]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: record residual bytes for all message data types
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member)                                    \
25         list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77
78 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
83
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98                                        * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106         switch (con_flag) {
107         case CON_FLAG_LOSSYTX:
108         case CON_FLAG_KEEPALIVE_PENDING:
109         case CON_FLAG_WRITE_PENDING:
110         case CON_FLAG_SOCK_CLOSED:
111         case CON_FLAG_BACKOFF:
112                 return true;
113         default:
114                 return false;
115         }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120         BUG_ON(!con_flag_valid(con_flag));
121
122         clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127         BUG_ON(!con_flag_valid(con_flag));
128
129         set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134         BUG_ON(!con_flag_valid(con_flag));
135
136         return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140                                         unsigned long con_flag)
141 {
142         BUG_ON(!con_flag_valid(con_flag));
143
144         return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148                                         unsigned long con_flag)
149 {
150         BUG_ON(!con_flag_valid(con_flag));
151
152         return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* static tag bytes (protocol control messages) */
156 static char tag_msg = CEPH_MSGR_TAG_MSG;
157 static char tag_ack = CEPH_MSGR_TAG_ACK;
158 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160 #ifdef CONFIG_LOCKDEP
161 static struct lock_class_key socket_class;
162 #endif
163
164 /*
165  * When skipping (ignoring) a block of input we read it into a "skip
166  * buffer," which is this many bytes in size.
167  */
168 #define SKIP_BUF_SIZE   1024
169
170 static void queue_con(struct ceph_connection *con);
171 static void con_work(struct work_struct *);
172 static void con_fault(struct ceph_connection *con);
173
174 /*
175  * Nicely render a sockaddr as a string.  An array of formatted
176  * strings is used, to approximate reentrancy.
177  */
178 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
179 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
180 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
181 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
182
183 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184 static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186 static struct page *zero_page;          /* used in certain error cases */
187
188 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189 {
190         int i;
191         char *s;
192         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196         s = addr_str[i];
197
198         switch (ss->ss_family) {
199         case AF_INET:
200                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201                          ntohs(in4->sin_port));
202                 break;
203
204         case AF_INET6:
205                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206                          ntohs(in6->sin6_port));
207                 break;
208
209         default:
210                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211                          ss->ss_family);
212         }
213
214         return s;
215 }
216 EXPORT_SYMBOL(ceph_pr_addr);
217
218 static void encode_my_addr(struct ceph_messenger *msgr)
219 {
220         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221         ceph_encode_addr(&msgr->my_enc_addr);
222 }
223
224 /*
225  * work queue for all reading and writing to/from the socket.
226  */
227 static struct workqueue_struct *ceph_msgr_wq;
228
229 static void _ceph_msgr_exit(void)
230 {
231         if (ceph_msgr_wq) {
232                 destroy_workqueue(ceph_msgr_wq);
233                 ceph_msgr_wq = NULL;
234         }
235
236         BUG_ON(zero_page == NULL);
237         kunmap(zero_page);
238         page_cache_release(zero_page);
239         zero_page = NULL;
240 }
241
242 int ceph_msgr_init(void)
243 {
244         BUG_ON(zero_page != NULL);
245         zero_page = ZERO_PAGE(0);
246         page_cache_get(zero_page);
247
248         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249         if (ceph_msgr_wq)
250                 return 0;
251
252         pr_err("msgr_init failed to create workqueue\n");
253         _ceph_msgr_exit();
254
255         return -ENOMEM;
256 }
257 EXPORT_SYMBOL(ceph_msgr_init);
258
259 void ceph_msgr_exit(void)
260 {
261         BUG_ON(ceph_msgr_wq == NULL);
262
263         _ceph_msgr_exit();
264 }
265 EXPORT_SYMBOL(ceph_msgr_exit);
266
267 void ceph_msgr_flush(void)
268 {
269         flush_workqueue(ceph_msgr_wq);
270 }
271 EXPORT_SYMBOL(ceph_msgr_flush);
272
273 /* Connection socket state transition functions */
274
275 static void con_sock_state_init(struct ceph_connection *con)
276 {
277         int old_state;
278
279         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281                 printk("%s: unexpected old state %d\n", __func__, old_state);
282         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283              CON_SOCK_STATE_CLOSED);
284 }
285
286 static void con_sock_state_connecting(struct ceph_connection *con)
287 {
288         int old_state;
289
290         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292                 printk("%s: unexpected old state %d\n", __func__, old_state);
293         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294              CON_SOCK_STATE_CONNECTING);
295 }
296
297 static void con_sock_state_connected(struct ceph_connection *con)
298 {
299         int old_state;
300
301         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303                 printk("%s: unexpected old state %d\n", __func__, old_state);
304         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305              CON_SOCK_STATE_CONNECTED);
306 }
307
308 static void con_sock_state_closing(struct ceph_connection *con)
309 {
310         int old_state;
311
312         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314                         old_state != CON_SOCK_STATE_CONNECTED &&
315                         old_state != CON_SOCK_STATE_CLOSING))
316                 printk("%s: unexpected old state %d\n", __func__, old_state);
317         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318              CON_SOCK_STATE_CLOSING);
319 }
320
321 static void con_sock_state_closed(struct ceph_connection *con)
322 {
323         int old_state;
324
325         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327                     old_state != CON_SOCK_STATE_CLOSING &&
328                     old_state != CON_SOCK_STATE_CONNECTING &&
329                     old_state != CON_SOCK_STATE_CLOSED))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CLOSED);
333 }
334
335 /*
336  * socket callback functions
337  */
338
339 /* data available on socket, or listen socket received a connect */
340 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341 {
342         struct ceph_connection *con = sk->sk_user_data;
343         if (atomic_read(&con->msgr->stopping)) {
344                 return;
345         }
346
347         if (sk->sk_state != TCP_CLOSE_WAIT) {
348                 dout("%s on %p state = %lu, queueing work\n", __func__,
349                      con, con->state);
350                 queue_con(con);
351         }
352 }
353
354 /* socket has buffer space for writing */
355 static void ceph_sock_write_space(struct sock *sk)
356 {
357         struct ceph_connection *con = sk->sk_user_data;
358
359         /* only queue to workqueue if there is data we want to write,
360          * and there is sufficient space in the socket buffer to accept
361          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
362          * doesn't get called again until try_write() fills the socket
363          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364          * and net/core/stream.c:sk_stream_write_space().
365          */
366         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368                         dout("%s %p queueing write work\n", __func__, con);
369                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370                         queue_con(con);
371                 }
372         } else {
373                 dout("%s %p nothing to write\n", __func__, con);
374         }
375 }
376
377 /* socket's state has changed */
378 static void ceph_sock_state_change(struct sock *sk)
379 {
380         struct ceph_connection *con = sk->sk_user_data;
381
382         dout("%s %p state = %lu sk_state = %u\n", __func__,
383              con, con->state, sk->sk_state);
384
385         switch (sk->sk_state) {
386         case TCP_CLOSE:
387                 dout("%s TCP_CLOSE\n", __func__);
388         case TCP_CLOSE_WAIT:
389                 dout("%s TCP_CLOSE_WAIT\n", __func__);
390                 con_sock_state_closing(con);
391                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392                 queue_con(con);
393                 break;
394         case TCP_ESTABLISHED:
395                 dout("%s TCP_ESTABLISHED\n", __func__);
396                 con_sock_state_connected(con);
397                 queue_con(con);
398                 break;
399         default:        /* Everything else is uninteresting */
400                 break;
401         }
402 }
403
404 /*
405  * set up socket callbacks
406  */
407 static void set_sock_callbacks(struct socket *sock,
408                                struct ceph_connection *con)
409 {
410         struct sock *sk = sock->sk;
411         sk->sk_user_data = con;
412         sk->sk_data_ready = ceph_sock_data_ready;
413         sk->sk_write_space = ceph_sock_write_space;
414         sk->sk_state_change = ceph_sock_state_change;
415 }
416
417
418 /*
419  * socket helpers
420  */
421
422 /*
423  * initiate connection to a remote socket.
424  */
425 static int ceph_tcp_connect(struct ceph_connection *con)
426 {
427         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428         struct socket *sock;
429         int ret;
430
431         BUG_ON(con->sock);
432         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433                                IPPROTO_TCP, &sock);
434         if (ret)
435                 return ret;
436         sock->sk->sk_allocation = GFP_NOFS;
437
438 #ifdef CONFIG_LOCKDEP
439         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440 #endif
441
442         set_sock_callbacks(sock, con);
443
444         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446         con_sock_state_connecting(con);
447         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448                                  O_NONBLOCK);
449         if (ret == -EINPROGRESS) {
450                 dout("connect %s EINPROGRESS sk_state = %u\n",
451                      ceph_pr_addr(&con->peer_addr.in_addr),
452                      sock->sk->sk_state);
453         } else if (ret < 0) {
454                 pr_err("connect %s error %d\n",
455                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
456                 sock_release(sock);
457                 con->error_msg = "connect error";
458
459                 return ret;
460         }
461         con->sock = sock;
462         return 0;
463 }
464
465 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466 {
467         struct kvec iov = {buf, len};
468         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469         int r;
470
471         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472         if (r == -EAGAIN)
473                 r = 0;
474         return r;
475 }
476
477 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478                      int page_offset, size_t length)
479 {
480         void *kaddr;
481         int ret;
482
483         BUG_ON(page_offset + length > PAGE_SIZE);
484
485         kaddr = kmap(page);
486         BUG_ON(!kaddr);
487         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488         kunmap(page);
489
490         return ret;
491 }
492
493 /*
494  * write something.  @more is true if caller will be sending more data
495  * shortly.
496  */
497 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498                      size_t kvlen, size_t len, int more)
499 {
500         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501         int r;
502
503         if (more)
504                 msg.msg_flags |= MSG_MORE;
505         else
506                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
507
508         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509         if (r == -EAGAIN)
510                 r = 0;
511         return r;
512 }
513
514 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515                      int offset, size_t size, bool more)
516 {
517         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518         int ret;
519
520         ret = kernel_sendpage(sock, page, offset, size, flags);
521         if (ret == -EAGAIN)
522                 ret = 0;
523
524         return ret;
525 }
526
527
528 /*
529  * Shutdown/close the socket for the given connection.
530  */
531 static int con_close_socket(struct ceph_connection *con)
532 {
533         int rc = 0;
534
535         dout("con_close_socket on %p sock %p\n", con, con->sock);
536         if (con->sock) {
537                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538                 sock_release(con->sock);
539                 con->sock = NULL;
540         }
541
542         /*
543          * Forcibly clear the SOCK_CLOSED flag.  It gets set
544          * independent of the connection mutex, and we could have
545          * received a socket close event before we had the chance to
546          * shut the socket down.
547          */
548         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550         con_sock_state_closed(con);
551         return rc;
552 }
553
554 /*
555  * Reset a connection.  Discard all incoming and outgoing messages
556  * and clear *_seq state.
557  */
558 static void ceph_msg_remove(struct ceph_msg *msg)
559 {
560         list_del_init(&msg->list_head);
561         BUG_ON(msg->con == NULL);
562         msg->con->ops->put(msg->con);
563         msg->con = NULL;
564
565         ceph_msg_put(msg);
566 }
567 static void ceph_msg_remove_list(struct list_head *head)
568 {
569         while (!list_empty(head)) {
570                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571                                                         list_head);
572                 ceph_msg_remove(msg);
573         }
574 }
575
576 static void reset_connection(struct ceph_connection *con)
577 {
578         /* reset connection, out_queue, msg_ and connect_seq */
579         /* discard existing out_queue and msg_seq */
580         dout("reset_connection %p\n", con);
581         ceph_msg_remove_list(&con->out_queue);
582         ceph_msg_remove_list(&con->out_sent);
583
584         if (con->in_msg) {
585                 BUG_ON(con->in_msg->con != con);
586                 con->in_msg->con = NULL;
587                 ceph_msg_put(con->in_msg);
588                 con->in_msg = NULL;
589                 con->ops->put(con);
590         }
591
592         con->connect_seq = 0;
593         con->out_seq = 0;
594         if (con->out_msg) {
595                 ceph_msg_put(con->out_msg);
596                 con->out_msg = NULL;
597         }
598         con->in_seq = 0;
599         con->in_seq_acked = 0;
600 }
601
602 /*
603  * mark a peer down.  drop any open connections.
604  */
605 void ceph_con_close(struct ceph_connection *con)
606 {
607         mutex_lock(&con->mutex);
608         dout("con_close %p peer %s\n", con,
609              ceph_pr_addr(&con->peer_addr.in_addr));
610         con->state = CON_STATE_CLOSED;
611
612         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
613         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615         con_flag_clear(con, CON_FLAG_BACKOFF);
616
617         reset_connection(con);
618         con->peer_global_seq = 0;
619         cancel_delayed_work(&con->work);
620         con_close_socket(con);
621         mutex_unlock(&con->mutex);
622 }
623 EXPORT_SYMBOL(ceph_con_close);
624
625 /*
626  * Reopen a closed connection, with a new peer address.
627  */
628 void ceph_con_open(struct ceph_connection *con,
629                    __u8 entity_type, __u64 entity_num,
630                    struct ceph_entity_addr *addr)
631 {
632         mutex_lock(&con->mutex);
633         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635         WARN_ON(con->state != CON_STATE_CLOSED);
636         con->state = CON_STATE_PREOPEN;
637
638         con->peer_name.type = (__u8) entity_type;
639         con->peer_name.num = cpu_to_le64(entity_num);
640
641         memcpy(&con->peer_addr, addr, sizeof(*addr));
642         con->delay = 0;      /* reset backoff memory */
643         mutex_unlock(&con->mutex);
644         queue_con(con);
645 }
646 EXPORT_SYMBOL(ceph_con_open);
647
648 /*
649  * return true if this connection ever successfully opened
650  */
651 bool ceph_con_opened(struct ceph_connection *con)
652 {
653         return con->connect_seq > 0;
654 }
655
656 /*
657  * initialize a new connection.
658  */
659 void ceph_con_init(struct ceph_connection *con, void *private,
660         const struct ceph_connection_operations *ops,
661         struct ceph_messenger *msgr)
662 {
663         dout("con_init %p\n", con);
664         memset(con, 0, sizeof(*con));
665         con->private = private;
666         con->ops = ops;
667         con->msgr = msgr;
668
669         con_sock_state_init(con);
670
671         mutex_init(&con->mutex);
672         INIT_LIST_HEAD(&con->out_queue);
673         INIT_LIST_HEAD(&con->out_sent);
674         INIT_DELAYED_WORK(&con->work, con_work);
675
676         con->state = CON_STATE_CLOSED;
677 }
678 EXPORT_SYMBOL(ceph_con_init);
679
680
681 /*
682  * We maintain a global counter to order connection attempts.  Get
683  * a unique seq greater than @gt.
684  */
685 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686 {
687         u32 ret;
688
689         spin_lock(&msgr->global_seq_lock);
690         if (msgr->global_seq < gt)
691                 msgr->global_seq = gt;
692         ret = ++msgr->global_seq;
693         spin_unlock(&msgr->global_seq_lock);
694         return ret;
695 }
696
697 static void con_out_kvec_reset(struct ceph_connection *con)
698 {
699         con->out_kvec_left = 0;
700         con->out_kvec_bytes = 0;
701         con->out_kvec_cur = &con->out_kvec[0];
702 }
703
704 static void con_out_kvec_add(struct ceph_connection *con,
705                                 size_t size, void *data)
706 {
707         int index;
708
709         index = con->out_kvec_left;
710         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712         con->out_kvec[index].iov_len = size;
713         con->out_kvec[index].iov_base = data;
714         con->out_kvec_left++;
715         con->out_kvec_bytes += size;
716 }
717
718 #ifdef CONFIG_BLOCK
719 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
720                         unsigned int *bio_seg)
721 {
722         if (!bio) {
723                 *bio_iter = NULL;
724                 *bio_seg = 0;
725                 return;
726         }
727         *bio_iter = bio;
728         *bio_seg = (unsigned int) bio->bi_idx;
729 }
730
731 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
732 {
733         if (*bio_iter == NULL)
734                 return;
735
736         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
737
738         (*seg)++;
739         if (*seg == (*bio_iter)->bi_vcnt)
740                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
741 }
742
743 /*
744  * For a bio data item, a piece is whatever remains of the next
745  * entry in the current bio iovec, or the first entry in the next
746  * bio in the list.
747  */
748 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data *data,
749                                         size_t length)
750 {
751         struct ceph_msg_data_cursor *cursor = &data->cursor;
752         struct bio *bio;
753
754         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
755
756         bio = data->bio;
757         BUG_ON(!bio);
758         BUG_ON(!bio->bi_vcnt);
759
760         cursor->resid = length;
761         cursor->bio = bio;
762         cursor->vector_index = 0;
763         cursor->vector_offset = 0;
764         cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
765 }
766
767 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data *data,
768                                                 size_t *page_offset,
769                                                 size_t *length)
770 {
771         struct ceph_msg_data_cursor *cursor = &data->cursor;
772         struct bio *bio;
773         struct bio_vec *bio_vec;
774         unsigned int index;
775
776         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
777
778         bio = cursor->bio;
779         BUG_ON(!bio);
780
781         index = cursor->vector_index;
782         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
783
784         bio_vec = &bio->bi_io_vec[index];
785         BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
786         *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
787         BUG_ON(*page_offset >= PAGE_SIZE);
788         if (cursor->last_piece) /* pagelist offset is always 0 */
789                 *length = cursor->resid;
790         else
791                 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
792         BUG_ON(*length > PAGE_SIZE);
793         BUG_ON(*length > cursor->resid);
794
795         return bio_vec->bv_page;
796 }
797
798 static bool ceph_msg_data_bio_advance(struct ceph_msg_data *data, size_t bytes)
799 {
800         struct ceph_msg_data_cursor *cursor = &data->cursor;
801         struct bio *bio;
802         struct bio_vec *bio_vec;
803         unsigned int index;
804
805         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
806
807         bio = cursor->bio;
808         BUG_ON(!bio);
809
810         index = cursor->vector_index;
811         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
812         bio_vec = &bio->bi_io_vec[index];
813
814         /* Advance the cursor offset */
815
816         BUG_ON(cursor->resid < bytes);
817         cursor->resid -= bytes;
818         cursor->vector_offset += bytes;
819         if (cursor->vector_offset < bio_vec->bv_len)
820                 return false;   /* more bytes to process in this segment */
821         BUG_ON(cursor->vector_offset != bio_vec->bv_len);
822
823         /* Move on to the next segment, and possibly the next bio */
824
825         if (++index == (unsigned int) bio->bi_vcnt) {
826                 bio = bio->bi_next;
827                 index = 0;
828         }
829         cursor->bio = bio;
830         cursor->vector_index = index;
831         cursor->vector_offset = 0;
832
833         if (!cursor->last_piece) {
834                 BUG_ON(!cursor->resid);
835                 BUG_ON(!bio);
836                 /* A short read is OK, so use <= rather than == */
837                 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
838                         cursor->last_piece = true;
839         }
840
841         return true;
842 }
843 #endif
844
845 /*
846  * For a page array, a piece comes from the first page in the array
847  * that has not already been fully consumed.
848  */
849 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data *data,
850                                         size_t length)
851 {
852         struct ceph_msg_data_cursor *cursor = &data->cursor;
853         int page_count;
854
855         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
856
857         BUG_ON(!data->pages);
858         BUG_ON(!data->length);
859         BUG_ON(length != data->length);
860
861         cursor->resid = length;
862         page_count = calc_pages_for(data->alignment, (u64)data->length);
863         cursor->page_offset = data->alignment & ~PAGE_MASK;
864         cursor->page_index = 0;
865         BUG_ON(page_count > (int) USHRT_MAX);
866         cursor->page_count = (unsigned short) page_count;
867         cursor->last_piece = length <= PAGE_SIZE;
868 }
869
870 static struct page *ceph_msg_data_pages_next(struct ceph_msg_data *data,
871                                         size_t *page_offset,
872                                         size_t *length)
873 {
874         struct ceph_msg_data_cursor *cursor = &data->cursor;
875
876         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
877
878         BUG_ON(cursor->page_index >= cursor->page_count);
879         BUG_ON(cursor->page_offset >= PAGE_SIZE);
880
881         *page_offset = cursor->page_offset;
882         if (cursor->last_piece)
883                 *length = cursor->resid;
884         else
885                 *length = PAGE_SIZE - *page_offset;
886
887         return data->pages[cursor->page_index];
888 }
889
890 static bool ceph_msg_data_pages_advance(struct ceph_msg_data *data,
891                                                 size_t bytes)
892 {
893         struct ceph_msg_data_cursor *cursor = &data->cursor;
894
895         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
896
897         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
898
899         /* Advance the cursor page offset */
900
901         cursor->resid -= bytes;
902         cursor->page_offset += bytes;
903         if (!bytes || cursor->page_offset & ~PAGE_MASK)
904                 return false;   /* more bytes to process in the current page */
905
906         /* Move on to the next page */
907
908         BUG_ON(cursor->page_index >= cursor->page_count);
909         cursor->page_offset = 0;
910         cursor->page_index++;
911         cursor->last_piece = cursor->resid <= PAGE_SIZE;
912
913         return true;
914 }
915
916 /*
917  * For a pagelist, a piece is whatever remains to be consumed in the
918  * first page in the list, or the front of the next page.
919  */
920 static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data *data,
921                                         size_t length)
922 {
923         struct ceph_msg_data_cursor *cursor = &data->cursor;
924         struct ceph_pagelist *pagelist;
925         struct page *page;
926
927         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
928
929         pagelist = data->pagelist;
930         BUG_ON(!pagelist);
931         BUG_ON(length != pagelist->length);
932
933         if (!length)
934                 return;         /* pagelist can be assigned but empty */
935
936         BUG_ON(list_empty(&pagelist->head));
937         page = list_first_entry(&pagelist->head, struct page, lru);
938
939         cursor->resid = length;
940         cursor->page = page;
941         cursor->offset = 0;
942         cursor->last_piece = length <= PAGE_SIZE;
943 }
944
945 static struct page *ceph_msg_data_pagelist_next(struct ceph_msg_data *data,
946                                                 size_t *page_offset,
947                                                 size_t *length)
948 {
949         struct ceph_msg_data_cursor *cursor = &data->cursor;
950         struct ceph_pagelist *pagelist;
951
952         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
953
954         pagelist = data->pagelist;
955         BUG_ON(!pagelist);
956
957         BUG_ON(!cursor->page);
958         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
959
960         *page_offset = cursor->offset & ~PAGE_MASK;
961         if (cursor->last_piece) /* pagelist offset is always 0 */
962                 *length = cursor->resid;
963         else
964                 *length = PAGE_SIZE - *page_offset;
965
966         return data->cursor.page;
967 }
968
969 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data *data,
970                                                 size_t bytes)
971 {
972         struct ceph_msg_data_cursor *cursor = &data->cursor;
973         struct ceph_pagelist *pagelist;
974
975         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
976
977         pagelist = data->pagelist;
978         BUG_ON(!pagelist);
979
980         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
981         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
982
983         /* Advance the cursor offset */
984
985         cursor->resid -= bytes;
986         cursor->offset += bytes;
987         /* pagelist offset is always 0 */
988         if (!bytes || cursor->offset & ~PAGE_MASK)
989                 return false;   /* more bytes to process in the current page */
990
991         /* Move on to the next page */
992
993         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
994         cursor->page = list_entry_next(cursor->page, lru);
995         cursor->last_piece = cursor->resid <= PAGE_SIZE;
996
997         return true;
998 }
999
1000 /*
1001  * Message data is handled (sent or received) in pieces, where each
1002  * piece resides on a single page.  The network layer might not
1003  * consume an entire piece at once.  A data item's cursor keeps
1004  * track of which piece is next to process and how much remains to
1005  * be processed in that piece.  It also tracks whether the current
1006  * piece is the last one in the data item.
1007  */
1008 static void ceph_msg_data_cursor_init(struct ceph_msg_data *data,
1009                                         size_t length)
1010 {
1011         switch (data->type) {
1012         case CEPH_MSG_DATA_PAGELIST:
1013                 ceph_msg_data_pagelist_cursor_init(data, length);
1014                 break;
1015         case CEPH_MSG_DATA_PAGES:
1016                 ceph_msg_data_pages_cursor_init(data, length);
1017                 break;
1018 #ifdef CONFIG_BLOCK
1019         case CEPH_MSG_DATA_BIO:
1020                 ceph_msg_data_bio_cursor_init(data, length);
1021                 break;
1022 #endif /* CONFIG_BLOCK */
1023         case CEPH_MSG_DATA_NONE:
1024         default:
1025                 /* BUG(); */
1026                 break;
1027         }
1028 }
1029
1030 /*
1031  * Return the page containing the next piece to process for a given
1032  * data item, and supply the page offset and length of that piece.
1033  * Indicate whether this is the last piece in this data item.
1034  */
1035 static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
1036                                         size_t *page_offset,
1037                                         size_t *length,
1038                                         bool *last_piece)
1039 {
1040         struct page *page;
1041
1042         switch (data->type) {
1043         case CEPH_MSG_DATA_PAGELIST:
1044                 page = ceph_msg_data_pagelist_next(data, page_offset, length);
1045                 break;
1046         case CEPH_MSG_DATA_PAGES:
1047                 page = ceph_msg_data_pages_next(data, page_offset, length);
1048                 break;
1049 #ifdef CONFIG_BLOCK
1050         case CEPH_MSG_DATA_BIO:
1051                 page = ceph_msg_data_bio_next(data, page_offset, length);
1052                 break;
1053 #endif /* CONFIG_BLOCK */
1054         case CEPH_MSG_DATA_NONE:
1055         default:
1056                 page = NULL;
1057                 break;
1058         }
1059         BUG_ON(!page);
1060         BUG_ON(*page_offset + *length > PAGE_SIZE);
1061         BUG_ON(!*length);
1062         if (last_piece)
1063                 *last_piece = data->cursor.last_piece;
1064
1065         return page;
1066 }
1067
1068 /*
1069  * Returns true if the result moves the cursor on to the next piece
1070  * of the data item.
1071  */
1072 static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
1073 {
1074         struct ceph_msg_data_cursor *cursor = &data->cursor;
1075         bool new_piece;
1076
1077         BUG_ON(bytes > cursor->resid);
1078         switch (data->type) {
1079         case CEPH_MSG_DATA_PAGELIST:
1080                 new_piece = ceph_msg_data_pagelist_advance(data, bytes);
1081                 break;
1082         case CEPH_MSG_DATA_PAGES:
1083                 new_piece = ceph_msg_data_pages_advance(data, bytes);
1084                 break;
1085 #ifdef CONFIG_BLOCK
1086         case CEPH_MSG_DATA_BIO:
1087                 new_piece = ceph_msg_data_bio_advance(data, bytes);
1088                 break;
1089 #endif /* CONFIG_BLOCK */
1090         case CEPH_MSG_DATA_NONE:
1091         default:
1092                 BUG();
1093                 break;
1094         }
1095
1096         return new_piece;
1097 }
1098
1099 static void prepare_message_data(struct ceph_msg *msg,
1100                                 struct ceph_msg_pos *msg_pos)
1101 {
1102         size_t data_len;
1103
1104         BUG_ON(!msg);
1105
1106         data_len = le32_to_cpu(msg->hdr.data_len);
1107         BUG_ON(!data_len);
1108
1109         /* initialize page iterator */
1110         msg_pos->page = 0;
1111         if (ceph_msg_has_pages(msg))
1112                 msg_pos->page_pos = msg->p.alignment;
1113         else
1114                 msg_pos->page_pos = 0;
1115 #ifdef CONFIG_BLOCK
1116         if (ceph_msg_has_bio(msg))
1117                 init_bio_iter(msg->b.bio, &msg->b.bio_iter, &msg->b.bio_seg);
1118 #endif
1119         msg_pos->data_pos = 0;
1120
1121         /* Initialize data cursors */
1122
1123 #ifdef CONFIG_BLOCK
1124         if (ceph_msg_has_bio(msg))
1125                 ceph_msg_data_cursor_init(&msg->b, data_len);
1126 #endif /* CONFIG_BLOCK */
1127         if (ceph_msg_has_pages(msg))
1128                 ceph_msg_data_cursor_init(&msg->p, data_len);
1129         if (ceph_msg_has_pagelist(msg))
1130                 ceph_msg_data_cursor_init(&msg->l, data_len);
1131
1132         msg_pos->did_page_crc = false;
1133 }
1134
1135 /*
1136  * Prepare footer for currently outgoing message, and finish things
1137  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1138  */
1139 static void prepare_write_message_footer(struct ceph_connection *con)
1140 {
1141         struct ceph_msg *m = con->out_msg;
1142         int v = con->out_kvec_left;
1143
1144         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1145
1146         dout("prepare_write_message_footer %p\n", con);
1147         con->out_kvec_is_msg = true;
1148         con->out_kvec[v].iov_base = &m->footer;
1149         con->out_kvec[v].iov_len = sizeof(m->footer);
1150         con->out_kvec_bytes += sizeof(m->footer);
1151         con->out_kvec_left++;
1152         con->out_more = m->more_to_follow;
1153         con->out_msg_done = true;
1154 }
1155
1156 /*
1157  * Prepare headers for the next outgoing message.
1158  */
1159 static void prepare_write_message(struct ceph_connection *con)
1160 {
1161         struct ceph_msg *m;
1162         u32 crc;
1163
1164         con_out_kvec_reset(con);
1165         con->out_kvec_is_msg = true;
1166         con->out_msg_done = false;
1167
1168         /* Sneak an ack in there first?  If we can get it into the same
1169          * TCP packet that's a good thing. */
1170         if (con->in_seq > con->in_seq_acked) {
1171                 con->in_seq_acked = con->in_seq;
1172                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1173                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1174                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1175                         &con->out_temp_ack);
1176         }
1177
1178         BUG_ON(list_empty(&con->out_queue));
1179         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1180         con->out_msg = m;
1181         BUG_ON(m->con != con);
1182
1183         /* put message on sent list */
1184         ceph_msg_get(m);
1185         list_move_tail(&m->list_head, &con->out_sent);
1186
1187         /*
1188          * only assign outgoing seq # if we haven't sent this message
1189          * yet.  if it is requeued, resend with it's original seq.
1190          */
1191         if (m->needs_out_seq) {
1192                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1193                 m->needs_out_seq = false;
1194         }
1195
1196         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d (%zd)\n",
1197              m, con->out_seq, le16_to_cpu(m->hdr.type),
1198              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1199              le32_to_cpu(m->hdr.data_len), m->p.length);
1200         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1201
1202         /* tag + hdr + front + middle */
1203         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1204         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1205         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1206
1207         if (m->middle)
1208                 con_out_kvec_add(con, m->middle->vec.iov_len,
1209                         m->middle->vec.iov_base);
1210
1211         /* fill in crc (except data pages), footer */
1212         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1213         con->out_msg->hdr.crc = cpu_to_le32(crc);
1214         con->out_msg->footer.flags = 0;
1215
1216         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1217         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1218         if (m->middle) {
1219                 crc = crc32c(0, m->middle->vec.iov_base,
1220                                 m->middle->vec.iov_len);
1221                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1222         } else
1223                 con->out_msg->footer.middle_crc = 0;
1224         dout("%s front_crc %u middle_crc %u\n", __func__,
1225              le32_to_cpu(con->out_msg->footer.front_crc),
1226              le32_to_cpu(con->out_msg->footer.middle_crc));
1227
1228         /* is there a data payload? */
1229         con->out_msg->footer.data_crc = 0;
1230         if (m->hdr.data_len) {
1231                 prepare_message_data(con->out_msg, &con->out_msg_pos);
1232                 con->out_more = 1;  /* data + footer will follow */
1233         } else {
1234                 /* no, queue up footer too and be done */
1235                 prepare_write_message_footer(con);
1236         }
1237
1238         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1239 }
1240
1241 /*
1242  * Prepare an ack.
1243  */
1244 static void prepare_write_ack(struct ceph_connection *con)
1245 {
1246         dout("prepare_write_ack %p %llu -> %llu\n", con,
1247              con->in_seq_acked, con->in_seq);
1248         con->in_seq_acked = con->in_seq;
1249
1250         con_out_kvec_reset(con);
1251
1252         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1253
1254         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1255         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1256                                 &con->out_temp_ack);
1257
1258         con->out_more = 1;  /* more will follow.. eventually.. */
1259         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1260 }
1261
1262 /*
1263  * Prepare to share the seq during handshake
1264  */
1265 static void prepare_write_seq(struct ceph_connection *con)
1266 {
1267         dout("prepare_write_seq %p %llu -> %llu\n", con,
1268              con->in_seq_acked, con->in_seq);
1269         con->in_seq_acked = con->in_seq;
1270
1271         con_out_kvec_reset(con);
1272
1273         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1274         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1275                          &con->out_temp_ack);
1276
1277         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1278 }
1279
1280 /*
1281  * Prepare to write keepalive byte.
1282  */
1283 static void prepare_write_keepalive(struct ceph_connection *con)
1284 {
1285         dout("prepare_write_keepalive %p\n", con);
1286         con_out_kvec_reset(con);
1287         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1288         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1289 }
1290
1291 /*
1292  * Connection negotiation.
1293  */
1294
1295 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1296                                                 int *auth_proto)
1297 {
1298         struct ceph_auth_handshake *auth;
1299
1300         if (!con->ops->get_authorizer) {
1301                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1302                 con->out_connect.authorizer_len = 0;
1303                 return NULL;
1304         }
1305
1306         /* Can't hold the mutex while getting authorizer */
1307         mutex_unlock(&con->mutex);
1308         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1309         mutex_lock(&con->mutex);
1310
1311         if (IS_ERR(auth))
1312                 return auth;
1313         if (con->state != CON_STATE_NEGOTIATING)
1314                 return ERR_PTR(-EAGAIN);
1315
1316         con->auth_reply_buf = auth->authorizer_reply_buf;
1317         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1318         return auth;
1319 }
1320
1321 /*
1322  * We connected to a peer and are saying hello.
1323  */
1324 static void prepare_write_banner(struct ceph_connection *con)
1325 {
1326         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1327         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1328                                         &con->msgr->my_enc_addr);
1329
1330         con->out_more = 0;
1331         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1332 }
1333
1334 static int prepare_write_connect(struct ceph_connection *con)
1335 {
1336         unsigned int global_seq = get_global_seq(con->msgr, 0);
1337         int proto;
1338         int auth_proto;
1339         struct ceph_auth_handshake *auth;
1340
1341         switch (con->peer_name.type) {
1342         case CEPH_ENTITY_TYPE_MON:
1343                 proto = CEPH_MONC_PROTOCOL;
1344                 break;
1345         case CEPH_ENTITY_TYPE_OSD:
1346                 proto = CEPH_OSDC_PROTOCOL;
1347                 break;
1348         case CEPH_ENTITY_TYPE_MDS:
1349                 proto = CEPH_MDSC_PROTOCOL;
1350                 break;
1351         default:
1352                 BUG();
1353         }
1354
1355         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1356              con->connect_seq, global_seq, proto);
1357
1358         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1359         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1360         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1361         con->out_connect.global_seq = cpu_to_le32(global_seq);
1362         con->out_connect.protocol_version = cpu_to_le32(proto);
1363         con->out_connect.flags = 0;
1364
1365         auth_proto = CEPH_AUTH_UNKNOWN;
1366         auth = get_connect_authorizer(con, &auth_proto);
1367         if (IS_ERR(auth))
1368                 return PTR_ERR(auth);
1369
1370         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1371         con->out_connect.authorizer_len = auth ?
1372                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1373
1374         con_out_kvec_add(con, sizeof (con->out_connect),
1375                                         &con->out_connect);
1376         if (auth && auth->authorizer_buf_len)
1377                 con_out_kvec_add(con, auth->authorizer_buf_len,
1378                                         auth->authorizer_buf);
1379
1380         con->out_more = 0;
1381         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1382
1383         return 0;
1384 }
1385
1386 /*
1387  * write as much of pending kvecs to the socket as we can.
1388  *  1 -> done
1389  *  0 -> socket full, but more to do
1390  * <0 -> error
1391  */
1392 static int write_partial_kvec(struct ceph_connection *con)
1393 {
1394         int ret;
1395
1396         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1397         while (con->out_kvec_bytes > 0) {
1398                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1399                                        con->out_kvec_left, con->out_kvec_bytes,
1400                                        con->out_more);
1401                 if (ret <= 0)
1402                         goto out;
1403                 con->out_kvec_bytes -= ret;
1404                 if (con->out_kvec_bytes == 0)
1405                         break;            /* done */
1406
1407                 /* account for full iov entries consumed */
1408                 while (ret >= con->out_kvec_cur->iov_len) {
1409                         BUG_ON(!con->out_kvec_left);
1410                         ret -= con->out_kvec_cur->iov_len;
1411                         con->out_kvec_cur++;
1412                         con->out_kvec_left--;
1413                 }
1414                 /* and for a partially-consumed entry */
1415                 if (ret) {
1416                         con->out_kvec_cur->iov_len -= ret;
1417                         con->out_kvec_cur->iov_base += ret;
1418                 }
1419         }
1420         con->out_kvec_left = 0;
1421         con->out_kvec_is_msg = false;
1422         ret = 1;
1423 out:
1424         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1425              con->out_kvec_bytes, con->out_kvec_left, ret);
1426         return ret;  /* done! */
1427 }
1428
1429 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1430                         size_t len, size_t sent)
1431 {
1432         struct ceph_msg *msg = con->out_msg;
1433         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1434         bool need_crc = false;
1435
1436         BUG_ON(!msg);
1437         BUG_ON(!sent);
1438
1439         msg_pos->data_pos += sent;
1440         msg_pos->page_pos += sent;
1441         if (ceph_msg_has_pages(msg))
1442                 need_crc = ceph_msg_data_advance(&msg->p, sent);
1443         else if (ceph_msg_has_pagelist(msg))
1444                 need_crc = ceph_msg_data_advance(&msg->l, sent);
1445 #ifdef CONFIG_BLOCK
1446         else if (ceph_msg_has_bio(msg))
1447                 need_crc = ceph_msg_data_advance(&msg->b, sent);
1448 #endif /* CONFIG_BLOCK */
1449         BUG_ON(need_crc && sent != len);
1450
1451         if (sent < len)
1452                 return;
1453
1454         BUG_ON(sent != len);
1455         msg_pos->page_pos = 0;
1456         msg_pos->page++;
1457         msg_pos->did_page_crc = false;
1458 }
1459
1460 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1461                                 size_t received)
1462 {
1463         struct ceph_msg *msg = con->in_msg;
1464         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1465
1466         BUG_ON(!msg);
1467         BUG_ON(!received);
1468
1469         msg_pos->data_pos += received;
1470         msg_pos->page_pos += received;
1471         if (received < len)
1472                 return;
1473
1474         BUG_ON(received != len);
1475         msg_pos->page_pos = 0;
1476         msg_pos->page++;
1477 #ifdef CONFIG_BLOCK
1478         if (msg->b.bio)
1479                 iter_bio_next(&msg->b.bio_iter, &msg->b.bio_seg);
1480 #endif /* CONFIG_BLOCK */
1481 }
1482
1483 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1484                                 unsigned int page_offset,
1485                                 unsigned int length)
1486 {
1487         char *kaddr;
1488
1489         kaddr = kmap(page);
1490         BUG_ON(kaddr == NULL);
1491         crc = crc32c(crc, kaddr + page_offset, length);
1492         kunmap(page);
1493
1494         return crc;
1495 }
1496 /*
1497  * Write as much message data payload as we can.  If we finish, queue
1498  * up the footer.
1499  *  1 -> done, footer is now queued in out_kvec[].
1500  *  0 -> socket full, but more to do
1501  * <0 -> error
1502  */
1503 static int write_partial_message_data(struct ceph_connection *con)
1504 {
1505         struct ceph_msg *msg = con->out_msg;
1506         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1507         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1508         bool do_datacrc = !con->msgr->nocrc;
1509         int ret;
1510
1511         dout("%s %p msg %p page %d offset %d\n", __func__,
1512              con, msg, msg_pos->page, msg_pos->page_pos);
1513
1514         /*
1515          * Iterate through each page that contains data to be
1516          * written, and send as much as possible for each.
1517          *
1518          * If we are calculating the data crc (the default), we will
1519          * need to map the page.  If we have no pages, they have
1520          * been revoked, so use the zero page.
1521          */
1522         while (data_len > msg_pos->data_pos) {
1523                 struct page *page;
1524                 size_t page_offset;
1525                 size_t length;
1526                 bool last_piece;
1527
1528                 if (ceph_msg_has_pages(msg)) {
1529                         page = ceph_msg_data_next(&msg->p, &page_offset,
1530                                                         &length, &last_piece);
1531                 } else if (ceph_msg_has_pagelist(msg)) {
1532                         page = ceph_msg_data_next(&msg->l, &page_offset,
1533                                                         &length, &last_piece);
1534 #ifdef CONFIG_BLOCK
1535                 } else if (ceph_msg_has_bio(msg)) {
1536                         page = ceph_msg_data_next(&msg->b, &page_offset,
1537                                                         &length, &last_piece);
1538 #endif
1539                 } else {
1540                         size_t resid = data_len - msg_pos->data_pos;
1541
1542                         page = zero_page;
1543                         page_offset = msg_pos->page_pos;
1544                         length = PAGE_SIZE - page_offset;
1545                         length = min(resid, length);
1546                         last_piece = length == resid;
1547                 }
1548                 if (do_datacrc && !msg_pos->did_page_crc) {
1549                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1550
1551                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1552                         msg->footer.data_crc = cpu_to_le32(crc);
1553                         msg_pos->did_page_crc = true;
1554                 }
1555                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1556                                       length, last_piece);
1557                 if (ret <= 0)
1558                         goto out;
1559
1560                 out_msg_pos_next(con, page, length, (size_t) ret);
1561         }
1562
1563         dout("%s %p msg %p done\n", __func__, con, msg);
1564
1565         /* prepare and queue up footer, too */
1566         if (!do_datacrc)
1567                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1568         con_out_kvec_reset(con);
1569         prepare_write_message_footer(con);
1570         ret = 1;
1571 out:
1572         return ret;
1573 }
1574
1575 /*
1576  * write some zeros
1577  */
1578 static int write_partial_skip(struct ceph_connection *con)
1579 {
1580         int ret;
1581
1582         while (con->out_skip > 0) {
1583                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1584
1585                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1586                 if (ret <= 0)
1587                         goto out;
1588                 con->out_skip -= ret;
1589         }
1590         ret = 1;
1591 out:
1592         return ret;
1593 }
1594
1595 /*
1596  * Prepare to read connection handshake, or an ack.
1597  */
1598 static void prepare_read_banner(struct ceph_connection *con)
1599 {
1600         dout("prepare_read_banner %p\n", con);
1601         con->in_base_pos = 0;
1602 }
1603
1604 static void prepare_read_connect(struct ceph_connection *con)
1605 {
1606         dout("prepare_read_connect %p\n", con);
1607         con->in_base_pos = 0;
1608 }
1609
1610 static void prepare_read_ack(struct ceph_connection *con)
1611 {
1612         dout("prepare_read_ack %p\n", con);
1613         con->in_base_pos = 0;
1614 }
1615
1616 static void prepare_read_seq(struct ceph_connection *con)
1617 {
1618         dout("prepare_read_seq %p\n", con);
1619         con->in_base_pos = 0;
1620         con->in_tag = CEPH_MSGR_TAG_SEQ;
1621 }
1622
1623 static void prepare_read_tag(struct ceph_connection *con)
1624 {
1625         dout("prepare_read_tag %p\n", con);
1626         con->in_base_pos = 0;
1627         con->in_tag = CEPH_MSGR_TAG_READY;
1628 }
1629
1630 /*
1631  * Prepare to read a message.
1632  */
1633 static int prepare_read_message(struct ceph_connection *con)
1634 {
1635         dout("prepare_read_message %p\n", con);
1636         BUG_ON(con->in_msg != NULL);
1637         con->in_base_pos = 0;
1638         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1639         return 0;
1640 }
1641
1642
1643 static int read_partial(struct ceph_connection *con,
1644                         int end, int size, void *object)
1645 {
1646         while (con->in_base_pos < end) {
1647                 int left = end - con->in_base_pos;
1648                 int have = size - left;
1649                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1650                 if (ret <= 0)
1651                         return ret;
1652                 con->in_base_pos += ret;
1653         }
1654         return 1;
1655 }
1656
1657
1658 /*
1659  * Read all or part of the connect-side handshake on a new connection
1660  */
1661 static int read_partial_banner(struct ceph_connection *con)
1662 {
1663         int size;
1664         int end;
1665         int ret;
1666
1667         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1668
1669         /* peer's banner */
1670         size = strlen(CEPH_BANNER);
1671         end = size;
1672         ret = read_partial(con, end, size, con->in_banner);
1673         if (ret <= 0)
1674                 goto out;
1675
1676         size = sizeof (con->actual_peer_addr);
1677         end += size;
1678         ret = read_partial(con, end, size, &con->actual_peer_addr);
1679         if (ret <= 0)
1680                 goto out;
1681
1682         size = sizeof (con->peer_addr_for_me);
1683         end += size;
1684         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1685         if (ret <= 0)
1686                 goto out;
1687
1688 out:
1689         return ret;
1690 }
1691
1692 static int read_partial_connect(struct ceph_connection *con)
1693 {
1694         int size;
1695         int end;
1696         int ret;
1697
1698         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1699
1700         size = sizeof (con->in_reply);
1701         end = size;
1702         ret = read_partial(con, end, size, &con->in_reply);
1703         if (ret <= 0)
1704                 goto out;
1705
1706         size = le32_to_cpu(con->in_reply.authorizer_len);
1707         end += size;
1708         ret = read_partial(con, end, size, con->auth_reply_buf);
1709         if (ret <= 0)
1710                 goto out;
1711
1712         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1713              con, (int)con->in_reply.tag,
1714              le32_to_cpu(con->in_reply.connect_seq),
1715              le32_to_cpu(con->in_reply.global_seq));
1716 out:
1717         return ret;
1718
1719 }
1720
1721 /*
1722  * Verify the hello banner looks okay.
1723  */
1724 static int verify_hello(struct ceph_connection *con)
1725 {
1726         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1727                 pr_err("connect to %s got bad banner\n",
1728                        ceph_pr_addr(&con->peer_addr.in_addr));
1729                 con->error_msg = "protocol error, bad banner";
1730                 return -1;
1731         }
1732         return 0;
1733 }
1734
1735 static bool addr_is_blank(struct sockaddr_storage *ss)
1736 {
1737         switch (ss->ss_family) {
1738         case AF_INET:
1739                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1740         case AF_INET6:
1741                 return
1742                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1743                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1744                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1745                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1746         }
1747         return false;
1748 }
1749
1750 static int addr_port(struct sockaddr_storage *ss)
1751 {
1752         switch (ss->ss_family) {
1753         case AF_INET:
1754                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1755         case AF_INET6:
1756                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1757         }
1758         return 0;
1759 }
1760
1761 static void addr_set_port(struct sockaddr_storage *ss, int p)
1762 {
1763         switch (ss->ss_family) {
1764         case AF_INET:
1765                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1766                 break;
1767         case AF_INET6:
1768                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1769                 break;
1770         }
1771 }
1772
1773 /*
1774  * Unlike other *_pton function semantics, zero indicates success.
1775  */
1776 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1777                 char delim, const char **ipend)
1778 {
1779         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1780         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1781
1782         memset(ss, 0, sizeof(*ss));
1783
1784         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1785                 ss->ss_family = AF_INET;
1786                 return 0;
1787         }
1788
1789         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1790                 ss->ss_family = AF_INET6;
1791                 return 0;
1792         }
1793
1794         return -EINVAL;
1795 }
1796
1797 /*
1798  * Extract hostname string and resolve using kernel DNS facility.
1799  */
1800 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1801 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1802                 struct sockaddr_storage *ss, char delim, const char **ipend)
1803 {
1804         const char *end, *delim_p;
1805         char *colon_p, *ip_addr = NULL;
1806         int ip_len, ret;
1807
1808         /*
1809          * The end of the hostname occurs immediately preceding the delimiter or
1810          * the port marker (':') where the delimiter takes precedence.
1811          */
1812         delim_p = memchr(name, delim, namelen);
1813         colon_p = memchr(name, ':', namelen);
1814
1815         if (delim_p && colon_p)
1816                 end = delim_p < colon_p ? delim_p : colon_p;
1817         else if (!delim_p && colon_p)
1818                 end = colon_p;
1819         else {
1820                 end = delim_p;
1821                 if (!end) /* case: hostname:/ */
1822                         end = name + namelen;
1823         }
1824
1825         if (end <= name)
1826                 return -EINVAL;
1827
1828         /* do dns_resolve upcall */
1829         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1830         if (ip_len > 0)
1831                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1832         else
1833                 ret = -ESRCH;
1834
1835         kfree(ip_addr);
1836
1837         *ipend = end;
1838
1839         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1840                         ret, ret ? "failed" : ceph_pr_addr(ss));
1841
1842         return ret;
1843 }
1844 #else
1845 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1846                 struct sockaddr_storage *ss, char delim, const char **ipend)
1847 {
1848         return -EINVAL;
1849 }
1850 #endif
1851
1852 /*
1853  * Parse a server name (IP or hostname). If a valid IP address is not found
1854  * then try to extract a hostname to resolve using userspace DNS upcall.
1855  */
1856 static int ceph_parse_server_name(const char *name, size_t namelen,
1857                         struct sockaddr_storage *ss, char delim, const char **ipend)
1858 {
1859         int ret;
1860
1861         ret = ceph_pton(name, namelen, ss, delim, ipend);
1862         if (ret)
1863                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1864
1865         return ret;
1866 }
1867
1868 /*
1869  * Parse an ip[:port] list into an addr array.  Use the default
1870  * monitor port if a port isn't specified.
1871  */
1872 int ceph_parse_ips(const char *c, const char *end,
1873                    struct ceph_entity_addr *addr,
1874                    int max_count, int *count)
1875 {
1876         int i, ret = -EINVAL;
1877         const char *p = c;
1878
1879         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1880         for (i = 0; i < max_count; i++) {
1881                 const char *ipend;
1882                 struct sockaddr_storage *ss = &addr[i].in_addr;
1883                 int port;
1884                 char delim = ',';
1885
1886                 if (*p == '[') {
1887                         delim = ']';
1888                         p++;
1889                 }
1890
1891                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1892                 if (ret)
1893                         goto bad;
1894                 ret = -EINVAL;
1895
1896                 p = ipend;
1897
1898                 if (delim == ']') {
1899                         if (*p != ']') {
1900                                 dout("missing matching ']'\n");
1901                                 goto bad;
1902                         }
1903                         p++;
1904                 }
1905
1906                 /* port? */
1907                 if (p < end && *p == ':') {
1908                         port = 0;
1909                         p++;
1910                         while (p < end && *p >= '0' && *p <= '9') {
1911                                 port = (port * 10) + (*p - '0');
1912                                 p++;
1913                         }
1914                         if (port > 65535 || port == 0)
1915                                 goto bad;
1916                 } else {
1917                         port = CEPH_MON_PORT;
1918                 }
1919
1920                 addr_set_port(ss, port);
1921
1922                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1923
1924                 if (p == end)
1925                         break;
1926                 if (*p != ',')
1927                         goto bad;
1928                 p++;
1929         }
1930
1931         if (p != end)
1932                 goto bad;
1933
1934         if (count)
1935                 *count = i + 1;
1936         return 0;
1937
1938 bad:
1939         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1940         return ret;
1941 }
1942 EXPORT_SYMBOL(ceph_parse_ips);
1943
1944 static int process_banner(struct ceph_connection *con)
1945 {
1946         dout("process_banner on %p\n", con);
1947
1948         if (verify_hello(con) < 0)
1949                 return -1;
1950
1951         ceph_decode_addr(&con->actual_peer_addr);
1952         ceph_decode_addr(&con->peer_addr_for_me);
1953
1954         /*
1955          * Make sure the other end is who we wanted.  note that the other
1956          * end may not yet know their ip address, so if it's 0.0.0.0, give
1957          * them the benefit of the doubt.
1958          */
1959         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1960                    sizeof(con->peer_addr)) != 0 &&
1961             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1962               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1963                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1964                            ceph_pr_addr(&con->peer_addr.in_addr),
1965                            (int)le32_to_cpu(con->peer_addr.nonce),
1966                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1967                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1968                 con->error_msg = "wrong peer at address";
1969                 return -1;
1970         }
1971
1972         /*
1973          * did we learn our address?
1974          */
1975         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1976                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1977
1978                 memcpy(&con->msgr->inst.addr.in_addr,
1979                        &con->peer_addr_for_me.in_addr,
1980                        sizeof(con->peer_addr_for_me.in_addr));
1981                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1982                 encode_my_addr(con->msgr);
1983                 dout("process_banner learned my addr is %s\n",
1984                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1985         }
1986
1987         return 0;
1988 }
1989
1990 static int process_connect(struct ceph_connection *con)
1991 {
1992         u64 sup_feat = con->msgr->supported_features;
1993         u64 req_feat = con->msgr->required_features;
1994         u64 server_feat = le64_to_cpu(con->in_reply.features);
1995         int ret;
1996
1997         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1998
1999         switch (con->in_reply.tag) {
2000         case CEPH_MSGR_TAG_FEATURES:
2001                 pr_err("%s%lld %s feature set mismatch,"
2002                        " my %llx < server's %llx, missing %llx\n",
2003                        ENTITY_NAME(con->peer_name),
2004                        ceph_pr_addr(&con->peer_addr.in_addr),
2005                        sup_feat, server_feat, server_feat & ~sup_feat);
2006                 con->error_msg = "missing required protocol features";
2007                 reset_connection(con);
2008                 return -1;
2009
2010         case CEPH_MSGR_TAG_BADPROTOVER:
2011                 pr_err("%s%lld %s protocol version mismatch,"
2012                        " my %d != server's %d\n",
2013                        ENTITY_NAME(con->peer_name),
2014                        ceph_pr_addr(&con->peer_addr.in_addr),
2015                        le32_to_cpu(con->out_connect.protocol_version),
2016                        le32_to_cpu(con->in_reply.protocol_version));
2017                 con->error_msg = "protocol version mismatch";
2018                 reset_connection(con);
2019                 return -1;
2020
2021         case CEPH_MSGR_TAG_BADAUTHORIZER:
2022                 con->auth_retry++;
2023                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2024                      con->auth_retry);
2025                 if (con->auth_retry == 2) {
2026                         con->error_msg = "connect authorization failure";
2027                         return -1;
2028                 }
2029                 con_out_kvec_reset(con);
2030                 ret = prepare_write_connect(con);
2031                 if (ret < 0)
2032                         return ret;
2033                 prepare_read_connect(con);
2034                 break;
2035
2036         case CEPH_MSGR_TAG_RESETSESSION:
2037                 /*
2038                  * If we connected with a large connect_seq but the peer
2039                  * has no record of a session with us (no connection, or
2040                  * connect_seq == 0), they will send RESETSESION to indicate
2041                  * that they must have reset their session, and may have
2042                  * dropped messages.
2043                  */
2044                 dout("process_connect got RESET peer seq %u\n",
2045                      le32_to_cpu(con->in_reply.connect_seq));
2046                 pr_err("%s%lld %s connection reset\n",
2047                        ENTITY_NAME(con->peer_name),
2048                        ceph_pr_addr(&con->peer_addr.in_addr));
2049                 reset_connection(con);
2050                 con_out_kvec_reset(con);
2051                 ret = prepare_write_connect(con);
2052                 if (ret < 0)
2053                         return ret;
2054                 prepare_read_connect(con);
2055
2056                 /* Tell ceph about it. */
2057                 mutex_unlock(&con->mutex);
2058                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2059                 if (con->ops->peer_reset)
2060                         con->ops->peer_reset(con);
2061                 mutex_lock(&con->mutex);
2062                 if (con->state != CON_STATE_NEGOTIATING)
2063                         return -EAGAIN;
2064                 break;
2065
2066         case CEPH_MSGR_TAG_RETRY_SESSION:
2067                 /*
2068                  * If we sent a smaller connect_seq than the peer has, try
2069                  * again with a larger value.
2070                  */
2071                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2072                      le32_to_cpu(con->out_connect.connect_seq),
2073                      le32_to_cpu(con->in_reply.connect_seq));
2074                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2075                 con_out_kvec_reset(con);
2076                 ret = prepare_write_connect(con);
2077                 if (ret < 0)
2078                         return ret;
2079                 prepare_read_connect(con);
2080                 break;
2081
2082         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2083                 /*
2084                  * If we sent a smaller global_seq than the peer has, try
2085                  * again with a larger value.
2086                  */
2087                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2088                      con->peer_global_seq,
2089                      le32_to_cpu(con->in_reply.global_seq));
2090                 get_global_seq(con->msgr,
2091                                le32_to_cpu(con->in_reply.global_seq));
2092                 con_out_kvec_reset(con);
2093                 ret = prepare_write_connect(con);
2094                 if (ret < 0)
2095                         return ret;
2096                 prepare_read_connect(con);
2097                 break;
2098
2099         case CEPH_MSGR_TAG_SEQ:
2100         case CEPH_MSGR_TAG_READY:
2101                 if (req_feat & ~server_feat) {
2102                         pr_err("%s%lld %s protocol feature mismatch,"
2103                                " my required %llx > server's %llx, need %llx\n",
2104                                ENTITY_NAME(con->peer_name),
2105                                ceph_pr_addr(&con->peer_addr.in_addr),
2106                                req_feat, server_feat, req_feat & ~server_feat);
2107                         con->error_msg = "missing required protocol features";
2108                         reset_connection(con);
2109                         return -1;
2110                 }
2111
2112                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2113                 con->state = CON_STATE_OPEN;
2114                 con->auth_retry = 0;    /* we authenticated; clear flag */
2115                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2116                 con->connect_seq++;
2117                 con->peer_features = server_feat;
2118                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2119                      con->peer_global_seq,
2120                      le32_to_cpu(con->in_reply.connect_seq),
2121                      con->connect_seq);
2122                 WARN_ON(con->connect_seq !=
2123                         le32_to_cpu(con->in_reply.connect_seq));
2124
2125                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2126                         con_flag_set(con, CON_FLAG_LOSSYTX);
2127
2128                 con->delay = 0;      /* reset backoff memory */
2129
2130                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2131                         prepare_write_seq(con);
2132                         prepare_read_seq(con);
2133                 } else {
2134                         prepare_read_tag(con);
2135                 }
2136                 break;
2137
2138         case CEPH_MSGR_TAG_WAIT:
2139                 /*
2140                  * If there is a connection race (we are opening
2141                  * connections to each other), one of us may just have
2142                  * to WAIT.  This shouldn't happen if we are the
2143                  * client.
2144                  */
2145                 pr_err("process_connect got WAIT as client\n");
2146                 con->error_msg = "protocol error, got WAIT as client";
2147                 return -1;
2148
2149         default:
2150                 pr_err("connect protocol error, will retry\n");
2151                 con->error_msg = "protocol error, garbage tag during connect";
2152                 return -1;
2153         }
2154         return 0;
2155 }
2156
2157
2158 /*
2159  * read (part of) an ack
2160  */
2161 static int read_partial_ack(struct ceph_connection *con)
2162 {
2163         int size = sizeof (con->in_temp_ack);
2164         int end = size;
2165
2166         return read_partial(con, end, size, &con->in_temp_ack);
2167 }
2168
2169 /*
2170  * We can finally discard anything that's been acked.
2171  */
2172 static void process_ack(struct ceph_connection *con)
2173 {
2174         struct ceph_msg *m;
2175         u64 ack = le64_to_cpu(con->in_temp_ack);
2176         u64 seq;
2177
2178         while (!list_empty(&con->out_sent)) {
2179                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2180                                      list_head);
2181                 seq = le64_to_cpu(m->hdr.seq);
2182                 if (seq > ack)
2183                         break;
2184                 dout("got ack for seq %llu type %d at %p\n", seq,
2185                      le16_to_cpu(m->hdr.type), m);
2186                 m->ack_stamp = jiffies;
2187                 ceph_msg_remove(m);
2188         }
2189         prepare_read_tag(con);
2190 }
2191
2192
2193 static int read_partial_message_section(struct ceph_connection *con,
2194                                         struct kvec *section,
2195                                         unsigned int sec_len, u32 *crc)
2196 {
2197         int ret, left;
2198
2199         BUG_ON(!section);
2200
2201         while (section->iov_len < sec_len) {
2202                 BUG_ON(section->iov_base == NULL);
2203                 left = sec_len - section->iov_len;
2204                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2205                                        section->iov_len, left);
2206                 if (ret <= 0)
2207                         return ret;
2208                 section->iov_len += ret;
2209         }
2210         if (section->iov_len == sec_len)
2211                 *crc = crc32c(0, section->iov_base, section->iov_len);
2212
2213         return 1;
2214 }
2215
2216 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2217
2218 static int read_partial_message_pages(struct ceph_connection *con,
2219                                       unsigned int data_len, bool do_datacrc)
2220 {
2221         struct ceph_msg *msg = con->in_msg;
2222         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2223         struct page **pages;
2224         struct page *page;
2225         size_t page_offset;
2226         size_t length;
2227         unsigned int left;
2228         int ret;
2229
2230         /* (page) data */
2231         pages = msg->p.pages;
2232         BUG_ON(pages == NULL);
2233         page = pages[msg_pos->page];
2234         page_offset = msg_pos->page_pos;
2235         BUG_ON(msg_pos->data_pos >= data_len);
2236         left = data_len - msg_pos->data_pos;
2237         BUG_ON(page_offset >= PAGE_SIZE);
2238         length = min_t(unsigned int, PAGE_SIZE - page_offset, left);
2239
2240         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2241         if (ret <= 0)
2242                 return ret;
2243
2244         if (do_datacrc)
2245                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
2246                                                         page_offset, ret);
2247
2248         in_msg_pos_next(con, length, ret);
2249
2250         return ret;
2251 }
2252
2253 #ifdef CONFIG_BLOCK
2254 static int read_partial_message_bio(struct ceph_connection *con,
2255                                     unsigned int data_len, bool do_datacrc)
2256 {
2257         struct ceph_msg *msg = con->in_msg;
2258         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2259         struct bio_vec *bv;
2260         struct page *page;
2261         size_t page_offset;
2262         size_t length;
2263         unsigned int left;
2264         int ret;
2265
2266         BUG_ON(!msg);
2267         BUG_ON(!msg->b.bio_iter);
2268         bv = bio_iovec_idx(msg->b.bio_iter, msg->b.bio_seg);
2269         page = bv->bv_page;
2270         page_offset = bv->bv_offset + msg_pos->page_pos;
2271         BUG_ON(msg_pos->data_pos >= data_len);
2272         left = data_len - msg_pos->data_pos;
2273         BUG_ON(msg_pos->page_pos >= bv->bv_len);
2274         length = min_t(unsigned int, bv->bv_len - msg_pos->page_pos, left);
2275
2276         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2277         if (ret <= 0)
2278                 return ret;
2279
2280         if (do_datacrc)
2281                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
2282                                                         page_offset, ret);
2283
2284         in_msg_pos_next(con, length, ret);
2285
2286         return ret;
2287 }
2288 #endif
2289
2290 static int read_partial_msg_data(struct ceph_connection *con)
2291 {
2292         struct ceph_msg *msg = con->in_msg;
2293         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2294         const bool do_datacrc = !con->msgr->nocrc;
2295         unsigned int data_len;
2296         int ret;
2297
2298         BUG_ON(!msg);
2299
2300         data_len = le32_to_cpu(con->in_hdr.data_len);
2301         while (msg_pos->data_pos < data_len) {
2302                 if (ceph_msg_has_pages(msg)) {
2303                         ret = read_partial_message_pages(con, data_len,
2304                                                         do_datacrc);
2305                         if (ret <= 0)
2306                                 return ret;
2307 #ifdef CONFIG_BLOCK
2308                 } else if (ceph_msg_has_bio(msg)) {
2309                         ret = read_partial_message_bio(con,
2310                                                  data_len, do_datacrc);
2311                         if (ret <= 0)
2312                                 return ret;
2313 #endif
2314                 } else {
2315                         BUG_ON(1);
2316                 }
2317         }
2318
2319         return 1;       /* must return > 0 to indicate success */
2320 }
2321
2322 /*
2323  * read (part of) a message.
2324  */
2325 static int read_partial_message(struct ceph_connection *con)
2326 {
2327         struct ceph_msg *m = con->in_msg;
2328         int size;
2329         int end;
2330         int ret;
2331         unsigned int front_len, middle_len, data_len;
2332         bool do_datacrc = !con->msgr->nocrc;
2333         u64 seq;
2334         u32 crc;
2335
2336         dout("read_partial_message con %p msg %p\n", con, m);
2337
2338         /* header */
2339         size = sizeof (con->in_hdr);
2340         end = size;
2341         ret = read_partial(con, end, size, &con->in_hdr);
2342         if (ret <= 0)
2343                 return ret;
2344
2345         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2346         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2347                 pr_err("read_partial_message bad hdr "
2348                        " crc %u != expected %u\n",
2349                        crc, con->in_hdr.crc);
2350                 return -EBADMSG;
2351         }
2352
2353         front_len = le32_to_cpu(con->in_hdr.front_len);
2354         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2355                 return -EIO;
2356         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2357         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2358                 return -EIO;
2359         data_len = le32_to_cpu(con->in_hdr.data_len);
2360         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2361                 return -EIO;
2362
2363         /* verify seq# */
2364         seq = le64_to_cpu(con->in_hdr.seq);
2365         if ((s64)seq - (s64)con->in_seq < 1) {
2366                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2367                         ENTITY_NAME(con->peer_name),
2368                         ceph_pr_addr(&con->peer_addr.in_addr),
2369                         seq, con->in_seq + 1);
2370                 con->in_base_pos = -front_len - middle_len - data_len -
2371                         sizeof(m->footer);
2372                 con->in_tag = CEPH_MSGR_TAG_READY;
2373                 return 0;
2374         } else if ((s64)seq - (s64)con->in_seq > 1) {
2375                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2376                        seq, con->in_seq + 1);
2377                 con->error_msg = "bad message sequence # for incoming message";
2378                 return -EBADMSG;
2379         }
2380
2381         /* allocate message? */
2382         if (!con->in_msg) {
2383                 int skip = 0;
2384
2385                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2386                      front_len, data_len);
2387                 ret = ceph_con_in_msg_alloc(con, &skip);
2388                 if (ret < 0)
2389                         return ret;
2390                 if (skip) {
2391                         /* skip this message */
2392                         dout("alloc_msg said skip message\n");
2393                         BUG_ON(con->in_msg);
2394                         con->in_base_pos = -front_len - middle_len - data_len -
2395                                 sizeof(m->footer);
2396                         con->in_tag = CEPH_MSGR_TAG_READY;
2397                         con->in_seq++;
2398                         return 0;
2399                 }
2400
2401                 BUG_ON(!con->in_msg);
2402                 BUG_ON(con->in_msg->con != con);
2403                 m = con->in_msg;
2404                 m->front.iov_len = 0;    /* haven't read it yet */
2405                 if (m->middle)
2406                         m->middle->vec.iov_len = 0;
2407
2408                 /* prepare for data payload, if any */
2409
2410                 if (data_len)
2411                         prepare_message_data(con->in_msg, &con->in_msg_pos);
2412         }
2413
2414         /* front */
2415         ret = read_partial_message_section(con, &m->front, front_len,
2416                                            &con->in_front_crc);
2417         if (ret <= 0)
2418                 return ret;
2419
2420         /* middle */
2421         if (m->middle) {
2422                 ret = read_partial_message_section(con, &m->middle->vec,
2423                                                    middle_len,
2424                                                    &con->in_middle_crc);
2425                 if (ret <= 0)
2426                         return ret;
2427         }
2428
2429         /* (page) data */
2430         if (data_len) {
2431                 ret = read_partial_msg_data(con);
2432                 if (ret <= 0)
2433                         return ret;
2434         }
2435
2436         /* footer */
2437         size = sizeof (m->footer);
2438         end += size;
2439         ret = read_partial(con, end, size, &m->footer);
2440         if (ret <= 0)
2441                 return ret;
2442
2443         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2444              m, front_len, m->footer.front_crc, middle_len,
2445              m->footer.middle_crc, data_len, m->footer.data_crc);
2446
2447         /* crc ok? */
2448         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2449                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2450                        m, con->in_front_crc, m->footer.front_crc);
2451                 return -EBADMSG;
2452         }
2453         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2454                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2455                        m, con->in_middle_crc, m->footer.middle_crc);
2456                 return -EBADMSG;
2457         }
2458         if (do_datacrc &&
2459             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2460             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2461                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2462                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2463                 return -EBADMSG;
2464         }
2465
2466         return 1; /* done! */
2467 }
2468
2469 /*
2470  * Process message.  This happens in the worker thread.  The callback should
2471  * be careful not to do anything that waits on other incoming messages or it
2472  * may deadlock.
2473  */
2474 static void process_message(struct ceph_connection *con)
2475 {
2476         struct ceph_msg *msg;
2477
2478         BUG_ON(con->in_msg->con != con);
2479         con->in_msg->con = NULL;
2480         msg = con->in_msg;
2481         con->in_msg = NULL;
2482         con->ops->put(con);
2483
2484         /* if first message, set peer_name */
2485         if (con->peer_name.type == 0)
2486                 con->peer_name = msg->hdr.src;
2487
2488         con->in_seq++;
2489         mutex_unlock(&con->mutex);
2490
2491         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2492              msg, le64_to_cpu(msg->hdr.seq),
2493              ENTITY_NAME(msg->hdr.src),
2494              le16_to_cpu(msg->hdr.type),
2495              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2496              le32_to_cpu(msg->hdr.front_len),
2497              le32_to_cpu(msg->hdr.data_len),
2498              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2499         con->ops->dispatch(con, msg);
2500
2501         mutex_lock(&con->mutex);
2502 }
2503
2504
2505 /*
2506  * Write something to the socket.  Called in a worker thread when the
2507  * socket appears to be writeable and we have something ready to send.
2508  */
2509 static int try_write(struct ceph_connection *con)
2510 {
2511         int ret = 1;
2512
2513         dout("try_write start %p state %lu\n", con, con->state);
2514
2515 more:
2516         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2517
2518         /* open the socket first? */
2519         if (con->state == CON_STATE_PREOPEN) {
2520                 BUG_ON(con->sock);
2521                 con->state = CON_STATE_CONNECTING;
2522
2523                 con_out_kvec_reset(con);
2524                 prepare_write_banner(con);
2525                 prepare_read_banner(con);
2526
2527                 BUG_ON(con->in_msg);
2528                 con->in_tag = CEPH_MSGR_TAG_READY;
2529                 dout("try_write initiating connect on %p new state %lu\n",
2530                      con, con->state);
2531                 ret = ceph_tcp_connect(con);
2532                 if (ret < 0) {
2533                         con->error_msg = "connect error";
2534                         goto out;
2535                 }
2536         }
2537
2538 more_kvec:
2539         /* kvec data queued? */
2540         if (con->out_skip) {
2541                 ret = write_partial_skip(con);
2542                 if (ret <= 0)
2543                         goto out;
2544         }
2545         if (con->out_kvec_left) {
2546                 ret = write_partial_kvec(con);
2547                 if (ret <= 0)
2548                         goto out;
2549         }
2550
2551         /* msg pages? */
2552         if (con->out_msg) {
2553                 if (con->out_msg_done) {
2554                         ceph_msg_put(con->out_msg);
2555                         con->out_msg = NULL;   /* we're done with this one */
2556                         goto do_next;
2557                 }
2558
2559                 ret = write_partial_message_data(con);
2560                 if (ret == 1)
2561                         goto more_kvec;  /* we need to send the footer, too! */
2562                 if (ret == 0)
2563                         goto out;
2564                 if (ret < 0) {
2565                         dout("try_write write_partial_message_data err %d\n",
2566                              ret);
2567                         goto out;
2568                 }
2569         }
2570
2571 do_next:
2572         if (con->state == CON_STATE_OPEN) {
2573                 /* is anything else pending? */
2574                 if (!list_empty(&con->out_queue)) {
2575                         prepare_write_message(con);
2576                         goto more;
2577                 }
2578                 if (con->in_seq > con->in_seq_acked) {
2579                         prepare_write_ack(con);
2580                         goto more;
2581                 }
2582                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2583                         prepare_write_keepalive(con);
2584                         goto more;
2585                 }
2586         }
2587
2588         /* Nothing to do! */
2589         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2590         dout("try_write nothing else to write.\n");
2591         ret = 0;
2592 out:
2593         dout("try_write done on %p ret %d\n", con, ret);
2594         return ret;
2595 }
2596
2597
2598
2599 /*
2600  * Read what we can from the socket.
2601  */
2602 static int try_read(struct ceph_connection *con)
2603 {
2604         int ret = -1;
2605
2606 more:
2607         dout("try_read start on %p state %lu\n", con, con->state);
2608         if (con->state != CON_STATE_CONNECTING &&
2609             con->state != CON_STATE_NEGOTIATING &&
2610             con->state != CON_STATE_OPEN)
2611                 return 0;
2612
2613         BUG_ON(!con->sock);
2614
2615         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2616              con->in_base_pos);
2617
2618         if (con->state == CON_STATE_CONNECTING) {
2619                 dout("try_read connecting\n");
2620                 ret = read_partial_banner(con);
2621                 if (ret <= 0)
2622                         goto out;
2623                 ret = process_banner(con);
2624                 if (ret < 0)
2625                         goto out;
2626
2627                 con->state = CON_STATE_NEGOTIATING;
2628
2629                 /*
2630                  * Received banner is good, exchange connection info.
2631                  * Do not reset out_kvec, as sending our banner raced
2632                  * with receiving peer banner after connect completed.
2633                  */
2634                 ret = prepare_write_connect(con);
2635                 if (ret < 0)
2636                         goto out;
2637                 prepare_read_connect(con);
2638
2639                 /* Send connection info before awaiting response */
2640                 goto out;
2641         }
2642
2643         if (con->state == CON_STATE_NEGOTIATING) {
2644                 dout("try_read negotiating\n");
2645                 ret = read_partial_connect(con);
2646                 if (ret <= 0)
2647                         goto out;
2648                 ret = process_connect(con);
2649                 if (ret < 0)
2650                         goto out;
2651                 goto more;
2652         }
2653
2654         WARN_ON(con->state != CON_STATE_OPEN);
2655
2656         if (con->in_base_pos < 0) {
2657                 /*
2658                  * skipping + discarding content.
2659                  *
2660                  * FIXME: there must be a better way to do this!
2661                  */
2662                 static char buf[SKIP_BUF_SIZE];
2663                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2664
2665                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2666                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2667                 if (ret <= 0)
2668                         goto out;
2669                 con->in_base_pos += ret;
2670                 if (con->in_base_pos)
2671                         goto more;
2672         }
2673         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2674                 /*
2675                  * what's next?
2676                  */
2677                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2678                 if (ret <= 0)
2679                         goto out;
2680                 dout("try_read got tag %d\n", (int)con->in_tag);
2681                 switch (con->in_tag) {
2682                 case CEPH_MSGR_TAG_MSG:
2683                         prepare_read_message(con);
2684                         break;
2685                 case CEPH_MSGR_TAG_ACK:
2686                         prepare_read_ack(con);
2687                         break;
2688                 case CEPH_MSGR_TAG_CLOSE:
2689                         con_close_socket(con);
2690                         con->state = CON_STATE_CLOSED;
2691                         goto out;
2692                 default:
2693                         goto bad_tag;
2694                 }
2695         }
2696         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2697                 ret = read_partial_message(con);
2698                 if (ret <= 0) {
2699                         switch (ret) {
2700                         case -EBADMSG:
2701                                 con->error_msg = "bad crc";
2702                                 ret = -EIO;
2703                                 break;
2704                         case -EIO:
2705                                 con->error_msg = "io error";
2706                                 break;
2707                         }
2708                         goto out;
2709                 }
2710                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2711                         goto more;
2712                 process_message(con);
2713                 if (con->state == CON_STATE_OPEN)
2714                         prepare_read_tag(con);
2715                 goto more;
2716         }
2717         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2718             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2719                 /*
2720                  * the final handshake seq exchange is semantically
2721                  * equivalent to an ACK
2722                  */
2723                 ret = read_partial_ack(con);
2724                 if (ret <= 0)
2725                         goto out;
2726                 process_ack(con);
2727                 goto more;
2728         }
2729
2730 out:
2731         dout("try_read done on %p ret %d\n", con, ret);
2732         return ret;
2733
2734 bad_tag:
2735         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2736         con->error_msg = "protocol error, garbage tag";
2737         ret = -1;
2738         goto out;
2739 }
2740
2741
2742 /*
2743  * Atomically queue work on a connection after the specified delay.
2744  * Bump @con reference to avoid races with connection teardown.
2745  * Returns 0 if work was queued, or an error code otherwise.
2746  */
2747 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2748 {
2749         if (!con->ops->get(con)) {
2750                 dout("%s %p ref count 0\n", __func__, con);
2751
2752                 return -ENOENT;
2753         }
2754
2755         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2756                 dout("%s %p - already queued\n", __func__, con);
2757                 con->ops->put(con);
2758
2759                 return -EBUSY;
2760         }
2761
2762         dout("%s %p %lu\n", __func__, con, delay);
2763
2764         return 0;
2765 }
2766
2767 static void queue_con(struct ceph_connection *con)
2768 {
2769         (void) queue_con_delay(con, 0);
2770 }
2771
2772 static bool con_sock_closed(struct ceph_connection *con)
2773 {
2774         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2775                 return false;
2776
2777 #define CASE(x)                                                         \
2778         case CON_STATE_ ## x:                                           \
2779                 con->error_msg = "socket closed (con state " #x ")";    \
2780                 break;
2781
2782         switch (con->state) {
2783         CASE(CLOSED);
2784         CASE(PREOPEN);
2785         CASE(CONNECTING);
2786         CASE(NEGOTIATING);
2787         CASE(OPEN);
2788         CASE(STANDBY);
2789         default:
2790                 pr_warning("%s con %p unrecognized state %lu\n",
2791                         __func__, con, con->state);
2792                 con->error_msg = "unrecognized con state";
2793                 BUG();
2794                 break;
2795         }
2796 #undef CASE
2797
2798         return true;
2799 }
2800
2801 static bool con_backoff(struct ceph_connection *con)
2802 {
2803         int ret;
2804
2805         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2806                 return false;
2807
2808         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2809         if (ret) {
2810                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2811                         con, con->delay);
2812                 BUG_ON(ret == -ENOENT);
2813                 con_flag_set(con, CON_FLAG_BACKOFF);
2814         }
2815
2816         return true;
2817 }
2818
2819 /* Finish fault handling; con->mutex must *not* be held here */
2820
2821 static void con_fault_finish(struct ceph_connection *con)
2822 {
2823         /*
2824          * in case we faulted due to authentication, invalidate our
2825          * current tickets so that we can get new ones.
2826          */
2827         if (con->auth_retry && con->ops->invalidate_authorizer) {
2828                 dout("calling invalidate_authorizer()\n");
2829                 con->ops->invalidate_authorizer(con);
2830         }
2831
2832         if (con->ops->fault)
2833                 con->ops->fault(con);
2834 }
2835
2836 /*
2837  * Do some work on a connection.  Drop a connection ref when we're done.
2838  */
2839 static void con_work(struct work_struct *work)
2840 {
2841         struct ceph_connection *con = container_of(work, struct ceph_connection,
2842                                                    work.work);
2843         bool fault;
2844
2845         mutex_lock(&con->mutex);
2846         while (true) {
2847                 int ret;
2848
2849                 if ((fault = con_sock_closed(con))) {
2850                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2851                         break;
2852                 }
2853                 if (con_backoff(con)) {
2854                         dout("%s: con %p BACKOFF\n", __func__, con);
2855                         break;
2856                 }
2857                 if (con->state == CON_STATE_STANDBY) {
2858                         dout("%s: con %p STANDBY\n", __func__, con);
2859                         break;
2860                 }
2861                 if (con->state == CON_STATE_CLOSED) {
2862                         dout("%s: con %p CLOSED\n", __func__, con);
2863                         BUG_ON(con->sock);
2864                         break;
2865                 }
2866                 if (con->state == CON_STATE_PREOPEN) {
2867                         dout("%s: con %p PREOPEN\n", __func__, con);
2868                         BUG_ON(con->sock);
2869                 }
2870
2871                 ret = try_read(con);
2872                 if (ret < 0) {
2873                         if (ret == -EAGAIN)
2874                                 continue;
2875                         con->error_msg = "socket error on read";
2876                         fault = true;
2877                         break;
2878                 }
2879
2880                 ret = try_write(con);
2881                 if (ret < 0) {
2882                         if (ret == -EAGAIN)
2883                                 continue;
2884                         con->error_msg = "socket error on write";
2885                         fault = true;
2886                 }
2887
2888                 break;  /* If we make it to here, we're done */
2889         }
2890         if (fault)
2891                 con_fault(con);
2892         mutex_unlock(&con->mutex);
2893
2894         if (fault)
2895                 con_fault_finish(con);
2896
2897         con->ops->put(con);
2898 }
2899
2900 /*
2901  * Generic error/fault handler.  A retry mechanism is used with
2902  * exponential backoff
2903  */
2904 static void con_fault(struct ceph_connection *con)
2905 {
2906         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2907                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2908         dout("fault %p state %lu to peer %s\n",
2909              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2910
2911         WARN_ON(con->state != CON_STATE_CONNECTING &&
2912                con->state != CON_STATE_NEGOTIATING &&
2913                con->state != CON_STATE_OPEN);
2914
2915         con_close_socket(con);
2916
2917         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2918                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2919                 con->state = CON_STATE_CLOSED;
2920                 return;
2921         }
2922
2923         if (con->in_msg) {
2924                 BUG_ON(con->in_msg->con != con);
2925                 con->in_msg->con = NULL;
2926                 ceph_msg_put(con->in_msg);
2927                 con->in_msg = NULL;
2928                 con->ops->put(con);
2929         }
2930
2931         /* Requeue anything that hasn't been acked */
2932         list_splice_init(&con->out_sent, &con->out_queue);
2933
2934         /* If there are no messages queued or keepalive pending, place
2935          * the connection in a STANDBY state */
2936         if (list_empty(&con->out_queue) &&
2937             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2938                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2939                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2940                 con->state = CON_STATE_STANDBY;
2941         } else {
2942                 /* retry after a delay. */
2943                 con->state = CON_STATE_PREOPEN;
2944                 if (con->delay == 0)
2945                         con->delay = BASE_DELAY_INTERVAL;
2946                 else if (con->delay < MAX_DELAY_INTERVAL)
2947                         con->delay *= 2;
2948                 con_flag_set(con, CON_FLAG_BACKOFF);
2949                 queue_con(con);
2950         }
2951 }
2952
2953
2954
2955 /*
2956  * initialize a new messenger instance
2957  */
2958 void ceph_messenger_init(struct ceph_messenger *msgr,
2959                         struct ceph_entity_addr *myaddr,
2960                         u32 supported_features,
2961                         u32 required_features,
2962                         bool nocrc)
2963 {
2964         msgr->supported_features = supported_features;
2965         msgr->required_features = required_features;
2966
2967         spin_lock_init(&msgr->global_seq_lock);
2968
2969         if (myaddr)
2970                 msgr->inst.addr = *myaddr;
2971
2972         /* select a random nonce */
2973         msgr->inst.addr.type = 0;
2974         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2975         encode_my_addr(msgr);
2976         msgr->nocrc = nocrc;
2977
2978         atomic_set(&msgr->stopping, 0);
2979
2980         dout("%s %p\n", __func__, msgr);
2981 }
2982 EXPORT_SYMBOL(ceph_messenger_init);
2983
2984 static void clear_standby(struct ceph_connection *con)
2985 {
2986         /* come back from STANDBY? */
2987         if (con->state == CON_STATE_STANDBY) {
2988                 dout("clear_standby %p and ++connect_seq\n", con);
2989                 con->state = CON_STATE_PREOPEN;
2990                 con->connect_seq++;
2991                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2992                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2993         }
2994 }
2995
2996 /*
2997  * Queue up an outgoing message on the given connection.
2998  */
2999 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3000 {
3001         /* set src+dst */
3002         msg->hdr.src = con->msgr->inst.name;
3003         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3004         msg->needs_out_seq = true;
3005
3006         mutex_lock(&con->mutex);
3007
3008         if (con->state == CON_STATE_CLOSED) {
3009                 dout("con_send %p closed, dropping %p\n", con, msg);
3010                 ceph_msg_put(msg);
3011                 mutex_unlock(&con->mutex);
3012                 return;
3013         }
3014
3015         BUG_ON(msg->con != NULL);
3016         msg->con = con->ops->get(con);
3017         BUG_ON(msg->con == NULL);
3018
3019         BUG_ON(!list_empty(&msg->list_head));
3020         list_add_tail(&msg->list_head, &con->out_queue);
3021         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3022              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3023              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3024              le32_to_cpu(msg->hdr.front_len),
3025              le32_to_cpu(msg->hdr.middle_len),
3026              le32_to_cpu(msg->hdr.data_len));
3027
3028         clear_standby(con);
3029         mutex_unlock(&con->mutex);
3030
3031         /* if there wasn't anything waiting to send before, queue
3032          * new work */
3033         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3034                 queue_con(con);
3035 }
3036 EXPORT_SYMBOL(ceph_con_send);
3037
3038 /*
3039  * Revoke a message that was previously queued for send
3040  */
3041 void ceph_msg_revoke(struct ceph_msg *msg)
3042 {
3043         struct ceph_connection *con = msg->con;
3044
3045         if (!con)
3046                 return;         /* Message not in our possession */
3047
3048         mutex_lock(&con->mutex);
3049         if (!list_empty(&msg->list_head)) {
3050                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3051                 list_del_init(&msg->list_head);
3052                 BUG_ON(msg->con == NULL);
3053                 msg->con->ops->put(msg->con);
3054                 msg->con = NULL;
3055                 msg->hdr.seq = 0;
3056
3057                 ceph_msg_put(msg);
3058         }
3059         if (con->out_msg == msg) {
3060                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3061                 con->out_msg = NULL;
3062                 if (con->out_kvec_is_msg) {
3063                         con->out_skip = con->out_kvec_bytes;
3064                         con->out_kvec_is_msg = false;
3065                 }
3066                 msg->hdr.seq = 0;
3067
3068                 ceph_msg_put(msg);
3069         }
3070         mutex_unlock(&con->mutex);
3071 }
3072
3073 /*
3074  * Revoke a message that we may be reading data into
3075  */
3076 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3077 {
3078         struct ceph_connection *con;
3079
3080         BUG_ON(msg == NULL);
3081         if (!msg->con) {
3082                 dout("%s msg %p null con\n", __func__, msg);
3083
3084                 return;         /* Message not in our possession */
3085         }
3086
3087         con = msg->con;
3088         mutex_lock(&con->mutex);
3089         if (con->in_msg == msg) {
3090                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3091                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3092                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3093
3094                 /* skip rest of message */
3095                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3096                 con->in_base_pos = con->in_base_pos -
3097                                 sizeof(struct ceph_msg_header) -
3098                                 front_len -
3099                                 middle_len -
3100                                 data_len -
3101                                 sizeof(struct ceph_msg_footer);
3102                 ceph_msg_put(con->in_msg);
3103                 con->in_msg = NULL;
3104                 con->in_tag = CEPH_MSGR_TAG_READY;
3105                 con->in_seq++;
3106         } else {
3107                 dout("%s %p in_msg %p msg %p no-op\n",
3108                      __func__, con, con->in_msg, msg);
3109         }
3110         mutex_unlock(&con->mutex);
3111 }
3112
3113 /*
3114  * Queue a keepalive byte to ensure the tcp connection is alive.
3115  */
3116 void ceph_con_keepalive(struct ceph_connection *con)
3117 {
3118         dout("con_keepalive %p\n", con);
3119         mutex_lock(&con->mutex);
3120         clear_standby(con);
3121         mutex_unlock(&con->mutex);
3122         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3123             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3124                 queue_con(con);
3125 }
3126 EXPORT_SYMBOL(ceph_con_keepalive);
3127
3128 static void ceph_msg_data_init(struct ceph_msg_data *data)
3129 {
3130         data->type = CEPH_MSG_DATA_NONE;
3131 }
3132
3133 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
3134                 size_t length, size_t alignment)
3135 {
3136         BUG_ON(!pages);
3137         BUG_ON(!length);
3138         BUG_ON(msg->p.type != CEPH_MSG_DATA_NONE);
3139
3140         msg->p.type = CEPH_MSG_DATA_PAGES;
3141         msg->p.pages = pages;
3142         msg->p.length = length;
3143         msg->p.alignment = alignment & ~PAGE_MASK;
3144 }
3145 EXPORT_SYMBOL(ceph_msg_data_set_pages);
3146
3147 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
3148                                 struct ceph_pagelist *pagelist)
3149 {
3150         BUG_ON(!pagelist);
3151         BUG_ON(!pagelist->length);
3152         BUG_ON(msg->l.type != CEPH_MSG_DATA_NONE);
3153
3154         msg->l.type = CEPH_MSG_DATA_PAGELIST;
3155         msg->l.pagelist = pagelist;
3156 }
3157 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
3158
3159 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
3160 {
3161         BUG_ON(!bio);
3162         BUG_ON(msg->b.type != CEPH_MSG_DATA_NONE);
3163
3164         msg->b.type = CEPH_MSG_DATA_BIO;
3165         msg->b.bio = bio;
3166 }
3167 EXPORT_SYMBOL(ceph_msg_data_set_bio);
3168
3169 /*
3170  * construct a new message with given type, size
3171  * the new msg has a ref count of 1.
3172  */
3173 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3174                               bool can_fail)
3175 {
3176         struct ceph_msg *m;
3177
3178         m = kzalloc(sizeof(*m), flags);
3179         if (m == NULL)
3180                 goto out;
3181
3182         m->hdr.type = cpu_to_le16(type);
3183         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3184         m->hdr.front_len = cpu_to_le32(front_len);
3185
3186         INIT_LIST_HEAD(&m->list_head);
3187         kref_init(&m->kref);
3188
3189         ceph_msg_data_init(&m->p);
3190         ceph_msg_data_init(&m->l);
3191         ceph_msg_data_init(&m->b);
3192
3193         /* front */
3194         m->front_max = front_len;
3195         if (front_len) {
3196                 if (front_len > PAGE_CACHE_SIZE) {
3197                         m->front.iov_base = __vmalloc(front_len, flags,
3198                                                       PAGE_KERNEL);
3199                         m->front_is_vmalloc = true;
3200                 } else {
3201                         m->front.iov_base = kmalloc(front_len, flags);
3202                 }
3203                 if (m->front.iov_base == NULL) {
3204                         dout("ceph_msg_new can't allocate %d bytes\n",
3205                              front_len);
3206                         goto out2;
3207                 }
3208         } else {
3209                 m->front.iov_base = NULL;
3210         }
3211         m->front.iov_len = front_len;
3212
3213         dout("ceph_msg_new %p front %d\n", m, front_len);
3214         return m;
3215
3216 out2:
3217         ceph_msg_put(m);
3218 out:
3219         if (!can_fail) {
3220                 pr_err("msg_new can't create type %d front %d\n", type,
3221                        front_len);
3222                 WARN_ON(1);
3223         } else {
3224                 dout("msg_new can't create type %d front %d\n", type,
3225                      front_len);
3226         }
3227         return NULL;
3228 }
3229 EXPORT_SYMBOL(ceph_msg_new);
3230
3231 /*
3232  * Allocate "middle" portion of a message, if it is needed and wasn't
3233  * allocated by alloc_msg.  This allows us to read a small fixed-size
3234  * per-type header in the front and then gracefully fail (i.e.,
3235  * propagate the error to the caller based on info in the front) when
3236  * the middle is too large.
3237  */
3238 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3239 {
3240         int type = le16_to_cpu(msg->hdr.type);
3241         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3242
3243         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3244              ceph_msg_type_name(type), middle_len);
3245         BUG_ON(!middle_len);
3246         BUG_ON(msg->middle);
3247
3248         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3249         if (!msg->middle)
3250                 return -ENOMEM;
3251         return 0;
3252 }
3253
3254 /*
3255  * Allocate a message for receiving an incoming message on a
3256  * connection, and save the result in con->in_msg.  Uses the
3257  * connection's private alloc_msg op if available.
3258  *
3259  * Returns 0 on success, or a negative error code.
3260  *
3261  * On success, if we set *skip = 1:
3262  *  - the next message should be skipped and ignored.
3263  *  - con->in_msg == NULL
3264  * or if we set *skip = 0:
3265  *  - con->in_msg is non-null.
3266  * On error (ENOMEM, EAGAIN, ...),
3267  *  - con->in_msg == NULL
3268  */
3269 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3270 {
3271         struct ceph_msg_header *hdr = &con->in_hdr;
3272         int middle_len = le32_to_cpu(hdr->middle_len);
3273         struct ceph_msg *msg;
3274         int ret = 0;
3275
3276         BUG_ON(con->in_msg != NULL);
3277         BUG_ON(!con->ops->alloc_msg);
3278
3279         mutex_unlock(&con->mutex);
3280         msg = con->ops->alloc_msg(con, hdr, skip);
3281         mutex_lock(&con->mutex);
3282         if (con->state != CON_STATE_OPEN) {
3283                 if (msg)
3284                         ceph_msg_put(msg);
3285                 return -EAGAIN;
3286         }
3287         if (msg) {
3288                 BUG_ON(*skip);
3289                 con->in_msg = msg;
3290                 con->in_msg->con = con->ops->get(con);
3291                 BUG_ON(con->in_msg->con == NULL);
3292         } else {
3293                 /*
3294                  * Null message pointer means either we should skip
3295                  * this message or we couldn't allocate memory.  The
3296                  * former is not an error.
3297                  */
3298                 if (*skip)
3299                         return 0;
3300                 con->error_msg = "error allocating memory for incoming message";
3301
3302                 return -ENOMEM;
3303         }
3304         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3305
3306         if (middle_len && !con->in_msg->middle) {
3307                 ret = ceph_alloc_middle(con, con->in_msg);
3308                 if (ret < 0) {
3309                         ceph_msg_put(con->in_msg);
3310                         con->in_msg = NULL;
3311                 }
3312         }
3313
3314         return ret;
3315 }
3316
3317
3318 /*
3319  * Free a generically kmalloc'd message.
3320  */
3321 void ceph_msg_kfree(struct ceph_msg *m)
3322 {
3323         dout("msg_kfree %p\n", m);
3324         if (m->front_is_vmalloc)
3325                 vfree(m->front.iov_base);
3326         else
3327                 kfree(m->front.iov_base);
3328         kfree(m);
3329 }
3330
3331 /*
3332  * Drop a msg ref.  Destroy as needed.
3333  */
3334 void ceph_msg_last_put(struct kref *kref)
3335 {
3336         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3337
3338         dout("ceph_msg_put last one on %p\n", m);
3339         WARN_ON(!list_empty(&m->list_head));
3340
3341         /* drop middle, data, if any */
3342         if (m->middle) {
3343                 ceph_buffer_put(m->middle);
3344                 m->middle = NULL;
3345         }
3346         if (ceph_msg_has_pages(m)) {
3347                 m->p.length = 0;
3348                 m->p.pages = NULL;
3349                 m->p.type = CEPH_OSD_DATA_TYPE_NONE;
3350         }
3351         if (ceph_msg_has_pagelist(m)) {
3352                 ceph_pagelist_release(m->l.pagelist);
3353                 kfree(m->l.pagelist);
3354                 m->l.pagelist = NULL;
3355                 m->l.type = CEPH_OSD_DATA_TYPE_NONE;
3356         }
3357         if (ceph_msg_has_bio(m)) {
3358                 m->b.bio = NULL;
3359                 m->b.type = CEPH_OSD_DATA_TYPE_NONE;
3360         }
3361
3362         if (m->pool)
3363                 ceph_msgpool_put(m->pool, m);
3364         else
3365                 ceph_msg_kfree(m);
3366 }
3367 EXPORT_SYMBOL(ceph_msg_last_put);
3368
3369 void ceph_msg_dump(struct ceph_msg *msg)
3370 {
3371         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3372                  msg->front_max, msg->p.length);
3373         print_hex_dump(KERN_DEBUG, "header: ",
3374                        DUMP_PREFIX_OFFSET, 16, 1,
3375                        &msg->hdr, sizeof(msg->hdr), true);
3376         print_hex_dump(KERN_DEBUG, " front: ",
3377                        DUMP_PREFIX_OFFSET, 16, 1,
3378                        msg->front.iov_base, msg->front.iov_len, true);
3379         if (msg->middle)
3380                 print_hex_dump(KERN_DEBUG, "middle: ",
3381                                DUMP_PREFIX_OFFSET, 16, 1,
3382                                msg->middle->vec.iov_base,
3383                                msg->middle->vec.iov_len, true);
3384         print_hex_dump(KERN_DEBUG, "footer: ",
3385                        DUMP_PREFIX_OFFSET, 16, 1,
3386                        &msg->footer, sizeof(msg->footer), true);
3387 }
3388 EXPORT_SYMBOL(ceph_msg_dump);