]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: make message data be a pointer
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member)                                    \
25         list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77
78 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
83
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98                                        * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106         switch (con_flag) {
107         case CON_FLAG_LOSSYTX:
108         case CON_FLAG_KEEPALIVE_PENDING:
109         case CON_FLAG_WRITE_PENDING:
110         case CON_FLAG_SOCK_CLOSED:
111         case CON_FLAG_BACKOFF:
112                 return true;
113         default:
114                 return false;
115         }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120         BUG_ON(!con_flag_valid(con_flag));
121
122         clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127         BUG_ON(!con_flag_valid(con_flag));
128
129         set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134         BUG_ON(!con_flag_valid(con_flag));
135
136         return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140                                         unsigned long con_flag)
141 {
142         BUG_ON(!con_flag_valid(con_flag));
143
144         return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148                                         unsigned long con_flag)
149 {
150         BUG_ON(!con_flag_valid(con_flag));
151
152         return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* static tag bytes (protocol control messages) */
156 static char tag_msg = CEPH_MSGR_TAG_MSG;
157 static char tag_ack = CEPH_MSGR_TAG_ACK;
158 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160 #ifdef CONFIG_LOCKDEP
161 static struct lock_class_key socket_class;
162 #endif
163
164 /*
165  * When skipping (ignoring) a block of input we read it into a "skip
166  * buffer," which is this many bytes in size.
167  */
168 #define SKIP_BUF_SIZE   1024
169
170 static void queue_con(struct ceph_connection *con);
171 static void con_work(struct work_struct *);
172 static void con_fault(struct ceph_connection *con);
173
174 /*
175  * Nicely render a sockaddr as a string.  An array of formatted
176  * strings is used, to approximate reentrancy.
177  */
178 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
179 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
180 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
181 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
182
183 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184 static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186 static struct page *zero_page;          /* used in certain error cases */
187
188 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189 {
190         int i;
191         char *s;
192         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196         s = addr_str[i];
197
198         switch (ss->ss_family) {
199         case AF_INET:
200                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201                          ntohs(in4->sin_port));
202                 break;
203
204         case AF_INET6:
205                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206                          ntohs(in6->sin6_port));
207                 break;
208
209         default:
210                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211                          ss->ss_family);
212         }
213
214         return s;
215 }
216 EXPORT_SYMBOL(ceph_pr_addr);
217
218 static void encode_my_addr(struct ceph_messenger *msgr)
219 {
220         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221         ceph_encode_addr(&msgr->my_enc_addr);
222 }
223
224 /*
225  * work queue for all reading and writing to/from the socket.
226  */
227 static struct workqueue_struct *ceph_msgr_wq;
228
229 static void _ceph_msgr_exit(void)
230 {
231         if (ceph_msgr_wq) {
232                 destroy_workqueue(ceph_msgr_wq);
233                 ceph_msgr_wq = NULL;
234         }
235
236         BUG_ON(zero_page == NULL);
237         kunmap(zero_page);
238         page_cache_release(zero_page);
239         zero_page = NULL;
240 }
241
242 int ceph_msgr_init(void)
243 {
244         BUG_ON(zero_page != NULL);
245         zero_page = ZERO_PAGE(0);
246         page_cache_get(zero_page);
247
248         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249         if (ceph_msgr_wq)
250                 return 0;
251
252         pr_err("msgr_init failed to create workqueue\n");
253         _ceph_msgr_exit();
254
255         return -ENOMEM;
256 }
257 EXPORT_SYMBOL(ceph_msgr_init);
258
259 void ceph_msgr_exit(void)
260 {
261         BUG_ON(ceph_msgr_wq == NULL);
262
263         _ceph_msgr_exit();
264 }
265 EXPORT_SYMBOL(ceph_msgr_exit);
266
267 void ceph_msgr_flush(void)
268 {
269         flush_workqueue(ceph_msgr_wq);
270 }
271 EXPORT_SYMBOL(ceph_msgr_flush);
272
273 /* Connection socket state transition functions */
274
275 static void con_sock_state_init(struct ceph_connection *con)
276 {
277         int old_state;
278
279         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281                 printk("%s: unexpected old state %d\n", __func__, old_state);
282         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283              CON_SOCK_STATE_CLOSED);
284 }
285
286 static void con_sock_state_connecting(struct ceph_connection *con)
287 {
288         int old_state;
289
290         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292                 printk("%s: unexpected old state %d\n", __func__, old_state);
293         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294              CON_SOCK_STATE_CONNECTING);
295 }
296
297 static void con_sock_state_connected(struct ceph_connection *con)
298 {
299         int old_state;
300
301         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303                 printk("%s: unexpected old state %d\n", __func__, old_state);
304         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305              CON_SOCK_STATE_CONNECTED);
306 }
307
308 static void con_sock_state_closing(struct ceph_connection *con)
309 {
310         int old_state;
311
312         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314                         old_state != CON_SOCK_STATE_CONNECTED &&
315                         old_state != CON_SOCK_STATE_CLOSING))
316                 printk("%s: unexpected old state %d\n", __func__, old_state);
317         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318              CON_SOCK_STATE_CLOSING);
319 }
320
321 static void con_sock_state_closed(struct ceph_connection *con)
322 {
323         int old_state;
324
325         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327                     old_state != CON_SOCK_STATE_CLOSING &&
328                     old_state != CON_SOCK_STATE_CONNECTING &&
329                     old_state != CON_SOCK_STATE_CLOSED))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CLOSED);
333 }
334
335 /*
336  * socket callback functions
337  */
338
339 /* data available on socket, or listen socket received a connect */
340 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341 {
342         struct ceph_connection *con = sk->sk_user_data;
343         if (atomic_read(&con->msgr->stopping)) {
344                 return;
345         }
346
347         if (sk->sk_state != TCP_CLOSE_WAIT) {
348                 dout("%s on %p state = %lu, queueing work\n", __func__,
349                      con, con->state);
350                 queue_con(con);
351         }
352 }
353
354 /* socket has buffer space for writing */
355 static void ceph_sock_write_space(struct sock *sk)
356 {
357         struct ceph_connection *con = sk->sk_user_data;
358
359         /* only queue to workqueue if there is data we want to write,
360          * and there is sufficient space in the socket buffer to accept
361          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
362          * doesn't get called again until try_write() fills the socket
363          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364          * and net/core/stream.c:sk_stream_write_space().
365          */
366         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368                         dout("%s %p queueing write work\n", __func__, con);
369                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370                         queue_con(con);
371                 }
372         } else {
373                 dout("%s %p nothing to write\n", __func__, con);
374         }
375 }
376
377 /* socket's state has changed */
378 static void ceph_sock_state_change(struct sock *sk)
379 {
380         struct ceph_connection *con = sk->sk_user_data;
381
382         dout("%s %p state = %lu sk_state = %u\n", __func__,
383              con, con->state, sk->sk_state);
384
385         switch (sk->sk_state) {
386         case TCP_CLOSE:
387                 dout("%s TCP_CLOSE\n", __func__);
388         case TCP_CLOSE_WAIT:
389                 dout("%s TCP_CLOSE_WAIT\n", __func__);
390                 con_sock_state_closing(con);
391                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392                 queue_con(con);
393                 break;
394         case TCP_ESTABLISHED:
395                 dout("%s TCP_ESTABLISHED\n", __func__);
396                 con_sock_state_connected(con);
397                 queue_con(con);
398                 break;
399         default:        /* Everything else is uninteresting */
400                 break;
401         }
402 }
403
404 /*
405  * set up socket callbacks
406  */
407 static void set_sock_callbacks(struct socket *sock,
408                                struct ceph_connection *con)
409 {
410         struct sock *sk = sock->sk;
411         sk->sk_user_data = con;
412         sk->sk_data_ready = ceph_sock_data_ready;
413         sk->sk_write_space = ceph_sock_write_space;
414         sk->sk_state_change = ceph_sock_state_change;
415 }
416
417
418 /*
419  * socket helpers
420  */
421
422 /*
423  * initiate connection to a remote socket.
424  */
425 static int ceph_tcp_connect(struct ceph_connection *con)
426 {
427         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428         struct socket *sock;
429         int ret;
430
431         BUG_ON(con->sock);
432         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433                                IPPROTO_TCP, &sock);
434         if (ret)
435                 return ret;
436         sock->sk->sk_allocation = GFP_NOFS;
437
438 #ifdef CONFIG_LOCKDEP
439         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440 #endif
441
442         set_sock_callbacks(sock, con);
443
444         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446         con_sock_state_connecting(con);
447         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448                                  O_NONBLOCK);
449         if (ret == -EINPROGRESS) {
450                 dout("connect %s EINPROGRESS sk_state = %u\n",
451                      ceph_pr_addr(&con->peer_addr.in_addr),
452                      sock->sk->sk_state);
453         } else if (ret < 0) {
454                 pr_err("connect %s error %d\n",
455                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
456                 sock_release(sock);
457                 con->error_msg = "connect error";
458
459                 return ret;
460         }
461         con->sock = sock;
462         return 0;
463 }
464
465 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466 {
467         struct kvec iov = {buf, len};
468         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469         int r;
470
471         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472         if (r == -EAGAIN)
473                 r = 0;
474         return r;
475 }
476
477 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478                      int page_offset, size_t length)
479 {
480         void *kaddr;
481         int ret;
482
483         BUG_ON(page_offset + length > PAGE_SIZE);
484
485         kaddr = kmap(page);
486         BUG_ON(!kaddr);
487         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488         kunmap(page);
489
490         return ret;
491 }
492
493 /*
494  * write something.  @more is true if caller will be sending more data
495  * shortly.
496  */
497 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498                      size_t kvlen, size_t len, int more)
499 {
500         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501         int r;
502
503         if (more)
504                 msg.msg_flags |= MSG_MORE;
505         else
506                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
507
508         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509         if (r == -EAGAIN)
510                 r = 0;
511         return r;
512 }
513
514 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515                      int offset, size_t size, bool more)
516 {
517         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518         int ret;
519
520         ret = kernel_sendpage(sock, page, offset, size, flags);
521         if (ret == -EAGAIN)
522                 ret = 0;
523
524         return ret;
525 }
526
527
528 /*
529  * Shutdown/close the socket for the given connection.
530  */
531 static int con_close_socket(struct ceph_connection *con)
532 {
533         int rc = 0;
534
535         dout("con_close_socket on %p sock %p\n", con, con->sock);
536         if (con->sock) {
537                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538                 sock_release(con->sock);
539                 con->sock = NULL;
540         }
541
542         /*
543          * Forcibly clear the SOCK_CLOSED flag.  It gets set
544          * independent of the connection mutex, and we could have
545          * received a socket close event before we had the chance to
546          * shut the socket down.
547          */
548         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550         con_sock_state_closed(con);
551         return rc;
552 }
553
554 /*
555  * Reset a connection.  Discard all incoming and outgoing messages
556  * and clear *_seq state.
557  */
558 static void ceph_msg_remove(struct ceph_msg *msg)
559 {
560         list_del_init(&msg->list_head);
561         BUG_ON(msg->con == NULL);
562         msg->con->ops->put(msg->con);
563         msg->con = NULL;
564
565         ceph_msg_put(msg);
566 }
567 static void ceph_msg_remove_list(struct list_head *head)
568 {
569         while (!list_empty(head)) {
570                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571                                                         list_head);
572                 ceph_msg_remove(msg);
573         }
574 }
575
576 static void reset_connection(struct ceph_connection *con)
577 {
578         /* reset connection, out_queue, msg_ and connect_seq */
579         /* discard existing out_queue and msg_seq */
580         dout("reset_connection %p\n", con);
581         ceph_msg_remove_list(&con->out_queue);
582         ceph_msg_remove_list(&con->out_sent);
583
584         if (con->in_msg) {
585                 BUG_ON(con->in_msg->con != con);
586                 con->in_msg->con = NULL;
587                 ceph_msg_put(con->in_msg);
588                 con->in_msg = NULL;
589                 con->ops->put(con);
590         }
591
592         con->connect_seq = 0;
593         con->out_seq = 0;
594         if (con->out_msg) {
595                 ceph_msg_put(con->out_msg);
596                 con->out_msg = NULL;
597         }
598         con->in_seq = 0;
599         con->in_seq_acked = 0;
600 }
601
602 /*
603  * mark a peer down.  drop any open connections.
604  */
605 void ceph_con_close(struct ceph_connection *con)
606 {
607         mutex_lock(&con->mutex);
608         dout("con_close %p peer %s\n", con,
609              ceph_pr_addr(&con->peer_addr.in_addr));
610         con->state = CON_STATE_CLOSED;
611
612         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
613         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615         con_flag_clear(con, CON_FLAG_BACKOFF);
616
617         reset_connection(con);
618         con->peer_global_seq = 0;
619         cancel_delayed_work(&con->work);
620         con_close_socket(con);
621         mutex_unlock(&con->mutex);
622 }
623 EXPORT_SYMBOL(ceph_con_close);
624
625 /*
626  * Reopen a closed connection, with a new peer address.
627  */
628 void ceph_con_open(struct ceph_connection *con,
629                    __u8 entity_type, __u64 entity_num,
630                    struct ceph_entity_addr *addr)
631 {
632         mutex_lock(&con->mutex);
633         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635         WARN_ON(con->state != CON_STATE_CLOSED);
636         con->state = CON_STATE_PREOPEN;
637
638         con->peer_name.type = (__u8) entity_type;
639         con->peer_name.num = cpu_to_le64(entity_num);
640
641         memcpy(&con->peer_addr, addr, sizeof(*addr));
642         con->delay = 0;      /* reset backoff memory */
643         mutex_unlock(&con->mutex);
644         queue_con(con);
645 }
646 EXPORT_SYMBOL(ceph_con_open);
647
648 /*
649  * return true if this connection ever successfully opened
650  */
651 bool ceph_con_opened(struct ceph_connection *con)
652 {
653         return con->connect_seq > 0;
654 }
655
656 /*
657  * initialize a new connection.
658  */
659 void ceph_con_init(struct ceph_connection *con, void *private,
660         const struct ceph_connection_operations *ops,
661         struct ceph_messenger *msgr)
662 {
663         dout("con_init %p\n", con);
664         memset(con, 0, sizeof(*con));
665         con->private = private;
666         con->ops = ops;
667         con->msgr = msgr;
668
669         con_sock_state_init(con);
670
671         mutex_init(&con->mutex);
672         INIT_LIST_HEAD(&con->out_queue);
673         INIT_LIST_HEAD(&con->out_sent);
674         INIT_DELAYED_WORK(&con->work, con_work);
675
676         con->state = CON_STATE_CLOSED;
677 }
678 EXPORT_SYMBOL(ceph_con_init);
679
680
681 /*
682  * We maintain a global counter to order connection attempts.  Get
683  * a unique seq greater than @gt.
684  */
685 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686 {
687         u32 ret;
688
689         spin_lock(&msgr->global_seq_lock);
690         if (msgr->global_seq < gt)
691                 msgr->global_seq = gt;
692         ret = ++msgr->global_seq;
693         spin_unlock(&msgr->global_seq_lock);
694         return ret;
695 }
696
697 static void con_out_kvec_reset(struct ceph_connection *con)
698 {
699         con->out_kvec_left = 0;
700         con->out_kvec_bytes = 0;
701         con->out_kvec_cur = &con->out_kvec[0];
702 }
703
704 static void con_out_kvec_add(struct ceph_connection *con,
705                                 size_t size, void *data)
706 {
707         int index;
708
709         index = con->out_kvec_left;
710         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712         con->out_kvec[index].iov_len = size;
713         con->out_kvec[index].iov_base = data;
714         con->out_kvec_left++;
715         con->out_kvec_bytes += size;
716 }
717
718 #ifdef CONFIG_BLOCK
719
720 /*
721  * For a bio data item, a piece is whatever remains of the next
722  * entry in the current bio iovec, or the first entry in the next
723  * bio in the list.
724  */
725 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data *data,
726                                         size_t length)
727 {
728         struct ceph_msg_data_cursor *cursor = &data->cursor;
729         struct bio *bio;
730
731         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
732
733         bio = data->bio;
734         BUG_ON(!bio);
735         BUG_ON(!bio->bi_vcnt);
736
737         cursor->resid = length;
738         cursor->bio = bio;
739         cursor->vector_index = 0;
740         cursor->vector_offset = 0;
741         cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
742 }
743
744 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data *data,
745                                                 size_t *page_offset,
746                                                 size_t *length)
747 {
748         struct ceph_msg_data_cursor *cursor = &data->cursor;
749         struct bio *bio;
750         struct bio_vec *bio_vec;
751         unsigned int index;
752
753         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
754
755         bio = cursor->bio;
756         BUG_ON(!bio);
757
758         index = cursor->vector_index;
759         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
760
761         bio_vec = &bio->bi_io_vec[index];
762         BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
763         *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
764         BUG_ON(*page_offset >= PAGE_SIZE);
765         if (cursor->last_piece) /* pagelist offset is always 0 */
766                 *length = cursor->resid;
767         else
768                 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
769         BUG_ON(*length > PAGE_SIZE);
770         BUG_ON(*length > cursor->resid);
771
772         return bio_vec->bv_page;
773 }
774
775 static bool ceph_msg_data_bio_advance(struct ceph_msg_data *data, size_t bytes)
776 {
777         struct ceph_msg_data_cursor *cursor = &data->cursor;
778         struct bio *bio;
779         struct bio_vec *bio_vec;
780         unsigned int index;
781
782         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
783
784         bio = cursor->bio;
785         BUG_ON(!bio);
786
787         index = cursor->vector_index;
788         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
789         bio_vec = &bio->bi_io_vec[index];
790
791         /* Advance the cursor offset */
792
793         BUG_ON(cursor->resid < bytes);
794         cursor->resid -= bytes;
795         cursor->vector_offset += bytes;
796         if (cursor->vector_offset < bio_vec->bv_len)
797                 return false;   /* more bytes to process in this segment */
798         BUG_ON(cursor->vector_offset != bio_vec->bv_len);
799
800         /* Move on to the next segment, and possibly the next bio */
801
802         if (++index == (unsigned int) bio->bi_vcnt) {
803                 bio = bio->bi_next;
804                 index = 0;
805         }
806         cursor->bio = bio;
807         cursor->vector_index = index;
808         cursor->vector_offset = 0;
809
810         if (!cursor->last_piece) {
811                 BUG_ON(!cursor->resid);
812                 BUG_ON(!bio);
813                 /* A short read is OK, so use <= rather than == */
814                 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
815                         cursor->last_piece = true;
816         }
817
818         return true;
819 }
820 #endif
821
822 /*
823  * For a page array, a piece comes from the first page in the array
824  * that has not already been fully consumed.
825  */
826 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data *data,
827                                         size_t length)
828 {
829         struct ceph_msg_data_cursor *cursor = &data->cursor;
830         int page_count;
831
832         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
833
834         BUG_ON(!data->pages);
835         BUG_ON(!data->length);
836         BUG_ON(length != data->length);
837
838         cursor->resid = length;
839         page_count = calc_pages_for(data->alignment, (u64)data->length);
840         cursor->page_offset = data->alignment & ~PAGE_MASK;
841         cursor->page_index = 0;
842         BUG_ON(page_count > (int) USHRT_MAX);
843         cursor->page_count = (unsigned short) page_count;
844         cursor->last_piece = length <= PAGE_SIZE;
845 }
846
847 static struct page *ceph_msg_data_pages_next(struct ceph_msg_data *data,
848                                         size_t *page_offset,
849                                         size_t *length)
850 {
851         struct ceph_msg_data_cursor *cursor = &data->cursor;
852
853         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855         BUG_ON(cursor->page_index >= cursor->page_count);
856         BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858         *page_offset = cursor->page_offset;
859         if (cursor->last_piece)
860                 *length = cursor->resid;
861         else
862                 *length = PAGE_SIZE - *page_offset;
863
864         return data->pages[cursor->page_index];
865 }
866
867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data *data,
868                                                 size_t bytes)
869 {
870         struct ceph_msg_data_cursor *cursor = &data->cursor;
871
872         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
873
874         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
875
876         /* Advance the cursor page offset */
877
878         cursor->resid -= bytes;
879         cursor->page_offset += bytes;
880         if (!bytes || cursor->page_offset & ~PAGE_MASK)
881                 return false;   /* more bytes to process in the current page */
882
883         /* Move on to the next page */
884
885         BUG_ON(cursor->page_index >= cursor->page_count);
886         cursor->page_offset = 0;
887         cursor->page_index++;
888         cursor->last_piece = cursor->resid <= PAGE_SIZE;
889
890         return true;
891 }
892
893 /*
894  * For a pagelist, a piece is whatever remains to be consumed in the
895  * first page in the list, or the front of the next page.
896  */
897 static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data *data,
898                                         size_t length)
899 {
900         struct ceph_msg_data_cursor *cursor = &data->cursor;
901         struct ceph_pagelist *pagelist;
902         struct page *page;
903
904         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
905
906         pagelist = data->pagelist;
907         BUG_ON(!pagelist);
908         BUG_ON(length != pagelist->length);
909
910         if (!length)
911                 return;         /* pagelist can be assigned but empty */
912
913         BUG_ON(list_empty(&pagelist->head));
914         page = list_first_entry(&pagelist->head, struct page, lru);
915
916         cursor->resid = length;
917         cursor->page = page;
918         cursor->offset = 0;
919         cursor->last_piece = length <= PAGE_SIZE;
920 }
921
922 static struct page *ceph_msg_data_pagelist_next(struct ceph_msg_data *data,
923                                                 size_t *page_offset,
924                                                 size_t *length)
925 {
926         struct ceph_msg_data_cursor *cursor = &data->cursor;
927         struct ceph_pagelist *pagelist;
928
929         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
930
931         pagelist = data->pagelist;
932         BUG_ON(!pagelist);
933
934         BUG_ON(!cursor->page);
935         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
936
937         *page_offset = cursor->offset & ~PAGE_MASK;
938         if (cursor->last_piece) /* pagelist offset is always 0 */
939                 *length = cursor->resid;
940         else
941                 *length = PAGE_SIZE - *page_offset;
942
943         return data->cursor.page;
944 }
945
946 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data *data,
947                                                 size_t bytes)
948 {
949         struct ceph_msg_data_cursor *cursor = &data->cursor;
950         struct ceph_pagelist *pagelist;
951
952         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
953
954         pagelist = data->pagelist;
955         BUG_ON(!pagelist);
956
957         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
958         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
959
960         /* Advance the cursor offset */
961
962         cursor->resid -= bytes;
963         cursor->offset += bytes;
964         /* pagelist offset is always 0 */
965         if (!bytes || cursor->offset & ~PAGE_MASK)
966                 return false;   /* more bytes to process in the current page */
967
968         /* Move on to the next page */
969
970         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
971         cursor->page = list_entry_next(cursor->page, lru);
972         cursor->last_piece = cursor->resid <= PAGE_SIZE;
973
974         return true;
975 }
976
977 /*
978  * Message data is handled (sent or received) in pieces, where each
979  * piece resides on a single page.  The network layer might not
980  * consume an entire piece at once.  A data item's cursor keeps
981  * track of which piece is next to process and how much remains to
982  * be processed in that piece.  It also tracks whether the current
983  * piece is the last one in the data item.
984  */
985 static void ceph_msg_data_cursor_init(struct ceph_msg_data *data,
986                                         size_t length)
987 {
988         switch (data->type) {
989         case CEPH_MSG_DATA_PAGELIST:
990                 ceph_msg_data_pagelist_cursor_init(data, length);
991                 break;
992         case CEPH_MSG_DATA_PAGES:
993                 ceph_msg_data_pages_cursor_init(data, length);
994                 break;
995 #ifdef CONFIG_BLOCK
996         case CEPH_MSG_DATA_BIO:
997                 ceph_msg_data_bio_cursor_init(data, length);
998                 break;
999 #endif /* CONFIG_BLOCK */
1000         case CEPH_MSG_DATA_NONE:
1001         default:
1002                 /* BUG(); */
1003                 break;
1004         }
1005         data->cursor.need_crc = true;
1006 }
1007
1008 /*
1009  * Return the page containing the next piece to process for a given
1010  * data item, and supply the page offset and length of that piece.
1011  * Indicate whether this is the last piece in this data item.
1012  */
1013 static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
1014                                         size_t *page_offset,
1015                                         size_t *length,
1016                                         bool *last_piece)
1017 {
1018         struct page *page;
1019
1020         switch (data->type) {
1021         case CEPH_MSG_DATA_PAGELIST:
1022                 page = ceph_msg_data_pagelist_next(data, page_offset, length);
1023                 break;
1024         case CEPH_MSG_DATA_PAGES:
1025                 page = ceph_msg_data_pages_next(data, page_offset, length);
1026                 break;
1027 #ifdef CONFIG_BLOCK
1028         case CEPH_MSG_DATA_BIO:
1029                 page = ceph_msg_data_bio_next(data, page_offset, length);
1030                 break;
1031 #endif /* CONFIG_BLOCK */
1032         case CEPH_MSG_DATA_NONE:
1033         default:
1034                 page = NULL;
1035                 break;
1036         }
1037         BUG_ON(!page);
1038         BUG_ON(*page_offset + *length > PAGE_SIZE);
1039         BUG_ON(!*length);
1040         if (last_piece)
1041                 *last_piece = data->cursor.last_piece;
1042
1043         return page;
1044 }
1045
1046 /*
1047  * Returns true if the result moves the cursor on to the next piece
1048  * of the data item.
1049  */
1050 static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
1051 {
1052         struct ceph_msg_data_cursor *cursor = &data->cursor;
1053         bool new_piece;
1054
1055         BUG_ON(bytes > cursor->resid);
1056         switch (data->type) {
1057         case CEPH_MSG_DATA_PAGELIST:
1058                 new_piece = ceph_msg_data_pagelist_advance(data, bytes);
1059                 break;
1060         case CEPH_MSG_DATA_PAGES:
1061                 new_piece = ceph_msg_data_pages_advance(data, bytes);
1062                 break;
1063 #ifdef CONFIG_BLOCK
1064         case CEPH_MSG_DATA_BIO:
1065                 new_piece = ceph_msg_data_bio_advance(data, bytes);
1066                 break;
1067 #endif /* CONFIG_BLOCK */
1068         case CEPH_MSG_DATA_NONE:
1069         default:
1070                 BUG();
1071                 break;
1072         }
1073         data->cursor.need_crc = new_piece;
1074
1075         return new_piece;
1076 }
1077
1078 static void prepare_message_data(struct ceph_msg *msg)
1079 {
1080         size_t data_len;
1081
1082         BUG_ON(!msg);
1083
1084         data_len = le32_to_cpu(msg->hdr.data_len);
1085         BUG_ON(!data_len);
1086
1087         /* Initialize data cursor */
1088
1089         ceph_msg_data_cursor_init(msg->data, data_len);
1090 }
1091
1092 /*
1093  * Prepare footer for currently outgoing message, and finish things
1094  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1095  */
1096 static void prepare_write_message_footer(struct ceph_connection *con)
1097 {
1098         struct ceph_msg *m = con->out_msg;
1099         int v = con->out_kvec_left;
1100
1101         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1102
1103         dout("prepare_write_message_footer %p\n", con);
1104         con->out_kvec_is_msg = true;
1105         con->out_kvec[v].iov_base = &m->footer;
1106         con->out_kvec[v].iov_len = sizeof(m->footer);
1107         con->out_kvec_bytes += sizeof(m->footer);
1108         con->out_kvec_left++;
1109         con->out_more = m->more_to_follow;
1110         con->out_msg_done = true;
1111 }
1112
1113 /*
1114  * Prepare headers for the next outgoing message.
1115  */
1116 static void prepare_write_message(struct ceph_connection *con)
1117 {
1118         struct ceph_msg *m;
1119         u32 crc;
1120
1121         con_out_kvec_reset(con);
1122         con->out_kvec_is_msg = true;
1123         con->out_msg_done = false;
1124
1125         /* Sneak an ack in there first?  If we can get it into the same
1126          * TCP packet that's a good thing. */
1127         if (con->in_seq > con->in_seq_acked) {
1128                 con->in_seq_acked = con->in_seq;
1129                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1130                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1131                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1132                         &con->out_temp_ack);
1133         }
1134
1135         BUG_ON(list_empty(&con->out_queue));
1136         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1137         con->out_msg = m;
1138         BUG_ON(m->con != con);
1139
1140         /* put message on sent list */
1141         ceph_msg_get(m);
1142         list_move_tail(&m->list_head, &con->out_sent);
1143
1144         /*
1145          * only assign outgoing seq # if we haven't sent this message
1146          * yet.  if it is requeued, resend with it's original seq.
1147          */
1148         if (m->needs_out_seq) {
1149                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1150                 m->needs_out_seq = false;
1151         }
1152
1153         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d\n",
1154              m, con->out_seq, le16_to_cpu(m->hdr.type),
1155              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1156              le32_to_cpu(m->hdr.data_len));
1157         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1158
1159         /* tag + hdr + front + middle */
1160         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1161         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1162         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1163
1164         if (m->middle)
1165                 con_out_kvec_add(con, m->middle->vec.iov_len,
1166                         m->middle->vec.iov_base);
1167
1168         /* fill in crc (except data pages), footer */
1169         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1170         con->out_msg->hdr.crc = cpu_to_le32(crc);
1171         con->out_msg->footer.flags = 0;
1172
1173         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1174         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1175         if (m->middle) {
1176                 crc = crc32c(0, m->middle->vec.iov_base,
1177                                 m->middle->vec.iov_len);
1178                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1179         } else
1180                 con->out_msg->footer.middle_crc = 0;
1181         dout("%s front_crc %u middle_crc %u\n", __func__,
1182              le32_to_cpu(con->out_msg->footer.front_crc),
1183              le32_to_cpu(con->out_msg->footer.middle_crc));
1184
1185         /* is there a data payload? */
1186         con->out_msg->footer.data_crc = 0;
1187         if (m->hdr.data_len) {
1188                 prepare_message_data(con->out_msg);
1189                 con->out_more = 1;  /* data + footer will follow */
1190         } else {
1191                 /* no, queue up footer too and be done */
1192                 prepare_write_message_footer(con);
1193         }
1194
1195         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1196 }
1197
1198 /*
1199  * Prepare an ack.
1200  */
1201 static void prepare_write_ack(struct ceph_connection *con)
1202 {
1203         dout("prepare_write_ack %p %llu -> %llu\n", con,
1204              con->in_seq_acked, con->in_seq);
1205         con->in_seq_acked = con->in_seq;
1206
1207         con_out_kvec_reset(con);
1208
1209         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1210
1211         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1212         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1213                                 &con->out_temp_ack);
1214
1215         con->out_more = 1;  /* more will follow.. eventually.. */
1216         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1217 }
1218
1219 /*
1220  * Prepare to share the seq during handshake
1221  */
1222 static void prepare_write_seq(struct ceph_connection *con)
1223 {
1224         dout("prepare_write_seq %p %llu -> %llu\n", con,
1225              con->in_seq_acked, con->in_seq);
1226         con->in_seq_acked = con->in_seq;
1227
1228         con_out_kvec_reset(con);
1229
1230         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1231         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1232                          &con->out_temp_ack);
1233
1234         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1235 }
1236
1237 /*
1238  * Prepare to write keepalive byte.
1239  */
1240 static void prepare_write_keepalive(struct ceph_connection *con)
1241 {
1242         dout("prepare_write_keepalive %p\n", con);
1243         con_out_kvec_reset(con);
1244         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1245         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1246 }
1247
1248 /*
1249  * Connection negotiation.
1250  */
1251
1252 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1253                                                 int *auth_proto)
1254 {
1255         struct ceph_auth_handshake *auth;
1256
1257         if (!con->ops->get_authorizer) {
1258                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1259                 con->out_connect.authorizer_len = 0;
1260                 return NULL;
1261         }
1262
1263         /* Can't hold the mutex while getting authorizer */
1264         mutex_unlock(&con->mutex);
1265         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1266         mutex_lock(&con->mutex);
1267
1268         if (IS_ERR(auth))
1269                 return auth;
1270         if (con->state != CON_STATE_NEGOTIATING)
1271                 return ERR_PTR(-EAGAIN);
1272
1273         con->auth_reply_buf = auth->authorizer_reply_buf;
1274         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1275         return auth;
1276 }
1277
1278 /*
1279  * We connected to a peer and are saying hello.
1280  */
1281 static void prepare_write_banner(struct ceph_connection *con)
1282 {
1283         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1284         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1285                                         &con->msgr->my_enc_addr);
1286
1287         con->out_more = 0;
1288         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1289 }
1290
1291 static int prepare_write_connect(struct ceph_connection *con)
1292 {
1293         unsigned int global_seq = get_global_seq(con->msgr, 0);
1294         int proto;
1295         int auth_proto;
1296         struct ceph_auth_handshake *auth;
1297
1298         switch (con->peer_name.type) {
1299         case CEPH_ENTITY_TYPE_MON:
1300                 proto = CEPH_MONC_PROTOCOL;
1301                 break;
1302         case CEPH_ENTITY_TYPE_OSD:
1303                 proto = CEPH_OSDC_PROTOCOL;
1304                 break;
1305         case CEPH_ENTITY_TYPE_MDS:
1306                 proto = CEPH_MDSC_PROTOCOL;
1307                 break;
1308         default:
1309                 BUG();
1310         }
1311
1312         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1313              con->connect_seq, global_seq, proto);
1314
1315         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1316         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1317         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1318         con->out_connect.global_seq = cpu_to_le32(global_seq);
1319         con->out_connect.protocol_version = cpu_to_le32(proto);
1320         con->out_connect.flags = 0;
1321
1322         auth_proto = CEPH_AUTH_UNKNOWN;
1323         auth = get_connect_authorizer(con, &auth_proto);
1324         if (IS_ERR(auth))
1325                 return PTR_ERR(auth);
1326
1327         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1328         con->out_connect.authorizer_len = auth ?
1329                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1330
1331         con_out_kvec_add(con, sizeof (con->out_connect),
1332                                         &con->out_connect);
1333         if (auth && auth->authorizer_buf_len)
1334                 con_out_kvec_add(con, auth->authorizer_buf_len,
1335                                         auth->authorizer_buf);
1336
1337         con->out_more = 0;
1338         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1339
1340         return 0;
1341 }
1342
1343 /*
1344  * write as much of pending kvecs to the socket as we can.
1345  *  1 -> done
1346  *  0 -> socket full, but more to do
1347  * <0 -> error
1348  */
1349 static int write_partial_kvec(struct ceph_connection *con)
1350 {
1351         int ret;
1352
1353         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1354         while (con->out_kvec_bytes > 0) {
1355                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1356                                        con->out_kvec_left, con->out_kvec_bytes,
1357                                        con->out_more);
1358                 if (ret <= 0)
1359                         goto out;
1360                 con->out_kvec_bytes -= ret;
1361                 if (con->out_kvec_bytes == 0)
1362                         break;            /* done */
1363
1364                 /* account for full iov entries consumed */
1365                 while (ret >= con->out_kvec_cur->iov_len) {
1366                         BUG_ON(!con->out_kvec_left);
1367                         ret -= con->out_kvec_cur->iov_len;
1368                         con->out_kvec_cur++;
1369                         con->out_kvec_left--;
1370                 }
1371                 /* and for a partially-consumed entry */
1372                 if (ret) {
1373                         con->out_kvec_cur->iov_len -= ret;
1374                         con->out_kvec_cur->iov_base += ret;
1375                 }
1376         }
1377         con->out_kvec_left = 0;
1378         con->out_kvec_is_msg = false;
1379         ret = 1;
1380 out:
1381         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1382              con->out_kvec_bytes, con->out_kvec_left, ret);
1383         return ret;  /* done! */
1384 }
1385
1386 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1387                                 unsigned int page_offset,
1388                                 unsigned int length)
1389 {
1390         char *kaddr;
1391
1392         kaddr = kmap(page);
1393         BUG_ON(kaddr == NULL);
1394         crc = crc32c(crc, kaddr + page_offset, length);
1395         kunmap(page);
1396
1397         return crc;
1398 }
1399 /*
1400  * Write as much message data payload as we can.  If we finish, queue
1401  * up the footer.
1402  *  1 -> done, footer is now queued in out_kvec[].
1403  *  0 -> socket full, but more to do
1404  * <0 -> error
1405  */
1406 static int write_partial_message_data(struct ceph_connection *con)
1407 {
1408         struct ceph_msg *msg = con->out_msg;
1409         struct ceph_msg_data_cursor *cursor = &msg->data->cursor;
1410         bool do_datacrc = !con->msgr->nocrc;
1411         u32 crc;
1412
1413         dout("%s %p msg %p\n", __func__, con, msg);
1414
1415         if (WARN_ON(!msg->data))
1416                 return -EINVAL;
1417
1418         /*
1419          * Iterate through each page that contains data to be
1420          * written, and send as much as possible for each.
1421          *
1422          * If we are calculating the data crc (the default), we will
1423          * need to map the page.  If we have no pages, they have
1424          * been revoked, so use the zero page.
1425          */
1426         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1427         while (cursor->resid) {
1428                 struct page *page;
1429                 size_t page_offset;
1430                 size_t length;
1431                 bool last_piece;
1432                 bool need_crc;
1433                 int ret;
1434
1435                 page = ceph_msg_data_next(msg->data, &page_offset, &length,
1436                                                         &last_piece);
1437                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1438                                       length, last_piece);
1439                 if (ret <= 0) {
1440                         if (do_datacrc)
1441                                 msg->footer.data_crc = cpu_to_le32(crc);
1442
1443                         return ret;
1444                 }
1445                 if (do_datacrc && cursor->need_crc)
1446                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1447                 need_crc = ceph_msg_data_advance(msg->data, (size_t)ret);
1448         }
1449
1450         dout("%s %p msg %p done\n", __func__, con, msg);
1451
1452         /* prepare and queue up footer, too */
1453         if (do_datacrc)
1454                 msg->footer.data_crc = cpu_to_le32(crc);
1455         else
1456                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1457         con_out_kvec_reset(con);
1458         prepare_write_message_footer(con);
1459
1460         return 1;       /* must return > 0 to indicate success */
1461 }
1462
1463 /*
1464  * write some zeros
1465  */
1466 static int write_partial_skip(struct ceph_connection *con)
1467 {
1468         int ret;
1469
1470         while (con->out_skip > 0) {
1471                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1472
1473                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1474                 if (ret <= 0)
1475                         goto out;
1476                 con->out_skip -= ret;
1477         }
1478         ret = 1;
1479 out:
1480         return ret;
1481 }
1482
1483 /*
1484  * Prepare to read connection handshake, or an ack.
1485  */
1486 static void prepare_read_banner(struct ceph_connection *con)
1487 {
1488         dout("prepare_read_banner %p\n", con);
1489         con->in_base_pos = 0;
1490 }
1491
1492 static void prepare_read_connect(struct ceph_connection *con)
1493 {
1494         dout("prepare_read_connect %p\n", con);
1495         con->in_base_pos = 0;
1496 }
1497
1498 static void prepare_read_ack(struct ceph_connection *con)
1499 {
1500         dout("prepare_read_ack %p\n", con);
1501         con->in_base_pos = 0;
1502 }
1503
1504 static void prepare_read_seq(struct ceph_connection *con)
1505 {
1506         dout("prepare_read_seq %p\n", con);
1507         con->in_base_pos = 0;
1508         con->in_tag = CEPH_MSGR_TAG_SEQ;
1509 }
1510
1511 static void prepare_read_tag(struct ceph_connection *con)
1512 {
1513         dout("prepare_read_tag %p\n", con);
1514         con->in_base_pos = 0;
1515         con->in_tag = CEPH_MSGR_TAG_READY;
1516 }
1517
1518 /*
1519  * Prepare to read a message.
1520  */
1521 static int prepare_read_message(struct ceph_connection *con)
1522 {
1523         dout("prepare_read_message %p\n", con);
1524         BUG_ON(con->in_msg != NULL);
1525         con->in_base_pos = 0;
1526         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1527         return 0;
1528 }
1529
1530
1531 static int read_partial(struct ceph_connection *con,
1532                         int end, int size, void *object)
1533 {
1534         while (con->in_base_pos < end) {
1535                 int left = end - con->in_base_pos;
1536                 int have = size - left;
1537                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1538                 if (ret <= 0)
1539                         return ret;
1540                 con->in_base_pos += ret;
1541         }
1542         return 1;
1543 }
1544
1545
1546 /*
1547  * Read all or part of the connect-side handshake on a new connection
1548  */
1549 static int read_partial_banner(struct ceph_connection *con)
1550 {
1551         int size;
1552         int end;
1553         int ret;
1554
1555         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1556
1557         /* peer's banner */
1558         size = strlen(CEPH_BANNER);
1559         end = size;
1560         ret = read_partial(con, end, size, con->in_banner);
1561         if (ret <= 0)
1562                 goto out;
1563
1564         size = sizeof (con->actual_peer_addr);
1565         end += size;
1566         ret = read_partial(con, end, size, &con->actual_peer_addr);
1567         if (ret <= 0)
1568                 goto out;
1569
1570         size = sizeof (con->peer_addr_for_me);
1571         end += size;
1572         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1573         if (ret <= 0)
1574                 goto out;
1575
1576 out:
1577         return ret;
1578 }
1579
1580 static int read_partial_connect(struct ceph_connection *con)
1581 {
1582         int size;
1583         int end;
1584         int ret;
1585
1586         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1587
1588         size = sizeof (con->in_reply);
1589         end = size;
1590         ret = read_partial(con, end, size, &con->in_reply);
1591         if (ret <= 0)
1592                 goto out;
1593
1594         size = le32_to_cpu(con->in_reply.authorizer_len);
1595         end += size;
1596         ret = read_partial(con, end, size, con->auth_reply_buf);
1597         if (ret <= 0)
1598                 goto out;
1599
1600         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1601              con, (int)con->in_reply.tag,
1602              le32_to_cpu(con->in_reply.connect_seq),
1603              le32_to_cpu(con->in_reply.global_seq));
1604 out:
1605         return ret;
1606
1607 }
1608
1609 /*
1610  * Verify the hello banner looks okay.
1611  */
1612 static int verify_hello(struct ceph_connection *con)
1613 {
1614         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1615                 pr_err("connect to %s got bad banner\n",
1616                        ceph_pr_addr(&con->peer_addr.in_addr));
1617                 con->error_msg = "protocol error, bad banner";
1618                 return -1;
1619         }
1620         return 0;
1621 }
1622
1623 static bool addr_is_blank(struct sockaddr_storage *ss)
1624 {
1625         switch (ss->ss_family) {
1626         case AF_INET:
1627                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1628         case AF_INET6:
1629                 return
1630                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1631                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1632                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1633                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1634         }
1635         return false;
1636 }
1637
1638 static int addr_port(struct sockaddr_storage *ss)
1639 {
1640         switch (ss->ss_family) {
1641         case AF_INET:
1642                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1643         case AF_INET6:
1644                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1645         }
1646         return 0;
1647 }
1648
1649 static void addr_set_port(struct sockaddr_storage *ss, int p)
1650 {
1651         switch (ss->ss_family) {
1652         case AF_INET:
1653                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1654                 break;
1655         case AF_INET6:
1656                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1657                 break;
1658         }
1659 }
1660
1661 /*
1662  * Unlike other *_pton function semantics, zero indicates success.
1663  */
1664 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1665                 char delim, const char **ipend)
1666 {
1667         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1668         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1669
1670         memset(ss, 0, sizeof(*ss));
1671
1672         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1673                 ss->ss_family = AF_INET;
1674                 return 0;
1675         }
1676
1677         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1678                 ss->ss_family = AF_INET6;
1679                 return 0;
1680         }
1681
1682         return -EINVAL;
1683 }
1684
1685 /*
1686  * Extract hostname string and resolve using kernel DNS facility.
1687  */
1688 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1689 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1690                 struct sockaddr_storage *ss, char delim, const char **ipend)
1691 {
1692         const char *end, *delim_p;
1693         char *colon_p, *ip_addr = NULL;
1694         int ip_len, ret;
1695
1696         /*
1697          * The end of the hostname occurs immediately preceding the delimiter or
1698          * the port marker (':') where the delimiter takes precedence.
1699          */
1700         delim_p = memchr(name, delim, namelen);
1701         colon_p = memchr(name, ':', namelen);
1702
1703         if (delim_p && colon_p)
1704                 end = delim_p < colon_p ? delim_p : colon_p;
1705         else if (!delim_p && colon_p)
1706                 end = colon_p;
1707         else {
1708                 end = delim_p;
1709                 if (!end) /* case: hostname:/ */
1710                         end = name + namelen;
1711         }
1712
1713         if (end <= name)
1714                 return -EINVAL;
1715
1716         /* do dns_resolve upcall */
1717         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1718         if (ip_len > 0)
1719                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1720         else
1721                 ret = -ESRCH;
1722
1723         kfree(ip_addr);
1724
1725         *ipend = end;
1726
1727         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1728                         ret, ret ? "failed" : ceph_pr_addr(ss));
1729
1730         return ret;
1731 }
1732 #else
1733 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1734                 struct sockaddr_storage *ss, char delim, const char **ipend)
1735 {
1736         return -EINVAL;
1737 }
1738 #endif
1739
1740 /*
1741  * Parse a server name (IP or hostname). If a valid IP address is not found
1742  * then try to extract a hostname to resolve using userspace DNS upcall.
1743  */
1744 static int ceph_parse_server_name(const char *name, size_t namelen,
1745                         struct sockaddr_storage *ss, char delim, const char **ipend)
1746 {
1747         int ret;
1748
1749         ret = ceph_pton(name, namelen, ss, delim, ipend);
1750         if (ret)
1751                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1752
1753         return ret;
1754 }
1755
1756 /*
1757  * Parse an ip[:port] list into an addr array.  Use the default
1758  * monitor port if a port isn't specified.
1759  */
1760 int ceph_parse_ips(const char *c, const char *end,
1761                    struct ceph_entity_addr *addr,
1762                    int max_count, int *count)
1763 {
1764         int i, ret = -EINVAL;
1765         const char *p = c;
1766
1767         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1768         for (i = 0; i < max_count; i++) {
1769                 const char *ipend;
1770                 struct sockaddr_storage *ss = &addr[i].in_addr;
1771                 int port;
1772                 char delim = ',';
1773
1774                 if (*p == '[') {
1775                         delim = ']';
1776                         p++;
1777                 }
1778
1779                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1780                 if (ret)
1781                         goto bad;
1782                 ret = -EINVAL;
1783
1784                 p = ipend;
1785
1786                 if (delim == ']') {
1787                         if (*p != ']') {
1788                                 dout("missing matching ']'\n");
1789                                 goto bad;
1790                         }
1791                         p++;
1792                 }
1793
1794                 /* port? */
1795                 if (p < end && *p == ':') {
1796                         port = 0;
1797                         p++;
1798                         while (p < end && *p >= '0' && *p <= '9') {
1799                                 port = (port * 10) + (*p - '0');
1800                                 p++;
1801                         }
1802                         if (port > 65535 || port == 0)
1803                                 goto bad;
1804                 } else {
1805                         port = CEPH_MON_PORT;
1806                 }
1807
1808                 addr_set_port(ss, port);
1809
1810                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1811
1812                 if (p == end)
1813                         break;
1814                 if (*p != ',')
1815                         goto bad;
1816                 p++;
1817         }
1818
1819         if (p != end)
1820                 goto bad;
1821
1822         if (count)
1823                 *count = i + 1;
1824         return 0;
1825
1826 bad:
1827         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1828         return ret;
1829 }
1830 EXPORT_SYMBOL(ceph_parse_ips);
1831
1832 static int process_banner(struct ceph_connection *con)
1833 {
1834         dout("process_banner on %p\n", con);
1835
1836         if (verify_hello(con) < 0)
1837                 return -1;
1838
1839         ceph_decode_addr(&con->actual_peer_addr);
1840         ceph_decode_addr(&con->peer_addr_for_me);
1841
1842         /*
1843          * Make sure the other end is who we wanted.  note that the other
1844          * end may not yet know their ip address, so if it's 0.0.0.0, give
1845          * them the benefit of the doubt.
1846          */
1847         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1848                    sizeof(con->peer_addr)) != 0 &&
1849             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1850               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1851                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1852                            ceph_pr_addr(&con->peer_addr.in_addr),
1853                            (int)le32_to_cpu(con->peer_addr.nonce),
1854                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1855                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1856                 con->error_msg = "wrong peer at address";
1857                 return -1;
1858         }
1859
1860         /*
1861          * did we learn our address?
1862          */
1863         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1864                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1865
1866                 memcpy(&con->msgr->inst.addr.in_addr,
1867                        &con->peer_addr_for_me.in_addr,
1868                        sizeof(con->peer_addr_for_me.in_addr));
1869                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1870                 encode_my_addr(con->msgr);
1871                 dout("process_banner learned my addr is %s\n",
1872                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1873         }
1874
1875         return 0;
1876 }
1877
1878 static int process_connect(struct ceph_connection *con)
1879 {
1880         u64 sup_feat = con->msgr->supported_features;
1881         u64 req_feat = con->msgr->required_features;
1882         u64 server_feat = le64_to_cpu(con->in_reply.features);
1883         int ret;
1884
1885         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1886
1887         switch (con->in_reply.tag) {
1888         case CEPH_MSGR_TAG_FEATURES:
1889                 pr_err("%s%lld %s feature set mismatch,"
1890                        " my %llx < server's %llx, missing %llx\n",
1891                        ENTITY_NAME(con->peer_name),
1892                        ceph_pr_addr(&con->peer_addr.in_addr),
1893                        sup_feat, server_feat, server_feat & ~sup_feat);
1894                 con->error_msg = "missing required protocol features";
1895                 reset_connection(con);
1896                 return -1;
1897
1898         case CEPH_MSGR_TAG_BADPROTOVER:
1899                 pr_err("%s%lld %s protocol version mismatch,"
1900                        " my %d != server's %d\n",
1901                        ENTITY_NAME(con->peer_name),
1902                        ceph_pr_addr(&con->peer_addr.in_addr),
1903                        le32_to_cpu(con->out_connect.protocol_version),
1904                        le32_to_cpu(con->in_reply.protocol_version));
1905                 con->error_msg = "protocol version mismatch";
1906                 reset_connection(con);
1907                 return -1;
1908
1909         case CEPH_MSGR_TAG_BADAUTHORIZER:
1910                 con->auth_retry++;
1911                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1912                      con->auth_retry);
1913                 if (con->auth_retry == 2) {
1914                         con->error_msg = "connect authorization failure";
1915                         return -1;
1916                 }
1917                 con_out_kvec_reset(con);
1918                 ret = prepare_write_connect(con);
1919                 if (ret < 0)
1920                         return ret;
1921                 prepare_read_connect(con);
1922                 break;
1923
1924         case CEPH_MSGR_TAG_RESETSESSION:
1925                 /*
1926                  * If we connected with a large connect_seq but the peer
1927                  * has no record of a session with us (no connection, or
1928                  * connect_seq == 0), they will send RESETSESION to indicate
1929                  * that they must have reset their session, and may have
1930                  * dropped messages.
1931                  */
1932                 dout("process_connect got RESET peer seq %u\n",
1933                      le32_to_cpu(con->in_reply.connect_seq));
1934                 pr_err("%s%lld %s connection reset\n",
1935                        ENTITY_NAME(con->peer_name),
1936                        ceph_pr_addr(&con->peer_addr.in_addr));
1937                 reset_connection(con);
1938                 con_out_kvec_reset(con);
1939                 ret = prepare_write_connect(con);
1940                 if (ret < 0)
1941                         return ret;
1942                 prepare_read_connect(con);
1943
1944                 /* Tell ceph about it. */
1945                 mutex_unlock(&con->mutex);
1946                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1947                 if (con->ops->peer_reset)
1948                         con->ops->peer_reset(con);
1949                 mutex_lock(&con->mutex);
1950                 if (con->state != CON_STATE_NEGOTIATING)
1951                         return -EAGAIN;
1952                 break;
1953
1954         case CEPH_MSGR_TAG_RETRY_SESSION:
1955                 /*
1956                  * If we sent a smaller connect_seq than the peer has, try
1957                  * again with a larger value.
1958                  */
1959                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1960                      le32_to_cpu(con->out_connect.connect_seq),
1961                      le32_to_cpu(con->in_reply.connect_seq));
1962                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1963                 con_out_kvec_reset(con);
1964                 ret = prepare_write_connect(con);
1965                 if (ret < 0)
1966                         return ret;
1967                 prepare_read_connect(con);
1968                 break;
1969
1970         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1971                 /*
1972                  * If we sent a smaller global_seq than the peer has, try
1973                  * again with a larger value.
1974                  */
1975                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1976                      con->peer_global_seq,
1977                      le32_to_cpu(con->in_reply.global_seq));
1978                 get_global_seq(con->msgr,
1979                                le32_to_cpu(con->in_reply.global_seq));
1980                 con_out_kvec_reset(con);
1981                 ret = prepare_write_connect(con);
1982                 if (ret < 0)
1983                         return ret;
1984                 prepare_read_connect(con);
1985                 break;
1986
1987         case CEPH_MSGR_TAG_SEQ:
1988         case CEPH_MSGR_TAG_READY:
1989                 if (req_feat & ~server_feat) {
1990                         pr_err("%s%lld %s protocol feature mismatch,"
1991                                " my required %llx > server's %llx, need %llx\n",
1992                                ENTITY_NAME(con->peer_name),
1993                                ceph_pr_addr(&con->peer_addr.in_addr),
1994                                req_feat, server_feat, req_feat & ~server_feat);
1995                         con->error_msg = "missing required protocol features";
1996                         reset_connection(con);
1997                         return -1;
1998                 }
1999
2000                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2001                 con->state = CON_STATE_OPEN;
2002                 con->auth_retry = 0;    /* we authenticated; clear flag */
2003                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2004                 con->connect_seq++;
2005                 con->peer_features = server_feat;
2006                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2007                      con->peer_global_seq,
2008                      le32_to_cpu(con->in_reply.connect_seq),
2009                      con->connect_seq);
2010                 WARN_ON(con->connect_seq !=
2011                         le32_to_cpu(con->in_reply.connect_seq));
2012
2013                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2014                         con_flag_set(con, CON_FLAG_LOSSYTX);
2015
2016                 con->delay = 0;      /* reset backoff memory */
2017
2018                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2019                         prepare_write_seq(con);
2020                         prepare_read_seq(con);
2021                 } else {
2022                         prepare_read_tag(con);
2023                 }
2024                 break;
2025
2026         case CEPH_MSGR_TAG_WAIT:
2027                 /*
2028                  * If there is a connection race (we are opening
2029                  * connections to each other), one of us may just have
2030                  * to WAIT.  This shouldn't happen if we are the
2031                  * client.
2032                  */
2033                 pr_err("process_connect got WAIT as client\n");
2034                 con->error_msg = "protocol error, got WAIT as client";
2035                 return -1;
2036
2037         default:
2038                 pr_err("connect protocol error, will retry\n");
2039                 con->error_msg = "protocol error, garbage tag during connect";
2040                 return -1;
2041         }
2042         return 0;
2043 }
2044
2045
2046 /*
2047  * read (part of) an ack
2048  */
2049 static int read_partial_ack(struct ceph_connection *con)
2050 {
2051         int size = sizeof (con->in_temp_ack);
2052         int end = size;
2053
2054         return read_partial(con, end, size, &con->in_temp_ack);
2055 }
2056
2057 /*
2058  * We can finally discard anything that's been acked.
2059  */
2060 static void process_ack(struct ceph_connection *con)
2061 {
2062         struct ceph_msg *m;
2063         u64 ack = le64_to_cpu(con->in_temp_ack);
2064         u64 seq;
2065
2066         while (!list_empty(&con->out_sent)) {
2067                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2068                                      list_head);
2069                 seq = le64_to_cpu(m->hdr.seq);
2070                 if (seq > ack)
2071                         break;
2072                 dout("got ack for seq %llu type %d at %p\n", seq,
2073                      le16_to_cpu(m->hdr.type), m);
2074                 m->ack_stamp = jiffies;
2075                 ceph_msg_remove(m);
2076         }
2077         prepare_read_tag(con);
2078 }
2079
2080
2081 static int read_partial_message_section(struct ceph_connection *con,
2082                                         struct kvec *section,
2083                                         unsigned int sec_len, u32 *crc)
2084 {
2085         int ret, left;
2086
2087         BUG_ON(!section);
2088
2089         while (section->iov_len < sec_len) {
2090                 BUG_ON(section->iov_base == NULL);
2091                 left = sec_len - section->iov_len;
2092                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2093                                        section->iov_len, left);
2094                 if (ret <= 0)
2095                         return ret;
2096                 section->iov_len += ret;
2097         }
2098         if (section->iov_len == sec_len)
2099                 *crc = crc32c(0, section->iov_base, section->iov_len);
2100
2101         return 1;
2102 }
2103
2104 static int read_partial_msg_data(struct ceph_connection *con)
2105 {
2106         struct ceph_msg *msg = con->in_msg;
2107         struct ceph_msg_data_cursor *cursor = &msg->data->cursor;
2108         const bool do_datacrc = !con->msgr->nocrc;
2109         struct page *page;
2110         size_t page_offset;
2111         size_t length;
2112         u32 crc = 0;
2113         int ret;
2114
2115         BUG_ON(!msg);
2116         if (!msg->data)
2117                 return -EIO;
2118
2119         if (do_datacrc)
2120                 crc = con->in_data_crc;
2121         while (cursor->resid) {
2122                 page = ceph_msg_data_next(msg->data, &page_offset, &length,
2123                                                         NULL);
2124                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2125                 if (ret <= 0) {
2126                         if (do_datacrc)
2127                                 con->in_data_crc = crc;
2128
2129                         return ret;
2130                 }
2131
2132                 if (do_datacrc)
2133                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2134                 (void) ceph_msg_data_advance(msg->data, (size_t)ret);
2135         }
2136         if (do_datacrc)
2137                 con->in_data_crc = crc;
2138
2139         return 1;       /* must return > 0 to indicate success */
2140 }
2141
2142 /*
2143  * read (part of) a message.
2144  */
2145 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2146
2147 static int read_partial_message(struct ceph_connection *con)
2148 {
2149         struct ceph_msg *m = con->in_msg;
2150         int size;
2151         int end;
2152         int ret;
2153         unsigned int front_len, middle_len, data_len;
2154         bool do_datacrc = !con->msgr->nocrc;
2155         u64 seq;
2156         u32 crc;
2157
2158         dout("read_partial_message con %p msg %p\n", con, m);
2159
2160         /* header */
2161         size = sizeof (con->in_hdr);
2162         end = size;
2163         ret = read_partial(con, end, size, &con->in_hdr);
2164         if (ret <= 0)
2165                 return ret;
2166
2167         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2168         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2169                 pr_err("read_partial_message bad hdr "
2170                        " crc %u != expected %u\n",
2171                        crc, con->in_hdr.crc);
2172                 return -EBADMSG;
2173         }
2174
2175         front_len = le32_to_cpu(con->in_hdr.front_len);
2176         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2177                 return -EIO;
2178         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2179         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2180                 return -EIO;
2181         data_len = le32_to_cpu(con->in_hdr.data_len);
2182         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2183                 return -EIO;
2184
2185         /* verify seq# */
2186         seq = le64_to_cpu(con->in_hdr.seq);
2187         if ((s64)seq - (s64)con->in_seq < 1) {
2188                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2189                         ENTITY_NAME(con->peer_name),
2190                         ceph_pr_addr(&con->peer_addr.in_addr),
2191                         seq, con->in_seq + 1);
2192                 con->in_base_pos = -front_len - middle_len - data_len -
2193                         sizeof(m->footer);
2194                 con->in_tag = CEPH_MSGR_TAG_READY;
2195                 return 0;
2196         } else if ((s64)seq - (s64)con->in_seq > 1) {
2197                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2198                        seq, con->in_seq + 1);
2199                 con->error_msg = "bad message sequence # for incoming message";
2200                 return -EBADMSG;
2201         }
2202
2203         /* allocate message? */
2204         if (!con->in_msg) {
2205                 int skip = 0;
2206
2207                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2208                      front_len, data_len);
2209                 ret = ceph_con_in_msg_alloc(con, &skip);
2210                 if (ret < 0)
2211                         return ret;
2212                 if (skip) {
2213                         /* skip this message */
2214                         dout("alloc_msg said skip message\n");
2215                         BUG_ON(con->in_msg);
2216                         con->in_base_pos = -front_len - middle_len - data_len -
2217                                 sizeof(m->footer);
2218                         con->in_tag = CEPH_MSGR_TAG_READY;
2219                         con->in_seq++;
2220                         return 0;
2221                 }
2222
2223                 BUG_ON(!con->in_msg);
2224                 BUG_ON(con->in_msg->con != con);
2225                 m = con->in_msg;
2226                 m->front.iov_len = 0;    /* haven't read it yet */
2227                 if (m->middle)
2228                         m->middle->vec.iov_len = 0;
2229
2230                 /* prepare for data payload, if any */
2231
2232                 if (data_len)
2233                         prepare_message_data(con->in_msg);
2234         }
2235
2236         /* front */
2237         ret = read_partial_message_section(con, &m->front, front_len,
2238                                            &con->in_front_crc);
2239         if (ret <= 0)
2240                 return ret;
2241
2242         /* middle */
2243         if (m->middle) {
2244                 ret = read_partial_message_section(con, &m->middle->vec,
2245                                                    middle_len,
2246                                                    &con->in_middle_crc);
2247                 if (ret <= 0)
2248                         return ret;
2249         }
2250
2251         /* (page) data */
2252         if (data_len) {
2253                 ret = read_partial_msg_data(con);
2254                 if (ret <= 0)
2255                         return ret;
2256         }
2257
2258         /* footer */
2259         size = sizeof (m->footer);
2260         end += size;
2261         ret = read_partial(con, end, size, &m->footer);
2262         if (ret <= 0)
2263                 return ret;
2264
2265         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2266              m, front_len, m->footer.front_crc, middle_len,
2267              m->footer.middle_crc, data_len, m->footer.data_crc);
2268
2269         /* crc ok? */
2270         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2271                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2272                        m, con->in_front_crc, m->footer.front_crc);
2273                 return -EBADMSG;
2274         }
2275         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2276                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2277                        m, con->in_middle_crc, m->footer.middle_crc);
2278                 return -EBADMSG;
2279         }
2280         if (do_datacrc &&
2281             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2282             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2283                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2284                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2285                 return -EBADMSG;
2286         }
2287
2288         return 1; /* done! */
2289 }
2290
2291 /*
2292  * Process message.  This happens in the worker thread.  The callback should
2293  * be careful not to do anything that waits on other incoming messages or it
2294  * may deadlock.
2295  */
2296 static void process_message(struct ceph_connection *con)
2297 {
2298         struct ceph_msg *msg;
2299
2300         BUG_ON(con->in_msg->con != con);
2301         con->in_msg->con = NULL;
2302         msg = con->in_msg;
2303         con->in_msg = NULL;
2304         con->ops->put(con);
2305
2306         /* if first message, set peer_name */
2307         if (con->peer_name.type == 0)
2308                 con->peer_name = msg->hdr.src;
2309
2310         con->in_seq++;
2311         mutex_unlock(&con->mutex);
2312
2313         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2314              msg, le64_to_cpu(msg->hdr.seq),
2315              ENTITY_NAME(msg->hdr.src),
2316              le16_to_cpu(msg->hdr.type),
2317              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2318              le32_to_cpu(msg->hdr.front_len),
2319              le32_to_cpu(msg->hdr.data_len),
2320              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2321         con->ops->dispatch(con, msg);
2322
2323         mutex_lock(&con->mutex);
2324 }
2325
2326
2327 /*
2328  * Write something to the socket.  Called in a worker thread when the
2329  * socket appears to be writeable and we have something ready to send.
2330  */
2331 static int try_write(struct ceph_connection *con)
2332 {
2333         int ret = 1;
2334
2335         dout("try_write start %p state %lu\n", con, con->state);
2336
2337 more:
2338         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2339
2340         /* open the socket first? */
2341         if (con->state == CON_STATE_PREOPEN) {
2342                 BUG_ON(con->sock);
2343                 con->state = CON_STATE_CONNECTING;
2344
2345                 con_out_kvec_reset(con);
2346                 prepare_write_banner(con);
2347                 prepare_read_banner(con);
2348
2349                 BUG_ON(con->in_msg);
2350                 con->in_tag = CEPH_MSGR_TAG_READY;
2351                 dout("try_write initiating connect on %p new state %lu\n",
2352                      con, con->state);
2353                 ret = ceph_tcp_connect(con);
2354                 if (ret < 0) {
2355                         con->error_msg = "connect error";
2356                         goto out;
2357                 }
2358         }
2359
2360 more_kvec:
2361         /* kvec data queued? */
2362         if (con->out_skip) {
2363                 ret = write_partial_skip(con);
2364                 if (ret <= 0)
2365                         goto out;
2366         }
2367         if (con->out_kvec_left) {
2368                 ret = write_partial_kvec(con);
2369                 if (ret <= 0)
2370                         goto out;
2371         }
2372
2373         /* msg pages? */
2374         if (con->out_msg) {
2375                 if (con->out_msg_done) {
2376                         ceph_msg_put(con->out_msg);
2377                         con->out_msg = NULL;   /* we're done with this one */
2378                         goto do_next;
2379                 }
2380
2381                 ret = write_partial_message_data(con);
2382                 if (ret == 1)
2383                         goto more_kvec;  /* we need to send the footer, too! */
2384                 if (ret == 0)
2385                         goto out;
2386                 if (ret < 0) {
2387                         dout("try_write write_partial_message_data err %d\n",
2388                              ret);
2389                         goto out;
2390                 }
2391         }
2392
2393 do_next:
2394         if (con->state == CON_STATE_OPEN) {
2395                 /* is anything else pending? */
2396                 if (!list_empty(&con->out_queue)) {
2397                         prepare_write_message(con);
2398                         goto more;
2399                 }
2400                 if (con->in_seq > con->in_seq_acked) {
2401                         prepare_write_ack(con);
2402                         goto more;
2403                 }
2404                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2405                         prepare_write_keepalive(con);
2406                         goto more;
2407                 }
2408         }
2409
2410         /* Nothing to do! */
2411         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2412         dout("try_write nothing else to write.\n");
2413         ret = 0;
2414 out:
2415         dout("try_write done on %p ret %d\n", con, ret);
2416         return ret;
2417 }
2418
2419
2420
2421 /*
2422  * Read what we can from the socket.
2423  */
2424 static int try_read(struct ceph_connection *con)
2425 {
2426         int ret = -1;
2427
2428 more:
2429         dout("try_read start on %p state %lu\n", con, con->state);
2430         if (con->state != CON_STATE_CONNECTING &&
2431             con->state != CON_STATE_NEGOTIATING &&
2432             con->state != CON_STATE_OPEN)
2433                 return 0;
2434
2435         BUG_ON(!con->sock);
2436
2437         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2438              con->in_base_pos);
2439
2440         if (con->state == CON_STATE_CONNECTING) {
2441                 dout("try_read connecting\n");
2442                 ret = read_partial_banner(con);
2443                 if (ret <= 0)
2444                         goto out;
2445                 ret = process_banner(con);
2446                 if (ret < 0)
2447                         goto out;
2448
2449                 con->state = CON_STATE_NEGOTIATING;
2450
2451                 /*
2452                  * Received banner is good, exchange connection info.
2453                  * Do not reset out_kvec, as sending our banner raced
2454                  * with receiving peer banner after connect completed.
2455                  */
2456                 ret = prepare_write_connect(con);
2457                 if (ret < 0)
2458                         goto out;
2459                 prepare_read_connect(con);
2460
2461                 /* Send connection info before awaiting response */
2462                 goto out;
2463         }
2464
2465         if (con->state == CON_STATE_NEGOTIATING) {
2466                 dout("try_read negotiating\n");
2467                 ret = read_partial_connect(con);
2468                 if (ret <= 0)
2469                         goto out;
2470                 ret = process_connect(con);
2471                 if (ret < 0)
2472                         goto out;
2473                 goto more;
2474         }
2475
2476         WARN_ON(con->state != CON_STATE_OPEN);
2477
2478         if (con->in_base_pos < 0) {
2479                 /*
2480                  * skipping + discarding content.
2481                  *
2482                  * FIXME: there must be a better way to do this!
2483                  */
2484                 static char buf[SKIP_BUF_SIZE];
2485                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2486
2487                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2488                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2489                 if (ret <= 0)
2490                         goto out;
2491                 con->in_base_pos += ret;
2492                 if (con->in_base_pos)
2493                         goto more;
2494         }
2495         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2496                 /*
2497                  * what's next?
2498                  */
2499                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2500                 if (ret <= 0)
2501                         goto out;
2502                 dout("try_read got tag %d\n", (int)con->in_tag);
2503                 switch (con->in_tag) {
2504                 case CEPH_MSGR_TAG_MSG:
2505                         prepare_read_message(con);
2506                         break;
2507                 case CEPH_MSGR_TAG_ACK:
2508                         prepare_read_ack(con);
2509                         break;
2510                 case CEPH_MSGR_TAG_CLOSE:
2511                         con_close_socket(con);
2512                         con->state = CON_STATE_CLOSED;
2513                         goto out;
2514                 default:
2515                         goto bad_tag;
2516                 }
2517         }
2518         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2519                 ret = read_partial_message(con);
2520                 if (ret <= 0) {
2521                         switch (ret) {
2522                         case -EBADMSG:
2523                                 con->error_msg = "bad crc";
2524                                 ret = -EIO;
2525                                 break;
2526                         case -EIO:
2527                                 con->error_msg = "io error";
2528                                 break;
2529                         }
2530                         goto out;
2531                 }
2532                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2533                         goto more;
2534                 process_message(con);
2535                 if (con->state == CON_STATE_OPEN)
2536                         prepare_read_tag(con);
2537                 goto more;
2538         }
2539         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2540             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2541                 /*
2542                  * the final handshake seq exchange is semantically
2543                  * equivalent to an ACK
2544                  */
2545                 ret = read_partial_ack(con);
2546                 if (ret <= 0)
2547                         goto out;
2548                 process_ack(con);
2549                 goto more;
2550         }
2551
2552 out:
2553         dout("try_read done on %p ret %d\n", con, ret);
2554         return ret;
2555
2556 bad_tag:
2557         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2558         con->error_msg = "protocol error, garbage tag";
2559         ret = -1;
2560         goto out;
2561 }
2562
2563
2564 /*
2565  * Atomically queue work on a connection after the specified delay.
2566  * Bump @con reference to avoid races with connection teardown.
2567  * Returns 0 if work was queued, or an error code otherwise.
2568  */
2569 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2570 {
2571         if (!con->ops->get(con)) {
2572                 dout("%s %p ref count 0\n", __func__, con);
2573
2574                 return -ENOENT;
2575         }
2576
2577         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2578                 dout("%s %p - already queued\n", __func__, con);
2579                 con->ops->put(con);
2580
2581                 return -EBUSY;
2582         }
2583
2584         dout("%s %p %lu\n", __func__, con, delay);
2585
2586         return 0;
2587 }
2588
2589 static void queue_con(struct ceph_connection *con)
2590 {
2591         (void) queue_con_delay(con, 0);
2592 }
2593
2594 static bool con_sock_closed(struct ceph_connection *con)
2595 {
2596         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2597                 return false;
2598
2599 #define CASE(x)                                                         \
2600         case CON_STATE_ ## x:                                           \
2601                 con->error_msg = "socket closed (con state " #x ")";    \
2602                 break;
2603
2604         switch (con->state) {
2605         CASE(CLOSED);
2606         CASE(PREOPEN);
2607         CASE(CONNECTING);
2608         CASE(NEGOTIATING);
2609         CASE(OPEN);
2610         CASE(STANDBY);
2611         default:
2612                 pr_warning("%s con %p unrecognized state %lu\n",
2613                         __func__, con, con->state);
2614                 con->error_msg = "unrecognized con state";
2615                 BUG();
2616                 break;
2617         }
2618 #undef CASE
2619
2620         return true;
2621 }
2622
2623 static bool con_backoff(struct ceph_connection *con)
2624 {
2625         int ret;
2626
2627         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2628                 return false;
2629
2630         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2631         if (ret) {
2632                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2633                         con, con->delay);
2634                 BUG_ON(ret == -ENOENT);
2635                 con_flag_set(con, CON_FLAG_BACKOFF);
2636         }
2637
2638         return true;
2639 }
2640
2641 /* Finish fault handling; con->mutex must *not* be held here */
2642
2643 static void con_fault_finish(struct ceph_connection *con)
2644 {
2645         /*
2646          * in case we faulted due to authentication, invalidate our
2647          * current tickets so that we can get new ones.
2648          */
2649         if (con->auth_retry && con->ops->invalidate_authorizer) {
2650                 dout("calling invalidate_authorizer()\n");
2651                 con->ops->invalidate_authorizer(con);
2652         }
2653
2654         if (con->ops->fault)
2655                 con->ops->fault(con);
2656 }
2657
2658 /*
2659  * Do some work on a connection.  Drop a connection ref when we're done.
2660  */
2661 static void con_work(struct work_struct *work)
2662 {
2663         struct ceph_connection *con = container_of(work, struct ceph_connection,
2664                                                    work.work);
2665         bool fault;
2666
2667         mutex_lock(&con->mutex);
2668         while (true) {
2669                 int ret;
2670
2671                 if ((fault = con_sock_closed(con))) {
2672                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2673                         break;
2674                 }
2675                 if (con_backoff(con)) {
2676                         dout("%s: con %p BACKOFF\n", __func__, con);
2677                         break;
2678                 }
2679                 if (con->state == CON_STATE_STANDBY) {
2680                         dout("%s: con %p STANDBY\n", __func__, con);
2681                         break;
2682                 }
2683                 if (con->state == CON_STATE_CLOSED) {
2684                         dout("%s: con %p CLOSED\n", __func__, con);
2685                         BUG_ON(con->sock);
2686                         break;
2687                 }
2688                 if (con->state == CON_STATE_PREOPEN) {
2689                         dout("%s: con %p PREOPEN\n", __func__, con);
2690                         BUG_ON(con->sock);
2691                 }
2692
2693                 ret = try_read(con);
2694                 if (ret < 0) {
2695                         if (ret == -EAGAIN)
2696                                 continue;
2697                         con->error_msg = "socket error on read";
2698                         fault = true;
2699                         break;
2700                 }
2701
2702                 ret = try_write(con);
2703                 if (ret < 0) {
2704                         if (ret == -EAGAIN)
2705                                 continue;
2706                         con->error_msg = "socket error on write";
2707                         fault = true;
2708                 }
2709
2710                 break;  /* If we make it to here, we're done */
2711         }
2712         if (fault)
2713                 con_fault(con);
2714         mutex_unlock(&con->mutex);
2715
2716         if (fault)
2717                 con_fault_finish(con);
2718
2719         con->ops->put(con);
2720 }
2721
2722 /*
2723  * Generic error/fault handler.  A retry mechanism is used with
2724  * exponential backoff
2725  */
2726 static void con_fault(struct ceph_connection *con)
2727 {
2728         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2729                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2730         dout("fault %p state %lu to peer %s\n",
2731              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2732
2733         WARN_ON(con->state != CON_STATE_CONNECTING &&
2734                con->state != CON_STATE_NEGOTIATING &&
2735                con->state != CON_STATE_OPEN);
2736
2737         con_close_socket(con);
2738
2739         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2740                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2741                 con->state = CON_STATE_CLOSED;
2742                 return;
2743         }
2744
2745         if (con->in_msg) {
2746                 BUG_ON(con->in_msg->con != con);
2747                 con->in_msg->con = NULL;
2748                 ceph_msg_put(con->in_msg);
2749                 con->in_msg = NULL;
2750                 con->ops->put(con);
2751         }
2752
2753         /* Requeue anything that hasn't been acked */
2754         list_splice_init(&con->out_sent, &con->out_queue);
2755
2756         /* If there are no messages queued or keepalive pending, place
2757          * the connection in a STANDBY state */
2758         if (list_empty(&con->out_queue) &&
2759             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2760                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2761                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2762                 con->state = CON_STATE_STANDBY;
2763         } else {
2764                 /* retry after a delay. */
2765                 con->state = CON_STATE_PREOPEN;
2766                 if (con->delay == 0)
2767                         con->delay = BASE_DELAY_INTERVAL;
2768                 else if (con->delay < MAX_DELAY_INTERVAL)
2769                         con->delay *= 2;
2770                 con_flag_set(con, CON_FLAG_BACKOFF);
2771                 queue_con(con);
2772         }
2773 }
2774
2775
2776
2777 /*
2778  * initialize a new messenger instance
2779  */
2780 void ceph_messenger_init(struct ceph_messenger *msgr,
2781                         struct ceph_entity_addr *myaddr,
2782                         u32 supported_features,
2783                         u32 required_features,
2784                         bool nocrc)
2785 {
2786         msgr->supported_features = supported_features;
2787         msgr->required_features = required_features;
2788
2789         spin_lock_init(&msgr->global_seq_lock);
2790
2791         if (myaddr)
2792                 msgr->inst.addr = *myaddr;
2793
2794         /* select a random nonce */
2795         msgr->inst.addr.type = 0;
2796         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2797         encode_my_addr(msgr);
2798         msgr->nocrc = nocrc;
2799
2800         atomic_set(&msgr->stopping, 0);
2801
2802         dout("%s %p\n", __func__, msgr);
2803 }
2804 EXPORT_SYMBOL(ceph_messenger_init);
2805
2806 static void clear_standby(struct ceph_connection *con)
2807 {
2808         /* come back from STANDBY? */
2809         if (con->state == CON_STATE_STANDBY) {
2810                 dout("clear_standby %p and ++connect_seq\n", con);
2811                 con->state = CON_STATE_PREOPEN;
2812                 con->connect_seq++;
2813                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2814                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2815         }
2816 }
2817
2818 /*
2819  * Queue up an outgoing message on the given connection.
2820  */
2821 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2822 {
2823         /* set src+dst */
2824         msg->hdr.src = con->msgr->inst.name;
2825         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2826         msg->needs_out_seq = true;
2827
2828         mutex_lock(&con->mutex);
2829
2830         if (con->state == CON_STATE_CLOSED) {
2831                 dout("con_send %p closed, dropping %p\n", con, msg);
2832                 ceph_msg_put(msg);
2833                 mutex_unlock(&con->mutex);
2834                 return;
2835         }
2836
2837         BUG_ON(msg->con != NULL);
2838         msg->con = con->ops->get(con);
2839         BUG_ON(msg->con == NULL);
2840
2841         BUG_ON(!list_empty(&msg->list_head));
2842         list_add_tail(&msg->list_head, &con->out_queue);
2843         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2844              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2845              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2846              le32_to_cpu(msg->hdr.front_len),
2847              le32_to_cpu(msg->hdr.middle_len),
2848              le32_to_cpu(msg->hdr.data_len));
2849
2850         clear_standby(con);
2851         mutex_unlock(&con->mutex);
2852
2853         /* if there wasn't anything waiting to send before, queue
2854          * new work */
2855         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2856                 queue_con(con);
2857 }
2858 EXPORT_SYMBOL(ceph_con_send);
2859
2860 /*
2861  * Revoke a message that was previously queued for send
2862  */
2863 void ceph_msg_revoke(struct ceph_msg *msg)
2864 {
2865         struct ceph_connection *con = msg->con;
2866
2867         if (!con)
2868                 return;         /* Message not in our possession */
2869
2870         mutex_lock(&con->mutex);
2871         if (!list_empty(&msg->list_head)) {
2872                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2873                 list_del_init(&msg->list_head);
2874                 BUG_ON(msg->con == NULL);
2875                 msg->con->ops->put(msg->con);
2876                 msg->con = NULL;
2877                 msg->hdr.seq = 0;
2878
2879                 ceph_msg_put(msg);
2880         }
2881         if (con->out_msg == msg) {
2882                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2883                 con->out_msg = NULL;
2884                 if (con->out_kvec_is_msg) {
2885                         con->out_skip = con->out_kvec_bytes;
2886                         con->out_kvec_is_msg = false;
2887                 }
2888                 msg->hdr.seq = 0;
2889
2890                 ceph_msg_put(msg);
2891         }
2892         mutex_unlock(&con->mutex);
2893 }
2894
2895 /*
2896  * Revoke a message that we may be reading data into
2897  */
2898 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2899 {
2900         struct ceph_connection *con;
2901
2902         BUG_ON(msg == NULL);
2903         if (!msg->con) {
2904                 dout("%s msg %p null con\n", __func__, msg);
2905
2906                 return;         /* Message not in our possession */
2907         }
2908
2909         con = msg->con;
2910         mutex_lock(&con->mutex);
2911         if (con->in_msg == msg) {
2912                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2913                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2914                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2915
2916                 /* skip rest of message */
2917                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2918                 con->in_base_pos = con->in_base_pos -
2919                                 sizeof(struct ceph_msg_header) -
2920                                 front_len -
2921                                 middle_len -
2922                                 data_len -
2923                                 sizeof(struct ceph_msg_footer);
2924                 ceph_msg_put(con->in_msg);
2925                 con->in_msg = NULL;
2926                 con->in_tag = CEPH_MSGR_TAG_READY;
2927                 con->in_seq++;
2928         } else {
2929                 dout("%s %p in_msg %p msg %p no-op\n",
2930                      __func__, con, con->in_msg, msg);
2931         }
2932         mutex_unlock(&con->mutex);
2933 }
2934
2935 /*
2936  * Queue a keepalive byte to ensure the tcp connection is alive.
2937  */
2938 void ceph_con_keepalive(struct ceph_connection *con)
2939 {
2940         dout("con_keepalive %p\n", con);
2941         mutex_lock(&con->mutex);
2942         clear_standby(con);
2943         mutex_unlock(&con->mutex);
2944         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2945             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2946                 queue_con(con);
2947 }
2948 EXPORT_SYMBOL(ceph_con_keepalive);
2949
2950 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
2951 {
2952         struct ceph_msg_data *data;
2953
2954         if (WARN_ON(!ceph_msg_data_type_valid(type)))
2955                 return NULL;
2956
2957         data = kzalloc(sizeof (*data), GFP_NOFS);
2958         if (data)
2959                 data->type = type;
2960
2961         return data;
2962 }
2963
2964 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
2965 {
2966         if (!data)
2967                 return;
2968
2969         if (data->type == CEPH_MSG_DATA_PAGELIST) {
2970                 ceph_pagelist_release(data->pagelist);
2971                 kfree(data->pagelist);
2972         }
2973         kfree(data);
2974 }
2975
2976 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2977                 size_t length, size_t alignment)
2978 {
2979         struct ceph_msg_data *data;
2980
2981         BUG_ON(!pages);
2982         BUG_ON(!length);
2983         BUG_ON(msg->data != NULL);
2984
2985         data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
2986         BUG_ON(!data);
2987         data->pages = pages;
2988         data->length = length;
2989         data->alignment = alignment & ~PAGE_MASK;
2990
2991         msg->data = data;
2992 }
2993 EXPORT_SYMBOL(ceph_msg_data_set_pages);
2994
2995 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
2996                                 struct ceph_pagelist *pagelist)
2997 {
2998         struct ceph_msg_data *data;
2999
3000         BUG_ON(!pagelist);
3001         BUG_ON(!pagelist->length);
3002         BUG_ON(msg->data != NULL);
3003
3004         data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3005         BUG_ON(!data);
3006         data->pagelist = pagelist;
3007
3008         msg->data = data;
3009 }
3010 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
3011
3012 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
3013 {
3014         struct ceph_msg_data *data;
3015
3016         BUG_ON(!bio);
3017         BUG_ON(msg->data != NULL);
3018
3019         data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3020         BUG_ON(!data);
3021         data->bio = bio;
3022
3023         msg->data = data;
3024 }
3025 EXPORT_SYMBOL(ceph_msg_data_set_bio);
3026
3027 /*
3028  * construct a new message with given type, size
3029  * the new msg has a ref count of 1.
3030  */
3031 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3032                               bool can_fail)
3033 {
3034         struct ceph_msg *m;
3035
3036         m = kzalloc(sizeof(*m), flags);
3037         if (m == NULL)
3038                 goto out;
3039
3040         m->hdr.type = cpu_to_le16(type);
3041         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3042         m->hdr.front_len = cpu_to_le32(front_len);
3043
3044         INIT_LIST_HEAD(&m->list_head);
3045         kref_init(&m->kref);
3046
3047         /* front */
3048         m->front_max = front_len;
3049         if (front_len) {
3050                 if (front_len > PAGE_CACHE_SIZE) {
3051                         m->front.iov_base = __vmalloc(front_len, flags,
3052                                                       PAGE_KERNEL);
3053                         m->front_is_vmalloc = true;
3054                 } else {
3055                         m->front.iov_base = kmalloc(front_len, flags);
3056                 }
3057                 if (m->front.iov_base == NULL) {
3058                         dout("ceph_msg_new can't allocate %d bytes\n",
3059                              front_len);
3060                         goto out2;
3061                 }
3062         } else {
3063                 m->front.iov_base = NULL;
3064         }
3065         m->front.iov_len = front_len;
3066
3067         dout("ceph_msg_new %p front %d\n", m, front_len);
3068         return m;
3069
3070 out2:
3071         ceph_msg_put(m);
3072 out:
3073         if (!can_fail) {
3074                 pr_err("msg_new can't create type %d front %d\n", type,
3075                        front_len);
3076                 WARN_ON(1);
3077         } else {
3078                 dout("msg_new can't create type %d front %d\n", type,
3079                      front_len);
3080         }
3081         return NULL;
3082 }
3083 EXPORT_SYMBOL(ceph_msg_new);
3084
3085 /*
3086  * Allocate "middle" portion of a message, if it is needed and wasn't
3087  * allocated by alloc_msg.  This allows us to read a small fixed-size
3088  * per-type header in the front and then gracefully fail (i.e.,
3089  * propagate the error to the caller based on info in the front) when
3090  * the middle is too large.
3091  */
3092 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3093 {
3094         int type = le16_to_cpu(msg->hdr.type);
3095         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3096
3097         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3098              ceph_msg_type_name(type), middle_len);
3099         BUG_ON(!middle_len);
3100         BUG_ON(msg->middle);
3101
3102         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3103         if (!msg->middle)
3104                 return -ENOMEM;
3105         return 0;
3106 }
3107
3108 /*
3109  * Allocate a message for receiving an incoming message on a
3110  * connection, and save the result in con->in_msg.  Uses the
3111  * connection's private alloc_msg op if available.
3112  *
3113  * Returns 0 on success, or a negative error code.
3114  *
3115  * On success, if we set *skip = 1:
3116  *  - the next message should be skipped and ignored.
3117  *  - con->in_msg == NULL
3118  * or if we set *skip = 0:
3119  *  - con->in_msg is non-null.
3120  * On error (ENOMEM, EAGAIN, ...),
3121  *  - con->in_msg == NULL
3122  */
3123 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3124 {
3125         struct ceph_msg_header *hdr = &con->in_hdr;
3126         int middle_len = le32_to_cpu(hdr->middle_len);
3127         struct ceph_msg *msg;
3128         int ret = 0;
3129
3130         BUG_ON(con->in_msg != NULL);
3131         BUG_ON(!con->ops->alloc_msg);
3132
3133         mutex_unlock(&con->mutex);
3134         msg = con->ops->alloc_msg(con, hdr, skip);
3135         mutex_lock(&con->mutex);
3136         if (con->state != CON_STATE_OPEN) {
3137                 if (msg)
3138                         ceph_msg_put(msg);
3139                 return -EAGAIN;
3140         }
3141         if (msg) {
3142                 BUG_ON(*skip);
3143                 con->in_msg = msg;
3144                 con->in_msg->con = con->ops->get(con);
3145                 BUG_ON(con->in_msg->con == NULL);
3146         } else {
3147                 /*
3148                  * Null message pointer means either we should skip
3149                  * this message or we couldn't allocate memory.  The
3150                  * former is not an error.
3151                  */
3152                 if (*skip)
3153                         return 0;
3154                 con->error_msg = "error allocating memory for incoming message";
3155
3156                 return -ENOMEM;
3157         }
3158         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3159
3160         if (middle_len && !con->in_msg->middle) {
3161                 ret = ceph_alloc_middle(con, con->in_msg);
3162                 if (ret < 0) {
3163                         ceph_msg_put(con->in_msg);
3164                         con->in_msg = NULL;
3165                 }
3166         }
3167
3168         return ret;
3169 }
3170
3171
3172 /*
3173  * Free a generically kmalloc'd message.
3174  */
3175 void ceph_msg_kfree(struct ceph_msg *m)
3176 {
3177         dout("msg_kfree %p\n", m);
3178         if (m->front_is_vmalloc)
3179                 vfree(m->front.iov_base);
3180         else
3181                 kfree(m->front.iov_base);
3182         kfree(m);
3183 }
3184
3185 /*
3186  * Drop a msg ref.  Destroy as needed.
3187  */
3188 void ceph_msg_last_put(struct kref *kref)
3189 {
3190         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3191
3192         dout("ceph_msg_put last one on %p\n", m);
3193         WARN_ON(!list_empty(&m->list_head));
3194
3195         /* drop middle, data, if any */
3196         if (m->middle) {
3197                 ceph_buffer_put(m->middle);
3198                 m->middle = NULL;
3199         }
3200         ceph_msg_data_destroy(m->data);
3201         m->data = NULL;
3202
3203         if (m->pool)
3204                 ceph_msgpool_put(m->pool, m);
3205         else
3206                 ceph_msg_kfree(m);
3207 }
3208 EXPORT_SYMBOL(ceph_msg_last_put);
3209
3210 void ceph_msg_dump(struct ceph_msg *msg)
3211 {
3212         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3213                  msg->front_max, msg->data->length);
3214         print_hex_dump(KERN_DEBUG, "header: ",
3215                        DUMP_PREFIX_OFFSET, 16, 1,
3216                        &msg->hdr, sizeof(msg->hdr), true);
3217         print_hex_dump(KERN_DEBUG, " front: ",
3218                        DUMP_PREFIX_OFFSET, 16, 1,
3219                        msg->front.iov_base, msg->front.iov_len, true);
3220         if (msg->middle)
3221                 print_hex_dump(KERN_DEBUG, "middle: ",
3222                                DUMP_PREFIX_OFFSET, 16, 1,
3223                                msg->middle->vec.iov_base,
3224                                msg->middle->vec.iov_len, true);
3225         print_hex_dump(KERN_DEBUG, "footer: ",
3226                        DUMP_PREFIX_OFFSET, 16, 1,
3227                        &msg->footer, sizeof(msg->footer), true);
3228 }
3229 EXPORT_SYMBOL(ceph_msg_dump);