         con_out_kvec_add(con, sizeof (con->out_connect),
1333                                         &con->out_connect);
1334         if (auth && auth->authorizer_buf_len)
1335                 con_out_kvec_add(con, auth->authorizer_buf_len,
1336                                         auth->authorizer_buf);
1337
1338         con->out_more = 0;
1339         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340
1341         return 0;
1342 }
1343
1344 /*
1345  * write as much of pending kvecs to the socket as we can.
1346  *  1 -> done
1347  *  0 -> socket full, but more to do
1348  * <0 -> error
1349  */
1350 static int write_partial_kvec(struct ceph_connection *con)
1351 {
1352         int ret;
1353
1354         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1355         while (con->out_kvec_bytes > 0) {
1356                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1357                                        con->out_kvec_left, con->out_kvec_bytes,
1358                                        con->out_more);
1359                 if (ret <= 0)
1360                         goto out;
1361                 con->out_kvec_bytes -= ret;
1362                 if (con->out_kvec_bytes == 0)
1363                         break;            /* done */
1364
1365                 /* account for full iov entries consumed */
1366                 while (ret >= con->out_kvec_cur->iov_len) {
1367                         BUG_ON(!con->out_kvec_left);
1368                         ret -= con->out_kvec_cur->iov_len;
1369                         con->out_kvec_cur++;
1370                         con->out_kvec_left--;
1371                 }
1372                 /* and for a partially-consumed entry */
1373                 if (ret) {
1374                         con->out_kvec_cur->iov_len -= ret;
1375                         con->out_kvec_cur->iov_base += ret;
1376                 }
1377         }
1378         con->out_kvec_left = 0;
1379         con->out_kvec_is_msg = false;
1380         ret = 1;
1381 out:
1382         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1383              con->out_kvec_bytes, con->out_kvec_left, ret);
1384         return ret;  /* done! */
1385 }
1386
1387 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1388                         size_t len, size_t sent)
1389 {
1390         struct ceph_msg *msg = con->out_msg;
1391         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1392         bool need_crc = false;
1393
1394         BUG_ON(!msg);
1395         BUG_ON(!sent);
1396
1397         need_crc = ceph_msg_data_advance(&msg->data, sent);
1398         BUG_ON(need_crc && sent != len);
1399
1400         if (sent < len)
1401                 return;
1402
1403         BUG_ON(sent != len);
1404         msg_pos->did_page_crc = false;
1405 }
1406
1407 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1408                                 size_t received)
1409 {
1410         struct ceph_msg *msg = con->in_msg;
1411
1412         BUG_ON(!msg);
1413         BUG_ON(!received);
1414
1415         (void) ceph_msg_data_advance(&msg->data, received);
1416
1417         if (received < len)
1418                 return;
1419
1420         BUG_ON(received != len);
1421 }
1422
1423 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1424                                 unsigned int page_offset,
1425                                 unsigned int length)
1426 {
1427         char *kaddr;
1428
1429         kaddr = kmap(page);
1430         BUG_ON(kaddr == NULL);
1431         crc = crc32c(crc, kaddr + page_offset, length);
1432         kunmap(page);
1433
1434         return crc;
1435 }
1436 /*
1437  * Write as much message data payload as we can.  If we finish, queue
1438  * up the footer.
1439  *  1 -> done, footer is now queued in out_kvec[].
1440  *  0 -> socket full, but more to do
1441  * <0 -> error
1442  */
1443 static int write_partial_message_data(struct ceph_connection *con)
1444 {
1445         struct ceph_msg *msg = con->out_msg;
1446         struct ceph_msg_data_cursor *cursor = &msg->data.cursor;
1447         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1448         bool do_datacrc = !con->msgr->nocrc;
1449         int ret;
1450
1451         dout("%s %p msg %p\n", __func__, con, msg);
1452
1453         if (WARN_ON(!ceph_msg_has_data(msg)))
1454                 return -EINVAL;
1455
1456         /*
1457          * Iterate through each page that contains data to be
1458          * written, and send as much as possible for each.
1459          *
1460          * If we are calculating the data crc (the default), we will
1461          * need to map the page.  If we have no pages, they have
1462          * been revoked, so use the zero page.
1463          */
1464         while (cursor->resid) {
1465                 struct page *page;
1466                 size_t page_offset;
1467                 size_t length;
1468                 bool last_piece;
1469
1470                 page = ceph_msg_data_next(&msg->data, &page_offset, &length,
1471                                                         &last_piece);
1472                 if (do_datacrc && !msg_pos->did_page_crc) {
1473                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1474                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1475                         msg->footer.data_crc = cpu_to_le32(crc);
1476                         msg_pos->did_page_crc = true;
1477                 }
1478                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1479                                       length, last_piece);
1480                 if (ret <= 0)
1481                         goto out;
1482
1483                 out_msg_pos_next(con, page, length, (size_t) ret);
1484         }
1485
1486         dout("%s %p msg %p done\n", __func__, con, msg);
1487
1488         /* prepare and queue up footer, too */
1489         if (!do_datacrc)
1490                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1491         con_out_kvec_reset(con);
1492         prepare_write_message_footer(con);
1493         ret = 1;
1494 out:
1495         return ret;
1496 }
1497
1498 /*
1499  * write some zeros
1500  */
1501 static int write_partial_skip(struct ceph_connection *con)
1502 {
1503         int ret;
1504
1505         while (con->out_skip > 0) {
1506                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1507
1508                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1509                 if (ret <= 0)
1510                         goto out;
1511                 con->out_skip -= ret;
1512         }
1513         ret = 1;
1514 out:
1515         return ret;
1516 }
1517
1518 /*
1519  * Prepare to read connection handshake, or an ack.
1520  */
1521 static void prepare_read_banner(struct ceph_connection *con)
1522 {
1523         dout("prepare_read_banner %p\n", con);
1524         con->in_base_pos = 0;
1525 }
1526
1527 static void prepare_read_connect(struct ceph_connection *con)
1528 {
1529         dout("prepare_read_connect %p\n", con);
1530         con->in_base_pos = 0;
1531 }
1532
1533 static void prepare_read_ack(struct ceph_connection *con)
1534 {
1535         dout("prepare_read_ack %p\n", con);
1536         con->in_base_pos = 0;
1537 }
1538
1539 static void prepare_read_seq(struct ceph_connection *con)
1540 {
1541         dout("prepare_read_seq %p\n", con);
1542         con->in_base_pos = 0;
1543         con->in_tag = CEPH_MSGR_TAG_SEQ;
1544 }
1545
1546 static void prepare_read_tag(struct ceph_connection *con)
1547 {
1548         dout("prepare_read_tag %p\n", con);
1549         con->in_base_pos = 0;
1550         con->in_tag = CEPH_MSGR_TAG_READY;
1551 }
1552
1553 /*
1554  * Prepare to read a message.
1555  */
1556 static int prepare_read_message(struct ceph_connection *con)
1557 {
1558         dout("prepare_read_message %p\n", con);
1559         BUG_ON(con->in_msg != NULL);
1560         con->in_base_pos = 0;
1561         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1562         return 0;
1563 }
1564
1565
1566 static int read_partial(struct ceph_connection *con,
1567                         int end, int size, void *object)
1568 {
1569         while (con->in_base_pos < end) {
1570                 int left = end - con->in_base_pos;
1571                 int have = size - left;
1572                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1573                 if (ret <= 0)
1574                         return ret;
1575                 con->in_base_pos += ret;
1576         }
1577         return 1;
1578 }
1579
1580
1581 /*
1582  * Read all or part of the connect-side handshake on a new connection
1583  */
1584 static int read_partial_banner(struct ceph_connection *con)
1585 {
1586         int size;
1587         int end;
1588         int ret;
1589
1590         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1591
1592         /* peer's banner */
1593         size = strlen(CEPH_BANNER);
1594         end = size;
1595         ret = read_partial(con, end, size, con->in_banner);
1596         if (ret <= 0)
1597                 goto out;
1598
1599         size = sizeof (con->actual_peer_addr);
1600         end += size;
1601         ret = read_partial(con, end, size, &con->actual_peer_addr);
1602         if (ret <= 0)
1603                 goto out;
1604
1605         size = sizeof (con->peer_addr_for_me);
1606         end += size;
1607         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1608         if (ret <= 0)
1609                 goto out;
1610
1611 out:
1612         return ret;
1613 }
1614
1615 static int read_partial_connect(struct ceph_connection *con)
1616 {
1617         int size;
1618         int end;
1619         int ret;
1620
1621         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1622
1623         size = sizeof (con->in_reply);
1624         end = size;
1625         ret = read_partial(con, end, size, &con->in_reply);
1626         if (ret <= 0)
1627                 goto out;
1628
1629         size = le32_to_cpu(con->in_reply.authorizer_len);
1630         end += size;
1631         ret = read_partial(con, end, size, con->auth_reply_buf);
1632         if (ret <= 0)
1633                 goto out;
1634
1635         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1636              con, (int)con->in_reply.tag,
1637              le32_to_cpu(con->in_reply.connect_seq),
1638              le32_to_cpu(con->in_reply.global_seq));
1639 out:
1640         return ret;
1641
1642 }
1643
1644 /*
1645  * Verify the hello banner looks okay.
1646  */
1647 static int verify_hello(struct ceph_connection *con)
1648 {
1649         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1650                 pr_err("connect to %s got bad banner\n",
1651                        ceph_pr_addr(&con->peer_addr.in_addr));
1652                 con->error_msg = "protocol error, bad banner";
1653                 return -1;
1654         }
1655         return 0;
1656 }
1657
1658 static bool addr_is_blank(struct sockaddr_storage *ss)
1659 {
1660         switch (ss->ss_family) {
1661         case AF_INET:
1662                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1663         case AF_INET6:
1664                 return
1665                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1666                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1667                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1668                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1669         }
1670         return false;
1671 }
1672
1673 static int addr_port(struct sockaddr_storage *ss)
1674 {
1675         switch (ss->ss_family) {
1676         case AF_INET:
1677                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1678         case AF_INET6:
1679                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1680         }
1681         return 0;
1682 }
1683
1684 static void addr_set_port(struct sockaddr_storage *ss, int p)
1685 {
1686         switch (ss->ss_family) {
1687         case AF_INET:
1688                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1689                 break;
1690         case AF_INET6:
1691                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1692                 break;
1693         }
1694 }
1695
1696 /*
1697  * Unlike other *_pton function semantics, zero indicates success.
1698  */
1699 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1700                 char delim, const char **ipend)
1701 {
1702         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1703         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1704
1705         memset(ss, 0, sizeof(*ss));
1706
1707         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1708                 ss->ss_family = AF_INET;
1709                 return 0;
1710         }
1711
1712         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1713                 ss->ss_family = AF_INET6;
1714                 return 0;
1715         }
1716
1717         return -EINVAL;
1718 }
1719
1720 /*
1721  * Extract hostname string and resolve using kernel DNS facility.
1722  */
1723 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1724 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1725                 struct sockaddr_storage *ss, char delim, const char **ipend)
1726 {
1727         const char *end, *delim_p;
1728         char *colon_p, *ip_addr = NULL;
1729         int ip_len, ret;
1730
1731         /*
1732          * The end of the hostname occurs immediately preceding the delimiter or
1733          * the port marker (':') where the delimiter takes precedence.
1734          */
1735         delim_p = memchr(name, delim, namelen);
1736         colon_p = memchr(name, ':', namelen);
1737
1738         if (delim_p && colon_p)
1739                 end = delim_p < colon_p ? delim_p : colon_p;
1740         else if (!delim_p && colon_p)
1741                 end = colon_p;
1742         else {
1743                 end = delim_p;
1744                 if (!end) /* case: hostname:/ */
1745                         end = name + namelen;
1746         }
1747
1748         if (end <= name)
1749                 return -EINVAL;
1750
1751         /* do dns_resolve upcall */
1752         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1753         if (ip_len > 0)
1754                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1755         else
1756                 ret = -ESRCH;
1757
1758         kfree(ip_addr);
1759
1760         *ipend = end;
1761
1762         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1763                         ret, ret ? "failed" : ceph_pr_addr(ss));
1764
1765         return ret;
1766 }
1767 #else
1768 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1769                 struct sockaddr_storage *ss, char delim, const char **ipend)
1770 {
1771         return -EINVAL;
1772 }
1773 #endif
1774
1775 /*
1776  * Parse a server name (IP or hostname). If a valid IP address is not found
1777  * then try to extract a hostname to resolve using userspace DNS upcall.
1778  */
1779 static int ceph_parse_server_name(const char *name, size_t namelen,
1780                         struct sockaddr_storage *ss, char delim, const char **ipend)
1781 {
1782         int ret;
1783
1784         ret = ceph_pton(name, namelen, ss, delim, ipend);
1785         if (ret)
1786                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1787
1788         return ret;
1789 }
1790
1791 /*
1792  * Parse an ip[:port] list into an addr array.  Use the default
1793  * monitor port if a port isn't specified.
1794  */
1795 int ceph_parse_ips(const char *c, const char *end,
1796                    struct ceph_entity_addr *addr,
1797                    int max_count, int *count)
1798 {
1799         int i, ret = -EINVAL;
1800         const char *p = c;
1801
1802         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1803         for (i = 0; i < max_count; i++) {
1804                 const char *ipend;
1805                 struct sockaddr_storage *ss = &addr[i].in_addr;
1806                 int port;
1807                 char delim = ',';
1808
1809                 if (*p == '[') {
1810                         delim = ']';
1811                         p++;
1812                 }
1813
1814                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1815                 if (ret)
1816                         goto bad;
1817                 ret = -EINVAL;
1818
1819                 p = ipend;
1820
1821                 if (delim == ']') {
1822                         if (*p != ']') {
1823                                 dout("missing matching ']'\n");
1824                                 goto bad;
1825                         }
1826                         p++;
1827                 }
1828
1829                 /* port? */
1830                 if (p < end && *p == ':') {
1831                         port = 0;
1832                         p++;
1833                         while (p < end && *p >= '0' && *p <= '9') {
1834                                 port = (port * 10) + (*p - '0');
1835                                 p++;
1836                         }
1837                         if (port > 65535 || port == 0)
1838                                 goto bad;
1839                 } else {
1840                         port = CEPH_MON_PORT;
1841                 }
1842
1843                 addr_set_port(ss, port);
1844
1845                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1846
1847                 if (p == end)
1848                         break;
1849                 if (*p != ',')
1850                         goto bad;
1851                 p++;
1852         }
1853
1854         if (p != end)
1855                 goto bad;
1856
1857         if (count)
1858                 *count = i + 1;
1859         return 0;
1860
1861 bad:
1862         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1863         return ret;
1864 }
1865 EXPORT_SYMBOL(ceph_parse_ips);
1866
1867 static int process_banner(struct ceph_connection *con)
1868 {
1869         dout("process_banner on %p\n", con);
1870
1871         if (verify_hello(con) < 0)
1872                 return -1;
1873
1874         ceph_decode_addr(&con->actual_peer_addr);
1875         ceph_decode_addr(&con->peer_addr_for_me);
1876
1877         /*
1878          * Make sure the other end is who we wanted.  note that the other
1879          * end may not yet know their ip address, so if it's 0.0.0.0, give
1880          * them the benefit of the doubt.
1881          */
1882         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1883                    sizeof(con->peer_addr)) != 0 &&
1884             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1885               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1886                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1887                            ceph_pr_addr(&con->peer_addr.in_addr),
1888                            (int)le32_to_cpu(con->peer_addr.nonce),
1889                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1890                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1891                 con->error_msg = "wrong peer at address";
1892                 return -1;
1893         }
1894
1895         /*
1896          * did we learn our address?
1897          */
1898         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1899                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1900
1901                 memcpy(&con->msgr->inst.addr.in_addr,
1902                        &con->peer_addr_for_me.in_addr,
1903                        sizeof(con->peer_addr_for_me.in_addr));
1904                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1905                 encode_my_addr(con->msgr);
1906                 dout("process_banner learned my addr is %s\n",
1907                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1908         }
1909
1910         return 0;
1911 }
1912
1913 static int process_connect(struct ceph_connection *con)
1914 {
1915         u64 sup_feat = con->msgr->supported_features;
1916         u64 req_feat = con->msgr->required_features;
1917         u64 server_feat = le64_to_cpu(con->in_reply.features);
1918         int ret;
1919
1920         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1921
1922         switch (con->in_reply.tag) {
1923         case CEPH_MSGR_TAG_FEATURES:
1924                 pr_err("%s%lld %s feature set mismatch,"
1925                        " my %llx < server's %llx, missing %llx\n",
1926                        ENTITY_NAME(con->peer_name),
1927                        ceph_pr_addr(&con->peer_addr.in_addr),
1928                        sup_feat, server_feat, server_feat & ~sup_feat);
1929                 con->error_msg = "missing required protocol features";
1930                 reset_connection(con);
1931                 return -1;
1932
1933         case CEPH_MSGR_TAG_BADPROTOVER:
1934                 pr_err("%s%lld %s protocol version mismatch,"
1935                        " my %d != server's %d\n",
1936                        ENTITY_NAME(con->peer_name),
1937                        ceph_pr_addr(&con->peer_addr.in_addr),
1938                        le32_to_cpu(con->out_connect.protocol_version),
1939                        le32_to_cpu(con->in_reply.protocol_version));
1940                 con->error_msg = "protocol version mismatch";
1941                 reset_connection(con);
1942                 return -1;
1943
1944         case CEPH_MSGR_TAG_BADAUTHORIZER:
1945                 con->auth_retry++;
1946                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1947                      con->auth_retry);
1948                 if (con->auth_retry == 2) {
1949                         con->error_msg = "connect authorization failure";
1950                         return -1;
1951                 }
1952                 con_out_kvec_reset(con);
1953                 ret = prepare_write_connect(con);
1954                 if (ret < 0)
1955                         return ret;
1956                 prepare_read_connect(con);
1957                 break;
1958
1959         case CEPH_MSGR_TAG_RESETSESSION:
1960                 /*
1961                  * If we connected with a large connect_seq but the peer
1962                  * has no record of a session with us (no connection, or
1963                  * connect_seq == 0), they will send RESETSESION to indicate
1964                  * that they must have reset their session, and may have
1965                  * dropped messages.
1966                  */
1967                 dout("process_connect got RESET peer seq %u\n",
1968                      le32_to_cpu(con->in_reply.connect_seq));
1969                 pr_err("%s%lld %s connection reset\n",
1970                        ENTITY_NAME(con->peer_name),
1971                        ceph_pr_addr(&con->peer_addr.in_addr));
1972                 reset_connection(con);
1973                 con_out_kvec_reset(con);
1974                 ret = prepare_write_connect(con);
1975                 if (ret < 0)
1976                         return ret;
1977                 prepare_read_connect(con);
1978
1979                 /* Tell ceph about it. */
1980                 mutex_unlock(&con->mutex);
1981                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1982                 if (con->ops->peer_reset)
1983                         con->ops->peer_reset(con);
1984                 mutex_lock(&con->mutex);
1985                 if (con->state != CON_STATE_NEGOTIATING)
1986                         return -EAGAIN;
1987                 break;
1988
1989         case CEPH_MSGR_TAG_RETRY_SESSION:
1990                 /*
1991                  * If we sent a smaller connect_seq than the peer has, try
1992                  * again with a larger value.
1993                  */
1994                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1995                      le32_to_cpu(con->out_connect.connect_seq),
1996                      le32_to_cpu(con->in_reply.connect_seq));
1997                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1998                 con_out_kvec_reset(con);
1999                 ret = prepare_write_connect(con);
2000                 if (ret < 0)
2001                         return ret;
2002                 prepare_read_connect(con);
2003                 break;
2004
2005         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2006                 /*
2007                  * If we sent a smaller global_seq than the peer has, try
2008                  * again with a larger value.
2009                  */
2010                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2011                      con->peer_global_seq,
2012                      le32_to_cpu(con->in_reply.global_seq));
2013                 get_global_seq(con->msgr,
2014                                le32_to_cpu(con->in_reply.global_seq));
2015                 con_out_kvec_reset(con);
2016                 ret = prepare_write_connect(con);
2017                 if (ret < 0)
2018                         return ret;
2019                 prepare_read_connect(con);
2020                 break;
2021
2022         case CEPH_MSGR_TAG_SEQ:
2023         case CEPH_MSGR_TAG_READY:
2024                 if (req_feat & ~server_feat) {
2025                         pr_err("%s%lld %s protocol feature mismatch,"
2026                                " my required %llx > server's %llx, need %llx\n",
2027                                ENTITY_NAME(con->peer_name),
2028                                ceph_pr_addr(&con->peer_addr.in_addr),
2029                                req_feat, server_feat, req_feat & ~server_feat);
2030                         con->error_msg = "missing required protocol features";
2031                         reset_connection(con);
2032                         return -1;
2033                 }
2034
2035                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2036                 con->state = CON_STATE_OPEN;
2037                 con->auth_retry = 0;    /* we authenticated; clear flag */
2038                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2039                 con->connect_seq++;
2040                 con->peer_features = server_feat;
2041                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2042                      con->peer_global_seq,
2043                      le32_to_cpu(con->in_reply.connect_seq),
2044                      con->connect_seq);
2045                 WARN_ON(con->connect_seq !=
2046                         le32_to_cpu(con->in_reply.connect_seq));
2047
2048                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2049                         con_flag_set(con, CON_FLAG_LOSSYTX);
2050
2051                 con->delay = 0;      /* reset backoff memory */
2052
2053                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2054                         prepare_write_seq(con);
2055                         prepare_read_seq(con);
2056                 } else {
2057                         prepare_read_tag(con);
2058                 }
2059                 break;
2060
2061         case CEPH_MSGR_TAG_WAIT:
2062                 /*
2063                  * If there is a connection race (we are opening
2064                  * connections to each other), one of us may just have
2065                  * to WAIT.  This shouldn't happen if we are the
2066                  * client.
2067                  */
2068                 pr_err("process_connect got WAIT as client\n");
2069                 con->error_msg = "protocol error, got WAIT as client";
2070                 return -1;
2071
2072         default:
2073                 pr_err("connect protocol error, will retry\n");
2074                 con->error_msg = "protocol error, garbage tag during connect";
2075                 return -1;
2076         }
2077         return 0;
2078 }
2079
2080
2081 /*
2082  * read (part of) an ack
2083  */
2084 static int read_partial_ack(struct ceph_connection *con)
2085 {
2086         int size = sizeof (con->in_temp_ack);
2087         int end = size;
2088
2089         return read_partial(con, end, size, &con->in_temp_ack);
2090 }
2091
2092 /*
2093  * We can finally discard anything that's been acked.
2094  */
2095 static void process_ack(struct ceph_connection *con)
2096 {
2097         struct ceph_msg *m;
2098         u64 ack = le64_to_cpu(con->in_temp_ack);
2099         u64 seq;
2100
2101         while (!list_empty(&con->out_sent)) {
2102                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2103                                      list_head);
2104                 seq = le64_to_cpu(m->hdr.seq);
2105                 if (seq > ack)
2106                         break;
2107                 dout("got ack for seq %llu type %d at %p\n", seq,
2108                      le16_to_cpu(m->hdr.type), m);
2109                 m->ack_stamp = jiffies;
2110                 ceph_msg_remove(m);
2111         }
2112         prepare_read_tag(con);
2113 }
2114
2115
2116 static int read_partial_message_section(struct ceph_connection *con,
2117                                         struct kvec *section,
2118                                         unsigned int sec_len, u32 *crc)
2119 {
2120         int ret, left;
2121
2122         BUG_ON(!section);
2123
2124         while (section->iov_len < sec_len) {
2125                 BUG_ON(section->iov_base == NULL);
2126                 left = sec_len - section->iov_len;
2127                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2128                                        section->iov_len, left);
2129                 if (ret <= 0)
2130                         return ret;
2131                 section->iov_len += ret;
2132         }
2133         if (section->iov_len == sec_len)
2134                 *crc = crc32c(0, section->iov_base, section->iov_len);
2135
2136         return 1;
2137 }
2138
2139 static int read_partial_msg_data(struct ceph_connection *con)
2140 {
2141         struct ceph_msg *msg = con->in_msg;
2142         struct ceph_msg_data_cursor *cursor = &msg->data.cursor;
2143         const bool do_datacrc = !con->msgr->nocrc;
2144         struct page *page;
2145         size_t page_offset;
2146         size_t length;
2147         int ret;
2148
2149         BUG_ON(!msg);
2150         if (WARN_ON(!ceph_msg_has_data(msg)))
2151                 return -EIO;
2152
2153         while (cursor->resid) {
2154                 page = ceph_msg_data_next(&msg->data, &page_offset, &length,
2155                                                         NULL);
2156                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2157                 if (ret <= 0)
2158                         return ret;
2159
2160                 if (do_datacrc)
2161                         con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
2162                                                         page, page_offset, ret);
2163                 in_msg_pos_next(con, length, ret);
2164         }
2165
2166         return 1;       /* must return > 0 to indicate success */
2167 }
2168
2169 /*
2170  * read (part of) a message.
2171  */
2172 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2173
2174 static int read_partial_message(struct ceph_connection *con)
2175 {
2176         struct ceph_msg *m = con->in_msg;
2177         int size;
2178         int end;
2179         int ret;
2180         unsigned int front_len, middle_len, data_len;
2181         bool do_datacrc = !con->msgr->nocrc;
2182         u64 seq;
2183         u32 crc;
2184
2185         dout("read_partial_message con %p msg %p\n", con, m);
2186
2187         /* header */
2188         size = sizeof (con->in_hdr);
2189         end = size;
2190         ret = read_partial(con, end, size, &con->in_hdr);
2191         if (ret <= 0)
2192                 return ret;
2193
2194         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2195         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2196                 pr_err("read_partial_message bad hdr "
2197                        " crc %u != expected %u\n",
2198                        crc, con->in_hdr.crc);
2199                 return -EBADMSG;
2200         }
2201
2202         front_len = le32_to_cpu(con->in_hdr.front_len);
2203         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2204                 return -EIO;
2205         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2206         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2207                 return -EIO;
2208         data_len = le32_to_cpu(con->in_hdr.data_len);
2209         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2210                 return -EIO;
2211
2212         /* verify seq# */
2213         seq = le64_to_cpu(con->in_hdr.seq);
2214         if ((s64)seq - (s64)con->in_seq < 1) {
2215                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2216                         ENTITY_NAME(con->peer_name),
2217                         ceph_pr_addr(&con->peer_addr.in_addr),
2218                         seq, con->in_seq + 1);
2219                 con->in_base_pos = -front_len - middle_len - data_len -
2220                         sizeof(m->footer);
2221                 con->in_tag = CEPH_MSGR_TAG_READY;
2222                 return 0;
2223         } else if ((s64)seq - (s64)con->in_seq > 1) {
2224                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2225                        seq, con->in_seq + 1);
2226                 con->error_msg = "bad message sequence # for incoming message";
2227                 return -EBADMSG;
2228         }
2229
2230         /* allocate message? */
2231         if (!con->in_msg) {
2232                 int skip = 0;
2233
2234                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2235                      front_len, data_len);
2236                 ret = ceph_con_in_msg_alloc(con, &skip);
2237                 if (ret < 0)
2238                         return ret;
2239                 if (skip) {
2240                         /* skip this message */
2241                         dout("alloc_msg said skip message\n");
2242                         BUG_ON(con->in_msg);
2243                         con->in_base_pos = -front_len - middle_len - data_len -
2244                                 sizeof(m->footer);
2245                         con->in_tag = CEPH_MSGR_TAG_READY;
2246                         con->in_seq++;
2247                         return 0;
2248                 }
2249
2250                 BUG_ON(!con->in_msg);
2251                 BUG_ON(con->in_msg->con != con);
2252                 m = con->in_msg;
2253                 m->front.iov_len = 0;    /* haven't read it yet */
2254                 if (m->middle)
2255                         m->middle->vec.iov_len = 0;
2256
2257                 /* prepare for data payload, if any */
2258
2259                 if (data_len)
2260                         prepare_message_data(con->in_msg, &con->in_msg_pos);
2261         }
2262
2263         /* front */
2264         ret = read_partial_message_section(con, &m->front, front_len,
2265                                            &con->in_front_crc);
2266         if (ret <= 0)
2267                 return ret;
2268
2269         /* middle */
2270         if (m->middle) {
2271                 ret = read_partial_message_section(con, &m->middle->vec,
2272                                                    middle_len,
2273                                                    &con->in_middle_crc);
2274                 if (ret <= 0)
2275                         return ret;
2276         }
2277
2278         /* (page) data */
2279         if (data_len) {
2280                 ret = read_partial_msg_data(con);
2281                 if (ret <= 0)
2282                         return ret;
2283         }
2284
2285         /* footer */
2286         size = sizeof (m->footer);
2287         end += size;
2288         ret = read_partial(con, end, size, &m->footer);
2289         if (ret <= 0)
2290                 return ret;
2291
2292         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2293              m, front_len, m->footer.front_crc, middle_len,
2294              m->footer.middle_crc, data_len, m->footer.data_crc);
2295
2296         /* crc ok? */
2297         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2298                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2299                        m, con->in_front_crc, m->footer.front_crc);
2300                 return -EBADMSG;
2301         }
2302         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2303                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2304                        m, con->in_middle_crc, m->footer.middle_crc);
2305                 return -EBADMSG;
2306         }
2307         if (do_datacrc &&
2308             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2309             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2310                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2311                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2312                 return -EBADMSG;
2313         }
2314
2315         return 1; /* done! */
2316 }
2317
2318 /*
2319  * Process message.  This happens in the worker thread.  The callback should
2320  * be careful not to do anything that waits on other incoming messages or it
2321  * may deadlock.
2322  */
2323 static void process_message(struct ceph_connection *con)
2324 {
2325         struct ceph_msg *msg;
2326
2327         BUG_ON(con->in_msg->con != con);
2328         con->in_msg->con = NULL;
2329         msg = con->in_msg;
2330         con->in_msg = NULL;
2331         con->ops->put(con);
2332
2333         /* if first message, set peer_name */
2334         if (con->peer_name.type == 0)
2335                 con->peer_name = msg->hdr.src;
2336
2337         con->in_seq++;
2338         mutex_unlock(&con->mutex);
2339
2340         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2341              msg, le64_to_cpu(msg->hdr.seq),
2342              ENTITY_NAME(msg->hdr.src),
2343              le16_to_cpu(msg->hdr.type),
2344              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2345              le32_to_cpu(msg->hdr.front_len),
2346              le32_to_cpu(msg->hdr.data_len),
2347              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2348         con->ops->dispatch(con, msg);
2349
2350         mutex_lock(&con->mutex);
2351 }
2352
2353
2354 /*
2355  * Write something to the socket.  Called in a worker thread when the
2356  * socket appears to be writeable and we have something ready to send.
2357  */
2358 static int try_write(struct ceph_connection *con)
2359 {
2360         int ret = 1;
2361
2362         dout("try_write start %p state %lu\n", con, con->state);
2363
2364 more:
2365         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2366
2367         /* open the socket first? */
2368         if (con->state == CON_STATE_PREOPEN) {
2369                 BUG_ON(con->sock);
2370                 con->state = CON_STATE_CONNECTING;
2371
2372                 con_out_kvec_reset(con);
2373                 prepare_write_banner(con);
2374                 prepare_read_banner(con);
2375
2376                 BUG_ON(con->in_msg);
2377                 con->in_tag = CEPH_MSGR_TAG_READY;
2378                 dout("try_write initiating connect on %p new state %lu\n",
2379                      con, con->state);
2380                 ret = ceph_tcp_connect(con);
2381                 if (ret < 0) {
2382                         con->error_msg = "connect error";
2383                         goto out;
2384                 }
2385         }
2386
2387 more_kvec:
2388         /* kvec data queued? */
2389         if (con->out_skip) {
2390                 ret = write_partial_skip(con);
2391                 if (ret <= 0)
2392                         goto out;
2393         }
2394         if (con->out_kvec_left) {
2395                 ret = write_partial_kvec(con);
2396                 if (ret <= 0)
2397                         goto out;
2398         }
2399
2400         /* msg pages? */
2401         if (con->out_msg) {
2402                 if (con->out_msg_done) {
2403                         ceph_msg_put(con->out_msg);
2404                         con->out_msg = NULL;   /* we're done with this one */
2405                         goto do_next;
2406                 }
2407
2408                 ret = write_partial_message_data(con);
2409                 if (ret == 1)
2410                         goto more_kvec;  /* we need to send the footer, too! */
2411                 if (ret == 0)
2412                         goto out;
2413                 if (ret < 0) {
2414                         dout("try_write write_partial_message_data err %d\n",
2415                              ret);
2416                         goto out;
2417                 }
2418         }
2419
2420 do_next:
2421         if (con->state == CON_STATE_OPEN) {
2422                 /* is anything else pending? */
2423                 if (!list_empty(&con->out_queue)) {
2424                         prepare_write_message(con);
2425                         goto more;
2426                 }
2427                 if (con->in_seq > con->in_seq_acked) {
2428                         prepare_write_ack(con);
2429                         goto more;
2430                 }
2431                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2432                         prepare_write_keepalive(con);
2433                         goto more;
2434                 }
2435         }
2436
2437         /* Nothing to do! */
2438         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2439         dout("try_write nothing else to write.\n");
2440         ret = 0;
2441 out:
2442         dout("try_write done on %p ret %d\n", con, ret);
2443         return ret;
2444 }
2445
2446
2447
2448 /*
2449  * Read what we can from the socket.
2450  */
2451 static int try_read(struct ceph_connection *con)
2452 {
2453         int ret = -1;
2454
2455 more:
2456         dout("try_read start on %p state %lu\n", con, con->state);
2457         if (con->state != CON_STATE_CONNECTING &&
2458             con->state != CON_STATE_NEGOTIATING &&
2459             con->state != CON_STATE_OPEN)
2460                 return 0;
2461
2462         BUG_ON(!con->sock);
2463
2464         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2465              con->in_base_pos);
2466
2467         if (con->state == CON_STATE_CONNECTING) {
2468                 dout("try_read connecting\n");
2469                 ret = read_partial_banner(con);
2470                 if (ret <= 0)
2471                         goto out;
2472                 ret = process_banner(con);
2473                 if (ret < 0)
2474                         goto out;
2475
2476                 con->state = CON_STATE_NEGOTIATING;
2477
2478                 /*
2479                  * Received banner is good, exchange connection info.
2480                  * Do not reset out_kvec, as sending our banner raced
2481                  * with receiving peer banner after connect completed.
2482                  */
2483                 ret = prepare_write_connect(con);
2484                 if (ret < 0)
2485                         goto out;
2486                 prepare_read_connect(con);
2487
2488                 /* Send connection info before awaiting response */
2489                 goto out;
2490         }
2491
2492         if (con->state == CON_STATE_NEGOTIATING) {
2493                 dout("try_read negotiating\n");
2494                 ret = read_partial_connect(con);
2495                 if (ret <= 0)
2496                         goto out;
2497                 ret = process_connect(con);
2498                 if (ret < 0)
2499                         goto out;
2500                 goto more;
2501         }
2502
2503         WARN_ON(con->state != CON_STATE_OPEN);
2504
2505         if (con->in_base_pos < 0) {
2506                 /*
2507                  * skipping + discarding content.
2508                  *
2509                  * FIXME: there must be a better way to do this!
2510                  */
2511                 static char buf[SKIP_BUF_SIZE];
2512                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2513
2514                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2515                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2516                 if (ret <= 0)
2517                         goto out;
2518                 con->in_base_pos += ret;
2519                 if (con->in_base_pos)
2520                         goto more;
2521         }
2522         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2523                 /*
2524                  * what's next?
2525                  */
2526                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2527                 if (ret <= 0)
2528                         goto out;
2529                 dout("try_read got tag %d\n", (int)con->in_tag);
2530                 switch (con->in_tag) {
2531                 case CEPH_MSGR_TAG_MSG:
2532                         prepare_read_message(con);
2533                         break;
2534                 case CEPH_MSGR_TAG_ACK:
2535                         prepare_read_ack(con);
2536                         break;
2537                 case CEPH_MSGR_TAG_CLOSE:
2538                         con_close_socket(con);
2539                         con->state = CON_STATE_CLOSED;
2540                         goto out;
2541                 default:
2542                         goto bad_tag;
2543                 }
2544         }
2545         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2546                 ret = read_partial_message(con);
2547                 if (ret <= 0) {
2548                         switch (ret) {
2549                         case -EBADMSG:
2550                                 con->error_msg = "bad crc";
2551                                 ret = -EIO;
2552                                 break;
2553                         case -EIO:
2554                                 con->error_msg = "io error";
2555                                 break;
2556                         }
2557                         goto out;
2558                 }
2559                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2560                         goto more;
2561                 process_message(con);
2562                 if (con->state == CON_STATE_OPEN)
2563                         prepare_read_tag(con);
2564                 goto more;
2565         }
2566         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2567             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2568                 /*
2569                  * the final handshake seq exchange is semantically
2570                  * equivalent to an ACK
2571                  */
2572                 ret = read_partial_ack(con);
2573                 if (ret <= 0)
2574                         goto out;
2575                 process_ack(con);
2576                 goto more;
2577         }
2578
2579 out:
2580         dout("try_read done on %p ret %d\n", con, ret);
2581         return ret;
2582
2583 bad_tag:
2584         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2585         con->error_msg = "protocol error, garbage tag";
2586         ret = -1;
2587         goto out;
2588 }
2589
2590
2591 /*
2592  * Atomically queue work on a connection after the specified delay.
2593  * Bump @con reference to avoid races with connection teardown.
2594  * Returns 0 if work was queued, or an error code otherwise.
2595  */
2596 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2597 {
2598         if (!con->ops->get(con)) {
2599                 dout("%s %p ref count 0\n", __func__, con);
2600
2601                 return -ENOENT;
2602         }
2603
2604         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2605                 dout("%s %p - already queued\n", __func__, con);
2606                 con->ops->put(con);
2607
2608                 return -EBUSY;
2609         }
2610
2611         dout("%s %p %lu\n", __func__, con, delay);
2612
2613         return 0;
2614 }
2615
2616 static void queue_con(struct ceph_connection *con)
2617 {
2618         (void) queue_con_delay(con, 0);
2619 }
2620
2621 static bool con_sock_closed(struct ceph_connection *con)
2622 {
2623         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2624                 return false;
2625
2626 #define CASE(x)                                                         \
2627         case CON_STATE_ ## x:                                           \
2628                 con->error_msg = "socket closed (con state " #x ")";    \
2629                 break;
2630
2631         switch (con->state) {
2632         CASE(CLOSED);
2633         CASE(PREOPEN);
2634         CASE(CONNECTING);
2635         CASE(NEGOTIATING);
2636         CASE(OPEN);
2637         CASE(STANDBY);
2638         default:
2639                 pr_warning("%s con %p unrecognized state %lu\n",
2640                         __func__, con, con->state);
2641                 con->error_msg = "unrecognized con state";
2642                 BUG();
2643                 break;
2644         }
2645 #undef CASE
2646
2647         return true;
2648 }
2649
2650 static bool con_backoff(struct ceph_connection *con)
2651 {
2652         int ret;
2653
2654         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2655                 return false;
2656
2657         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2658         if (ret) {
2659                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2660                         con, con->delay);
2661                 BUG_ON(ret == -ENOENT);
2662                 con_flag_set(con, CON_FLAG_BACKOFF);
2663         }
2664
2665         return true;
2666 }
2667
2668 /* Finish fault handling; con->mutex must *not* be held here */
2669
2670 static void con_fault_finish(struct ceph_connection *con)
2671 {
2672         /*
2673          * in case we faulted due to authentication, invalidate our
2674          * current tickets so that we can get new ones.
2675          */
2676         if (con->auth_retry && con->ops->invalidate_authorizer) {
2677                 dout("calling invalidate_authorizer()\n");
2678                 con->ops->invalidate_authorizer(con);
2679         }
2680
2681         if (con->ops->fault)
2682                 con->ops->fault(con);
2683 }
2684
2685 /*
2686  * Do some work on a connection.  Drop a connection ref when we're done.
2687  */
2688 static void con_work(struct work_struct *work)
2689 {
2690         struct ceph_connection *con = container_of(work, struct ceph_connection,
2691                                                    work.work);
2692         bool fault;
2693
2694         mutex_lock(&con->mutex);
2695         while (true) {
2696                 int ret;
2697
2698                 if ((fault = con_sock_closed(con))) {
2699                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2700                         break;
2701                 }
2702                 if (con_backoff(con)) {
2703                         dout("%s: con %p BACKOFF\n", __func__, con);
2704                         break;
2705                 }
2706                 if (con->state == CON_STATE_STANDBY) {
2707                         dout("%s: con %p STANDBY\n", __func__, con);
2708                         break;
2709                 }
2710                 if (con->state == CON_STATE_CLOSED) {
2711                         dout("%s: con %p CLOSED\n", __func__, con);
2712                         BUG_ON(con->sock);
2713                         break;
2714                 }
2715                 if (con->state == CON_STATE_PREOPEN) {
2716                         dout("%s: con %p PREOPEN\n", __func__, con);
2717                         BUG_ON(con->sock);
2718                 }
2719
2720                 ret = try_read(con);
2721                 if (ret < 0) {
2722                         if (ret == -EAGAIN)
2723                                 continue;
2724                         con->error_msg = "socket error on read";
2725                         fault = true;
2726                         break;
2727                 }
2728
2729                 ret = try_write(con);
2730                 if (ret < 0) {
2731                         if (ret == -EAGAIN)
2732                                 continue;
2733                         con->error_msg = "socket error on write";
2734                         fault = true;
2735                 }
2736
2737                 break;  /* If we make it to here, we're done */
2738         }
2739         if (fault)
2740                 con_fault(con);
2741         mutex_unlock(&con->mutex);
2742
2743         if (fault)
2744                 con_fault_finish(con);
2745
2746         con->ops->put(con);
2747 }
2748
2749 /*
2750  * Generic error/fault handler.  A retry mechanism is used with
2751  * exponential backoff
2752  */
2753 static void con_fault(struct ceph_connection *con)
2754 {
2755         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2756                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2757         dout("fault %p state %lu to peer %s\n",
2758              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2759
2760         WARN_ON(con->state != CON_STATE_CONNECTING &&
2761                con->state != CON_STATE_NEGOTIATING &&
2762                con->state != CON_STATE_OPEN);
2763
2764         con_close_socket(con);
2765
2766         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2767                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2768                 con->state = CON_STATE_CLOSED;
2769                 return;
2770         }
2771
2772         if (con->in_msg) {
2773                 BUG_ON(con->in_msg->con != con);
2774                 con->in_msg->con = NULL;
2775                 ceph_msg_put(con->in_msg);
2776                 con->in_msg = NULL;
2777                 con->ops->put(con);
2778         }
2779
2780         /* Requeue anything that hasn't been acked */
2781         list_splice_init(&con->out_sent, &con->out_queue);
2782
2783         /* If there are no messages queued or keepalive pending, place
2784          * the connection in a STANDBY state */
2785         if (list_empty(&con->out_queue) &&
2786             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2787                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2788                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2789                 con->state = CON_STATE_STANDBY;
2790         } else {
2791                 /* retry after a delay. */
2792                 con->state = CON_STATE_PREOPEN;
2793                 if (con->delay == 0)
2794                         con->delay = BASE_DELAY_INTERVAL;
2795                 else if (con->delay < MAX_DELAY_INTERVAL)
2796                         con->delay *= 2;
2797                 con_flag_set(con, CON_FLAG_BACKOFF);
2798                 queue_con(con);
2799         }
2800 }
2801
2802
2803
2804 /*
2805  * initialize a new messenger instance
2806  */
2807 void ceph_messenger_init(struct ceph_messenger *msgr,
2808                         struct ceph_entity_addr *myaddr,
2809                         u32 supported_features,
2810                         u32 required_features,
2811                         bool nocrc)
2812 {
2813         msgr->supported_features = supported_features;
2814         msgr->required_features = required_features;
2815
2816         spin_lock_init(&msgr->global_seq_lock);
2817
2818         if (myaddr)
2819                 msgr->inst.addr = *myaddr;
2820
2821         /* select a random nonce */
2822         msgr->inst.addr.type = 0;
2823         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2824         encode_my_addr(msgr);
2825         msgr->nocrc = nocrc;
2826
2827         atomic_set(&msgr->stopping, 0);
2828
2829         dout("%s %p\n", __func__, msgr);
2830 }
2831 EXPORT_SYMBOL(ceph_messenger_init);
2832
2833 static void clear_standby(struct ceph_connection *con)
2834 {
2835         /* come back from STANDBY? */
2836         if (con->state == CON_STATE_STANDBY) {
2837                 dout("clear_standby %p and ++connect_seq\n", con);
2838                 con->state = CON_STATE_PREOPEN;
2839                 con->connect_seq++;
2840                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2841                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2842         }
2843 }
2844
2845 /*
2846  * Queue up an outgoing message on the given connection.
2847  */
2848 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2849 {
2850         /* set src+dst */
2851         msg->hdr.src = con->msgr->inst.name;
2852         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2853         msg->needs_out_seq = true;
2854
2855         mutex_lock(&con->mutex);
2856
2857         if (con->state == CON_STATE_CLOSED) {
2858                 dout("con_send %p closed, dropping %p\n", con, msg);
2859                 ceph_msg_put(msg);
2860                 mutex_unlock(&con->mutex);
2861                 return;
2862         }
2863
2864         BUG_ON(msg->con != NULL);
2865         msg->con = con->ops->get(con);
2866         BUG_ON(msg->con == NULL);
2867
2868         BUG_ON(!list_empty(&msg->list_head));
2869         list_add_tail(&msg->list_head, &con->out_queue);
2870         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2871              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2872              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2873              le32_to_cpu(msg->hdr.front_len),
2874              le32_to_cpu(msg->hdr.middle_len),
2875              le32_to_cpu(msg->hdr.data_len));
2876
2877         clear_standby(con);
2878         mutex_unlock(&con->mutex);
2879
2880         /* if there wasn't anything waiting to send before, queue
2881          * new work */
2882         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2883                 queue_con(con);
2884 }
2885 EXPORT_SYMBOL(ceph_con_send);
2886
2887 /*
2888  * Revoke a message that was previously queued for send
2889  */
2890 void ceph_msg_revoke(struct ceph_msg *msg)
2891 {
2892         struct ceph_connection *con = msg->con;
2893
2894         if (!con)
2895                 return;         /* Message not in our possession */
2896
2897         mutex_lock(&con->mutex);
2898         if (!list_empty(&msg->list_head)) {
2899                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2900                 list_del_init(&msg->list_head);
2901                 BUG_ON(msg->con == NULL);
2902                 msg->con->ops->put(msg->con);
2903                 msg->con = NULL;
2904                 msg->hdr.seq = 0;
2905
2906                 ceph_msg_put(msg);
2907         }
2908         if (con->out_msg == msg) {
2909                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2910                 con->out_msg = NULL;
2911                 if (con->out_kvec_is_msg) {
2912                         con->out_skip = con->out_kvec_bytes;
2913                         con->out_kvec_is_msg = false;
2914                 }
2915                 msg->hdr.seq = 0;
2916
2917                 ceph_msg_put(msg);
2918         }
2919         mutex_unlock(&con->mutex);
2920 }
2921
2922 /*
2923  * Revoke a message that we may be reading data into
2924  */
2925 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2926 {
2927         struct ceph_connection *con;
2928
2929         BUG_ON(msg == NULL);
2930         if (!msg->con) {
2931                 dout("%s msg %p null con\n", __func__, msg);
2932
2933                 return;         /* Message not in our possession */
2934         }
2935
2936         con = msg->con;
2937         mutex_lock(&con->mutex);
2938         if (con->in_msg == msg) {
2939                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2940                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2941                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2942
2943                 /* skip rest of message */
2944                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2945                 con->in_base_pos = con->in_base_pos -
2946                                 sizeof(struct ceph_msg_header) -
2947                                 front_len -
2948                                 middle_len -
2949                                 data_len -
2950                                 sizeof(struct ceph_msg_footer);
2951                 ceph_msg_put(con->in_msg);
2952                 con->in_msg = NULL;
2953                 con->in_tag = CEPH_MSGR_TAG_READY;
2954                 con->in_seq++;
2955         } else {
2956                 dout("%s %p in_msg %p msg %p no-op\n",
2957                      __func__, con, con->in_msg, msg);
2958         }
2959         mutex_unlock(&con->mutex);
2960 }
2961
2962 /*
2963  * Queue a keepalive byte to ensure the tcp connection is alive.
2964  */
2965 void ceph_con_keepalive(struct ceph_connection *con)
2966 {
2967         dout("con_keepalive %p\n", con);
2968         mutex_lock(&con->mutex);
2969         clear_standby(con);
2970         mutex_unlock(&con->mutex);
2971         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2972             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2973                 queue_con(con);
2974 }
2975 EXPORT_SYMBOL(ceph_con_keepalive);
2976
2977 static void ceph_msg_data_init(struct ceph_msg_data *data)
2978 {
2979         data->type = CEPH_MSG_DATA_NONE;
2980 }
2981
2982 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2983                 size_t length, size_t alignment)
2984 {
2985         BUG_ON(!pages);
2986         BUG_ON(!length);
2987         BUG_ON(msg->data.type != CEPH_MSG_DATA_NONE);
2988
2989         msg->data.type = CEPH_MSG_DATA_PAGES;
2990         msg->data.pages = pages;
2991         msg->data.length = length;
2992         msg->data.alignment = alignment & ~PAGE_MASK;
2993 }
2994 EXPORT_SYMBOL(ceph_msg_data_set_pages);
2995
2996 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
2997                                 struct ceph_pagelist *pagelist)
2998 {
2999         BUG_ON(!pagelist);
3000         BUG_ON(!pagelist->length);
3001         BUG_ON(msg->data.type != CEPH_MSG_DATA_NONE);
3002
3003         msg->data.type = CEPH_MSG_DATA_PAGELIST;
3004         msg->data.pagelist = pagelist;
3005 }
3006 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
3007
3008 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
3009 {
3010         BUG_ON(!bio);
3011         BUG_ON(msg->data.type != CEPH_MSG_DATA_NONE);
3012
3013         msg->data.type = CEPH_MSG_DATA_BIO;
3014         msg->data.bio = bio;
3015 }
3016 EXPORT_SYMBOL(ceph_msg_data_set_bio);
3017
3018 /*
3019  * construct a new message with given type, size
3020  * the new msg has a ref count of 1.
3021  */
3022 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3023                               bool can_fail)
3024 {
3025         struct ceph_msg *m;
3026
3027         m = kzalloc(sizeof(*m), flags);
3028         if (m == NULL)
3029                 goto out;
3030
3031         m->hdr.type = cpu_to_le16(type);
3032         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3033         m->hdr.front_len = cpu_to_le32(front_len);
3034
3035         INIT_LIST_HEAD(&m->list_head);
3036         kref_init(&m->kref);
3037
3038         ceph_msg_data_init(&m->data);
3039
3040         /* front */
3041         m->front_max = front_len;
3042         if (front_len) {
3043                 if (front_len > PAGE_CACHE_SIZE) {
3044                         m->front.iov_base = __vmalloc(front_len, flags,
3045                                                       PAGE_KERNEL);
3046                         m->front_is_vmalloc = true;
3047                 } else {
3048                         m->front.iov_base = kmalloc(front_len, flags);
3049                 }
3050                 if (m->front.iov_base == NULL) {
3051                         dout("ceph_msg_new can't allocate %d bytes\n",
3052                              front_len);
3053                         goto out2;
3054                 }
3055         } else {
3056                 m->front.iov_base = NULL;
3057         }
3058         m->front.iov_len = front_len;
3059
3060         dout("ceph_msg_new %p front %d\n", m, front_len);
3061         return m;
3062
3063 out2:
3064         ceph_msg_put(m);
3065 out:
3066         if (!can_fail) {
3067                 pr_err("msg_new can't create type %d front %d\n", type,
3068                        front_len);
3069                 WARN_ON(1);
3070         } else {
3071                 dout("msg_new can't create type %d front %d\n", type,
3072                      front_len);
3073         }
3074         return NULL;
3075 }
3076 EXPORT_SYMBOL(ceph_msg_new);
3077
3078 /*
3079  * Allocate "middle" portion of a message, if it is needed and wasn't
3080  * allocated by alloc_msg.  This allows us to read a small fixed-size
3081  * per-type header in the front and then gracefully fail (i.e.,
3082  * propagate the error to the caller based on info in the front) when
3083  * the middle is too large.
3084  */
3085 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3086 {
3087         int type = le16_to_cpu(msg->hdr.type);
3088         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3089
3090         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3091              ceph_msg_type_name(type), middle_len);
3092         BUG_ON(!middle_len);
3093         BUG_ON(msg->middle);
3094
3095         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3096         if (!msg->middle)
3097                 return -ENOMEM;
3098         return 0;
3099 }
3100
3101 /*
3102  * Allocate a message for receiving an incoming message on a
3103  * connection, and save the result in con->in_msg.  Uses the
3104  * connection's private alloc_msg op if available.
3105  *
3106  * Returns 0 on success, or a negative error code.
3107  *
3108  * On success, if we set *skip = 1:
3109  *  - the next message should be skipped and ignored.
3110  *  - con->in_msg == NULL
3111  * or if we set *skip = 0:
3112  *  - con->in_msg is non-null.
3113  * On error (ENOMEM, EAGAIN, ...),
3114  *  - con->in_msg == NULL
3115  */
3116 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3117 {
3118         struct ceph_msg_header *hdr = &con->in_hdr;
3119         int middle_len = le32_to_cpu(hdr->middle_len);
3120         struct ceph_msg *msg;
3121         int ret = 0;
3122
3123         BUG_ON(con->in_msg != NULL);
3124         BUG_ON(!con->ops->alloc_msg);
3125
3126         mutex_unlock(&con->mutex);
3127         msg = con->ops->alloc_msg(con, hdr, skip);
3128         mutex_lock(&con->mutex);
3129         if (con->state != CON_STATE_OPEN) {
3130                 if (msg)
3131                         ceph_msg_put(msg);
3132                 return -EAGAIN;
3133         }
3134         if (msg) {
3135                 BUG_ON(*skip);
3136                 con->in_msg = msg;
3137                 con->in_msg->con = con->ops->get(con);
3138                 BUG_ON(con->in_msg->con == NULL);
3139         } else {
3140                 /*
3141                  * Null message pointer means either we should skip
3142                  * this message or we couldn't allocate memory.  The
3143                  * former is not an error.
3144                  */
3145                 if (*skip)
3146                         return 0;
3147                 con->error_msg = "error allocating memory for incoming message";
3148
3149                 return -ENOMEM;
3150         }
3151         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3152
3153         if (middle_len && !con->in_msg->middle) {
3154                 ret = ceph_alloc_middle(con, con->in_msg);
3155                 if (ret < 0) {
3156                         ceph_msg_put(con->in_msg);
3157                         con->in_msg = NULL;
3158                 }
3159         }
3160
3161         return ret;
3162 }
3163
3164
3165 /*
3166  * Free a generically kmalloc'd message.
3167  */
3168 void ceph_msg_kfree(struct ceph_msg *m)
3169 {
3170         dout("msg_kfree %p\n", m);
3171         if (m->front_is_vmalloc)
3172                 vfree(m->front.iov_base);
3173         else
3174                 kfree(m->front.iov_base);
3175         kfree(m);
3176 }
3177
3178 /*
3179  * Drop a msg ref.  Destroy as needed.
3180  */
3181 void ceph_msg_last_put(struct kref *kref)
3182 {
3183         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3184
3185         dout("ceph_msg_put last one on %p\n", m);
3186         WARN_ON(!list_empty(&m->list_head));
3187
3188         /* drop middle, data, if any */
3189         if (m->middle) {
3190                 ceph_buffer_put(m->middle);
3191                 m->middle = NULL;
3192         }
3193         if (ceph_msg_has_data(m)) {
3194                 if (m->data.type == CEPH_MSG_DATA_PAGELIST) {
3195                         ceph_pagelist_release(m->data.pagelist);
3196                         kfree(m->data.pagelist);
3197                 }
3198                 memset(&m->data, 0, sizeof m->data);
3199                 ceph_msg_data_init(&m->data);
3200         }
3201
3202         if (m->pool)
3203                 ceph_msgpool_put(m->pool, m);
3204         else
3205                 ceph_msg_kfree(m);
3206 }
3207 EXPORT_SYMBOL(ceph_msg_last_put);
3208
3209 void ceph_msg_dump(struct ceph_msg *msg)
3210 {
3211         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3212                  msg->front_max, msg->data.length);
3213         print_hex_dump(KERN_DEBUG, "header: ",
3214                        DUMP_PREFIX_OFFSET, 16, 1,
3215                        &msg->hdr, sizeof(msg->hdr), true);
3216         print_hex_dump(KERN_DEBUG, " front: ",
3217                        DUMP_PREFIX_OFFSET, 16, 1,
3218                        msg->front.iov_base, msg->front.iov_len, true);
3219         if (msg->middle)
3220                 print_hex_dump(KERN_DEBUG, "middle: ",
3221                                DUMP_PREFIX_OFFSET, 16, 1,
3222                                msg->middle->vec.iov_base,
3223                                msg->middle->vec.iov_len, true);
3224         print_hex_dump(KERN_DEBUG, "footer: ",
3225                        DUMP_PREFIX_OFFSET, 16, 1,
3226                        &msg->footer, sizeof(msg->footer), true);
3227 }
3228 EXPORT_SYMBOL(ceph_msg_dump);