]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: isolate message page field manipulation
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25  * Ceph uses the messenger to exchange ceph_msg messages with other
26  * hosts in the system.  The messenger provides ordered and reliable
27  * delivery.  We tolerate TCP disconnects by reconnecting (with
28  * exponential backoff) in the case of a fault (disconnection, bad
29  * crc, protocol error).  Acks allow sent messages to be discarded by
30  * the sender.
31  */
32
33 /*
34  * We track the state of the socket on a given connection using
35  * values defined below.  The transition to a new socket state is
36  * handled by a function which verifies we aren't coming from an
37  * unexpected state.
38  *
39  *      --------
40  *      | NEW* |  transient initial state
41  *      --------
42  *          | con_sock_state_init()
43  *          v
44  *      ----------
45  *      | CLOSED |  initialized, but no socket (and no
46  *      ----------  TCP connection)
47  *       ^      \
48  *       |       \ con_sock_state_connecting()
49  *       |        ----------------------
50  *       |                              \
51  *       + con_sock_state_closed()       \
52  *       |+---------------------------    \
53  *       | \                          \    \
54  *       |  -----------                \    \
55  *       |  | CLOSING |  socket event;  \    \
56  *       |  -----------  await close     \    \
57  *       |       ^                        \   |
58  *       |       |                         \  |
59  *       |       + con_sock_state_closing() \ |
60  *       |      / \                         | |
61  *       |     /   ---------------          | |
62  *       |    /                   \         v v
63  *       |   /                    --------------
64  *       |  /    -----------------| CONNECTING |  socket created, TCP
65  *       |  |   /                 --------------  connect initiated
66  *       |  |   | con_sock_state_connected()
67  *       |  |   v
68  *      -------------
69  *      | CONNECTED |  TCP connection established
70  *      -------------
71  *
72  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73  */
74
75 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
80
81 /*
82  * connection states
83  */
84 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
85 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
90
91 /*
92  * ceph_connection flag bits
93  */
94 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
95                                        * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103         switch (con_flag) {
104         case CON_FLAG_LOSSYTX:
105         case CON_FLAG_KEEPALIVE_PENDING:
106         case CON_FLAG_WRITE_PENDING:
107         case CON_FLAG_SOCK_CLOSED:
108         case CON_FLAG_BACKOFF:
109                 return true;
110         default:
111                 return false;
112         }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117         BUG_ON(!con_flag_valid(con_flag));
118
119         clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124         BUG_ON(!con_flag_valid(con_flag));
125
126         set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131         BUG_ON(!con_flag_valid(con_flag));
132
133         return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137                                         unsigned long con_flag)
138 {
139         BUG_ON(!con_flag_valid(con_flag));
140
141         return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145                                         unsigned long con_flag)
146 {
147         BUG_ON(!con_flag_valid(con_flag));
148
149         return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162  * When skipping (ignoring) a block of input we read it into a "skip
163  * buffer," which is this many bytes in size.
164  */
165 #define SKIP_BUF_SIZE   1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172  * Nicely render a sockaddr as a string.  An array of formatted
173  * strings is used, to approximate reentrancy.
174  */
175 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page;          /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187         int i;
188         char *s;
189         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193         s = addr_str[i];
194
195         switch (ss->ss_family) {
196         case AF_INET:
197                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198                          ntohs(in4->sin_port));
199                 break;
200
201         case AF_INET6:
202                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203                          ntohs(in6->sin6_port));
204                 break;
205
206         default:
207                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208                          ss->ss_family);
209         }
210
211         return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218         ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222  * work queue for all reading and writing to/from the socket.
223  */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228         if (ceph_msgr_wq) {
229                 destroy_workqueue(ceph_msgr_wq);
230                 ceph_msgr_wq = NULL;
231         }
232
233         BUG_ON(zero_page == NULL);
234         kunmap(zero_page);
235         page_cache_release(zero_page);
236         zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241         BUG_ON(zero_page != NULL);
242         zero_page = ZERO_PAGE(0);
243         page_cache_get(zero_page);
244
245         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246         if (ceph_msgr_wq)
247                 return 0;
248
249         pr_err("msgr_init failed to create workqueue\n");
250         _ceph_msgr_exit();
251
252         return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258         BUG_ON(ceph_msgr_wq == NULL);
259
260         _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266         flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274         int old_state;
275
276         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278                 printk("%s: unexpected old state %d\n", __func__, old_state);
279         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280              CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285         int old_state;
286
287         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289                 printk("%s: unexpected old state %d\n", __func__, old_state);
290         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291              CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296         int old_state;
297
298         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300                 printk("%s: unexpected old state %d\n", __func__, old_state);
301         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302              CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307         int old_state;
308
309         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311                         old_state != CON_SOCK_STATE_CONNECTED &&
312                         old_state != CON_SOCK_STATE_CLOSING))
313                 printk("%s: unexpected old state %d\n", __func__, old_state);
314         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315              CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320         int old_state;
321
322         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324                     old_state != CON_SOCK_STATE_CLOSING &&
325                     old_state != CON_SOCK_STATE_CONNECTING &&
326                     old_state != CON_SOCK_STATE_CLOSED))
327                 printk("%s: unexpected old state %d\n", __func__, old_state);
328         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329              CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333  * socket callback functions
334  */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339         struct ceph_connection *con = sk->sk_user_data;
340         if (atomic_read(&con->msgr->stopping)) {
341                 return;
342         }
343
344         if (sk->sk_state != TCP_CLOSE_WAIT) {
345                 dout("%s on %p state = %lu, queueing work\n", __func__,
346                      con, con->state);
347                 queue_con(con);
348         }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354         struct ceph_connection *con = sk->sk_user_data;
355
356         /* only queue to workqueue if there is data we want to write,
357          * and there is sufficient space in the socket buffer to accept
358          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
359          * doesn't get called again until try_write() fills the socket
360          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361          * and net/core/stream.c:sk_stream_write_space().
362          */
363         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365                         dout("%s %p queueing write work\n", __func__, con);
366                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367                         queue_con(con);
368                 }
369         } else {
370                 dout("%s %p nothing to write\n", __func__, con);
371         }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377         struct ceph_connection *con = sk->sk_user_data;
378
379         dout("%s %p state = %lu sk_state = %u\n", __func__,
380              con, con->state, sk->sk_state);
381
382         switch (sk->sk_state) {
383         case TCP_CLOSE:
384                 dout("%s TCP_CLOSE\n", __func__);
385         case TCP_CLOSE_WAIT:
386                 dout("%s TCP_CLOSE_WAIT\n", __func__);
387                 con_sock_state_closing(con);
388                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389                 queue_con(con);
390                 break;
391         case TCP_ESTABLISHED:
392                 dout("%s TCP_ESTABLISHED\n", __func__);
393                 con_sock_state_connected(con);
394                 queue_con(con);
395                 break;
396         default:        /* Everything else is uninteresting */
397                 break;
398         }
399 }
400
401 /*
402  * set up socket callbacks
403  */
404 static void set_sock_callbacks(struct socket *sock,
405                                struct ceph_connection *con)
406 {
407         struct sock *sk = sock->sk;
408         sk->sk_user_data = con;
409         sk->sk_data_ready = ceph_sock_data_ready;
410         sk->sk_write_space = ceph_sock_write_space;
411         sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416  * socket helpers
417  */
418
419 /*
420  * initiate connection to a remote socket.
421  */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425         struct socket *sock;
426         int ret;
427
428         BUG_ON(con->sock);
429         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430                                IPPROTO_TCP, &sock);
431         if (ret)
432                 return ret;
433         sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439         set_sock_callbacks(sock, con);
440
441         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443         con_sock_state_connecting(con);
444         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445                                  O_NONBLOCK);
446         if (ret == -EINPROGRESS) {
447                 dout("connect %s EINPROGRESS sk_state = %u\n",
448                      ceph_pr_addr(&con->peer_addr.in_addr),
449                      sock->sk->sk_state);
450         } else if (ret < 0) {
451                 pr_err("connect %s error %d\n",
452                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
453                 sock_release(sock);
454                 con->error_msg = "connect error";
455
456                 return ret;
457         }
458         con->sock = sock;
459         return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464         struct kvec iov = {buf, len};
465         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466         int r;
467
468         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469         if (r == -EAGAIN)
470                 r = 0;
471         return r;
472 }
473
474 /*
475  * write something.  @more is true if caller will be sending more data
476  * shortly.
477  */
478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
479                      size_t kvlen, size_t len, int more)
480 {
481         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
482         int r;
483
484         if (more)
485                 msg.msg_flags |= MSG_MORE;
486         else
487                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
488
489         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
490         if (r == -EAGAIN)
491                 r = 0;
492         return r;
493 }
494
495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
496                      int offset, size_t size, bool more)
497 {
498         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
499         int ret;
500
501         ret = kernel_sendpage(sock, page, offset, size, flags);
502         if (ret == -EAGAIN)
503                 ret = 0;
504
505         return ret;
506 }
507
508
509 /*
510  * Shutdown/close the socket for the given connection.
511  */
512 static int con_close_socket(struct ceph_connection *con)
513 {
514         int rc = 0;
515
516         dout("con_close_socket on %p sock %p\n", con, con->sock);
517         if (con->sock) {
518                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
519                 sock_release(con->sock);
520                 con->sock = NULL;
521         }
522
523         /*
524          * Forcibly clear the SOCK_CLOSED flag.  It gets set
525          * independent of the connection mutex, and we could have
526          * received a socket close event before we had the chance to
527          * shut the socket down.
528          */
529         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
530
531         con_sock_state_closed(con);
532         return rc;
533 }
534
535 /*
536  * Reset a connection.  Discard all incoming and outgoing messages
537  * and clear *_seq state.
538  */
539 static void ceph_msg_remove(struct ceph_msg *msg)
540 {
541         list_del_init(&msg->list_head);
542         BUG_ON(msg->con == NULL);
543         msg->con->ops->put(msg->con);
544         msg->con = NULL;
545
546         ceph_msg_put(msg);
547 }
548 static void ceph_msg_remove_list(struct list_head *head)
549 {
550         while (!list_empty(head)) {
551                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
552                                                         list_head);
553                 ceph_msg_remove(msg);
554         }
555 }
556
557 static void reset_connection(struct ceph_connection *con)
558 {
559         /* reset connection, out_queue, msg_ and connect_seq */
560         /* discard existing out_queue and msg_seq */
561         dout("reset_connection %p\n", con);
562         ceph_msg_remove_list(&con->out_queue);
563         ceph_msg_remove_list(&con->out_sent);
564
565         if (con->in_msg) {
566                 BUG_ON(con->in_msg->con != con);
567                 con->in_msg->con = NULL;
568                 ceph_msg_put(con->in_msg);
569                 con->in_msg = NULL;
570                 con->ops->put(con);
571         }
572
573         con->connect_seq = 0;
574         con->out_seq = 0;
575         if (con->out_msg) {
576                 ceph_msg_put(con->out_msg);
577                 con->out_msg = NULL;
578         }
579         con->in_seq = 0;
580         con->in_seq_acked = 0;
581 }
582
583 /*
584  * mark a peer down.  drop any open connections.
585  */
586 void ceph_con_close(struct ceph_connection *con)
587 {
588         mutex_lock(&con->mutex);
589         dout("con_close %p peer %s\n", con,
590              ceph_pr_addr(&con->peer_addr.in_addr));
591         con->state = CON_STATE_CLOSED;
592
593         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
594         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
595         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
596         con_flag_clear(con, CON_FLAG_BACKOFF);
597
598         reset_connection(con);
599         con->peer_global_seq = 0;
600         cancel_delayed_work(&con->work);
601         con_close_socket(con);
602         mutex_unlock(&con->mutex);
603 }
604 EXPORT_SYMBOL(ceph_con_close);
605
606 /*
607  * Reopen a closed connection, with a new peer address.
608  */
609 void ceph_con_open(struct ceph_connection *con,
610                    __u8 entity_type, __u64 entity_num,
611                    struct ceph_entity_addr *addr)
612 {
613         mutex_lock(&con->mutex);
614         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
615
616         WARN_ON(con->state != CON_STATE_CLOSED);
617         con->state = CON_STATE_PREOPEN;
618
619         con->peer_name.type = (__u8) entity_type;
620         con->peer_name.num = cpu_to_le64(entity_num);
621
622         memcpy(&con->peer_addr, addr, sizeof(*addr));
623         con->delay = 0;      /* reset backoff memory */
624         mutex_unlock(&con->mutex);
625         queue_con(con);
626 }
627 EXPORT_SYMBOL(ceph_con_open);
628
629 /*
630  * return true if this connection ever successfully opened
631  */
632 bool ceph_con_opened(struct ceph_connection *con)
633 {
634         return con->connect_seq > 0;
635 }
636
637 /*
638  * initialize a new connection.
639  */
640 void ceph_con_init(struct ceph_connection *con, void *private,
641         const struct ceph_connection_operations *ops,
642         struct ceph_messenger *msgr)
643 {
644         dout("con_init %p\n", con);
645         memset(con, 0, sizeof(*con));
646         con->private = private;
647         con->ops = ops;
648         con->msgr = msgr;
649
650         con_sock_state_init(con);
651
652         mutex_init(&con->mutex);
653         INIT_LIST_HEAD(&con->out_queue);
654         INIT_LIST_HEAD(&con->out_sent);
655         INIT_DELAYED_WORK(&con->work, con_work);
656
657         con->state = CON_STATE_CLOSED;
658 }
659 EXPORT_SYMBOL(ceph_con_init);
660
661
662 /*
663  * We maintain a global counter to order connection attempts.  Get
664  * a unique seq greater than @gt.
665  */
666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
667 {
668         u32 ret;
669
670         spin_lock(&msgr->global_seq_lock);
671         if (msgr->global_seq < gt)
672                 msgr->global_seq = gt;
673         ret = ++msgr->global_seq;
674         spin_unlock(&msgr->global_seq_lock);
675         return ret;
676 }
677
678 static void con_out_kvec_reset(struct ceph_connection *con)
679 {
680         con->out_kvec_left = 0;
681         con->out_kvec_bytes = 0;
682         con->out_kvec_cur = &con->out_kvec[0];
683 }
684
685 static void con_out_kvec_add(struct ceph_connection *con,
686                                 size_t size, void *data)
687 {
688         int index;
689
690         index = con->out_kvec_left;
691         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
692
693         con->out_kvec[index].iov_len = size;
694         con->out_kvec[index].iov_base = data;
695         con->out_kvec_left++;
696         con->out_kvec_bytes += size;
697 }
698
699 #ifdef CONFIG_BLOCK
700 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
701                         unsigned int *bio_seg)
702 {
703         if (!bio) {
704                 *bio_iter = NULL;
705                 *bio_seg = 0;
706                 return;
707         }
708         *bio_iter = bio;
709         *bio_seg = (unsigned int) bio->bi_idx;
710 }
711
712 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
713 {
714         if (*bio_iter == NULL)
715                 return;
716
717         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
718
719         (*seg)++;
720         if (*seg == (*bio_iter)->bi_vcnt)
721                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
722 }
723 #endif
724
725 static void prepare_write_message_data(struct ceph_connection *con)
726 {
727         struct ceph_msg *msg = con->out_msg;
728
729         BUG_ON(!msg);
730         BUG_ON(!msg->hdr.data_len);
731
732         /* initialize page iterator */
733         con->out_msg_pos.page = 0;
734         if (msg->pages)
735                 con->out_msg_pos.page_pos = msg->page_alignment;
736         else
737                 con->out_msg_pos.page_pos = 0;
738 #ifdef CONFIG_BLOCK
739         if (msg->bio)
740                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
741 #endif
742         con->out_msg_pos.data_pos = 0;
743         con->out_msg_pos.did_page_crc = false;
744         con->out_more = 1;  /* data + footer will follow */
745 }
746
747 /*
748  * Prepare footer for currently outgoing message, and finish things
749  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
750  */
751 static void prepare_write_message_footer(struct ceph_connection *con)
752 {
753         struct ceph_msg *m = con->out_msg;
754         int v = con->out_kvec_left;
755
756         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
757
758         dout("prepare_write_message_footer %p\n", con);
759         con->out_kvec_is_msg = true;
760         con->out_kvec[v].iov_base = &m->footer;
761         con->out_kvec[v].iov_len = sizeof(m->footer);
762         con->out_kvec_bytes += sizeof(m->footer);
763         con->out_kvec_left++;
764         con->out_more = m->more_to_follow;
765         con->out_msg_done = true;
766 }
767
768 /*
769  * Prepare headers for the next outgoing message.
770  */
771 static void prepare_write_message(struct ceph_connection *con)
772 {
773         struct ceph_msg *m;
774         u32 crc;
775
776         con_out_kvec_reset(con);
777         con->out_kvec_is_msg = true;
778         con->out_msg_done = false;
779
780         /* Sneak an ack in there first?  If we can get it into the same
781          * TCP packet that's a good thing. */
782         if (con->in_seq > con->in_seq_acked) {
783                 con->in_seq_acked = con->in_seq;
784                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
785                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
786                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
787                         &con->out_temp_ack);
788         }
789
790         BUG_ON(list_empty(&con->out_queue));
791         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
792         con->out_msg = m;
793         BUG_ON(m->con != con);
794
795         /* put message on sent list */
796         ceph_msg_get(m);
797         list_move_tail(&m->list_head, &con->out_sent);
798
799         /*
800          * only assign outgoing seq # if we haven't sent this message
801          * yet.  if it is requeued, resend with it's original seq.
802          */
803         if (m->needs_out_seq) {
804                 m->hdr.seq = cpu_to_le64(++con->out_seq);
805                 m->needs_out_seq = false;
806         }
807 #ifdef CONFIG_BLOCK
808         else
809                 m->bio_iter = NULL;
810 #endif
811
812         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
813              m, con->out_seq, le16_to_cpu(m->hdr.type),
814              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
815              le32_to_cpu(m->hdr.data_len),
816              m->page_count);
817         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
818
819         /* tag + hdr + front + middle */
820         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
821         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
822         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
823
824         if (m->middle)
825                 con_out_kvec_add(con, m->middle->vec.iov_len,
826                         m->middle->vec.iov_base);
827
828         /* fill in crc (except data pages), footer */
829         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
830         con->out_msg->hdr.crc = cpu_to_le32(crc);
831         con->out_msg->footer.flags = 0;
832
833         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
834         con->out_msg->footer.front_crc = cpu_to_le32(crc);
835         if (m->middle) {
836                 crc = crc32c(0, m->middle->vec.iov_base,
837                                 m->middle->vec.iov_len);
838                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
839         } else
840                 con->out_msg->footer.middle_crc = 0;
841         dout("%s front_crc %u middle_crc %u\n", __func__,
842              le32_to_cpu(con->out_msg->footer.front_crc),
843              le32_to_cpu(con->out_msg->footer.middle_crc));
844
845         /* is there a data payload? */
846         con->out_msg->footer.data_crc = 0;
847         if (m->hdr.data_len)
848                 prepare_write_message_data(con);
849         else
850                 /* no, queue up footer too and be done */
851                 prepare_write_message_footer(con);
852
853         con_flag_set(con, CON_FLAG_WRITE_PENDING);
854 }
855
856 /*
857  * Prepare an ack.
858  */
859 static void prepare_write_ack(struct ceph_connection *con)
860 {
861         dout("prepare_write_ack %p %llu -> %llu\n", con,
862              con->in_seq_acked, con->in_seq);
863         con->in_seq_acked = con->in_seq;
864
865         con_out_kvec_reset(con);
866
867         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
868
869         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
870         con_out_kvec_add(con, sizeof (con->out_temp_ack),
871                                 &con->out_temp_ack);
872
873         con->out_more = 1;  /* more will follow.. eventually.. */
874         con_flag_set(con, CON_FLAG_WRITE_PENDING);
875 }
876
877 /*
878  * Prepare to write keepalive byte.
879  */
880 static void prepare_write_keepalive(struct ceph_connection *con)
881 {
882         dout("prepare_write_keepalive %p\n", con);
883         con_out_kvec_reset(con);
884         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
885         con_flag_set(con, CON_FLAG_WRITE_PENDING);
886 }
887
888 /*
889  * Connection negotiation.
890  */
891
892 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
893                                                 int *auth_proto)
894 {
895         struct ceph_auth_handshake *auth;
896
897         if (!con->ops->get_authorizer) {
898                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
899                 con->out_connect.authorizer_len = 0;
900                 return NULL;
901         }
902
903         /* Can't hold the mutex while getting authorizer */
904         mutex_unlock(&con->mutex);
905         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
906         mutex_lock(&con->mutex);
907
908         if (IS_ERR(auth))
909                 return auth;
910         if (con->state != CON_STATE_NEGOTIATING)
911                 return ERR_PTR(-EAGAIN);
912
913         con->auth_reply_buf = auth->authorizer_reply_buf;
914         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
915         return auth;
916 }
917
918 /*
919  * We connected to a peer and are saying hello.
920  */
921 static void prepare_write_banner(struct ceph_connection *con)
922 {
923         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
924         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
925                                         &con->msgr->my_enc_addr);
926
927         con->out_more = 0;
928         con_flag_set(con, CON_FLAG_WRITE_PENDING);
929 }
930
931 static int prepare_write_connect(struct ceph_connection *con)
932 {
933         unsigned int global_seq = get_global_seq(con->msgr, 0);
934         int proto;
935         int auth_proto;
936         struct ceph_auth_handshake *auth;
937
938         switch (con->peer_name.type) {
939         case CEPH_ENTITY_TYPE_MON:
940                 proto = CEPH_MONC_PROTOCOL;
941                 break;
942         case CEPH_ENTITY_TYPE_OSD:
943                 proto = CEPH_OSDC_PROTOCOL;
944                 break;
945         case CEPH_ENTITY_TYPE_MDS:
946                 proto = CEPH_MDSC_PROTOCOL;
947                 break;
948         default:
949                 BUG();
950         }
951
952         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
953              con->connect_seq, global_seq, proto);
954
955         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
956         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
957         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
958         con->out_connect.global_seq = cpu_to_le32(global_seq);
959         con->out_connect.protocol_version = cpu_to_le32(proto);
960         con->out_connect.flags = 0;
961
962         auth_proto = CEPH_AUTH_UNKNOWN;
963         auth = get_connect_authorizer(con, &auth_proto);
964         if (IS_ERR(auth))
965                 return PTR_ERR(auth);
966
967         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
968         con->out_connect.authorizer_len = auth ?
969                 cpu_to_le32(auth->authorizer_buf_len) : 0;
970
971         con_out_kvec_add(con, sizeof (con->out_connect),
972                                         &con->out_connect);
973         if (auth && auth->authorizer_buf_len)
974                 con_out_kvec_add(con, auth->authorizer_buf_len,
975                                         auth->authorizer_buf);
976
977         con->out_more = 0;
978         con_flag_set(con, CON_FLAG_WRITE_PENDING);
979
980         return 0;
981 }
982
983 /*
984  * write as much of pending kvecs to the socket as we can.
985  *  1 -> done
986  *  0 -> socket full, but more to do
987  * <0 -> error
988  */
989 static int write_partial_kvec(struct ceph_connection *con)
990 {
991         int ret;
992
993         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
994         while (con->out_kvec_bytes > 0) {
995                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
996                                        con->out_kvec_left, con->out_kvec_bytes,
997                                        con->out_more);
998                 if (ret <= 0)
999                         goto out;
1000                 con->out_kvec_bytes -= ret;
1001                 if (con->out_kvec_bytes == 0)
1002                         break;            /* done */
1003
1004                 /* account for full iov entries consumed */
1005                 while (ret >= con->out_kvec_cur->iov_len) {
1006                         BUG_ON(!con->out_kvec_left);
1007                         ret -= con->out_kvec_cur->iov_len;
1008                         con->out_kvec_cur++;
1009                         con->out_kvec_left--;
1010                 }
1011                 /* and for a partially-consumed entry */
1012                 if (ret) {
1013                         con->out_kvec_cur->iov_len -= ret;
1014                         con->out_kvec_cur->iov_base += ret;
1015                 }
1016         }
1017         con->out_kvec_left = 0;
1018         con->out_kvec_is_msg = false;
1019         ret = 1;
1020 out:
1021         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1022              con->out_kvec_bytes, con->out_kvec_left, ret);
1023         return ret;  /* done! */
1024 }
1025
1026 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1027                         size_t len, size_t sent, bool in_trail)
1028 {
1029         struct ceph_msg *msg = con->out_msg;
1030
1031         BUG_ON(!msg);
1032         BUG_ON(!sent);
1033
1034         con->out_msg_pos.data_pos += sent;
1035         con->out_msg_pos.page_pos += sent;
1036         if (sent < len)
1037                 return;
1038
1039         BUG_ON(sent != len);
1040         con->out_msg_pos.page_pos = 0;
1041         con->out_msg_pos.page++;
1042         con->out_msg_pos.did_page_crc = false;
1043         if (in_trail)
1044                 list_rotate_left(&msg->trail->head);
1045         else if (msg->pagelist)
1046                 list_rotate_left(&msg->pagelist->head);
1047 #ifdef CONFIG_BLOCK
1048         else if (msg->bio)
1049                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1050 #endif
1051 }
1052
1053 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1054                                 size_t received)
1055 {
1056         struct ceph_msg *msg = con->in_msg;
1057
1058         BUG_ON(!msg);
1059         BUG_ON(!received);
1060
1061         con->in_msg_pos.data_pos += received;
1062         con->in_msg_pos.page_pos += received;
1063         if (received < len)
1064                 return;
1065
1066         BUG_ON(received != len);
1067         con->in_msg_pos.page_pos = 0;
1068         con->in_msg_pos.page++;
1069 #ifdef CONFIG_BLOCK
1070         if (msg->bio)
1071                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1072 #endif /* CONFIG_BLOCK */
1073 }
1074
1075 /*
1076  * Write as much message data payload as we can.  If we finish, queue
1077  * up the footer.
1078  *  1 -> done, footer is now queued in out_kvec[].
1079  *  0 -> socket full, but more to do
1080  * <0 -> error
1081  */
1082 static int write_partial_msg_pages(struct ceph_connection *con)
1083 {
1084         struct ceph_msg *msg = con->out_msg;
1085         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1086         size_t len;
1087         bool do_datacrc = !con->msgr->nocrc;
1088         int ret;
1089         int total_max_write;
1090         bool in_trail = false;
1091         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1092         const size_t trail_off = data_len - trail_len;
1093
1094         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1095              con, msg, con->out_msg_pos.page, msg->page_count,
1096              con->out_msg_pos.page_pos);
1097
1098         /*
1099          * Iterate through each page that contains data to be
1100          * written, and send as much as possible for each.
1101          *
1102          * If we are calculating the data crc (the default), we will
1103          * need to map the page.  If we have no pages, they have
1104          * been revoked, so use the zero page.
1105          */
1106         while (data_len > con->out_msg_pos.data_pos) {
1107                 struct page *page = NULL;
1108                 int max_write = PAGE_SIZE;
1109                 int bio_offset = 0;
1110
1111                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1112                 if (!in_trail)
1113                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1114
1115                 if (in_trail) {
1116                         total_max_write = data_len - con->out_msg_pos.data_pos;
1117
1118                         page = list_first_entry(&msg->trail->head,
1119                                                 struct page, lru);
1120                 } else if (msg->pages) {
1121                         page = msg->pages[con->out_msg_pos.page];
1122                 } else if (msg->pagelist) {
1123                         page = list_first_entry(&msg->pagelist->head,
1124                                                 struct page, lru);
1125 #ifdef CONFIG_BLOCK
1126                 } else if (msg->bio) {
1127                         struct bio_vec *bv;
1128
1129                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1130                         page = bv->bv_page;
1131                         bio_offset = bv->bv_offset;
1132                         max_write = bv->bv_len;
1133 #endif
1134                 } else {
1135                         page = zero_page;
1136                 }
1137                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1138                             total_max_write);
1139
1140                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1141                         void *base;
1142                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1143                         char *kaddr;
1144
1145                         kaddr = kmap(page);
1146                         BUG_ON(kaddr == NULL);
1147                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1148                         crc = crc32c(crc, base, len);
1149                         kunmap(page);
1150                         msg->footer.data_crc = cpu_to_le32(crc);
1151                         con->out_msg_pos.did_page_crc = true;
1152                 }
1153                 ret = ceph_tcp_sendpage(con->sock, page,
1154                                       con->out_msg_pos.page_pos + bio_offset,
1155                                       len, true);
1156                 if (ret <= 0)
1157                         goto out;
1158
1159                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1160         }
1161
1162         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1163
1164         /* prepare and queue up footer, too */
1165         if (!do_datacrc)
1166                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1167         con_out_kvec_reset(con);
1168         prepare_write_message_footer(con);
1169         ret = 1;
1170 out:
1171         return ret;
1172 }
1173
1174 /*
1175  * write some zeros
1176  */
1177 static int write_partial_skip(struct ceph_connection *con)
1178 {
1179         int ret;
1180
1181         while (con->out_skip > 0) {
1182                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1183
1184                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1185                 if (ret <= 0)
1186                         goto out;
1187                 con->out_skip -= ret;
1188         }
1189         ret = 1;
1190 out:
1191         return ret;
1192 }
1193
1194 /*
1195  * Prepare to read connection handshake, or an ack.
1196  */
1197 static void prepare_read_banner(struct ceph_connection *con)
1198 {
1199         dout("prepare_read_banner %p\n", con);
1200         con->in_base_pos = 0;
1201 }
1202
1203 static void prepare_read_connect(struct ceph_connection *con)
1204 {
1205         dout("prepare_read_connect %p\n", con);
1206         con->in_base_pos = 0;
1207 }
1208
1209 static void prepare_read_ack(struct ceph_connection *con)
1210 {
1211         dout("prepare_read_ack %p\n", con);
1212         con->in_base_pos = 0;
1213 }
1214
1215 static void prepare_read_tag(struct ceph_connection *con)
1216 {
1217         dout("prepare_read_tag %p\n", con);
1218         con->in_base_pos = 0;
1219         con->in_tag = CEPH_MSGR_TAG_READY;
1220 }
1221
1222 /*
1223  * Prepare to read a message.
1224  */
1225 static int prepare_read_message(struct ceph_connection *con)
1226 {
1227         dout("prepare_read_message %p\n", con);
1228         BUG_ON(con->in_msg != NULL);
1229         con->in_base_pos = 0;
1230         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1231         return 0;
1232 }
1233
1234
1235 static int read_partial(struct ceph_connection *con,
1236                         int end, int size, void *object)
1237 {
1238         while (con->in_base_pos < end) {
1239                 int left = end - con->in_base_pos;
1240                 int have = size - left;
1241                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1242                 if (ret <= 0)
1243                         return ret;
1244                 con->in_base_pos += ret;
1245         }
1246         return 1;
1247 }
1248
1249
1250 /*
1251  * Read all or part of the connect-side handshake on a new connection
1252  */
1253 static int read_partial_banner(struct ceph_connection *con)
1254 {
1255         int size;
1256         int end;
1257         int ret;
1258
1259         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1260
1261         /* peer's banner */
1262         size = strlen(CEPH_BANNER);
1263         end = size;
1264         ret = read_partial(con, end, size, con->in_banner);
1265         if (ret <= 0)
1266                 goto out;
1267
1268         size = sizeof (con->actual_peer_addr);
1269         end += size;
1270         ret = read_partial(con, end, size, &con->actual_peer_addr);
1271         if (ret <= 0)
1272                 goto out;
1273
1274         size = sizeof (con->peer_addr_for_me);
1275         end += size;
1276         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1277         if (ret <= 0)
1278                 goto out;
1279
1280 out:
1281         return ret;
1282 }
1283
1284 static int read_partial_connect(struct ceph_connection *con)
1285 {
1286         int size;
1287         int end;
1288         int ret;
1289
1290         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1291
1292         size = sizeof (con->in_reply);
1293         end = size;
1294         ret = read_partial(con, end, size, &con->in_reply);
1295         if (ret <= 0)
1296                 goto out;
1297
1298         size = le32_to_cpu(con->in_reply.authorizer_len);
1299         end += size;
1300         ret = read_partial(con, end, size, con->auth_reply_buf);
1301         if (ret <= 0)
1302                 goto out;
1303
1304         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1305              con, (int)con->in_reply.tag,
1306              le32_to_cpu(con->in_reply.connect_seq),
1307              le32_to_cpu(con->in_reply.global_seq));
1308 out:
1309         return ret;
1310
1311 }
1312
1313 /*
1314  * Verify the hello banner looks okay.
1315  */
1316 static int verify_hello(struct ceph_connection *con)
1317 {
1318         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1319                 pr_err("connect to %s got bad banner\n",
1320                        ceph_pr_addr(&con->peer_addr.in_addr));
1321                 con->error_msg = "protocol error, bad banner";
1322                 return -1;
1323         }
1324         return 0;
1325 }
1326
1327 static bool addr_is_blank(struct sockaddr_storage *ss)
1328 {
1329         switch (ss->ss_family) {
1330         case AF_INET:
1331                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1332         case AF_INET6:
1333                 return
1334                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1335                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1336                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1337                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1338         }
1339         return false;
1340 }
1341
1342 static int addr_port(struct sockaddr_storage *ss)
1343 {
1344         switch (ss->ss_family) {
1345         case AF_INET:
1346                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1347         case AF_INET6:
1348                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1349         }
1350         return 0;
1351 }
1352
1353 static void addr_set_port(struct sockaddr_storage *ss, int p)
1354 {
1355         switch (ss->ss_family) {
1356         case AF_INET:
1357                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1358                 break;
1359         case AF_INET6:
1360                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1361                 break;
1362         }
1363 }
1364
1365 /*
1366  * Unlike other *_pton function semantics, zero indicates success.
1367  */
1368 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1369                 char delim, const char **ipend)
1370 {
1371         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1372         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1373
1374         memset(ss, 0, sizeof(*ss));
1375
1376         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1377                 ss->ss_family = AF_INET;
1378                 return 0;
1379         }
1380
1381         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1382                 ss->ss_family = AF_INET6;
1383                 return 0;
1384         }
1385
1386         return -EINVAL;
1387 }
1388
1389 /*
1390  * Extract hostname string and resolve using kernel DNS facility.
1391  */
1392 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1393 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1394                 struct sockaddr_storage *ss, char delim, const char **ipend)
1395 {
1396         const char *end, *delim_p;
1397         char *colon_p, *ip_addr = NULL;
1398         int ip_len, ret;
1399
1400         /*
1401          * The end of the hostname occurs immediately preceding the delimiter or
1402          * the port marker (':') where the delimiter takes precedence.
1403          */
1404         delim_p = memchr(name, delim, namelen);
1405         colon_p = memchr(name, ':', namelen);
1406
1407         if (delim_p && colon_p)
1408                 end = delim_p < colon_p ? delim_p : colon_p;
1409         else if (!delim_p && colon_p)
1410                 end = colon_p;
1411         else {
1412                 end = delim_p;
1413                 if (!end) /* case: hostname:/ */
1414                         end = name + namelen;
1415         }
1416
1417         if (end <= name)
1418                 return -EINVAL;
1419
1420         /* do dns_resolve upcall */
1421         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1422         if (ip_len > 0)
1423                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1424         else
1425                 ret = -ESRCH;
1426
1427         kfree(ip_addr);
1428
1429         *ipend = end;
1430
1431         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1432                         ret, ret ? "failed" : ceph_pr_addr(ss));
1433
1434         return ret;
1435 }
1436 #else
1437 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1438                 struct sockaddr_storage *ss, char delim, const char **ipend)
1439 {
1440         return -EINVAL;
1441 }
1442 #endif
1443
1444 /*
1445  * Parse a server name (IP or hostname). If a valid IP address is not found
1446  * then try to extract a hostname to resolve using userspace DNS upcall.
1447  */
1448 static int ceph_parse_server_name(const char *name, size_t namelen,
1449                         struct sockaddr_storage *ss, char delim, const char **ipend)
1450 {
1451         int ret;
1452
1453         ret = ceph_pton(name, namelen, ss, delim, ipend);
1454         if (ret)
1455                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1456
1457         return ret;
1458 }
1459
1460 /*
1461  * Parse an ip[:port] list into an addr array.  Use the default
1462  * monitor port if a port isn't specified.
1463  */
1464 int ceph_parse_ips(const char *c, const char *end,
1465                    struct ceph_entity_addr *addr,
1466                    int max_count, int *count)
1467 {
1468         int i, ret = -EINVAL;
1469         const char *p = c;
1470
1471         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1472         for (i = 0; i < max_count; i++) {
1473                 const char *ipend;
1474                 struct sockaddr_storage *ss = &addr[i].in_addr;
1475                 int port;
1476                 char delim = ',';
1477
1478                 if (*p == '[') {
1479                         delim = ']';
1480                         p++;
1481                 }
1482
1483                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1484                 if (ret)
1485                         goto bad;
1486                 ret = -EINVAL;
1487
1488                 p = ipend;
1489
1490                 if (delim == ']') {
1491                         if (*p != ']') {
1492                                 dout("missing matching ']'\n");
1493                                 goto bad;
1494                         }
1495                         p++;
1496                 }
1497
1498                 /* port? */
1499                 if (p < end && *p == ':') {
1500                         port = 0;
1501                         p++;
1502                         while (p < end && *p >= '0' && *p <= '9') {
1503                                 port = (port * 10) + (*p - '0');
1504                                 p++;
1505                         }
1506                         if (port > 65535 || port == 0)
1507                                 goto bad;
1508                 } else {
1509                         port = CEPH_MON_PORT;
1510                 }
1511
1512                 addr_set_port(ss, port);
1513
1514                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1515
1516                 if (p == end)
1517                         break;
1518                 if (*p != ',')
1519                         goto bad;
1520                 p++;
1521         }
1522
1523         if (p != end)
1524                 goto bad;
1525
1526         if (count)
1527                 *count = i + 1;
1528         return 0;
1529
1530 bad:
1531         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1532         return ret;
1533 }
1534 EXPORT_SYMBOL(ceph_parse_ips);
1535
1536 static int process_banner(struct ceph_connection *con)
1537 {
1538         dout("process_banner on %p\n", con);
1539
1540         if (verify_hello(con) < 0)
1541                 return -1;
1542
1543         ceph_decode_addr(&con->actual_peer_addr);
1544         ceph_decode_addr(&con->peer_addr_for_me);
1545
1546         /*
1547          * Make sure the other end is who we wanted.  note that the other
1548          * end may not yet know their ip address, so if it's 0.0.0.0, give
1549          * them the benefit of the doubt.
1550          */
1551         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1552                    sizeof(con->peer_addr)) != 0 &&
1553             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1554               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1555                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1556                            ceph_pr_addr(&con->peer_addr.in_addr),
1557                            (int)le32_to_cpu(con->peer_addr.nonce),
1558                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1559                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1560                 con->error_msg = "wrong peer at address";
1561                 return -1;
1562         }
1563
1564         /*
1565          * did we learn our address?
1566          */
1567         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1568                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1569
1570                 memcpy(&con->msgr->inst.addr.in_addr,
1571                        &con->peer_addr_for_me.in_addr,
1572                        sizeof(con->peer_addr_for_me.in_addr));
1573                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1574                 encode_my_addr(con->msgr);
1575                 dout("process_banner learned my addr is %s\n",
1576                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1577         }
1578
1579         return 0;
1580 }
1581
1582 static int process_connect(struct ceph_connection *con)
1583 {
1584         u64 sup_feat = con->msgr->supported_features;
1585         u64 req_feat = con->msgr->required_features;
1586         u64 server_feat = le64_to_cpu(con->in_reply.features);
1587         int ret;
1588
1589         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1590
1591         switch (con->in_reply.tag) {
1592         case CEPH_MSGR_TAG_FEATURES:
1593                 pr_err("%s%lld %s feature set mismatch,"
1594                        " my %llx < server's %llx, missing %llx\n",
1595                        ENTITY_NAME(con->peer_name),
1596                        ceph_pr_addr(&con->peer_addr.in_addr),
1597                        sup_feat, server_feat, server_feat & ~sup_feat);
1598                 con->error_msg = "missing required protocol features";
1599                 reset_connection(con);
1600                 return -1;
1601
1602         case CEPH_MSGR_TAG_BADPROTOVER:
1603                 pr_err("%s%lld %s protocol version mismatch,"
1604                        " my %d != server's %d\n",
1605                        ENTITY_NAME(con->peer_name),
1606                        ceph_pr_addr(&con->peer_addr.in_addr),
1607                        le32_to_cpu(con->out_connect.protocol_version),
1608                        le32_to_cpu(con->in_reply.protocol_version));
1609                 con->error_msg = "protocol version mismatch";
1610                 reset_connection(con);
1611                 return -1;
1612
1613         case CEPH_MSGR_TAG_BADAUTHORIZER:
1614                 con->auth_retry++;
1615                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1616                      con->auth_retry);
1617                 if (con->auth_retry == 2) {
1618                         con->error_msg = "connect authorization failure";
1619                         return -1;
1620                 }
1621                 con->auth_retry = 1;
1622                 con_out_kvec_reset(con);
1623                 ret = prepare_write_connect(con);
1624                 if (ret < 0)
1625                         return ret;
1626                 prepare_read_connect(con);
1627                 break;
1628
1629         case CEPH_MSGR_TAG_RESETSESSION:
1630                 /*
1631                  * If we connected with a large connect_seq but the peer
1632                  * has no record of a session with us (no connection, or
1633                  * connect_seq == 0), they will send RESETSESION to indicate
1634                  * that they must have reset their session, and may have
1635                  * dropped messages.
1636                  */
1637                 dout("process_connect got RESET peer seq %u\n",
1638                      le32_to_cpu(con->in_reply.connect_seq));
1639                 pr_err("%s%lld %s connection reset\n",
1640                        ENTITY_NAME(con->peer_name),
1641                        ceph_pr_addr(&con->peer_addr.in_addr));
1642                 reset_connection(con);
1643                 con_out_kvec_reset(con);
1644                 ret = prepare_write_connect(con);
1645                 if (ret < 0)
1646                         return ret;
1647                 prepare_read_connect(con);
1648
1649                 /* Tell ceph about it. */
1650                 mutex_unlock(&con->mutex);
1651                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1652                 if (con->ops->peer_reset)
1653                         con->ops->peer_reset(con);
1654                 mutex_lock(&con->mutex);
1655                 if (con->state != CON_STATE_NEGOTIATING)
1656                         return -EAGAIN;
1657                 break;
1658
1659         case CEPH_MSGR_TAG_RETRY_SESSION:
1660                 /*
1661                  * If we sent a smaller connect_seq than the peer has, try
1662                  * again with a larger value.
1663                  */
1664                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1665                      le32_to_cpu(con->out_connect.connect_seq),
1666                      le32_to_cpu(con->in_reply.connect_seq));
1667                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1668                 con_out_kvec_reset(con);
1669                 ret = prepare_write_connect(con);
1670                 if (ret < 0)
1671                         return ret;
1672                 prepare_read_connect(con);
1673                 break;
1674
1675         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1676                 /*
1677                  * If we sent a smaller global_seq than the peer has, try
1678                  * again with a larger value.
1679                  */
1680                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1681                      con->peer_global_seq,
1682                      le32_to_cpu(con->in_reply.global_seq));
1683                 get_global_seq(con->msgr,
1684                                le32_to_cpu(con->in_reply.global_seq));
1685                 con_out_kvec_reset(con);
1686                 ret = prepare_write_connect(con);
1687                 if (ret < 0)
1688                         return ret;
1689                 prepare_read_connect(con);
1690                 break;
1691
1692         case CEPH_MSGR_TAG_READY:
1693                 if (req_feat & ~server_feat) {
1694                         pr_err("%s%lld %s protocol feature mismatch,"
1695                                " my required %llx > server's %llx, need %llx\n",
1696                                ENTITY_NAME(con->peer_name),
1697                                ceph_pr_addr(&con->peer_addr.in_addr),
1698                                req_feat, server_feat, req_feat & ~server_feat);
1699                         con->error_msg = "missing required protocol features";
1700                         reset_connection(con);
1701                         return -1;
1702                 }
1703
1704                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1705                 con->state = CON_STATE_OPEN;
1706
1707                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1708                 con->connect_seq++;
1709                 con->peer_features = server_feat;
1710                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1711                      con->peer_global_seq,
1712                      le32_to_cpu(con->in_reply.connect_seq),
1713                      con->connect_seq);
1714                 WARN_ON(con->connect_seq !=
1715                         le32_to_cpu(con->in_reply.connect_seq));
1716
1717                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1718                         con_flag_set(con, CON_FLAG_LOSSYTX);
1719
1720                 con->delay = 0;      /* reset backoff memory */
1721
1722                 prepare_read_tag(con);
1723                 break;
1724
1725         case CEPH_MSGR_TAG_WAIT:
1726                 /*
1727                  * If there is a connection race (we are opening
1728                  * connections to each other), one of us may just have
1729                  * to WAIT.  This shouldn't happen if we are the
1730                  * client.
1731                  */
1732                 pr_err("process_connect got WAIT as client\n");
1733                 con->error_msg = "protocol error, got WAIT as client";
1734                 return -1;
1735
1736         default:
1737                 pr_err("connect protocol error, will retry\n");
1738                 con->error_msg = "protocol error, garbage tag during connect";
1739                 return -1;
1740         }
1741         return 0;
1742 }
1743
1744
1745 /*
1746  * read (part of) an ack
1747  */
1748 static int read_partial_ack(struct ceph_connection *con)
1749 {
1750         int size = sizeof (con->in_temp_ack);
1751         int end = size;
1752
1753         return read_partial(con, end, size, &con->in_temp_ack);
1754 }
1755
1756
1757 /*
1758  * We can finally discard anything that's been acked.
1759  */
1760 static void process_ack(struct ceph_connection *con)
1761 {
1762         struct ceph_msg *m;
1763         u64 ack = le64_to_cpu(con->in_temp_ack);
1764         u64 seq;
1765
1766         while (!list_empty(&con->out_sent)) {
1767                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1768                                      list_head);
1769                 seq = le64_to_cpu(m->hdr.seq);
1770                 if (seq > ack)
1771                         break;
1772                 dout("got ack for seq %llu type %d at %p\n", seq,
1773                      le16_to_cpu(m->hdr.type), m);
1774                 m->ack_stamp = jiffies;
1775                 ceph_msg_remove(m);
1776         }
1777         prepare_read_tag(con);
1778 }
1779
1780
1781
1782
1783 static int read_partial_message_section(struct ceph_connection *con,
1784                                         struct kvec *section,
1785                                         unsigned int sec_len, u32 *crc)
1786 {
1787         int ret, left;
1788
1789         BUG_ON(!section);
1790
1791         while (section->iov_len < sec_len) {
1792                 BUG_ON(section->iov_base == NULL);
1793                 left = sec_len - section->iov_len;
1794                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1795                                        section->iov_len, left);
1796                 if (ret <= 0)
1797                         return ret;
1798                 section->iov_len += ret;
1799         }
1800         if (section->iov_len == sec_len)
1801                 *crc = crc32c(0, section->iov_base, section->iov_len);
1802
1803         return 1;
1804 }
1805
1806 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1807
1808 static int read_partial_message_pages(struct ceph_connection *con,
1809                                       struct page **pages,
1810                                       unsigned int data_len, bool do_datacrc)
1811 {
1812         struct page *page;
1813         void *p;
1814         int ret;
1815         int left;
1816
1817         left = min((int)(data_len - con->in_msg_pos.data_pos),
1818                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1819         /* (page) data */
1820         BUG_ON(pages == NULL);
1821         page = pages[con->in_msg_pos.page];
1822         p = kmap(page);
1823         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, left);
1824         if (ret > 0 && do_datacrc)
1825                 con->in_data_crc =
1826                         crc32c(con->in_data_crc,
1827                                   p + con->in_msg_pos.page_pos, ret);
1828         kunmap(page);
1829         if (ret <= 0)
1830                 return ret;
1831
1832         in_msg_pos_next(con, left, ret);
1833
1834         return ret;
1835 }
1836
1837 #ifdef CONFIG_BLOCK
1838 static int read_partial_message_bio(struct ceph_connection *con,
1839                                     unsigned int data_len, bool do_datacrc)
1840 {
1841         struct ceph_msg *msg = con->in_msg;
1842         struct bio_vec *bv;
1843         struct page *page;
1844         void *p;
1845         int ret, left;
1846
1847         BUG_ON(!msg);
1848         BUG_ON(!msg->bio_iter);
1849         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1850
1851         left = min((int)(data_len - con->in_msg_pos.data_pos),
1852                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1853
1854         page = bv->bv_page;
1855         p = kmap(page) + bv->bv_offset;
1856
1857         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, left);
1858         if (ret > 0 && do_datacrc)
1859                 con->in_data_crc =
1860                         crc32c(con->in_data_crc,
1861                                   p + con->in_msg_pos.page_pos, ret);
1862         kunmap(page);
1863         if (ret <= 0)
1864                 return ret;
1865
1866         in_msg_pos_next(con, left, ret);
1867
1868         return ret;
1869 }
1870 #endif
1871
1872 /*
1873  * read (part of) a message.
1874  */
1875 static int read_partial_message(struct ceph_connection *con)
1876 {
1877         struct ceph_msg *m = con->in_msg;
1878         int size;
1879         int end;
1880         int ret;
1881         unsigned int front_len, middle_len, data_len;
1882         bool do_datacrc = !con->msgr->nocrc;
1883         u64 seq;
1884         u32 crc;
1885
1886         dout("read_partial_message con %p msg %p\n", con, m);
1887
1888         /* header */
1889         size = sizeof (con->in_hdr);
1890         end = size;
1891         ret = read_partial(con, end, size, &con->in_hdr);
1892         if (ret <= 0)
1893                 return ret;
1894
1895         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1896         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1897                 pr_err("read_partial_message bad hdr "
1898                        " crc %u != expected %u\n",
1899                        crc, con->in_hdr.crc);
1900                 return -EBADMSG;
1901         }
1902
1903         front_len = le32_to_cpu(con->in_hdr.front_len);
1904         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1905                 return -EIO;
1906         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1907         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
1908                 return -EIO;
1909         data_len = le32_to_cpu(con->in_hdr.data_len);
1910         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1911                 return -EIO;
1912
1913         /* verify seq# */
1914         seq = le64_to_cpu(con->in_hdr.seq);
1915         if ((s64)seq - (s64)con->in_seq < 1) {
1916                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1917                         ENTITY_NAME(con->peer_name),
1918                         ceph_pr_addr(&con->peer_addr.in_addr),
1919                         seq, con->in_seq + 1);
1920                 con->in_base_pos = -front_len - middle_len - data_len -
1921                         sizeof(m->footer);
1922                 con->in_tag = CEPH_MSGR_TAG_READY;
1923                 return 0;
1924         } else if ((s64)seq - (s64)con->in_seq > 1) {
1925                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1926                        seq, con->in_seq + 1);
1927                 con->error_msg = "bad message sequence # for incoming message";
1928                 return -EBADMSG;
1929         }
1930
1931         /* allocate message? */
1932         if (!con->in_msg) {
1933                 int skip = 0;
1934
1935                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1936                      front_len, data_len);
1937                 ret = ceph_con_in_msg_alloc(con, &skip);
1938                 if (ret < 0)
1939                         return ret;
1940                 if (skip) {
1941                         /* skip this message */
1942                         dout("alloc_msg said skip message\n");
1943                         BUG_ON(con->in_msg);
1944                         con->in_base_pos = -front_len - middle_len - data_len -
1945                                 sizeof(m->footer);
1946                         con->in_tag = CEPH_MSGR_TAG_READY;
1947                         con->in_seq++;
1948                         return 0;
1949                 }
1950
1951                 BUG_ON(!con->in_msg);
1952                 BUG_ON(con->in_msg->con != con);
1953                 m = con->in_msg;
1954                 m->front.iov_len = 0;    /* haven't read it yet */
1955                 if (m->middle)
1956                         m->middle->vec.iov_len = 0;
1957
1958                 con->in_msg_pos.page = 0;
1959                 if (m->pages)
1960                         con->in_msg_pos.page_pos = m->page_alignment;
1961                 else
1962                         con->in_msg_pos.page_pos = 0;
1963                 con->in_msg_pos.data_pos = 0;
1964
1965 #ifdef CONFIG_BLOCK
1966                 if (m->bio)
1967                         init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1968 #endif
1969         }
1970
1971         /* front */
1972         ret = read_partial_message_section(con, &m->front, front_len,
1973                                            &con->in_front_crc);
1974         if (ret <= 0)
1975                 return ret;
1976
1977         /* middle */
1978         if (m->middle) {
1979                 ret = read_partial_message_section(con, &m->middle->vec,
1980                                                    middle_len,
1981                                                    &con->in_middle_crc);
1982                 if (ret <= 0)
1983                         return ret;
1984         }
1985
1986         /* (page) data */
1987         while (con->in_msg_pos.data_pos < data_len) {
1988                 if (m->pages) {
1989                         ret = read_partial_message_pages(con, m->pages,
1990                                                  data_len, do_datacrc);
1991                         if (ret <= 0)
1992                                 return ret;
1993 #ifdef CONFIG_BLOCK
1994                 } else if (m->bio) {
1995                         ret = read_partial_message_bio(con,
1996                                                  data_len, do_datacrc);
1997                         if (ret <= 0)
1998                                 return ret;
1999 #endif
2000                 } else {
2001                         BUG_ON(1);
2002                 }
2003         }
2004
2005         /* footer */
2006         size = sizeof (m->footer);
2007         end += size;
2008         ret = read_partial(con, end, size, &m->footer);
2009         if (ret <= 0)
2010                 return ret;
2011
2012         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2013              m, front_len, m->footer.front_crc, middle_len,
2014              m->footer.middle_crc, data_len, m->footer.data_crc);
2015
2016         /* crc ok? */
2017         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2018                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2019                        m, con->in_front_crc, m->footer.front_crc);
2020                 return -EBADMSG;
2021         }
2022         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2023                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2024                        m, con->in_middle_crc, m->footer.middle_crc);
2025                 return -EBADMSG;
2026         }
2027         if (do_datacrc &&
2028             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2029             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2030                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2031                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2032                 return -EBADMSG;
2033         }
2034
2035         return 1; /* done! */
2036 }
2037
2038 /*
2039  * Process message.  This happens in the worker thread.  The callback should
2040  * be careful not to do anything that waits on other incoming messages or it
2041  * may deadlock.
2042  */
2043 static void process_message(struct ceph_connection *con)
2044 {
2045         struct ceph_msg *msg;
2046
2047         BUG_ON(con->in_msg->con != con);
2048         con->in_msg->con = NULL;
2049         msg = con->in_msg;
2050         con->in_msg = NULL;
2051         con->ops->put(con);
2052
2053         /* if first message, set peer_name */
2054         if (con->peer_name.type == 0)
2055                 con->peer_name = msg->hdr.src;
2056
2057         con->in_seq++;
2058         mutex_unlock(&con->mutex);
2059
2060         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2061              msg, le64_to_cpu(msg->hdr.seq),
2062              ENTITY_NAME(msg->hdr.src),
2063              le16_to_cpu(msg->hdr.type),
2064              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2065              le32_to_cpu(msg->hdr.front_len),
2066              le32_to_cpu(msg->hdr.data_len),
2067              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2068         con->ops->dispatch(con, msg);
2069
2070         mutex_lock(&con->mutex);
2071 }
2072
2073
2074 /*
2075  * Write something to the socket.  Called in a worker thread when the
2076  * socket appears to be writeable and we have something ready to send.
2077  */
2078 static int try_write(struct ceph_connection *con)
2079 {
2080         int ret = 1;
2081
2082         dout("try_write start %p state %lu\n", con, con->state);
2083
2084 more:
2085         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2086
2087         /* open the socket first? */
2088         if (con->state == CON_STATE_PREOPEN) {
2089                 BUG_ON(con->sock);
2090                 con->state = CON_STATE_CONNECTING;
2091
2092                 con_out_kvec_reset(con);
2093                 prepare_write_banner(con);
2094                 prepare_read_banner(con);
2095
2096                 BUG_ON(con->in_msg);
2097                 con->in_tag = CEPH_MSGR_TAG_READY;
2098                 dout("try_write initiating connect on %p new state %lu\n",
2099                      con, con->state);
2100                 ret = ceph_tcp_connect(con);
2101                 if (ret < 0) {
2102                         con->error_msg = "connect error";
2103                         goto out;
2104                 }
2105         }
2106
2107 more_kvec:
2108         /* kvec data queued? */
2109         if (con->out_skip) {
2110                 ret = write_partial_skip(con);
2111                 if (ret <= 0)
2112                         goto out;
2113         }
2114         if (con->out_kvec_left) {
2115                 ret = write_partial_kvec(con);
2116                 if (ret <= 0)
2117                         goto out;
2118         }
2119
2120         /* msg pages? */
2121         if (con->out_msg) {
2122                 if (con->out_msg_done) {
2123                         ceph_msg_put(con->out_msg);
2124                         con->out_msg = NULL;   /* we're done with this one */
2125                         goto do_next;
2126                 }
2127
2128                 ret = write_partial_msg_pages(con);
2129                 if (ret == 1)
2130                         goto more_kvec;  /* we need to send the footer, too! */
2131                 if (ret == 0)
2132                         goto out;
2133                 if (ret < 0) {
2134                         dout("try_write write_partial_msg_pages err %d\n",
2135                              ret);
2136                         goto out;
2137                 }
2138         }
2139
2140 do_next:
2141         if (con->state == CON_STATE_OPEN) {
2142                 /* is anything else pending? */
2143                 if (!list_empty(&con->out_queue)) {
2144                         prepare_write_message(con);
2145                         goto more;
2146                 }
2147                 if (con->in_seq > con->in_seq_acked) {
2148                         prepare_write_ack(con);
2149                         goto more;
2150                 }
2151                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2152                         prepare_write_keepalive(con);
2153                         goto more;
2154                 }
2155         }
2156
2157         /* Nothing to do! */
2158         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2159         dout("try_write nothing else to write.\n");
2160         ret = 0;
2161 out:
2162         dout("try_write done on %p ret %d\n", con, ret);
2163         return ret;
2164 }
2165
2166
2167
2168 /*
2169  * Read what we can from the socket.
2170  */
2171 static int try_read(struct ceph_connection *con)
2172 {
2173         int ret = -1;
2174
2175 more:
2176         dout("try_read start on %p state %lu\n", con, con->state);
2177         if (con->state != CON_STATE_CONNECTING &&
2178             con->state != CON_STATE_NEGOTIATING &&
2179             con->state != CON_STATE_OPEN)
2180                 return 0;
2181
2182         BUG_ON(!con->sock);
2183
2184         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2185              con->in_base_pos);
2186
2187         if (con->state == CON_STATE_CONNECTING) {
2188                 dout("try_read connecting\n");
2189                 ret = read_partial_banner(con);
2190                 if (ret <= 0)
2191                         goto out;
2192                 ret = process_banner(con);
2193                 if (ret < 0)
2194                         goto out;
2195
2196                 con->state = CON_STATE_NEGOTIATING;
2197
2198                 /*
2199                  * Received banner is good, exchange connection info.
2200                  * Do not reset out_kvec, as sending our banner raced
2201                  * with receiving peer banner after connect completed.
2202                  */
2203                 ret = prepare_write_connect(con);
2204                 if (ret < 0)
2205                         goto out;
2206                 prepare_read_connect(con);
2207
2208                 /* Send connection info before awaiting response */
2209                 goto out;
2210         }
2211
2212         if (con->state == CON_STATE_NEGOTIATING) {
2213                 dout("try_read negotiating\n");
2214                 ret = read_partial_connect(con);
2215                 if (ret <= 0)
2216                         goto out;
2217                 ret = process_connect(con);
2218                 if (ret < 0)
2219                         goto out;
2220                 goto more;
2221         }
2222
2223         WARN_ON(con->state != CON_STATE_OPEN);
2224
2225         if (con->in_base_pos < 0) {
2226                 /*
2227                  * skipping + discarding content.
2228                  *
2229                  * FIXME: there must be a better way to do this!
2230                  */
2231                 static char buf[SKIP_BUF_SIZE];
2232                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2233
2234                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2235                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2236                 if (ret <= 0)
2237                         goto out;
2238                 con->in_base_pos += ret;
2239                 if (con->in_base_pos)
2240                         goto more;
2241         }
2242         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2243                 /*
2244                  * what's next?
2245                  */
2246                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2247                 if (ret <= 0)
2248                         goto out;
2249                 dout("try_read got tag %d\n", (int)con->in_tag);
2250                 switch (con->in_tag) {
2251                 case CEPH_MSGR_TAG_MSG:
2252                         prepare_read_message(con);
2253                         break;
2254                 case CEPH_MSGR_TAG_ACK:
2255                         prepare_read_ack(con);
2256                         break;
2257                 case CEPH_MSGR_TAG_CLOSE:
2258                         con_close_socket(con);
2259                         con->state = CON_STATE_CLOSED;
2260                         goto out;
2261                 default:
2262                         goto bad_tag;
2263                 }
2264         }
2265         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2266                 ret = read_partial_message(con);
2267                 if (ret <= 0) {
2268                         switch (ret) {
2269                         case -EBADMSG:
2270                                 con->error_msg = "bad crc";
2271                                 ret = -EIO;
2272                                 break;
2273                         case -EIO:
2274                                 con->error_msg = "io error";
2275                                 break;
2276                         }
2277                         goto out;
2278                 }
2279                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2280                         goto more;
2281                 process_message(con);
2282                 if (con->state == CON_STATE_OPEN)
2283                         prepare_read_tag(con);
2284                 goto more;
2285         }
2286         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2287                 ret = read_partial_ack(con);
2288                 if (ret <= 0)
2289                         goto out;
2290                 process_ack(con);
2291                 goto more;
2292         }
2293
2294 out:
2295         dout("try_read done on %p ret %d\n", con, ret);
2296         return ret;
2297
2298 bad_tag:
2299         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2300         con->error_msg = "protocol error, garbage tag";
2301         ret = -1;
2302         goto out;
2303 }
2304
2305
2306 /*
2307  * Atomically queue work on a connection after the specified delay.
2308  * Bump @con reference to avoid races with connection teardown.
2309  * Returns 0 if work was queued, or an error code otherwise.
2310  */
2311 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2312 {
2313         if (!con->ops->get(con)) {
2314                 dout("%s %p ref count 0\n", __func__, con);
2315
2316                 return -ENOENT;
2317         }
2318
2319         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2320                 dout("%s %p - already queued\n", __func__, con);
2321                 con->ops->put(con);
2322
2323                 return -EBUSY;
2324         }
2325
2326         dout("%s %p %lu\n", __func__, con, delay);
2327
2328         return 0;
2329 }
2330
2331 static void queue_con(struct ceph_connection *con)
2332 {
2333         (void) queue_con_delay(con, 0);
2334 }
2335
2336 static bool con_sock_closed(struct ceph_connection *con)
2337 {
2338         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2339                 return false;
2340
2341 #define CASE(x)                                                         \
2342         case CON_STATE_ ## x:                                           \
2343                 con->error_msg = "socket closed (con state " #x ")";    \
2344                 break;
2345
2346         switch (con->state) {
2347         CASE(CLOSED);
2348         CASE(PREOPEN);
2349         CASE(CONNECTING);
2350         CASE(NEGOTIATING);
2351         CASE(OPEN);
2352         CASE(STANDBY);
2353         default:
2354                 pr_warning("%s con %p unrecognized state %lu\n",
2355                         __func__, con, con->state);
2356                 con->error_msg = "unrecognized con state";
2357                 BUG();
2358                 break;
2359         }
2360 #undef CASE
2361
2362         return true;
2363 }
2364
2365 static bool con_backoff(struct ceph_connection *con)
2366 {
2367         int ret;
2368
2369         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2370                 return false;
2371
2372         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2373         if (ret) {
2374                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2375                         con, con->delay);
2376                 BUG_ON(ret == -ENOENT);
2377                 con_flag_set(con, CON_FLAG_BACKOFF);
2378         }
2379
2380         return true;
2381 }
2382
2383 /* Finish fault handling; con->mutex must *not* be held here */
2384
2385 static void con_fault_finish(struct ceph_connection *con)
2386 {
2387         /*
2388          * in case we faulted due to authentication, invalidate our
2389          * current tickets so that we can get new ones.
2390          */
2391         if (con->auth_retry && con->ops->invalidate_authorizer) {
2392                 dout("calling invalidate_authorizer()\n");
2393                 con->ops->invalidate_authorizer(con);
2394         }
2395
2396         if (con->ops->fault)
2397                 con->ops->fault(con);
2398 }
2399
2400 /*
2401  * Do some work on a connection.  Drop a connection ref when we're done.
2402  */
2403 static void con_work(struct work_struct *work)
2404 {
2405         struct ceph_connection *con = container_of(work, struct ceph_connection,
2406                                                    work.work);
2407         bool fault;
2408
2409         mutex_lock(&con->mutex);
2410         while (true) {
2411                 int ret;
2412
2413                 if ((fault = con_sock_closed(con))) {
2414                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2415                         break;
2416                 }
2417                 if (con_backoff(con)) {
2418                         dout("%s: con %p BACKOFF\n", __func__, con);
2419                         break;
2420                 }
2421                 if (con->state == CON_STATE_STANDBY) {
2422                         dout("%s: con %p STANDBY\n", __func__, con);
2423                         break;
2424                 }
2425                 if (con->state == CON_STATE_CLOSED) {
2426                         dout("%s: con %p CLOSED\n", __func__, con);
2427                         BUG_ON(con->sock);
2428                         break;
2429                 }
2430                 if (con->state == CON_STATE_PREOPEN) {
2431                         dout("%s: con %p PREOPEN\n", __func__, con);
2432                         BUG_ON(con->sock);
2433                 }
2434
2435                 ret = try_read(con);
2436                 if (ret < 0) {
2437                         if (ret == -EAGAIN)
2438                                 continue;
2439                         con->error_msg = "socket error on read";
2440                         fault = true;
2441                         break;
2442                 }
2443
2444                 ret = try_write(con);
2445                 if (ret < 0) {
2446                         if (ret == -EAGAIN)
2447                                 continue;
2448                         con->error_msg = "socket error on write";
2449                         fault = true;
2450                 }
2451
2452                 break;  /* If we make it to here, we're done */
2453         }
2454         if (fault)
2455                 con_fault(con);
2456         mutex_unlock(&con->mutex);
2457
2458         if (fault)
2459                 con_fault_finish(con);
2460
2461         con->ops->put(con);
2462 }
2463
2464 /*
2465  * Generic error/fault handler.  A retry mechanism is used with
2466  * exponential backoff
2467  */
2468 static void con_fault(struct ceph_connection *con)
2469 {
2470         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2471                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2472         dout("fault %p state %lu to peer %s\n",
2473              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2474
2475         WARN_ON(con->state != CON_STATE_CONNECTING &&
2476                con->state != CON_STATE_NEGOTIATING &&
2477                con->state != CON_STATE_OPEN);
2478
2479         con_close_socket(con);
2480
2481         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2482                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2483                 con->state = CON_STATE_CLOSED;
2484                 return;
2485         }
2486
2487         if (con->in_msg) {
2488                 BUG_ON(con->in_msg->con != con);
2489                 con->in_msg->con = NULL;
2490                 ceph_msg_put(con->in_msg);
2491                 con->in_msg = NULL;
2492                 con->ops->put(con);
2493         }
2494
2495         /* Requeue anything that hasn't been acked */
2496         list_splice_init(&con->out_sent, &con->out_queue);
2497
2498         /* If there are no messages queued or keepalive pending, place
2499          * the connection in a STANDBY state */
2500         if (list_empty(&con->out_queue) &&
2501             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2502                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2503                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2504                 con->state = CON_STATE_STANDBY;
2505         } else {
2506                 /* retry after a delay. */
2507                 con->state = CON_STATE_PREOPEN;
2508                 if (con->delay == 0)
2509                         con->delay = BASE_DELAY_INTERVAL;
2510                 else if (con->delay < MAX_DELAY_INTERVAL)
2511                         con->delay *= 2;
2512                 con_flag_set(con, CON_FLAG_BACKOFF);
2513                 queue_con(con);
2514         }
2515 }
2516
2517
2518
2519 /*
2520  * initialize a new messenger instance
2521  */
2522 void ceph_messenger_init(struct ceph_messenger *msgr,
2523                         struct ceph_entity_addr *myaddr,
2524                         u32 supported_features,
2525                         u32 required_features,
2526                         bool nocrc)
2527 {
2528         msgr->supported_features = supported_features;
2529         msgr->required_features = required_features;
2530
2531         spin_lock_init(&msgr->global_seq_lock);
2532
2533         if (myaddr)
2534                 msgr->inst.addr = *myaddr;
2535
2536         /* select a random nonce */
2537         msgr->inst.addr.type = 0;
2538         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2539         encode_my_addr(msgr);
2540         msgr->nocrc = nocrc;
2541
2542         atomic_set(&msgr->stopping, 0);
2543
2544         dout("%s %p\n", __func__, msgr);
2545 }
2546 EXPORT_SYMBOL(ceph_messenger_init);
2547
2548 static void clear_standby(struct ceph_connection *con)
2549 {
2550         /* come back from STANDBY? */
2551         if (con->state == CON_STATE_STANDBY) {
2552                 dout("clear_standby %p and ++connect_seq\n", con);
2553                 con->state = CON_STATE_PREOPEN;
2554                 con->connect_seq++;
2555                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2556                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2557         }
2558 }
2559
2560 /*
2561  * Queue up an outgoing message on the given connection.
2562  */
2563 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2564 {
2565         /* set src+dst */
2566         msg->hdr.src = con->msgr->inst.name;
2567         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2568         msg->needs_out_seq = true;
2569
2570         mutex_lock(&con->mutex);
2571
2572         if (con->state == CON_STATE_CLOSED) {
2573                 dout("con_send %p closed, dropping %p\n", con, msg);
2574                 ceph_msg_put(msg);
2575                 mutex_unlock(&con->mutex);
2576                 return;
2577         }
2578
2579         BUG_ON(msg->con != NULL);
2580         msg->con = con->ops->get(con);
2581         BUG_ON(msg->con == NULL);
2582
2583         BUG_ON(!list_empty(&msg->list_head));
2584         list_add_tail(&msg->list_head, &con->out_queue);
2585         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2586              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2587              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2588              le32_to_cpu(msg->hdr.front_len),
2589              le32_to_cpu(msg->hdr.middle_len),
2590              le32_to_cpu(msg->hdr.data_len));
2591
2592         clear_standby(con);
2593         mutex_unlock(&con->mutex);
2594
2595         /* if there wasn't anything waiting to send before, queue
2596          * new work */
2597         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2598                 queue_con(con);
2599 }
2600 EXPORT_SYMBOL(ceph_con_send);
2601
2602 /*
2603  * Revoke a message that was previously queued for send
2604  */
2605 void ceph_msg_revoke(struct ceph_msg *msg)
2606 {
2607         struct ceph_connection *con = msg->con;
2608
2609         if (!con)
2610                 return;         /* Message not in our possession */
2611
2612         mutex_lock(&con->mutex);
2613         if (!list_empty(&msg->list_head)) {
2614                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2615                 list_del_init(&msg->list_head);
2616                 BUG_ON(msg->con == NULL);
2617                 msg->con->ops->put(msg->con);
2618                 msg->con = NULL;
2619                 msg->hdr.seq = 0;
2620
2621                 ceph_msg_put(msg);
2622         }
2623         if (con->out_msg == msg) {
2624                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2625                 con->out_msg = NULL;
2626                 if (con->out_kvec_is_msg) {
2627                         con->out_skip = con->out_kvec_bytes;
2628                         con->out_kvec_is_msg = false;
2629                 }
2630                 msg->hdr.seq = 0;
2631
2632                 ceph_msg_put(msg);
2633         }
2634         mutex_unlock(&con->mutex);
2635 }
2636
2637 /*
2638  * Revoke a message that we may be reading data into
2639  */
2640 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2641 {
2642         struct ceph_connection *con;
2643
2644         BUG_ON(msg == NULL);
2645         if (!msg->con) {
2646                 dout("%s msg %p null con\n", __func__, msg);
2647
2648                 return;         /* Message not in our possession */
2649         }
2650
2651         con = msg->con;
2652         mutex_lock(&con->mutex);
2653         if (con->in_msg == msg) {
2654                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2655                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2656                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2657
2658                 /* skip rest of message */
2659                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2660                 con->in_base_pos = con->in_base_pos -
2661                                 sizeof(struct ceph_msg_header) -
2662                                 front_len -
2663                                 middle_len -
2664                                 data_len -
2665                                 sizeof(struct ceph_msg_footer);
2666                 ceph_msg_put(con->in_msg);
2667                 con->in_msg = NULL;
2668                 con->in_tag = CEPH_MSGR_TAG_READY;
2669                 con->in_seq++;
2670         } else {
2671                 dout("%s %p in_msg %p msg %p no-op\n",
2672                      __func__, con, con->in_msg, msg);
2673         }
2674         mutex_unlock(&con->mutex);
2675 }
2676
2677 /*
2678  * Queue a keepalive byte to ensure the tcp connection is alive.
2679  */
2680 void ceph_con_keepalive(struct ceph_connection *con)
2681 {
2682         dout("con_keepalive %p\n", con);
2683         mutex_lock(&con->mutex);
2684         clear_standby(con);
2685         mutex_unlock(&con->mutex);
2686         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2687             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2688                 queue_con(con);
2689 }
2690 EXPORT_SYMBOL(ceph_con_keepalive);
2691
2692 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2693                 unsigned int page_count, size_t alignment)
2694 {
2695         /* BUG_ON(msg->pages); */
2696         /* BUG_ON(msg->page_count); */
2697
2698         msg->pages = pages;
2699         msg->page_count = page_count;
2700         msg->page_alignment = alignment & ~PAGE_MASK;
2701 }
2702 EXPORT_SYMBOL(ceph_msg_data_set_pages);
2703
2704 /*
2705  * construct a new message with given type, size
2706  * the new msg has a ref count of 1.
2707  */
2708 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2709                               bool can_fail)
2710 {
2711         struct ceph_msg *m;
2712
2713         m = kzalloc(sizeof(*m), flags);
2714         if (m == NULL)
2715                 goto out;
2716
2717         m->hdr.type = cpu_to_le16(type);
2718         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2719         m->hdr.front_len = cpu_to_le32(front_len);
2720
2721         INIT_LIST_HEAD(&m->list_head);
2722         kref_init(&m->kref);
2723
2724         /* front */
2725         m->front_max = front_len;
2726         if (front_len) {
2727                 if (front_len > PAGE_CACHE_SIZE) {
2728                         m->front.iov_base = __vmalloc(front_len, flags,
2729                                                       PAGE_KERNEL);
2730                         m->front_is_vmalloc = true;
2731                 } else {
2732                         m->front.iov_base = kmalloc(front_len, flags);
2733                 }
2734                 if (m->front.iov_base == NULL) {
2735                         dout("ceph_msg_new can't allocate %d bytes\n",
2736                              front_len);
2737                         goto out2;
2738                 }
2739         } else {
2740                 m->front.iov_base = NULL;
2741         }
2742         m->front.iov_len = front_len;
2743
2744         dout("ceph_msg_new %p front %d\n", m, front_len);
2745         return m;
2746
2747 out2:
2748         ceph_msg_put(m);
2749 out:
2750         if (!can_fail) {
2751                 pr_err("msg_new can't create type %d front %d\n", type,
2752                        front_len);
2753                 WARN_ON(1);
2754         } else {
2755                 dout("msg_new can't create type %d front %d\n", type,
2756                      front_len);
2757         }
2758         return NULL;
2759 }
2760 EXPORT_SYMBOL(ceph_msg_new);
2761
2762 /*
2763  * Allocate "middle" portion of a message, if it is needed and wasn't
2764  * allocated by alloc_msg.  This allows us to read a small fixed-size
2765  * per-type header in the front and then gracefully fail (i.e.,
2766  * propagate the error to the caller based on info in the front) when
2767  * the middle is too large.
2768  */
2769 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2770 {
2771         int type = le16_to_cpu(msg->hdr.type);
2772         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2773
2774         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2775              ceph_msg_type_name(type), middle_len);
2776         BUG_ON(!middle_len);
2777         BUG_ON(msg->middle);
2778
2779         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2780         if (!msg->middle)
2781                 return -ENOMEM;
2782         return 0;
2783 }
2784
2785 /*
2786  * Allocate a message for receiving an incoming message on a
2787  * connection, and save the result in con->in_msg.  Uses the
2788  * connection's private alloc_msg op if available.
2789  *
2790  * Returns 0 on success, or a negative error code.
2791  *
2792  * On success, if we set *skip = 1:
2793  *  - the next message should be skipped and ignored.
2794  *  - con->in_msg == NULL
2795  * or if we set *skip = 0:
2796  *  - con->in_msg is non-null.
2797  * On error (ENOMEM, EAGAIN, ...),
2798  *  - con->in_msg == NULL
2799  */
2800 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2801 {
2802         struct ceph_msg_header *hdr = &con->in_hdr;
2803         int middle_len = le32_to_cpu(hdr->middle_len);
2804         struct ceph_msg *msg;
2805         int ret = 0;
2806
2807         BUG_ON(con->in_msg != NULL);
2808         BUG_ON(!con->ops->alloc_msg);
2809
2810         mutex_unlock(&con->mutex);
2811         msg = con->ops->alloc_msg(con, hdr, skip);
2812         mutex_lock(&con->mutex);
2813         if (con->state != CON_STATE_OPEN) {
2814                 if (msg)
2815                         ceph_msg_put(msg);
2816                 return -EAGAIN;
2817         }
2818         if (msg) {
2819                 BUG_ON(*skip);
2820                 con->in_msg = msg;
2821                 con->in_msg->con = con->ops->get(con);
2822                 BUG_ON(con->in_msg->con == NULL);
2823         } else {
2824                 /*
2825                  * Null message pointer means either we should skip
2826                  * this message or we couldn't allocate memory.  The
2827                  * former is not an error.
2828                  */
2829                 if (*skip)
2830                         return 0;
2831                 con->error_msg = "error allocating memory for incoming message";
2832
2833                 return -ENOMEM;
2834         }
2835         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2836
2837         if (middle_len && !con->in_msg->middle) {
2838                 ret = ceph_alloc_middle(con, con->in_msg);
2839                 if (ret < 0) {
2840                         ceph_msg_put(con->in_msg);
2841                         con->in_msg = NULL;
2842                 }
2843         }
2844
2845         return ret;
2846 }
2847
2848
2849 /*
2850  * Free a generically kmalloc'd message.
2851  */
2852 void ceph_msg_kfree(struct ceph_msg *m)
2853 {
2854         dout("msg_kfree %p\n", m);
2855         if (m->front_is_vmalloc)
2856                 vfree(m->front.iov_base);
2857         else
2858                 kfree(m->front.iov_base);
2859         kfree(m);
2860 }
2861
2862 /*
2863  * Drop a msg ref.  Destroy as needed.
2864  */
2865 void ceph_msg_last_put(struct kref *kref)
2866 {
2867         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2868
2869         dout("ceph_msg_put last one on %p\n", m);
2870         WARN_ON(!list_empty(&m->list_head));
2871
2872         /* drop middle, data, if any */
2873         if (m->middle) {
2874                 ceph_buffer_put(m->middle);
2875                 m->middle = NULL;
2876         }
2877         m->page_count = 0;
2878         m->pages = NULL;
2879
2880         if (m->pagelist) {
2881                 ceph_pagelist_release(m->pagelist);
2882                 kfree(m->pagelist);
2883                 m->pagelist = NULL;
2884         }
2885
2886         m->trail = NULL;
2887
2888         if (m->pool)
2889                 ceph_msgpool_put(m->pool, m);
2890         else
2891                 ceph_msg_kfree(m);
2892 }
2893 EXPORT_SYMBOL(ceph_msg_last_put);
2894
2895 void ceph_msg_dump(struct ceph_msg *msg)
2896 {
2897         pr_debug("msg_dump %p (front_max %d page_count %d)\n", msg,
2898                  msg->front_max, msg->page_count);
2899         print_hex_dump(KERN_DEBUG, "header: ",
2900                        DUMP_PREFIX_OFFSET, 16, 1,
2901                        &msg->hdr, sizeof(msg->hdr), true);
2902         print_hex_dump(KERN_DEBUG, " front: ",
2903                        DUMP_PREFIX_OFFSET, 16, 1,
2904                        msg->front.iov_base, msg->front.iov_len, true);
2905         if (msg->middle)
2906                 print_hex_dump(KERN_DEBUG, "middle: ",
2907                                DUMP_PREFIX_OFFSET, 16, 1,
2908                                msg->middle->vec.iov_base,
2909                                msg->middle->vec.iov_len, true);
2910         print_hex_dump(KERN_DEBUG, "footer: ",
2911                        DUMP_PREFIX_OFFSET, 16, 1,
2912                        &msg->footer, sizeof(msg->footer), true);
2913 }
2914 EXPORT_SYMBOL(ceph_msg_dump);