]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
rbd: create rbd_refresh_helper()
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73
74 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
79
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94                                        * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE   1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page;          /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135         int i;
136         char *s;
137         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141         s = addr_str[i];
142
143         switch (ss->ss_family) {
144         case AF_INET:
145                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146                          ntohs(in4->sin_port));
147                 break;
148
149         case AF_INET6:
150                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151                          ntohs(in6->sin6_port));
152                 break;
153
154         default:
155                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156                          ss->ss_family);
157         }
158
159         return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166         ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176         if (ceph_msgr_wq) {
177                 destroy_workqueue(ceph_msgr_wq);
178                 ceph_msgr_wq = NULL;
179         }
180
181         BUG_ON(zero_page == NULL);
182         kunmap(zero_page);
183         page_cache_release(zero_page);
184         zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189         BUG_ON(zero_page != NULL);
190         zero_page = ZERO_PAGE(0);
191         page_cache_get(zero_page);
192
193         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194         if (ceph_msgr_wq)
195                 return 0;
196
197         pr_err("msgr_init failed to create workqueue\n");
198         _ceph_msgr_exit();
199
200         return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206         BUG_ON(ceph_msgr_wq == NULL);
207
208         _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214         flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222         int old_state;
223
224         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226                 printk("%s: unexpected old state %d\n", __func__, old_state);
227         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228              CON_SOCK_STATE_CLOSED);
229 }
230
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233         int old_state;
234
235         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237                 printk("%s: unexpected old state %d\n", __func__, old_state);
238         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239              CON_SOCK_STATE_CONNECTING);
240 }
241
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244         int old_state;
245
246         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248                 printk("%s: unexpected old state %d\n", __func__, old_state);
249         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250              CON_SOCK_STATE_CONNECTED);
251 }
252
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255         int old_state;
256
257         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259                         old_state != CON_SOCK_STATE_CONNECTED &&
260                         old_state != CON_SOCK_STATE_CLOSING))
261                 printk("%s: unexpected old state %d\n", __func__, old_state);
262         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263              CON_SOCK_STATE_CLOSING);
264 }
265
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268         int old_state;
269
270         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272                     old_state != CON_SOCK_STATE_CLOSING &&
273                     old_state != CON_SOCK_STATE_CONNECTING &&
274                     old_state != CON_SOCK_STATE_CLOSED))
275                 printk("%s: unexpected old state %d\n", __func__, old_state);
276         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277              CON_SOCK_STATE_CLOSED);
278 }
279
280 /*
281  * socket callback functions
282  */
283
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287         struct ceph_connection *con = sk->sk_user_data;
288         if (atomic_read(&con->msgr->stopping)) {
289                 return;
290         }
291
292         if (sk->sk_state != TCP_CLOSE_WAIT) {
293                 dout("%s on %p state = %lu, queueing work\n", __func__,
294                      con, con->state);
295                 queue_con(con);
296         }
297 }
298
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302         struct ceph_connection *con = sk->sk_user_data;
303
304         /* only queue to workqueue if there is data we want to write,
305          * and there is sufficient space in the socket buffer to accept
306          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307          * doesn't get called again until try_write() fills the socket
308          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309          * and net/core/stream.c:sk_stream_write_space().
310          */
311         if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313                         dout("%s %p queueing write work\n", __func__, con);
314                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315                         queue_con(con);
316                 }
317         } else {
318                 dout("%s %p nothing to write\n", __func__, con);
319         }
320 }
321
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325         struct ceph_connection *con = sk->sk_user_data;
326
327         dout("%s %p state = %lu sk_state = %u\n", __func__,
328              con, con->state, sk->sk_state);
329
330         switch (sk->sk_state) {
331         case TCP_CLOSE:
332                 dout("%s TCP_CLOSE\n", __func__);
333         case TCP_CLOSE_WAIT:
334                 dout("%s TCP_CLOSE_WAIT\n", __func__);
335                 con_sock_state_closing(con);
336                 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337                 queue_con(con);
338                 break;
339         case TCP_ESTABLISHED:
340                 dout("%s TCP_ESTABLISHED\n", __func__);
341                 con_sock_state_connected(con);
342                 queue_con(con);
343                 break;
344         default:        /* Everything else is uninteresting */
345                 break;
346         }
347 }
348
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353                                struct ceph_connection *con)
354 {
355         struct sock *sk = sock->sk;
356         sk->sk_user_data = con;
357         sk->sk_data_ready = ceph_sock_data_ready;
358         sk->sk_write_space = ceph_sock_write_space;
359         sk->sk_state_change = ceph_sock_state_change;
360 }
361
362
363 /*
364  * socket helpers
365  */
366
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373         struct socket *sock;
374         int ret;
375
376         BUG_ON(con->sock);
377         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378                                IPPROTO_TCP, &sock);
379         if (ret)
380                 return ret;
381         sock->sk->sk_allocation = GFP_NOFS;
382
383 #ifdef CONFIG_LOCKDEP
384         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386
387         set_sock_callbacks(sock, con);
388
389         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390
391         con_sock_state_connecting(con);
392         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393                                  O_NONBLOCK);
394         if (ret == -EINPROGRESS) {
395                 dout("connect %s EINPROGRESS sk_state = %u\n",
396                      ceph_pr_addr(&con->peer_addr.in_addr),
397                      sock->sk->sk_state);
398         } else if (ret < 0) {
399                 pr_err("connect %s error %d\n",
400                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
401                 sock_release(sock);
402                 con->error_msg = "connect error";
403
404                 return ret;
405         }
406         con->sock = sock;
407         return 0;
408 }
409
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412         struct kvec iov = {buf, len};
413         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414         int r;
415
416         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417         if (r == -EAGAIN)
418                 r = 0;
419         return r;
420 }
421
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427                      size_t kvlen, size_t len, int more)
428 {
429         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430         int r;
431
432         if (more)
433                 msg.msg_flags |= MSG_MORE;
434         else
435                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436
437         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438         if (r == -EAGAIN)
439                 r = 0;
440         return r;
441 }
442
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444                      int offset, size_t size, int more)
445 {
446         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447         int ret;
448
449         ret = kernel_sendpage(sock, page, offset, size, flags);
450         if (ret == -EAGAIN)
451                 ret = 0;
452
453         return ret;
454 }
455
456
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462         int rc = 0;
463
464         dout("con_close_socket on %p sock %p\n", con, con->sock);
465         if (con->sock) {
466                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467                 sock_release(con->sock);
468                 con->sock = NULL;
469         }
470
471         /*
472          * Forcibly clear the SOCK_CLOSED flag.  It gets set
473          * independent of the connection mutex, and we could have
474          * received a socket close event before we had the chance to
475          * shut the socket down.
476          */
477         clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478
479         con_sock_state_closed(con);
480         return rc;
481 }
482
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489         list_del_init(&msg->list_head);
490         BUG_ON(msg->con == NULL);
491         msg->con->ops->put(msg->con);
492         msg->con = NULL;
493
494         ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498         while (!list_empty(head)) {
499                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500                                                         list_head);
501                 ceph_msg_remove(msg);
502         }
503 }
504
505 static void reset_connection(struct ceph_connection *con)
506 {
507         /* reset connection, out_queue, msg_ and connect_seq */
508         /* discard existing out_queue and msg_seq */
509         ceph_msg_remove_list(&con->out_queue);
510         ceph_msg_remove_list(&con->out_sent);
511
512         if (con->in_msg) {
513                 BUG_ON(con->in_msg->con != con);
514                 con->in_msg->con = NULL;
515                 ceph_msg_put(con->in_msg);
516                 con->in_msg = NULL;
517                 con->ops->put(con);
518         }
519
520         con->connect_seq = 0;
521         con->out_seq = 0;
522         if (con->out_msg) {
523                 ceph_msg_put(con->out_msg);
524                 con->out_msg = NULL;
525         }
526         con->in_seq = 0;
527         con->in_seq_acked = 0;
528 }
529
530 /*
531  * mark a peer down.  drop any open connections.
532  */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535         mutex_lock(&con->mutex);
536         dout("con_close %p peer %s\n", con,
537              ceph_pr_addr(&con->peer_addr.in_addr));
538         con->state = CON_STATE_CLOSED;
539
540         clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541         clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543         clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544         clear_bit(CON_FLAG_BACKOFF, &con->flags);
545
546         reset_connection(con);
547         con->peer_global_seq = 0;
548         cancel_delayed_work(&con->work);
549         con_close_socket(con);
550         mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553
554 /*
555  * Reopen a closed connection, with a new peer address.
556  */
557 void ceph_con_open(struct ceph_connection *con,
558                    __u8 entity_type, __u64 entity_num,
559                    struct ceph_entity_addr *addr)
560 {
561         mutex_lock(&con->mutex);
562         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563
564         BUG_ON(con->state != CON_STATE_CLOSED);
565         con->state = CON_STATE_PREOPEN;
566
567         con->peer_name.type = (__u8) entity_type;
568         con->peer_name.num = cpu_to_le64(entity_num);
569
570         memcpy(&con->peer_addr, addr, sizeof(*addr));
571         con->delay = 0;      /* reset backoff memory */
572         mutex_unlock(&con->mutex);
573         queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576
577 /*
578  * return true if this connection ever successfully opened
579  */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582         return con->connect_seq > 0;
583 }
584
585 /*
586  * initialize a new connection.
587  */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589         const struct ceph_connection_operations *ops,
590         struct ceph_messenger *msgr)
591 {
592         dout("con_init %p\n", con);
593         memset(con, 0, sizeof(*con));
594         con->private = private;
595         con->ops = ops;
596         con->msgr = msgr;
597
598         con_sock_state_init(con);
599
600         mutex_init(&con->mutex);
601         INIT_LIST_HEAD(&con->out_queue);
602         INIT_LIST_HEAD(&con->out_sent);
603         INIT_DELAYED_WORK(&con->work, con_work);
604
605         con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608
609
610 /*
611  * We maintain a global counter to order connection attempts.  Get
612  * a unique seq greater than @gt.
613  */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616         u32 ret;
617
618         spin_lock(&msgr->global_seq_lock);
619         if (msgr->global_seq < gt)
620                 msgr->global_seq = gt;
621         ret = ++msgr->global_seq;
622         spin_unlock(&msgr->global_seq_lock);
623         return ret;
624 }
625
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628         con->out_kvec_left = 0;
629         con->out_kvec_bytes = 0;
630         con->out_kvec_cur = &con->out_kvec[0];
631 }
632
633 static void con_out_kvec_add(struct ceph_connection *con,
634                                 size_t size, void *data)
635 {
636         int index;
637
638         index = con->out_kvec_left;
639         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640
641         con->out_kvec[index].iov_len = size;
642         con->out_kvec[index].iov_base = data;
643         con->out_kvec_left++;
644         con->out_kvec_bytes += size;
645 }
646
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650         if (!bio) {
651                 *iter = NULL;
652                 *seg = 0;
653                 return;
654         }
655         *iter = bio;
656         *seg = bio->bi_idx;
657 }
658
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661         if (*bio_iter == NULL)
662                 return;
663
664         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665
666         (*seg)++;
667         if (*seg == (*bio_iter)->bi_vcnt)
668                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674         struct ceph_msg *msg = con->out_msg;
675
676         BUG_ON(!msg);
677         BUG_ON(!msg->hdr.data_len);
678
679         /* initialize page iterator */
680         con->out_msg_pos.page = 0;
681         if (msg->pages)
682                 con->out_msg_pos.page_pos = msg->page_alignment;
683         else
684                 con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686         if (msg->bio)
687                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689         con->out_msg_pos.data_pos = 0;
690         con->out_msg_pos.did_page_crc = false;
691         con->out_more = 1;  /* data + footer will follow */
692 }
693
694 /*
695  * Prepare footer for currently outgoing message, and finish things
696  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
697  */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700         struct ceph_msg *m = con->out_msg;
701         int v = con->out_kvec_left;
702
703         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704
705         dout("prepare_write_message_footer %p\n", con);
706         con->out_kvec_is_msg = true;
707         con->out_kvec[v].iov_base = &m->footer;
708         con->out_kvec[v].iov_len = sizeof(m->footer);
709         con->out_kvec_bytes += sizeof(m->footer);
710         con->out_kvec_left++;
711         con->out_more = m->more_to_follow;
712         con->out_msg_done = true;
713 }
714
715 /*
716  * Prepare headers for the next outgoing message.
717  */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720         struct ceph_msg *m;
721         u32 crc;
722
723         con_out_kvec_reset(con);
724         con->out_kvec_is_msg = true;
725         con->out_msg_done = false;
726
727         /* Sneak an ack in there first?  If we can get it into the same
728          * TCP packet that's a good thing. */
729         if (con->in_seq > con->in_seq_acked) {
730                 con->in_seq_acked = con->in_seq;
731                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
734                         &con->out_temp_ack);
735         }
736
737         BUG_ON(list_empty(&con->out_queue));
738         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739         con->out_msg = m;
740         BUG_ON(m->con != con);
741
742         /* put message on sent list */
743         ceph_msg_get(m);
744         list_move_tail(&m->list_head, &con->out_sent);
745
746         /*
747          * only assign outgoing seq # if we haven't sent this message
748          * yet.  if it is requeued, resend with it's original seq.
749          */
750         if (m->needs_out_seq) {
751                 m->hdr.seq = cpu_to_le64(++con->out_seq);
752                 m->needs_out_seq = false;
753         }
754
755         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
756              m, con->out_seq, le16_to_cpu(m->hdr.type),
757              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
758              le32_to_cpu(m->hdr.data_len),
759              m->nr_pages);
760         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
761
762         /* tag + hdr + front + middle */
763         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
764         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
765         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
766
767         if (m->middle)
768                 con_out_kvec_add(con, m->middle->vec.iov_len,
769                         m->middle->vec.iov_base);
770
771         /* fill in crc (except data pages), footer */
772         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
773         con->out_msg->hdr.crc = cpu_to_le32(crc);
774         con->out_msg->footer.flags = 0;
775
776         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
777         con->out_msg->footer.front_crc = cpu_to_le32(crc);
778         if (m->middle) {
779                 crc = crc32c(0, m->middle->vec.iov_base,
780                                 m->middle->vec.iov_len);
781                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
782         } else
783                 con->out_msg->footer.middle_crc = 0;
784         dout("%s front_crc %u middle_crc %u\n", __func__,
785              le32_to_cpu(con->out_msg->footer.front_crc),
786              le32_to_cpu(con->out_msg->footer.middle_crc));
787
788         /* is there a data payload? */
789         con->out_msg->footer.data_crc = 0;
790         if (m->hdr.data_len)
791                 prepare_write_message_data(con);
792         else
793                 /* no, queue up footer too and be done */
794                 prepare_write_message_footer(con);
795
796         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
797 }
798
799 /*
800  * Prepare an ack.
801  */
802 static void prepare_write_ack(struct ceph_connection *con)
803 {
804         dout("prepare_write_ack %p %llu -> %llu\n", con,
805              con->in_seq_acked, con->in_seq);
806         con->in_seq_acked = con->in_seq;
807
808         con_out_kvec_reset(con);
809
810         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
811
812         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
813         con_out_kvec_add(con, sizeof (con->out_temp_ack),
814                                 &con->out_temp_ack);
815
816         con->out_more = 1;  /* more will follow.. eventually.. */
817         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
818 }
819
820 /*
821  * Prepare to write keepalive byte.
822  */
823 static void prepare_write_keepalive(struct ceph_connection *con)
824 {
825         dout("prepare_write_keepalive %p\n", con);
826         con_out_kvec_reset(con);
827         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
828         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
829 }
830
831 /*
832  * Connection negotiation.
833  */
834
835 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
836                                                 int *auth_proto)
837 {
838         struct ceph_auth_handshake *auth;
839
840         if (!con->ops->get_authorizer) {
841                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
842                 con->out_connect.authorizer_len = 0;
843                 return NULL;
844         }
845
846         /* Can't hold the mutex while getting authorizer */
847         mutex_unlock(&con->mutex);
848         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
849         mutex_lock(&con->mutex);
850
851         if (IS_ERR(auth))
852                 return auth;
853         if (con->state != CON_STATE_NEGOTIATING)
854                 return ERR_PTR(-EAGAIN);
855
856         con->auth_reply_buf = auth->authorizer_reply_buf;
857         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
858         return auth;
859 }
860
861 /*
862  * We connected to a peer and are saying hello.
863  */
864 static void prepare_write_banner(struct ceph_connection *con)
865 {
866         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
867         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
868                                         &con->msgr->my_enc_addr);
869
870         con->out_more = 0;
871         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
872 }
873
874 static int prepare_write_connect(struct ceph_connection *con)
875 {
876         unsigned int global_seq = get_global_seq(con->msgr, 0);
877         int proto;
878         int auth_proto;
879         struct ceph_auth_handshake *auth;
880
881         switch (con->peer_name.type) {
882         case CEPH_ENTITY_TYPE_MON:
883                 proto = CEPH_MONC_PROTOCOL;
884                 break;
885         case CEPH_ENTITY_TYPE_OSD:
886                 proto = CEPH_OSDC_PROTOCOL;
887                 break;
888         case CEPH_ENTITY_TYPE_MDS:
889                 proto = CEPH_MDSC_PROTOCOL;
890                 break;
891         default:
892                 BUG();
893         }
894
895         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
896              con->connect_seq, global_seq, proto);
897
898         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
899         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
900         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
901         con->out_connect.global_seq = cpu_to_le32(global_seq);
902         con->out_connect.protocol_version = cpu_to_le32(proto);
903         con->out_connect.flags = 0;
904
905         auth_proto = CEPH_AUTH_UNKNOWN;
906         auth = get_connect_authorizer(con, &auth_proto);
907         if (IS_ERR(auth))
908                 return PTR_ERR(auth);
909
910         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
911         con->out_connect.authorizer_len = auth ?
912                 cpu_to_le32(auth->authorizer_buf_len) : 0;
913
914         con_out_kvec_reset(con);
915         con_out_kvec_add(con, sizeof (con->out_connect),
916                                         &con->out_connect);
917         if (auth && auth->authorizer_buf_len)
918                 con_out_kvec_add(con, auth->authorizer_buf_len,
919                                         auth->authorizer_buf);
920
921         con->out_more = 0;
922         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
923
924         return 0;
925 }
926
927 /*
928  * write as much of pending kvecs to the socket as we can.
929  *  1 -> done
930  *  0 -> socket full, but more to do
931  * <0 -> error
932  */
933 static int write_partial_kvec(struct ceph_connection *con)
934 {
935         int ret;
936
937         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
938         while (con->out_kvec_bytes > 0) {
939                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
940                                        con->out_kvec_left, con->out_kvec_bytes,
941                                        con->out_more);
942                 if (ret <= 0)
943                         goto out;
944                 con->out_kvec_bytes -= ret;
945                 if (con->out_kvec_bytes == 0)
946                         break;            /* done */
947
948                 /* account for full iov entries consumed */
949                 while (ret >= con->out_kvec_cur->iov_len) {
950                         BUG_ON(!con->out_kvec_left);
951                         ret -= con->out_kvec_cur->iov_len;
952                         con->out_kvec_cur++;
953                         con->out_kvec_left--;
954                 }
955                 /* and for a partially-consumed entry */
956                 if (ret) {
957                         con->out_kvec_cur->iov_len -= ret;
958                         con->out_kvec_cur->iov_base += ret;
959                 }
960         }
961         con->out_kvec_left = 0;
962         con->out_kvec_is_msg = false;
963         ret = 1;
964 out:
965         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
966              con->out_kvec_bytes, con->out_kvec_left, ret);
967         return ret;  /* done! */
968 }
969
970 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
971                         size_t len, size_t sent, bool in_trail)
972 {
973         struct ceph_msg *msg = con->out_msg;
974
975         BUG_ON(!msg);
976         BUG_ON(!sent);
977
978         con->out_msg_pos.data_pos += sent;
979         con->out_msg_pos.page_pos += sent;
980         if (sent < len)
981                 return;
982
983         BUG_ON(sent != len);
984         con->out_msg_pos.page_pos = 0;
985         con->out_msg_pos.page++;
986         con->out_msg_pos.did_page_crc = false;
987         if (in_trail)
988                 list_move_tail(&page->lru,
989                                &msg->trail->head);
990         else if (msg->pagelist)
991                 list_move_tail(&page->lru,
992                                &msg->pagelist->head);
993 #ifdef CONFIG_BLOCK
994         else if (msg->bio)
995                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
996 #endif
997 }
998
999 /*
1000  * Write as much message data payload as we can.  If we finish, queue
1001  * up the footer.
1002  *  1 -> done, footer is now queued in out_kvec[].
1003  *  0 -> socket full, but more to do
1004  * <0 -> error
1005  */
1006 static int write_partial_msg_pages(struct ceph_connection *con)
1007 {
1008         struct ceph_msg *msg = con->out_msg;
1009         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1010         size_t len;
1011         bool do_datacrc = !con->msgr->nocrc;
1012         int ret;
1013         int total_max_write;
1014         bool in_trail = false;
1015         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1016         const size_t trail_off = data_len - trail_len;
1017
1018         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1019              con, msg, con->out_msg_pos.page, msg->nr_pages,
1020              con->out_msg_pos.page_pos);
1021
1022         /*
1023          * Iterate through each page that contains data to be
1024          * written, and send as much as possible for each.
1025          *
1026          * If we are calculating the data crc (the default), we will
1027          * need to map the page.  If we have no pages, they have
1028          * been revoked, so use the zero page.
1029          */
1030         while (data_len > con->out_msg_pos.data_pos) {
1031                 struct page *page = NULL;
1032                 int max_write = PAGE_SIZE;
1033                 int bio_offset = 0;
1034
1035                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1036                 if (!in_trail)
1037                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1038
1039                 if (in_trail) {
1040                         total_max_write = data_len - con->out_msg_pos.data_pos;
1041
1042                         page = list_first_entry(&msg->trail->head,
1043                                                 struct page, lru);
1044                 } else if (msg->pages) {
1045                         page = msg->pages[con->out_msg_pos.page];
1046                 } else if (msg->pagelist) {
1047                         page = list_first_entry(&msg->pagelist->head,
1048                                                 struct page, lru);
1049 #ifdef CONFIG_BLOCK
1050                 } else if (msg->bio) {
1051                         struct bio_vec *bv;
1052
1053                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1054                         page = bv->bv_page;
1055                         bio_offset = bv->bv_offset;
1056                         max_write = bv->bv_len;
1057 #endif
1058                 } else {
1059                         page = zero_page;
1060                 }
1061                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1062                             total_max_write);
1063
1064                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1065                         void *base;
1066                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1067                         char *kaddr;
1068
1069                         kaddr = kmap(page);
1070                         BUG_ON(kaddr == NULL);
1071                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1072                         crc = crc32c(crc, base, len);
1073                         msg->footer.data_crc = cpu_to_le32(crc);
1074                         con->out_msg_pos.did_page_crc = true;
1075                 }
1076                 ret = ceph_tcp_sendpage(con->sock, page,
1077                                       con->out_msg_pos.page_pos + bio_offset,
1078                                       len, 1);
1079
1080                 if (do_datacrc)
1081                         kunmap(page);
1082
1083                 if (ret <= 0)
1084                         goto out;
1085
1086                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1087         }
1088
1089         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1090
1091         /* prepare and queue up footer, too */
1092         if (!do_datacrc)
1093                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1094         con_out_kvec_reset(con);
1095         prepare_write_message_footer(con);
1096         ret = 1;
1097 out:
1098         return ret;
1099 }
1100
1101 /*
1102  * write some zeros
1103  */
1104 static int write_partial_skip(struct ceph_connection *con)
1105 {
1106         int ret;
1107
1108         while (con->out_skip > 0) {
1109                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1110
1111                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1112                 if (ret <= 0)
1113                         goto out;
1114                 con->out_skip -= ret;
1115         }
1116         ret = 1;
1117 out:
1118         return ret;
1119 }
1120
1121 /*
1122  * Prepare to read connection handshake, or an ack.
1123  */
1124 static void prepare_read_banner(struct ceph_connection *con)
1125 {
1126         dout("prepare_read_banner %p\n", con);
1127         con->in_base_pos = 0;
1128 }
1129
1130 static void prepare_read_connect(struct ceph_connection *con)
1131 {
1132         dout("prepare_read_connect %p\n", con);
1133         con->in_base_pos = 0;
1134 }
1135
1136 static void prepare_read_ack(struct ceph_connection *con)
1137 {
1138         dout("prepare_read_ack %p\n", con);
1139         con->in_base_pos = 0;
1140 }
1141
1142 static void prepare_read_tag(struct ceph_connection *con)
1143 {
1144         dout("prepare_read_tag %p\n", con);
1145         con->in_base_pos = 0;
1146         con->in_tag = CEPH_MSGR_TAG_READY;
1147 }
1148
1149 /*
1150  * Prepare to read a message.
1151  */
1152 static int prepare_read_message(struct ceph_connection *con)
1153 {
1154         dout("prepare_read_message %p\n", con);
1155         BUG_ON(con->in_msg != NULL);
1156         con->in_base_pos = 0;
1157         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1158         return 0;
1159 }
1160
1161
1162 static int read_partial(struct ceph_connection *con,
1163                         int end, int size, void *object)
1164 {
1165         while (con->in_base_pos < end) {
1166                 int left = end - con->in_base_pos;
1167                 int have = size - left;
1168                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1169                 if (ret <= 0)
1170                         return ret;
1171                 con->in_base_pos += ret;
1172         }
1173         return 1;
1174 }
1175
1176
1177 /*
1178  * Read all or part of the connect-side handshake on a new connection
1179  */
1180 static int read_partial_banner(struct ceph_connection *con)
1181 {
1182         int size;
1183         int end;
1184         int ret;
1185
1186         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1187
1188         /* peer's banner */
1189         size = strlen(CEPH_BANNER);
1190         end = size;
1191         ret = read_partial(con, end, size, con->in_banner);
1192         if (ret <= 0)
1193                 goto out;
1194
1195         size = sizeof (con->actual_peer_addr);
1196         end += size;
1197         ret = read_partial(con, end, size, &con->actual_peer_addr);
1198         if (ret <= 0)
1199                 goto out;
1200
1201         size = sizeof (con->peer_addr_for_me);
1202         end += size;
1203         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1204         if (ret <= 0)
1205                 goto out;
1206
1207 out:
1208         return ret;
1209 }
1210
1211 static int read_partial_connect(struct ceph_connection *con)
1212 {
1213         int size;
1214         int end;
1215         int ret;
1216
1217         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1218
1219         size = sizeof (con->in_reply);
1220         end = size;
1221         ret = read_partial(con, end, size, &con->in_reply);
1222         if (ret <= 0)
1223                 goto out;
1224
1225         size = le32_to_cpu(con->in_reply.authorizer_len);
1226         end += size;
1227         ret = read_partial(con, end, size, con->auth_reply_buf);
1228         if (ret <= 0)
1229                 goto out;
1230
1231         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1232              con, (int)con->in_reply.tag,
1233              le32_to_cpu(con->in_reply.connect_seq),
1234              le32_to_cpu(con->in_reply.global_seq));
1235 out:
1236         return ret;
1237
1238 }
1239
1240 /*
1241  * Verify the hello banner looks okay.
1242  */
1243 static int verify_hello(struct ceph_connection *con)
1244 {
1245         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1246                 pr_err("connect to %s got bad banner\n",
1247                        ceph_pr_addr(&con->peer_addr.in_addr));
1248                 con->error_msg = "protocol error, bad banner";
1249                 return -1;
1250         }
1251         return 0;
1252 }
1253
1254 static bool addr_is_blank(struct sockaddr_storage *ss)
1255 {
1256         switch (ss->ss_family) {
1257         case AF_INET:
1258                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1259         case AF_INET6:
1260                 return
1261                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1262                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1263                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1264                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1265         }
1266         return false;
1267 }
1268
1269 static int addr_port(struct sockaddr_storage *ss)
1270 {
1271         switch (ss->ss_family) {
1272         case AF_INET:
1273                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1274         case AF_INET6:
1275                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1276         }
1277         return 0;
1278 }
1279
1280 static void addr_set_port(struct sockaddr_storage *ss, int p)
1281 {
1282         switch (ss->ss_family) {
1283         case AF_INET:
1284                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1285                 break;
1286         case AF_INET6:
1287                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1288                 break;
1289         }
1290 }
1291
1292 /*
1293  * Unlike other *_pton function semantics, zero indicates success.
1294  */
1295 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1296                 char delim, const char **ipend)
1297 {
1298         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1299         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1300
1301         memset(ss, 0, sizeof(*ss));
1302
1303         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1304                 ss->ss_family = AF_INET;
1305                 return 0;
1306         }
1307
1308         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1309                 ss->ss_family = AF_INET6;
1310                 return 0;
1311         }
1312
1313         return -EINVAL;
1314 }
1315
1316 /*
1317  * Extract hostname string and resolve using kernel DNS facility.
1318  */
1319 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1320 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1321                 struct sockaddr_storage *ss, char delim, const char **ipend)
1322 {
1323         const char *end, *delim_p;
1324         char *colon_p, *ip_addr = NULL;
1325         int ip_len, ret;
1326
1327         /*
1328          * The end of the hostname occurs immediately preceding the delimiter or
1329          * the port marker (':') where the delimiter takes precedence.
1330          */
1331         delim_p = memchr(name, delim, namelen);
1332         colon_p = memchr(name, ':', namelen);
1333
1334         if (delim_p && colon_p)
1335                 end = delim_p < colon_p ? delim_p : colon_p;
1336         else if (!delim_p && colon_p)
1337                 end = colon_p;
1338         else {
1339                 end = delim_p;
1340                 if (!end) /* case: hostname:/ */
1341                         end = name + namelen;
1342         }
1343
1344         if (end <= name)
1345                 return -EINVAL;
1346
1347         /* do dns_resolve upcall */
1348         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1349         if (ip_len > 0)
1350                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1351         else
1352                 ret = -ESRCH;
1353
1354         kfree(ip_addr);
1355
1356         *ipend = end;
1357
1358         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1359                         ret, ret ? "failed" : ceph_pr_addr(ss));
1360
1361         return ret;
1362 }
1363 #else
1364 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1365                 struct sockaddr_storage *ss, char delim, const char **ipend)
1366 {
1367         return -EINVAL;
1368 }
1369 #endif
1370
1371 /*
1372  * Parse a server name (IP or hostname). If a valid IP address is not found
1373  * then try to extract a hostname to resolve using userspace DNS upcall.
1374  */
1375 static int ceph_parse_server_name(const char *name, size_t namelen,
1376                         struct sockaddr_storage *ss, char delim, const char **ipend)
1377 {
1378         int ret;
1379
1380         ret = ceph_pton(name, namelen, ss, delim, ipend);
1381         if (ret)
1382                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1383
1384         return ret;
1385 }
1386
1387 /*
1388  * Parse an ip[:port] list into an addr array.  Use the default
1389  * monitor port if a port isn't specified.
1390  */
1391 int ceph_parse_ips(const char *c, const char *end,
1392                    struct ceph_entity_addr *addr,
1393                    int max_count, int *count)
1394 {
1395         int i, ret = -EINVAL;
1396         const char *p = c;
1397
1398         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1399         for (i = 0; i < max_count; i++) {
1400                 const char *ipend;
1401                 struct sockaddr_storage *ss = &addr[i].in_addr;
1402                 int port;
1403                 char delim = ',';
1404
1405                 if (*p == '[') {
1406                         delim = ']';
1407                         p++;
1408                 }
1409
1410                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1411                 if (ret)
1412                         goto bad;
1413                 ret = -EINVAL;
1414
1415                 p = ipend;
1416
1417                 if (delim == ']') {
1418                         if (*p != ']') {
1419                                 dout("missing matching ']'\n");
1420                                 goto bad;
1421                         }
1422                         p++;
1423                 }
1424
1425                 /* port? */
1426                 if (p < end && *p == ':') {
1427                         port = 0;
1428                         p++;
1429                         while (p < end && *p >= '0' && *p <= '9') {
1430                                 port = (port * 10) + (*p - '0');
1431                                 p++;
1432                         }
1433                         if (port > 65535 || port == 0)
1434                                 goto bad;
1435                 } else {
1436                         port = CEPH_MON_PORT;
1437                 }
1438
1439                 addr_set_port(ss, port);
1440
1441                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1442
1443                 if (p == end)
1444                         break;
1445                 if (*p != ',')
1446                         goto bad;
1447                 p++;
1448         }
1449
1450         if (p != end)
1451                 goto bad;
1452
1453         if (count)
1454                 *count = i + 1;
1455         return 0;
1456
1457 bad:
1458         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1459         return ret;
1460 }
1461 EXPORT_SYMBOL(ceph_parse_ips);
1462
1463 static int process_banner(struct ceph_connection *con)
1464 {
1465         dout("process_banner on %p\n", con);
1466
1467         if (verify_hello(con) < 0)
1468                 return -1;
1469
1470         ceph_decode_addr(&con->actual_peer_addr);
1471         ceph_decode_addr(&con->peer_addr_for_me);
1472
1473         /*
1474          * Make sure the other end is who we wanted.  note that the other
1475          * end may not yet know their ip address, so if it's 0.0.0.0, give
1476          * them the benefit of the doubt.
1477          */
1478         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1479                    sizeof(con->peer_addr)) != 0 &&
1480             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1481               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1482                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1483                            ceph_pr_addr(&con->peer_addr.in_addr),
1484                            (int)le32_to_cpu(con->peer_addr.nonce),
1485                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1486                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1487                 con->error_msg = "wrong peer at address";
1488                 return -1;
1489         }
1490
1491         /*
1492          * did we learn our address?
1493          */
1494         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1495                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1496
1497                 memcpy(&con->msgr->inst.addr.in_addr,
1498                        &con->peer_addr_for_me.in_addr,
1499                        sizeof(con->peer_addr_for_me.in_addr));
1500                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1501                 encode_my_addr(con->msgr);
1502                 dout("process_banner learned my addr is %s\n",
1503                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1504         }
1505
1506         return 0;
1507 }
1508
1509 static void fail_protocol(struct ceph_connection *con)
1510 {
1511         reset_connection(con);
1512         BUG_ON(con->state != CON_STATE_NEGOTIATING);
1513         con->state = CON_STATE_CLOSED;
1514 }
1515
1516 static int process_connect(struct ceph_connection *con)
1517 {
1518         u64 sup_feat = con->msgr->supported_features;
1519         u64 req_feat = con->msgr->required_features;
1520         u64 server_feat = le64_to_cpu(con->in_reply.features);
1521         int ret;
1522
1523         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1524
1525         switch (con->in_reply.tag) {
1526         case CEPH_MSGR_TAG_FEATURES:
1527                 pr_err("%s%lld %s feature set mismatch,"
1528                        " my %llx < server's %llx, missing %llx\n",
1529                        ENTITY_NAME(con->peer_name),
1530                        ceph_pr_addr(&con->peer_addr.in_addr),
1531                        sup_feat, server_feat, server_feat & ~sup_feat);
1532                 con->error_msg = "missing required protocol features";
1533                 fail_protocol(con);
1534                 return -1;
1535
1536         case CEPH_MSGR_TAG_BADPROTOVER:
1537                 pr_err("%s%lld %s protocol version mismatch,"
1538                        " my %d != server's %d\n",
1539                        ENTITY_NAME(con->peer_name),
1540                        ceph_pr_addr(&con->peer_addr.in_addr),
1541                        le32_to_cpu(con->out_connect.protocol_version),
1542                        le32_to_cpu(con->in_reply.protocol_version));
1543                 con->error_msg = "protocol version mismatch";
1544                 fail_protocol(con);
1545                 return -1;
1546
1547         case CEPH_MSGR_TAG_BADAUTHORIZER:
1548                 con->auth_retry++;
1549                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1550                      con->auth_retry);
1551                 if (con->auth_retry == 2) {
1552                         con->error_msg = "connect authorization failure";
1553                         return -1;
1554                 }
1555                 con->auth_retry = 1;
1556                 ret = prepare_write_connect(con);
1557                 if (ret < 0)
1558                         return ret;
1559                 prepare_read_connect(con);
1560                 break;
1561
1562         case CEPH_MSGR_TAG_RESETSESSION:
1563                 /*
1564                  * If we connected with a large connect_seq but the peer
1565                  * has no record of a session with us (no connection, or
1566                  * connect_seq == 0), they will send RESETSESION to indicate
1567                  * that they must have reset their session, and may have
1568                  * dropped messages.
1569                  */
1570                 dout("process_connect got RESET peer seq %u\n",
1571                      le32_to_cpu(con->in_reply.connect_seq));
1572                 pr_err("%s%lld %s connection reset\n",
1573                        ENTITY_NAME(con->peer_name),
1574                        ceph_pr_addr(&con->peer_addr.in_addr));
1575                 reset_connection(con);
1576                 ret = prepare_write_connect(con);
1577                 if (ret < 0)
1578                         return ret;
1579                 prepare_read_connect(con);
1580
1581                 /* Tell ceph about it. */
1582                 mutex_unlock(&con->mutex);
1583                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1584                 if (con->ops->peer_reset)
1585                         con->ops->peer_reset(con);
1586                 mutex_lock(&con->mutex);
1587                 if (con->state != CON_STATE_NEGOTIATING)
1588                         return -EAGAIN;
1589                 break;
1590
1591         case CEPH_MSGR_TAG_RETRY_SESSION:
1592                 /*
1593                  * If we sent a smaller connect_seq than the peer has, try
1594                  * again with a larger value.
1595                  */
1596                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1597                      le32_to_cpu(con->out_connect.connect_seq),
1598                      le32_to_cpu(con->in_reply.connect_seq));
1599                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1600                 ret = prepare_write_connect(con);
1601                 if (ret < 0)
1602                         return ret;
1603                 prepare_read_connect(con);
1604                 break;
1605
1606         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1607                 /*
1608                  * If we sent a smaller global_seq than the peer has, try
1609                  * again with a larger value.
1610                  */
1611                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1612                      con->peer_global_seq,
1613                      le32_to_cpu(con->in_reply.global_seq));
1614                 get_global_seq(con->msgr,
1615                                le32_to_cpu(con->in_reply.global_seq));
1616                 ret = prepare_write_connect(con);
1617                 if (ret < 0)
1618                         return ret;
1619                 prepare_read_connect(con);
1620                 break;
1621
1622         case CEPH_MSGR_TAG_READY:
1623                 if (req_feat & ~server_feat) {
1624                         pr_err("%s%lld %s protocol feature mismatch,"
1625                                " my required %llx > server's %llx, need %llx\n",
1626                                ENTITY_NAME(con->peer_name),
1627                                ceph_pr_addr(&con->peer_addr.in_addr),
1628                                req_feat, server_feat, req_feat & ~server_feat);
1629                         con->error_msg = "missing required protocol features";
1630                         fail_protocol(con);
1631                         return -1;
1632                 }
1633
1634                 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1635                 con->state = CON_STATE_OPEN;
1636
1637                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1638                 con->connect_seq++;
1639                 con->peer_features = server_feat;
1640                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1641                      con->peer_global_seq,
1642                      le32_to_cpu(con->in_reply.connect_seq),
1643                      con->connect_seq);
1644                 WARN_ON(con->connect_seq !=
1645                         le32_to_cpu(con->in_reply.connect_seq));
1646
1647                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1648                         set_bit(CON_FLAG_LOSSYTX, &con->flags);
1649
1650                 con->delay = 0;      /* reset backoff memory */
1651
1652                 prepare_read_tag(con);
1653                 break;
1654
1655         case CEPH_MSGR_TAG_WAIT:
1656                 /*
1657                  * If there is a connection race (we are opening
1658                  * connections to each other), one of us may just have
1659                  * to WAIT.  This shouldn't happen if we are the
1660                  * client.
1661                  */
1662                 pr_err("process_connect got WAIT as client\n");
1663                 con->error_msg = "protocol error, got WAIT as client";
1664                 return -1;
1665
1666         default:
1667                 pr_err("connect protocol error, will retry\n");
1668                 con->error_msg = "protocol error, garbage tag during connect";
1669                 return -1;
1670         }
1671         return 0;
1672 }
1673
1674
1675 /*
1676  * read (part of) an ack
1677  */
1678 static int read_partial_ack(struct ceph_connection *con)
1679 {
1680         int size = sizeof (con->in_temp_ack);
1681         int end = size;
1682
1683         return read_partial(con, end, size, &con->in_temp_ack);
1684 }
1685
1686
1687 /*
1688  * We can finally discard anything that's been acked.
1689  */
1690 static void process_ack(struct ceph_connection *con)
1691 {
1692         struct ceph_msg *m;
1693         u64 ack = le64_to_cpu(con->in_temp_ack);
1694         u64 seq;
1695
1696         while (!list_empty(&con->out_sent)) {
1697                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1698                                      list_head);
1699                 seq = le64_to_cpu(m->hdr.seq);
1700                 if (seq > ack)
1701                         break;
1702                 dout("got ack for seq %llu type %d at %p\n", seq,
1703                      le16_to_cpu(m->hdr.type), m);
1704                 m->ack_stamp = jiffies;
1705                 ceph_msg_remove(m);
1706         }
1707         prepare_read_tag(con);
1708 }
1709
1710
1711
1712
1713 static int read_partial_message_section(struct ceph_connection *con,
1714                                         struct kvec *section,
1715                                         unsigned int sec_len, u32 *crc)
1716 {
1717         int ret, left;
1718
1719         BUG_ON(!section);
1720
1721         while (section->iov_len < sec_len) {
1722                 BUG_ON(section->iov_base == NULL);
1723                 left = sec_len - section->iov_len;
1724                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1725                                        section->iov_len, left);
1726                 if (ret <= 0)
1727                         return ret;
1728                 section->iov_len += ret;
1729         }
1730         if (section->iov_len == sec_len)
1731                 *crc = crc32c(0, section->iov_base, section->iov_len);
1732
1733         return 1;
1734 }
1735
1736 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1737
1738 static int read_partial_message_pages(struct ceph_connection *con,
1739                                       struct page **pages,
1740                                       unsigned int data_len, bool do_datacrc)
1741 {
1742         void *p;
1743         int ret;
1744         int left;
1745
1746         left = min((int)(data_len - con->in_msg_pos.data_pos),
1747                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1748         /* (page) data */
1749         BUG_ON(pages == NULL);
1750         p = kmap(pages[con->in_msg_pos.page]);
1751         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1752                                left);
1753         if (ret > 0 && do_datacrc)
1754                 con->in_data_crc =
1755                         crc32c(con->in_data_crc,
1756                                   p + con->in_msg_pos.page_pos, ret);
1757         kunmap(pages[con->in_msg_pos.page]);
1758         if (ret <= 0)
1759                 return ret;
1760         con->in_msg_pos.data_pos += ret;
1761         con->in_msg_pos.page_pos += ret;
1762         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1763                 con->in_msg_pos.page_pos = 0;
1764                 con->in_msg_pos.page++;
1765         }
1766
1767         return ret;
1768 }
1769
1770 #ifdef CONFIG_BLOCK
1771 static int read_partial_message_bio(struct ceph_connection *con,
1772                                     struct bio **bio_iter, int *bio_seg,
1773                                     unsigned int data_len, bool do_datacrc)
1774 {
1775         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1776         void *p;
1777         int ret, left;
1778
1779         left = min((int)(data_len - con->in_msg_pos.data_pos),
1780                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1781
1782         p = kmap(bv->bv_page) + bv->bv_offset;
1783
1784         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1785                                left);
1786         if (ret > 0 && do_datacrc)
1787                 con->in_data_crc =
1788                         crc32c(con->in_data_crc,
1789                                   p + con->in_msg_pos.page_pos, ret);
1790         kunmap(bv->bv_page);
1791         if (ret <= 0)
1792                 return ret;
1793         con->in_msg_pos.data_pos += ret;
1794         con->in_msg_pos.page_pos += ret;
1795         if (con->in_msg_pos.page_pos == bv->bv_len) {
1796                 con->in_msg_pos.page_pos = 0;
1797                 iter_bio_next(bio_iter, bio_seg);
1798         }
1799
1800         return ret;
1801 }
1802 #endif
1803
1804 /*
1805  * read (part of) a message.
1806  */
1807 static int read_partial_message(struct ceph_connection *con)
1808 {
1809         struct ceph_msg *m = con->in_msg;
1810         int size;
1811         int end;
1812         int ret;
1813         unsigned int front_len, middle_len, data_len;
1814         bool do_datacrc = !con->msgr->nocrc;
1815         u64 seq;
1816         u32 crc;
1817
1818         dout("read_partial_message con %p msg %p\n", con, m);
1819
1820         /* header */
1821         size = sizeof (con->in_hdr);
1822         end = size;
1823         ret = read_partial(con, end, size, &con->in_hdr);
1824         if (ret <= 0)
1825                 return ret;
1826
1827         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1828         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1829                 pr_err("read_partial_message bad hdr "
1830                        " crc %u != expected %u\n",
1831                        crc, con->in_hdr.crc);
1832                 return -EBADMSG;
1833         }
1834
1835         front_len = le32_to_cpu(con->in_hdr.front_len);
1836         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1837                 return -EIO;
1838         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1839         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1840                 return -EIO;
1841         data_len = le32_to_cpu(con->in_hdr.data_len);
1842         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1843                 return -EIO;
1844
1845         /* verify seq# */
1846         seq = le64_to_cpu(con->in_hdr.seq);
1847         if ((s64)seq - (s64)con->in_seq < 1) {
1848                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1849                         ENTITY_NAME(con->peer_name),
1850                         ceph_pr_addr(&con->peer_addr.in_addr),
1851                         seq, con->in_seq + 1);
1852                 con->in_base_pos = -front_len - middle_len - data_len -
1853                         sizeof(m->footer);
1854                 con->in_tag = CEPH_MSGR_TAG_READY;
1855                 return 0;
1856         } else if ((s64)seq - (s64)con->in_seq > 1) {
1857                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1858                        seq, con->in_seq + 1);
1859                 con->error_msg = "bad message sequence # for incoming message";
1860                 return -EBADMSG;
1861         }
1862
1863         /* allocate message? */
1864         if (!con->in_msg) {
1865                 int skip = 0;
1866
1867                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1868                      con->in_hdr.front_len, con->in_hdr.data_len);
1869                 ret = ceph_con_in_msg_alloc(con, &skip);
1870                 if (ret < 0)
1871                         return ret;
1872                 if (skip) {
1873                         /* skip this message */
1874                         dout("alloc_msg said skip message\n");
1875                         BUG_ON(con->in_msg);
1876                         con->in_base_pos = -front_len - middle_len - data_len -
1877                                 sizeof(m->footer);
1878                         con->in_tag = CEPH_MSGR_TAG_READY;
1879                         con->in_seq++;
1880                         return 0;
1881                 }
1882
1883                 BUG_ON(!con->in_msg);
1884                 BUG_ON(con->in_msg->con != con);
1885                 m = con->in_msg;
1886                 m->front.iov_len = 0;    /* haven't read it yet */
1887                 if (m->middle)
1888                         m->middle->vec.iov_len = 0;
1889
1890                 con->in_msg_pos.page = 0;
1891                 if (m->pages)
1892                         con->in_msg_pos.page_pos = m->page_alignment;
1893                 else
1894                         con->in_msg_pos.page_pos = 0;
1895                 con->in_msg_pos.data_pos = 0;
1896
1897 #ifdef CONFIG_BLOCK
1898                 if (m->bio)
1899                         init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1900 #endif
1901         }
1902
1903         /* front */
1904         ret = read_partial_message_section(con, &m->front, front_len,
1905                                            &con->in_front_crc);
1906         if (ret <= 0)
1907                 return ret;
1908
1909         /* middle */
1910         if (m->middle) {
1911                 ret = read_partial_message_section(con, &m->middle->vec,
1912                                                    middle_len,
1913                                                    &con->in_middle_crc);
1914                 if (ret <= 0)
1915                         return ret;
1916         }
1917
1918         /* (page) data */
1919         while (con->in_msg_pos.data_pos < data_len) {
1920                 if (m->pages) {
1921                         ret = read_partial_message_pages(con, m->pages,
1922                                                  data_len, do_datacrc);
1923                         if (ret <= 0)
1924                                 return ret;
1925 #ifdef CONFIG_BLOCK
1926                 } else if (m->bio) {
1927                         BUG_ON(!m->bio_iter);
1928                         ret = read_partial_message_bio(con,
1929                                                  &m->bio_iter, &m->bio_seg,
1930                                                  data_len, do_datacrc);
1931                         if (ret <= 0)
1932                                 return ret;
1933 #endif
1934                 } else {
1935                         BUG_ON(1);
1936                 }
1937         }
1938
1939         /* footer */
1940         size = sizeof (m->footer);
1941         end += size;
1942         ret = read_partial(con, end, size, &m->footer);
1943         if (ret <= 0)
1944                 return ret;
1945
1946         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1947              m, front_len, m->footer.front_crc, middle_len,
1948              m->footer.middle_crc, data_len, m->footer.data_crc);
1949
1950         /* crc ok? */
1951         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1952                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1953                        m, con->in_front_crc, m->footer.front_crc);
1954                 return -EBADMSG;
1955         }
1956         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1957                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1958                        m, con->in_middle_crc, m->footer.middle_crc);
1959                 return -EBADMSG;
1960         }
1961         if (do_datacrc &&
1962             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1963             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1964                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1965                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1966                 return -EBADMSG;
1967         }
1968
1969         return 1; /* done! */
1970 }
1971
1972 /*
1973  * Process message.  This happens in the worker thread.  The callback should
1974  * be careful not to do anything that waits on other incoming messages or it
1975  * may deadlock.
1976  */
1977 static void process_message(struct ceph_connection *con)
1978 {
1979         struct ceph_msg *msg;
1980
1981         BUG_ON(con->in_msg->con != con);
1982         con->in_msg->con = NULL;
1983         msg = con->in_msg;
1984         con->in_msg = NULL;
1985         con->ops->put(con);
1986
1987         /* if first message, set peer_name */
1988         if (con->peer_name.type == 0)
1989                 con->peer_name = msg->hdr.src;
1990
1991         con->in_seq++;
1992         mutex_unlock(&con->mutex);
1993
1994         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1995              msg, le64_to_cpu(msg->hdr.seq),
1996              ENTITY_NAME(msg->hdr.src),
1997              le16_to_cpu(msg->hdr.type),
1998              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1999              le32_to_cpu(msg->hdr.front_len),
2000              le32_to_cpu(msg->hdr.data_len),
2001              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2002         con->ops->dispatch(con, msg);
2003
2004         mutex_lock(&con->mutex);
2005 }
2006
2007
2008 /*
2009  * Write something to the socket.  Called in a worker thread when the
2010  * socket appears to be writeable and we have something ready to send.
2011  */
2012 static int try_write(struct ceph_connection *con)
2013 {
2014         int ret = 1;
2015
2016         dout("try_write start %p state %lu\n", con, con->state);
2017
2018 more:
2019         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2020
2021         /* open the socket first? */
2022         if (con->state == CON_STATE_PREOPEN) {
2023                 BUG_ON(con->sock);
2024                 con->state = CON_STATE_CONNECTING;
2025
2026                 con_out_kvec_reset(con);
2027                 prepare_write_banner(con);
2028                 prepare_read_banner(con);
2029
2030                 BUG_ON(con->in_msg);
2031                 con->in_tag = CEPH_MSGR_TAG_READY;
2032                 dout("try_write initiating connect on %p new state %lu\n",
2033                      con, con->state);
2034                 ret = ceph_tcp_connect(con);
2035                 if (ret < 0) {
2036                         con->error_msg = "connect error";
2037                         goto out;
2038                 }
2039         }
2040
2041 more_kvec:
2042         /* kvec data queued? */
2043         if (con->out_skip) {
2044                 ret = write_partial_skip(con);
2045                 if (ret <= 0)
2046                         goto out;
2047         }
2048         if (con->out_kvec_left) {
2049                 ret = write_partial_kvec(con);
2050                 if (ret <= 0)
2051                         goto out;
2052         }
2053
2054         /* msg pages? */
2055         if (con->out_msg) {
2056                 if (con->out_msg_done) {
2057                         ceph_msg_put(con->out_msg);
2058                         con->out_msg = NULL;   /* we're done with this one */
2059                         goto do_next;
2060                 }
2061
2062                 ret = write_partial_msg_pages(con);
2063                 if (ret == 1)
2064                         goto more_kvec;  /* we need to send the footer, too! */
2065                 if (ret == 0)
2066                         goto out;
2067                 if (ret < 0) {
2068                         dout("try_write write_partial_msg_pages err %d\n",
2069                              ret);
2070                         goto out;
2071                 }
2072         }
2073
2074 do_next:
2075         if (con->state == CON_STATE_OPEN) {
2076                 /* is anything else pending? */
2077                 if (!list_empty(&con->out_queue)) {
2078                         prepare_write_message(con);
2079                         goto more;
2080                 }
2081                 if (con->in_seq > con->in_seq_acked) {
2082                         prepare_write_ack(con);
2083                         goto more;
2084                 }
2085                 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2086                                        &con->flags)) {
2087                         prepare_write_keepalive(con);
2088                         goto more;
2089                 }
2090         }
2091
2092         /* Nothing to do! */
2093         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2094         dout("try_write nothing else to write.\n");
2095         ret = 0;
2096 out:
2097         dout("try_write done on %p ret %d\n", con, ret);
2098         return ret;
2099 }
2100
2101
2102
2103 /*
2104  * Read what we can from the socket.
2105  */
2106 static int try_read(struct ceph_connection *con)
2107 {
2108         int ret = -1;
2109
2110 more:
2111         dout("try_read start on %p state %lu\n", con, con->state);
2112         if (con->state != CON_STATE_CONNECTING &&
2113             con->state != CON_STATE_NEGOTIATING &&
2114             con->state != CON_STATE_OPEN)
2115                 return 0;
2116
2117         BUG_ON(!con->sock);
2118
2119         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2120              con->in_base_pos);
2121
2122         if (con->state == CON_STATE_CONNECTING) {
2123                 dout("try_read connecting\n");
2124                 ret = read_partial_banner(con);
2125                 if (ret <= 0)
2126                         goto out;
2127                 ret = process_banner(con);
2128                 if (ret < 0)
2129                         goto out;
2130
2131                 BUG_ON(con->state != CON_STATE_CONNECTING);
2132                 con->state = CON_STATE_NEGOTIATING;
2133
2134                 /* Banner is good, exchange connection info */
2135                 ret = prepare_write_connect(con);
2136                 if (ret < 0)
2137                         goto out;
2138                 prepare_read_connect(con);
2139
2140                 /* Send connection info before awaiting response */
2141                 goto out;
2142         }
2143
2144         if (con->state == CON_STATE_NEGOTIATING) {
2145                 dout("try_read negotiating\n");
2146                 ret = read_partial_connect(con);
2147                 if (ret <= 0)
2148                         goto out;
2149                 ret = process_connect(con);
2150                 if (ret < 0)
2151                         goto out;
2152                 goto more;
2153         }
2154
2155         BUG_ON(con->state != CON_STATE_OPEN);
2156
2157         if (con->in_base_pos < 0) {
2158                 /*
2159                  * skipping + discarding content.
2160                  *
2161                  * FIXME: there must be a better way to do this!
2162                  */
2163                 static char buf[SKIP_BUF_SIZE];
2164                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2165
2166                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2167                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2168                 if (ret <= 0)
2169                         goto out;
2170                 con->in_base_pos += ret;
2171                 if (con->in_base_pos)
2172                         goto more;
2173         }
2174         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2175                 /*
2176                  * what's next?
2177                  */
2178                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2179                 if (ret <= 0)
2180                         goto out;
2181                 dout("try_read got tag %d\n", (int)con->in_tag);
2182                 switch (con->in_tag) {
2183                 case CEPH_MSGR_TAG_MSG:
2184                         prepare_read_message(con);
2185                         break;
2186                 case CEPH_MSGR_TAG_ACK:
2187                         prepare_read_ack(con);
2188                         break;
2189                 case CEPH_MSGR_TAG_CLOSE:
2190                         con_close_socket(con);
2191                         con->state = CON_STATE_CLOSED;
2192                         goto out;
2193                 default:
2194                         goto bad_tag;
2195                 }
2196         }
2197         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2198                 ret = read_partial_message(con);
2199                 if (ret <= 0) {
2200                         switch (ret) {
2201                         case -EBADMSG:
2202                                 con->error_msg = "bad crc";
2203                                 ret = -EIO;
2204                                 break;
2205                         case -EIO:
2206                                 con->error_msg = "io error";
2207                                 break;
2208                         }
2209                         goto out;
2210                 }
2211                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2212                         goto more;
2213                 process_message(con);
2214                 if (con->state == CON_STATE_OPEN)
2215                         prepare_read_tag(con);
2216                 goto more;
2217         }
2218         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2219                 ret = read_partial_ack(con);
2220                 if (ret <= 0)
2221                         goto out;
2222                 process_ack(con);
2223                 goto more;
2224         }
2225
2226 out:
2227         dout("try_read done on %p ret %d\n", con, ret);
2228         return ret;
2229
2230 bad_tag:
2231         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2232         con->error_msg = "protocol error, garbage tag";
2233         ret = -1;
2234         goto out;
2235 }
2236
2237
2238 /*
2239  * Atomically queue work on a connection.  Bump @con reference to
2240  * avoid races with connection teardown.
2241  */
2242 static void queue_con(struct ceph_connection *con)
2243 {
2244         if (!con->ops->get(con)) {
2245                 dout("queue_con %p ref count 0\n", con);
2246                 return;
2247         }
2248
2249         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2250                 dout("queue_con %p - already queued\n", con);
2251                 con->ops->put(con);
2252         } else {
2253                 dout("queue_con %p\n", con);
2254         }
2255 }
2256
2257 /*
2258  * Do some work on a connection.  Drop a connection ref when we're done.
2259  */
2260 static void con_work(struct work_struct *work)
2261 {
2262         struct ceph_connection *con = container_of(work, struct ceph_connection,
2263                                                    work.work);
2264         int ret;
2265
2266         mutex_lock(&con->mutex);
2267 restart:
2268         if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2269                 switch (con->state) {
2270                 case CON_STATE_CONNECTING:
2271                         con->error_msg = "connection failed";
2272                         break;
2273                 case CON_STATE_NEGOTIATING:
2274                         con->error_msg = "negotiation failed";
2275                         break;
2276                 case CON_STATE_OPEN:
2277                         con->error_msg = "socket closed";
2278                         break;
2279                 default:
2280                         dout("unrecognized con state %d\n", (int)con->state);
2281                         con->error_msg = "unrecognized con state";
2282                         BUG();
2283                 }
2284                 goto fault;
2285         }
2286
2287         if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2288                 dout("con_work %p backing off\n", con);
2289                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2290                                        round_jiffies_relative(con->delay))) {
2291                         dout("con_work %p backoff %lu\n", con, con->delay);
2292                         mutex_unlock(&con->mutex);
2293                         return;
2294                 } else {
2295                         con->ops->put(con);
2296                         dout("con_work %p FAILED to back off %lu\n", con,
2297                              con->delay);
2298                 }
2299         }
2300
2301         if (con->state == CON_STATE_STANDBY) {
2302                 dout("con_work %p STANDBY\n", con);
2303                 goto done;
2304         }
2305         if (con->state == CON_STATE_CLOSED) {
2306                 dout("con_work %p CLOSED\n", con);
2307                 BUG_ON(con->sock);
2308                 goto done;
2309         }
2310         if (con->state == CON_STATE_PREOPEN) {
2311                 dout("con_work OPENING\n");
2312                 BUG_ON(con->sock);
2313         }
2314
2315         ret = try_read(con);
2316         if (ret == -EAGAIN)
2317                 goto restart;
2318         if (ret < 0) {
2319                 con->error_msg = "socket error on read";
2320                 goto fault;
2321         }
2322
2323         ret = try_write(con);
2324         if (ret == -EAGAIN)
2325                 goto restart;
2326         if (ret < 0) {
2327                 con->error_msg = "socket error on write";
2328                 goto fault;
2329         }
2330
2331 done:
2332         mutex_unlock(&con->mutex);
2333 done_unlocked:
2334         con->ops->put(con);
2335         return;
2336
2337 fault:
2338         ceph_fault(con);     /* error/fault path */
2339         goto done_unlocked;
2340 }
2341
2342
2343 /*
2344  * Generic error/fault handler.  A retry mechanism is used with
2345  * exponential backoff
2346  */
2347 static void ceph_fault(struct ceph_connection *con)
2348         __releases(con->mutex)
2349 {
2350         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2351                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2352         dout("fault %p state %lu to peer %s\n",
2353              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2354
2355         BUG_ON(con->state != CON_STATE_CONNECTING &&
2356                con->state != CON_STATE_NEGOTIATING &&
2357                con->state != CON_STATE_OPEN);
2358
2359         con_close_socket(con);
2360
2361         if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2362                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2363                 con->state = CON_STATE_CLOSED;
2364                 goto out_unlock;
2365         }
2366
2367         if (con->in_msg) {
2368                 BUG_ON(con->in_msg->con != con);
2369                 con->in_msg->con = NULL;
2370                 ceph_msg_put(con->in_msg);
2371                 con->in_msg = NULL;
2372                 con->ops->put(con);
2373         }
2374
2375         /* Requeue anything that hasn't been acked */
2376         list_splice_init(&con->out_sent, &con->out_queue);
2377
2378         /* If there are no messages queued or keepalive pending, place
2379          * the connection in a STANDBY state */
2380         if (list_empty(&con->out_queue) &&
2381             !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2382                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2383                 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2384                 con->state = CON_STATE_STANDBY;
2385         } else {
2386                 /* retry after a delay. */
2387                 con->state = CON_STATE_PREOPEN;
2388                 if (con->delay == 0)
2389                         con->delay = BASE_DELAY_INTERVAL;
2390                 else if (con->delay < MAX_DELAY_INTERVAL)
2391                         con->delay *= 2;
2392                 con->ops->get(con);
2393                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2394                                        round_jiffies_relative(con->delay))) {
2395                         dout("fault queued %p delay %lu\n", con, con->delay);
2396                 } else {
2397                         con->ops->put(con);
2398                         dout("fault failed to queue %p delay %lu, backoff\n",
2399                              con, con->delay);
2400                         /*
2401                          * In many cases we see a socket state change
2402                          * while con_work is running and end up
2403                          * queuing (non-delayed) work, such that we
2404                          * can't backoff with a delay.  Set a flag so
2405                          * that when con_work restarts we schedule the
2406                          * delay then.
2407                          */
2408                         set_bit(CON_FLAG_BACKOFF, &con->flags);
2409                 }
2410         }
2411
2412 out_unlock:
2413         mutex_unlock(&con->mutex);
2414         /*
2415          * in case we faulted due to authentication, invalidate our
2416          * current tickets so that we can get new ones.
2417          */
2418         if (con->auth_retry && con->ops->invalidate_authorizer) {
2419                 dout("calling invalidate_authorizer()\n");
2420                 con->ops->invalidate_authorizer(con);
2421         }
2422
2423         if (con->ops->fault)
2424                 con->ops->fault(con);
2425 }
2426
2427
2428
2429 /*
2430  * initialize a new messenger instance
2431  */
2432 void ceph_messenger_init(struct ceph_messenger *msgr,
2433                         struct ceph_entity_addr *myaddr,
2434                         u32 supported_features,
2435                         u32 required_features,
2436                         bool nocrc)
2437 {
2438         msgr->supported_features = supported_features;
2439         msgr->required_features = required_features;
2440
2441         spin_lock_init(&msgr->global_seq_lock);
2442
2443         if (myaddr)
2444                 msgr->inst.addr = *myaddr;
2445
2446         /* select a random nonce */
2447         msgr->inst.addr.type = 0;
2448         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2449         encode_my_addr(msgr);
2450         msgr->nocrc = nocrc;
2451
2452         atomic_set(&msgr->stopping, 0);
2453
2454         dout("%s %p\n", __func__, msgr);
2455 }
2456 EXPORT_SYMBOL(ceph_messenger_init);
2457
2458 static void clear_standby(struct ceph_connection *con)
2459 {
2460         /* come back from STANDBY? */
2461         if (con->state == CON_STATE_STANDBY) {
2462                 dout("clear_standby %p and ++connect_seq\n", con);
2463                 con->state = CON_STATE_PREOPEN;
2464                 con->connect_seq++;
2465                 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2466                 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2467         }
2468 }
2469
2470 /*
2471  * Queue up an outgoing message on the given connection.
2472  */
2473 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2474 {
2475         /* set src+dst */
2476         msg->hdr.src = con->msgr->inst.name;
2477         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2478         msg->needs_out_seq = true;
2479
2480         mutex_lock(&con->mutex);
2481
2482         if (con->state == CON_STATE_CLOSED) {
2483                 dout("con_send %p closed, dropping %p\n", con, msg);
2484                 ceph_msg_put(msg);
2485                 mutex_unlock(&con->mutex);
2486                 return;
2487         }
2488
2489         BUG_ON(msg->con != NULL);
2490         msg->con = con->ops->get(con);
2491         BUG_ON(msg->con == NULL);
2492
2493         BUG_ON(!list_empty(&msg->list_head));
2494         list_add_tail(&msg->list_head, &con->out_queue);
2495         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2496              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2497              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2498              le32_to_cpu(msg->hdr.front_len),
2499              le32_to_cpu(msg->hdr.middle_len),
2500              le32_to_cpu(msg->hdr.data_len));
2501
2502         clear_standby(con);
2503         mutex_unlock(&con->mutex);
2504
2505         /* if there wasn't anything waiting to send before, queue
2506          * new work */
2507         if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2508                 queue_con(con);
2509 }
2510 EXPORT_SYMBOL(ceph_con_send);
2511
2512 /*
2513  * Revoke a message that was previously queued for send
2514  */
2515 void ceph_msg_revoke(struct ceph_msg *msg)
2516 {
2517         struct ceph_connection *con = msg->con;
2518
2519         if (!con)
2520                 return;         /* Message not in our possession */
2521
2522         mutex_lock(&con->mutex);
2523         if (!list_empty(&msg->list_head)) {
2524                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2525                 list_del_init(&msg->list_head);
2526                 BUG_ON(msg->con == NULL);
2527                 msg->con->ops->put(msg->con);
2528                 msg->con = NULL;
2529                 msg->hdr.seq = 0;
2530
2531                 ceph_msg_put(msg);
2532         }
2533         if (con->out_msg == msg) {
2534                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2535                 con->out_msg = NULL;
2536                 if (con->out_kvec_is_msg) {
2537                         con->out_skip = con->out_kvec_bytes;
2538                         con->out_kvec_is_msg = false;
2539                 }
2540                 msg->hdr.seq = 0;
2541
2542                 ceph_msg_put(msg);
2543         }
2544         mutex_unlock(&con->mutex);
2545 }
2546
2547 /*
2548  * Revoke a message that we may be reading data into
2549  */
2550 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2551 {
2552         struct ceph_connection *con;
2553
2554         BUG_ON(msg == NULL);
2555         if (!msg->con) {
2556                 dout("%s msg %p null con\n", __func__, msg);
2557
2558                 return;         /* Message not in our possession */
2559         }
2560
2561         con = msg->con;
2562         mutex_lock(&con->mutex);
2563         if (con->in_msg == msg) {
2564                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2565                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2566                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2567
2568                 /* skip rest of message */
2569                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2570                 con->in_base_pos = con->in_base_pos -
2571                                 sizeof(struct ceph_msg_header) -
2572                                 front_len -
2573                                 middle_len -
2574                                 data_len -
2575                                 sizeof(struct ceph_msg_footer);
2576                 ceph_msg_put(con->in_msg);
2577                 con->in_msg = NULL;
2578                 con->in_tag = CEPH_MSGR_TAG_READY;
2579                 con->in_seq++;
2580         } else {
2581                 dout("%s %p in_msg %p msg %p no-op\n",
2582                      __func__, con, con->in_msg, msg);
2583         }
2584         mutex_unlock(&con->mutex);
2585 }
2586
2587 /*
2588  * Queue a keepalive byte to ensure the tcp connection is alive.
2589  */
2590 void ceph_con_keepalive(struct ceph_connection *con)
2591 {
2592         dout("con_keepalive %p\n", con);
2593         mutex_lock(&con->mutex);
2594         clear_standby(con);
2595         mutex_unlock(&con->mutex);
2596         if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2597             test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2598                 queue_con(con);
2599 }
2600 EXPORT_SYMBOL(ceph_con_keepalive);
2601
2602
2603 /*
2604  * construct a new message with given type, size
2605  * the new msg has a ref count of 1.
2606  */
2607 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2608                               bool can_fail)
2609 {
2610         struct ceph_msg *m;
2611
2612         m = kmalloc(sizeof(*m), flags);
2613         if (m == NULL)
2614                 goto out;
2615         kref_init(&m->kref);
2616
2617         m->con = NULL;
2618         INIT_LIST_HEAD(&m->list_head);
2619
2620         m->hdr.tid = 0;
2621         m->hdr.type = cpu_to_le16(type);
2622         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2623         m->hdr.version = 0;
2624         m->hdr.front_len = cpu_to_le32(front_len);
2625         m->hdr.middle_len = 0;
2626         m->hdr.data_len = 0;
2627         m->hdr.data_off = 0;
2628         m->hdr.reserved = 0;
2629         m->footer.front_crc = 0;
2630         m->footer.middle_crc = 0;
2631         m->footer.data_crc = 0;
2632         m->footer.flags = 0;
2633         m->front_max = front_len;
2634         m->front_is_vmalloc = false;
2635         m->more_to_follow = false;
2636         m->ack_stamp = 0;
2637         m->pool = NULL;
2638
2639         /* middle */
2640         m->middle = NULL;
2641
2642         /* data */
2643         m->nr_pages = 0;
2644         m->page_alignment = 0;
2645         m->pages = NULL;
2646         m->pagelist = NULL;
2647         m->bio = NULL;
2648         m->bio_iter = NULL;
2649         m->bio_seg = 0;
2650         m->trail = NULL;
2651
2652         /* front */
2653         if (front_len) {
2654                 if (front_len > PAGE_CACHE_SIZE) {
2655                         m->front.iov_base = __vmalloc(front_len, flags,
2656                                                       PAGE_KERNEL);
2657                         m->front_is_vmalloc = true;
2658                 } else {
2659                         m->front.iov_base = kmalloc(front_len, flags);
2660                 }
2661                 if (m->front.iov_base == NULL) {
2662                         dout("ceph_msg_new can't allocate %d bytes\n",
2663                              front_len);
2664                         goto out2;
2665                 }
2666         } else {
2667                 m->front.iov_base = NULL;
2668         }
2669         m->front.iov_len = front_len;
2670
2671         dout("ceph_msg_new %p front %d\n", m, front_len);
2672         return m;
2673
2674 out2:
2675         ceph_msg_put(m);
2676 out:
2677         if (!can_fail) {
2678                 pr_err("msg_new can't create type %d front %d\n", type,
2679                        front_len);
2680                 WARN_ON(1);
2681         } else {
2682                 dout("msg_new can't create type %d front %d\n", type,
2683                      front_len);
2684         }
2685         return NULL;
2686 }
2687 EXPORT_SYMBOL(ceph_msg_new);
2688
2689 /*
2690  * Allocate "middle" portion of a message, if it is needed and wasn't
2691  * allocated by alloc_msg.  This allows us to read a small fixed-size
2692  * per-type header in the front and then gracefully fail (i.e.,
2693  * propagate the error to the caller based on info in the front) when
2694  * the middle is too large.
2695  */
2696 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2697 {
2698         int type = le16_to_cpu(msg->hdr.type);
2699         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2700
2701         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2702              ceph_msg_type_name(type), middle_len);
2703         BUG_ON(!middle_len);
2704         BUG_ON(msg->middle);
2705
2706         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2707         if (!msg->middle)
2708                 return -ENOMEM;
2709         return 0;
2710 }
2711
2712 /*
2713  * Allocate a message for receiving an incoming message on a
2714  * connection, and save the result in con->in_msg.  Uses the
2715  * connection's private alloc_msg op if available.
2716  *
2717  * Returns 0 on success, or a negative error code.
2718  *
2719  * On success, if we set *skip = 1:
2720  *  - the next message should be skipped and ignored.
2721  *  - con->in_msg == NULL
2722  * or if we set *skip = 0:
2723  *  - con->in_msg is non-null.
2724  * On error (ENOMEM, EAGAIN, ...),
2725  *  - con->in_msg == NULL
2726  */
2727 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2728 {
2729         struct ceph_msg_header *hdr = &con->in_hdr;
2730         int type = le16_to_cpu(hdr->type);
2731         int front_len = le32_to_cpu(hdr->front_len);
2732         int middle_len = le32_to_cpu(hdr->middle_len);
2733         int ret = 0;
2734
2735         BUG_ON(con->in_msg != NULL);
2736
2737         if (con->ops->alloc_msg) {
2738                 struct ceph_msg *msg;
2739
2740                 mutex_unlock(&con->mutex);
2741                 msg = con->ops->alloc_msg(con, hdr, skip);
2742                 mutex_lock(&con->mutex);
2743                 if (con->state != CON_STATE_OPEN) {
2744                         ceph_msg_put(msg);
2745                         return -EAGAIN;
2746                 }
2747                 con->in_msg = msg;
2748                 if (con->in_msg) {
2749                         con->in_msg->con = con->ops->get(con);
2750                         BUG_ON(con->in_msg->con == NULL);
2751                 }
2752                 if (*skip) {
2753                         con->in_msg = NULL;
2754                         return 0;
2755                 }
2756                 if (!con->in_msg) {
2757                         con->error_msg =
2758                                 "error allocating memory for incoming message";
2759                         return -ENOMEM;
2760                 }
2761         }
2762         if (!con->in_msg) {
2763                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2764                 if (!con->in_msg) {
2765                         pr_err("unable to allocate msg type %d len %d\n",
2766                                type, front_len);
2767                         return -ENOMEM;
2768                 }
2769                 con->in_msg->con = con->ops->get(con);
2770                 BUG_ON(con->in_msg->con == NULL);
2771                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2772         }
2773         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2774
2775         if (middle_len && !con->in_msg->middle) {
2776                 ret = ceph_alloc_middle(con, con->in_msg);
2777                 if (ret < 0) {
2778                         ceph_msg_put(con->in_msg);
2779                         con->in_msg = NULL;
2780                 }
2781         }
2782
2783         return ret;
2784 }
2785
2786
2787 /*
2788  * Free a generically kmalloc'd message.
2789  */
2790 void ceph_msg_kfree(struct ceph_msg *m)
2791 {
2792         dout("msg_kfree %p\n", m);
2793         if (m->front_is_vmalloc)
2794                 vfree(m->front.iov_base);
2795         else
2796                 kfree(m->front.iov_base);
2797         kfree(m);
2798 }
2799
2800 /*
2801  * Drop a msg ref.  Destroy as needed.
2802  */
2803 void ceph_msg_last_put(struct kref *kref)
2804 {
2805         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2806
2807         dout("ceph_msg_put last one on %p\n", m);
2808         WARN_ON(!list_empty(&m->list_head));
2809
2810         /* drop middle, data, if any */
2811         if (m->middle) {
2812                 ceph_buffer_put(m->middle);
2813                 m->middle = NULL;
2814         }
2815         m->nr_pages = 0;
2816         m->pages = NULL;
2817
2818         if (m->pagelist) {
2819                 ceph_pagelist_release(m->pagelist);
2820                 kfree(m->pagelist);
2821                 m->pagelist = NULL;
2822         }
2823
2824         m->trail = NULL;
2825
2826         if (m->pool)
2827                 ceph_msgpool_put(m->pool, m);
2828         else
2829                 ceph_msg_kfree(m);
2830 }
2831 EXPORT_SYMBOL(ceph_msg_last_put);
2832
2833 void ceph_msg_dump(struct ceph_msg *msg)
2834 {
2835         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2836                  msg->front_max, msg->nr_pages);
2837         print_hex_dump(KERN_DEBUG, "header: ",
2838                        DUMP_PREFIX_OFFSET, 16, 1,
2839                        &msg->hdr, sizeof(msg->hdr), true);
2840         print_hex_dump(KERN_DEBUG, " front: ",
2841                        DUMP_PREFIX_OFFSET, 16, 1,
2842                        msg->front.iov_base, msg->front.iov_len, true);
2843         if (msg->middle)
2844                 print_hex_dump(KERN_DEBUG, "middle: ",
2845                                DUMP_PREFIX_OFFSET, 16, 1,
2846                                msg->middle->vec.iov_base,
2847                                msg->middle->vec.iov_len, true);
2848         print_hex_dump(KERN_DEBUG, "footer: ",
2849                        DUMP_PREFIX_OFFSET, 16, 1,
2850                        &msg->footer, sizeof(msg->footer), true);
2851 }
2852 EXPORT_SYMBOL(ceph_msg_dump);