]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
ceph: messenger: use read_partial() in read_partial_message()
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41 /*
42  * When skipping (ignoring) a block of input we read it into a "skip
43  * buffer," which is this many bytes in size.
44  */
45 #define SKIP_BUF_SIZE   1024
46
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50
51 /*
52  * Nicely render a sockaddr as a string.  An array of formatted
53  * strings is used, to approximate reentrancy.
54  */
55 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
59
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63 static struct page *zero_page;          /* used in certain error cases */
64
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67         int i;
68         char *s;
69         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73         s = addr_str[i];
74
75         switch (ss->ss_family) {
76         case AF_INET:
77                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78                          ntohs(in4->sin_port));
79                 break;
80
81         case AF_INET6:
82                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83                          ntohs(in6->sin6_port));
84                 break;
85
86         default:
87                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88                          ss->ss_family);
89         }
90
91         return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98         ceph_encode_addr(&msgr->my_enc_addr);
99 }
100
101 /*
102  * work queue for all reading and writing to/from the socket.
103  */
104 static struct workqueue_struct *ceph_msgr_wq;
105
106 void _ceph_msgr_exit(void)
107 {
108         if (ceph_msgr_wq) {
109                 destroy_workqueue(ceph_msgr_wq);
110                 ceph_msgr_wq = NULL;
111         }
112
113         BUG_ON(zero_page == NULL);
114         kunmap(zero_page);
115         page_cache_release(zero_page);
116         zero_page = NULL;
117 }
118
119 int ceph_msgr_init(void)
120 {
121         BUG_ON(zero_page != NULL);
122         zero_page = ZERO_PAGE(0);
123         page_cache_get(zero_page);
124
125         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126         if (ceph_msgr_wq)
127                 return 0;
128
129         pr_err("msgr_init failed to create workqueue\n");
130         _ceph_msgr_exit();
131
132         return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135
136 void ceph_msgr_exit(void)
137 {
138         BUG_ON(ceph_msgr_wq == NULL);
139
140         _ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143
144 void ceph_msgr_flush(void)
145 {
146         flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151 /*
152  * socket callback functions
153  */
154
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158         struct ceph_connection *con = sk->sk_user_data;
159
160         if (sk->sk_state != TCP_CLOSE_WAIT) {
161                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162                      con, con->state);
163                 queue_con(con);
164         }
165 }
166
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170         struct ceph_connection *con = sk->sk_user_data;
171
172         /* only queue to workqueue if there is data we want to write,
173          * and there is sufficient space in the socket buffer to accept
174          * more data.  clear SOCK_NOSPACE so that ceph_write_space()
175          * doesn't get called again until try_write() fills the socket
176          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177          * and net/core/stream.c:sk_stream_write_space().
178          */
179         if (test_bit(WRITE_PENDING, &con->state)) {
180                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181                         dout("ceph_write_space %p queueing write work\n", con);
182                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183                         queue_con(con);
184                 }
185         } else {
186                 dout("ceph_write_space %p nothing to write\n", con);
187         }
188 }
189
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193         struct ceph_connection *con = sk->sk_user_data;
194
195         dout("ceph_state_change %p state = %lu sk_state = %u\n",
196              con, con->state, sk->sk_state);
197
198         if (test_bit(CLOSED, &con->state))
199                 return;
200
201         switch (sk->sk_state) {
202         case TCP_CLOSE:
203                 dout("ceph_state_change TCP_CLOSE\n");
204         case TCP_CLOSE_WAIT:
205                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207                         if (test_bit(CONNECTING, &con->state))
208                                 con->error_msg = "connection failed";
209                         else
210                                 con->error_msg = "socket closed";
211                         queue_con(con);
212                 }
213                 break;
214         case TCP_ESTABLISHED:
215                 dout("ceph_state_change TCP_ESTABLISHED\n");
216                 queue_con(con);
217                 break;
218         default:        /* Everything else is uninteresting */
219                 break;
220         }
221 }
222
223 /*
224  * set up socket callbacks
225  */
226 static void set_sock_callbacks(struct socket *sock,
227                                struct ceph_connection *con)
228 {
229         struct sock *sk = sock->sk;
230         sk->sk_user_data = con;
231         sk->sk_data_ready = ceph_data_ready;
232         sk->sk_write_space = ceph_write_space;
233         sk->sk_state_change = ceph_state_change;
234 }
235
236
237 /*
238  * socket helpers
239  */
240
241 /*
242  * initiate connection to a remote socket.
243  */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247         struct socket *sock;
248         int ret;
249
250         BUG_ON(con->sock);
251         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252                                IPPROTO_TCP, &sock);
253         if (ret)
254                 return ret;
255         sock->sk->sk_allocation = GFP_NOFS;
256
257 #ifdef CONFIG_LOCKDEP
258         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260
261         set_sock_callbacks(sock, con);
262
263         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266                                  O_NONBLOCK);
267         if (ret == -EINPROGRESS) {
268                 dout("connect %s EINPROGRESS sk_state = %u\n",
269                      ceph_pr_addr(&con->peer_addr.in_addr),
270                      sock->sk->sk_state);
271         } else if (ret < 0) {
272                 pr_err("connect %s error %d\n",
273                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
274                 sock_release(sock);
275                 con->error_msg = "connect error";
276
277                 return ret;
278         }
279         con->sock = sock;
280
281         return 0;
282 }
283
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286         struct kvec iov = {buf, len};
287         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288         int r;
289
290         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291         if (r == -EAGAIN)
292                 r = 0;
293         return r;
294 }
295
296 /*
297  * write something.  @more is true if caller will be sending more data
298  * shortly.
299  */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301                      size_t kvlen, size_t len, int more)
302 {
303         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304         int r;
305
306         if (more)
307                 msg.msg_flags |= MSG_MORE;
308         else
309                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
310
311         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312         if (r == -EAGAIN)
313                 r = 0;
314         return r;
315 }
316
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318                      int offset, size_t size, int more)
319 {
320         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321         int ret;
322
323         ret = kernel_sendpage(sock, page, offset, size, flags);
324         if (ret == -EAGAIN)
325                 ret = 0;
326
327         return ret;
328 }
329
330
331 /*
332  * Shutdown/close the socket for the given connection.
333  */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336         int rc;
337
338         dout("con_close_socket on %p sock %p\n", con, con->sock);
339         if (!con->sock)
340                 return 0;
341         set_bit(SOCK_CLOSED, &con->state);
342         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343         sock_release(con->sock);
344         con->sock = NULL;
345         clear_bit(SOCK_CLOSED, &con->state);
346         return rc;
347 }
348
349 /*
350  * Reset a connection.  Discard all incoming and outgoing messages
351  * and clear *_seq state.
352  */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355         list_del_init(&msg->list_head);
356         ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360         while (!list_empty(head)) {
361                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362                                                         list_head);
363                 ceph_msg_remove(msg);
364         }
365 }
366
367 static void reset_connection(struct ceph_connection *con)
368 {
369         /* reset connection, out_queue, msg_ and connect_seq */
370         /* discard existing out_queue and msg_seq */
371         ceph_msg_remove_list(&con->out_queue);
372         ceph_msg_remove_list(&con->out_sent);
373
374         if (con->in_msg) {
375                 ceph_msg_put(con->in_msg);
376                 con->in_msg = NULL;
377         }
378
379         con->connect_seq = 0;
380         con->out_seq = 0;
381         if (con->out_msg) {
382                 ceph_msg_put(con->out_msg);
383                 con->out_msg = NULL;
384         }
385         con->in_seq = 0;
386         con->in_seq_acked = 0;
387 }
388
389 /*
390  * mark a peer down.  drop any open connections.
391  */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394         dout("con_close %p peer %s\n", con,
395              ceph_pr_addr(&con->peer_addr.in_addr));
396         set_bit(CLOSED, &con->state);  /* in case there's queued work */
397         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
398         clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
399         clear_bit(KEEPALIVE_PENDING, &con->state);
400         clear_bit(WRITE_PENDING, &con->state);
401         mutex_lock(&con->mutex);
402         reset_connection(con);
403         con->peer_global_seq = 0;
404         cancel_delayed_work(&con->work);
405         mutex_unlock(&con->mutex);
406         queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409
410 /*
411  * Reopen a closed connection, with a new peer address.
412  */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416         set_bit(OPENING, &con->state);
417         clear_bit(CLOSED, &con->state);
418         memcpy(&con->peer_addr, addr, sizeof(*addr));
419         con->delay = 0;      /* reset backoff memory */
420         queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423
424 /*
425  * return true if this connection ever successfully opened
426  */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429         return con->connect_seq > 0;
430 }
431
432 /*
433  * generic get/put
434  */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437         int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439         dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441         return nref ? con : NULL;
442 }
443
444 void ceph_con_put(struct ceph_connection *con)
445 {
446         int nref = atomic_dec_return(&con->nref);
447
448         BUG_ON(nref < 0);
449         if (nref == 0) {
450                 BUG_ON(con->sock);
451                 kfree(con);
452         }
453         dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455
456 /*
457  * initialize a new connection.
458  */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461         dout("con_init %p\n", con);
462         memset(con, 0, sizeof(*con));
463         atomic_set(&con->nref, 1);
464         con->msgr = msgr;
465         mutex_init(&con->mutex);
466         INIT_LIST_HEAD(&con->out_queue);
467         INIT_LIST_HEAD(&con->out_sent);
468         INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471
472
473 /*
474  * We maintain a global counter to order connection attempts.  Get
475  * a unique seq greater than @gt.
476  */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479         u32 ret;
480
481         spin_lock(&msgr->global_seq_lock);
482         if (msgr->global_seq < gt)
483                 msgr->global_seq = gt;
484         ret = ++msgr->global_seq;
485         spin_unlock(&msgr->global_seq_lock);
486         return ret;
487 }
488
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491         con->out_kvec_left = 0;
492         con->out_kvec_bytes = 0;
493         con->out_kvec_cur = &con->out_kvec[0];
494 }
495
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497                                 size_t size, void *data)
498 {
499         int index;
500
501         index = con->out_kvec_left;
502         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504         con->out_kvec[index].iov_len = size;
505         con->out_kvec[index].iov_base = data;
506         con->out_kvec_left++;
507         con->out_kvec_bytes += size;
508 }
509
510 /*
511  * Prepare footer for currently outgoing message, and finish things
512  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
513  */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516         struct ceph_msg *m = con->out_msg;
517         int v = con->out_kvec_left;
518
519         dout("prepare_write_message_footer %p\n", con);
520         con->out_kvec_is_msg = true;
521         con->out_kvec[v].iov_base = &m->footer;
522         con->out_kvec[v].iov_len = sizeof(m->footer);
523         con->out_kvec_bytes += sizeof(m->footer);
524         con->out_kvec_left++;
525         con->out_more = m->more_to_follow;
526         con->out_msg_done = true;
527 }
528
529 /*
530  * Prepare headers for the next outgoing message.
531  */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534         struct ceph_msg *m;
535         u32 crc;
536
537         ceph_con_out_kvec_reset(con);
538         con->out_kvec_is_msg = true;
539         con->out_msg_done = false;
540
541         /* Sneak an ack in there first?  If we can get it into the same
542          * TCP packet that's a good thing. */
543         if (con->in_seq > con->in_seq_acked) {
544                 con->in_seq_acked = con->in_seq;
545                 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547                 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548                         &con->out_temp_ack);
549         }
550
551         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552         con->out_msg = m;
553
554         /* put message on sent list */
555         ceph_msg_get(m);
556         list_move_tail(&m->list_head, &con->out_sent);
557
558         /*
559          * only assign outgoing seq # if we haven't sent this message
560          * yet.  if it is requeued, resend with it's original seq.
561          */
562         if (m->needs_out_seq) {
563                 m->hdr.seq = cpu_to_le64(++con->out_seq);
564                 m->needs_out_seq = false;
565         }
566
567         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568              m, con->out_seq, le16_to_cpu(m->hdr.type),
569              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
570              le32_to_cpu(m->hdr.data_len),
571              m->nr_pages);
572         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
573
574         /* tag + hdr + front + middle */
575         ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
576         ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
577         ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
578
579         if (m->middle)
580                 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
581                         m->middle->vec.iov_base);
582
583         /* fill in crc (except data pages), footer */
584         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
585         con->out_msg->hdr.crc = cpu_to_le32(crc);
586         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
587
588         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
589         con->out_msg->footer.front_crc = cpu_to_le32(crc);
590         if (m->middle) {
591                 crc = crc32c(0, m->middle->vec.iov_base,
592                                 m->middle->vec.iov_len);
593                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
594         } else
595                 con->out_msg->footer.middle_crc = 0;
596         con->out_msg->footer.data_crc = 0;
597         dout("prepare_write_message front_crc %u data_crc %u\n",
598              le32_to_cpu(con->out_msg->footer.front_crc),
599              le32_to_cpu(con->out_msg->footer.middle_crc));
600
601         /* is there a data payload? */
602         if (le32_to_cpu(m->hdr.data_len) > 0) {
603                 /* initialize page iterator */
604                 con->out_msg_pos.page = 0;
605                 if (m->pages)
606                         con->out_msg_pos.page_pos = m->page_alignment;
607                 else
608                         con->out_msg_pos.page_pos = 0;
609                 con->out_msg_pos.data_pos = 0;
610                 con->out_msg_pos.did_page_crc = false;
611                 con->out_more = 1;  /* data + footer will follow */
612         } else {
613                 /* no, queue up footer too and be done */
614                 prepare_write_message_footer(con);
615         }
616
617         set_bit(WRITE_PENDING, &con->state);
618 }
619
620 /*
621  * Prepare an ack.
622  */
623 static void prepare_write_ack(struct ceph_connection *con)
624 {
625         dout("prepare_write_ack %p %llu -> %llu\n", con,
626              con->in_seq_acked, con->in_seq);
627         con->in_seq_acked = con->in_seq;
628
629         ceph_con_out_kvec_reset(con);
630
631         ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
632
633         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
634         ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
635                                 &con->out_temp_ack);
636
637         con->out_more = 1;  /* more will follow.. eventually.. */
638         set_bit(WRITE_PENDING, &con->state);
639 }
640
641 /*
642  * Prepare to write keepalive byte.
643  */
644 static void prepare_write_keepalive(struct ceph_connection *con)
645 {
646         dout("prepare_write_keepalive %p\n", con);
647         ceph_con_out_kvec_reset(con);
648         ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
649         set_bit(WRITE_PENDING, &con->state);
650 }
651
652 /*
653  * Connection negotiation.
654  */
655
656 static int prepare_connect_authorizer(struct ceph_connection *con)
657 {
658         void *auth_buf;
659         int auth_len = 0;
660         int auth_protocol = 0;
661
662         mutex_unlock(&con->mutex);
663         if (con->ops->get_authorizer)
664                 con->ops->get_authorizer(con, &auth_buf, &auth_len,
665                                          &auth_protocol, &con->auth_reply_buf,
666                                          &con->auth_reply_buf_len,
667                                          con->auth_retry);
668         mutex_lock(&con->mutex);
669
670         if (test_bit(CLOSED, &con->state) ||
671             test_bit(OPENING, &con->state))
672                 return -EAGAIN;
673
674         con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
675         con->out_connect.authorizer_len = cpu_to_le32(auth_len);
676
677         if (auth_len)
678                 ceph_con_out_kvec_add(con, auth_len, auth_buf);
679
680         return 0;
681 }
682
683 /*
684  * We connected to a peer and are saying hello.
685  */
686 static void prepare_write_banner(struct ceph_messenger *msgr,
687                                  struct ceph_connection *con)
688 {
689         ceph_con_out_kvec_reset(con);
690         ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
691         ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
692                                         &msgr->my_enc_addr);
693
694         con->out_more = 0;
695         set_bit(WRITE_PENDING, &con->state);
696 }
697
698 static int prepare_write_connect(struct ceph_messenger *msgr,
699                                  struct ceph_connection *con,
700                                  int include_banner)
701 {
702         unsigned global_seq = get_global_seq(con->msgr, 0);
703         int proto;
704
705         switch (con->peer_name.type) {
706         case CEPH_ENTITY_TYPE_MON:
707                 proto = CEPH_MONC_PROTOCOL;
708                 break;
709         case CEPH_ENTITY_TYPE_OSD:
710                 proto = CEPH_OSDC_PROTOCOL;
711                 break;
712         case CEPH_ENTITY_TYPE_MDS:
713                 proto = CEPH_MDSC_PROTOCOL;
714                 break;
715         default:
716                 BUG();
717         }
718
719         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
720              con->connect_seq, global_seq, proto);
721
722         con->out_connect.features = cpu_to_le64(msgr->supported_features);
723         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
724         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
725         con->out_connect.global_seq = cpu_to_le32(global_seq);
726         con->out_connect.protocol_version = cpu_to_le32(proto);
727         con->out_connect.flags = 0;
728
729         if (include_banner)
730                 prepare_write_banner(msgr, con);
731         else
732                 ceph_con_out_kvec_reset(con);
733         ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
734
735         con->out_more = 0;
736         set_bit(WRITE_PENDING, &con->state);
737
738         return prepare_connect_authorizer(con);
739 }
740
741 /*
742  * write as much of pending kvecs to the socket as we can.
743  *  1 -> done
744  *  0 -> socket full, but more to do
745  * <0 -> error
746  */
747 static int write_partial_kvec(struct ceph_connection *con)
748 {
749         int ret;
750
751         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
752         while (con->out_kvec_bytes > 0) {
753                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
754                                        con->out_kvec_left, con->out_kvec_bytes,
755                                        con->out_more);
756                 if (ret <= 0)
757                         goto out;
758                 con->out_kvec_bytes -= ret;
759                 if (con->out_kvec_bytes == 0)
760                         break;            /* done */
761
762                 /* account for full iov entries consumed */
763                 while (ret >= con->out_kvec_cur->iov_len) {
764                         BUG_ON(!con->out_kvec_left);
765                         ret -= con->out_kvec_cur->iov_len;
766                         con->out_kvec_cur++;
767                         con->out_kvec_left--;
768                 }
769                 /* and for a partially-consumed entry */
770                 if (ret) {
771                         con->out_kvec_cur->iov_len -= ret;
772                         con->out_kvec_cur->iov_base += ret;
773                 }
774         }
775         con->out_kvec_left = 0;
776         con->out_kvec_is_msg = false;
777         ret = 1;
778 out:
779         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
780              con->out_kvec_bytes, con->out_kvec_left, ret);
781         return ret;  /* done! */
782 }
783
784 #ifdef CONFIG_BLOCK
785 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
786 {
787         if (!bio) {
788                 *iter = NULL;
789                 *seg = 0;
790                 return;
791         }
792         *iter = bio;
793         *seg = bio->bi_idx;
794 }
795
796 static void iter_bio_next(struct bio **bio_iter, int *seg)
797 {
798         if (*bio_iter == NULL)
799                 return;
800
801         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
802
803         (*seg)++;
804         if (*seg == (*bio_iter)->bi_vcnt)
805                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
806 }
807 #endif
808
809 /*
810  * Write as much message data payload as we can.  If we finish, queue
811  * up the footer.
812  *  1 -> done, footer is now queued in out_kvec[].
813  *  0 -> socket full, but more to do
814  * <0 -> error
815  */
816 static int write_partial_msg_pages(struct ceph_connection *con)
817 {
818         struct ceph_msg *msg = con->out_msg;
819         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
820         size_t len;
821         bool do_datacrc = !con->msgr->nocrc;
822         int ret;
823         int total_max_write;
824         int in_trail = 0;
825         size_t trail_len = (msg->trail ? msg->trail->length : 0);
826
827         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
828              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
829              con->out_msg_pos.page_pos);
830
831 #ifdef CONFIG_BLOCK
832         if (msg->bio && !msg->bio_iter)
833                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
834 #endif
835
836         while (data_len > con->out_msg_pos.data_pos) {
837                 struct page *page = NULL;
838                 int max_write = PAGE_SIZE;
839                 int bio_offset = 0;
840
841                 total_max_write = data_len - trail_len -
842                         con->out_msg_pos.data_pos;
843
844                 /*
845                  * if we are calculating the data crc (the default), we need
846                  * to map the page.  if our pages[] has been revoked, use the
847                  * zero page.
848                  */
849
850                 /* have we reached the trail part of the data? */
851                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
852                         in_trail = 1;
853
854                         total_max_write = data_len - con->out_msg_pos.data_pos;
855
856                         page = list_first_entry(&msg->trail->head,
857                                                 struct page, lru);
858                         max_write = PAGE_SIZE;
859                 } else if (msg->pages) {
860                         page = msg->pages[con->out_msg_pos.page];
861                 } else if (msg->pagelist) {
862                         page = list_first_entry(&msg->pagelist->head,
863                                                 struct page, lru);
864 #ifdef CONFIG_BLOCK
865                 } else if (msg->bio) {
866                         struct bio_vec *bv;
867
868                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
869                         page = bv->bv_page;
870                         bio_offset = bv->bv_offset;
871                         max_write = bv->bv_len;
872 #endif
873                 } else {
874                         page = zero_page;
875                 }
876                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
877                             total_max_write);
878
879                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
880                         void *base;
881                         u32 crc;
882                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
883                         char *kaddr;
884
885                         kaddr = kmap(page);
886                         BUG_ON(kaddr == NULL);
887                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
888                         crc = crc32c(tmpcrc, base, len);
889                         con->out_msg->footer.data_crc = cpu_to_le32(crc);
890                         con->out_msg_pos.did_page_crc = true;
891                 }
892                 ret = ceph_tcp_sendpage(con->sock, page,
893                                       con->out_msg_pos.page_pos + bio_offset,
894                                       len, 1);
895
896                 if (do_datacrc)
897                         kunmap(page);
898
899                 if (ret <= 0)
900                         goto out;
901
902                 con->out_msg_pos.data_pos += ret;
903                 con->out_msg_pos.page_pos += ret;
904                 if (ret == len) {
905                         con->out_msg_pos.page_pos = 0;
906                         con->out_msg_pos.page++;
907                         con->out_msg_pos.did_page_crc = false;
908                         if (in_trail)
909                                 list_move_tail(&page->lru,
910                                                &msg->trail->head);
911                         else if (msg->pagelist)
912                                 list_move_tail(&page->lru,
913                                                &msg->pagelist->head);
914 #ifdef CONFIG_BLOCK
915                         else if (msg->bio)
916                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
917 #endif
918                 }
919         }
920
921         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
922
923         /* prepare and queue up footer, too */
924         if (!do_datacrc)
925                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
926         ceph_con_out_kvec_reset(con);
927         prepare_write_message_footer(con);
928         ret = 1;
929 out:
930         return ret;
931 }
932
933 /*
934  * write some zeros
935  */
936 static int write_partial_skip(struct ceph_connection *con)
937 {
938         int ret;
939
940         while (con->out_skip > 0) {
941                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
942
943                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
944                 if (ret <= 0)
945                         goto out;
946                 con->out_skip -= ret;
947         }
948         ret = 1;
949 out:
950         return ret;
951 }
952
953 /*
954  * Prepare to read connection handshake, or an ack.
955  */
956 static void prepare_read_banner(struct ceph_connection *con)
957 {
958         dout("prepare_read_banner %p\n", con);
959         con->in_base_pos = 0;
960 }
961
962 static void prepare_read_connect(struct ceph_connection *con)
963 {
964         dout("prepare_read_connect %p\n", con);
965         con->in_base_pos = 0;
966 }
967
968 static void prepare_read_ack(struct ceph_connection *con)
969 {
970         dout("prepare_read_ack %p\n", con);
971         con->in_base_pos = 0;
972 }
973
974 static void prepare_read_tag(struct ceph_connection *con)
975 {
976         dout("prepare_read_tag %p\n", con);
977         con->in_base_pos = 0;
978         con->in_tag = CEPH_MSGR_TAG_READY;
979 }
980
981 /*
982  * Prepare to read a message.
983  */
984 static int prepare_read_message(struct ceph_connection *con)
985 {
986         dout("prepare_read_message %p\n", con);
987         BUG_ON(con->in_msg != NULL);
988         con->in_base_pos = 0;
989         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
990         return 0;
991 }
992
993
994 static int read_partial(struct ceph_connection *con,
995                         int *to, int size, void *object)
996 {
997         *to += size;
998         while (con->in_base_pos < *to) {
999                 int left = *to - con->in_base_pos;
1000                 int have = size - left;
1001                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1002                 if (ret <= 0)
1003                         return ret;
1004                 con->in_base_pos += ret;
1005         }
1006         return 1;
1007 }
1008
1009
1010 /*
1011  * Read all or part of the connect-side handshake on a new connection
1012  */
1013 static int read_partial_banner(struct ceph_connection *con)
1014 {
1015         int ret, to = 0;
1016
1017         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1018
1019         /* peer's banner */
1020         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1021         if (ret <= 0)
1022                 goto out;
1023         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1024                            &con->actual_peer_addr);
1025         if (ret <= 0)
1026                 goto out;
1027         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1028                            &con->peer_addr_for_me);
1029         if (ret <= 0)
1030                 goto out;
1031 out:
1032         return ret;
1033 }
1034
1035 static int read_partial_connect(struct ceph_connection *con)
1036 {
1037         int ret, to = 0;
1038
1039         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1040
1041         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1042         if (ret <= 0)
1043                 goto out;
1044         ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1045                            con->auth_reply_buf);
1046         if (ret <= 0)
1047                 goto out;
1048
1049         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1050              con, (int)con->in_reply.tag,
1051              le32_to_cpu(con->in_reply.connect_seq),
1052              le32_to_cpu(con->in_reply.global_seq));
1053 out:
1054         return ret;
1055
1056 }
1057
1058 /*
1059  * Verify the hello banner looks okay.
1060  */
1061 static int verify_hello(struct ceph_connection *con)
1062 {
1063         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1064                 pr_err("connect to %s got bad banner\n",
1065                        ceph_pr_addr(&con->peer_addr.in_addr));
1066                 con->error_msg = "protocol error, bad banner";
1067                 return -1;
1068         }
1069         return 0;
1070 }
1071
1072 static bool addr_is_blank(struct sockaddr_storage *ss)
1073 {
1074         switch (ss->ss_family) {
1075         case AF_INET:
1076                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1077         case AF_INET6:
1078                 return
1079                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1080                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1081                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1082                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1083         }
1084         return false;
1085 }
1086
1087 static int addr_port(struct sockaddr_storage *ss)
1088 {
1089         switch (ss->ss_family) {
1090         case AF_INET:
1091                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1092         case AF_INET6:
1093                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1094         }
1095         return 0;
1096 }
1097
1098 static void addr_set_port(struct sockaddr_storage *ss, int p)
1099 {
1100         switch (ss->ss_family) {
1101         case AF_INET:
1102                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1103                 break;
1104         case AF_INET6:
1105                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1106                 break;
1107         }
1108 }
1109
1110 /*
1111  * Unlike other *_pton function semantics, zero indicates success.
1112  */
1113 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1114                 char delim, const char **ipend)
1115 {
1116         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1117         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1118
1119         memset(ss, 0, sizeof(*ss));
1120
1121         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1122                 ss->ss_family = AF_INET;
1123                 return 0;
1124         }
1125
1126         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1127                 ss->ss_family = AF_INET6;
1128                 return 0;
1129         }
1130
1131         return -EINVAL;
1132 }
1133
1134 /*
1135  * Extract hostname string and resolve using kernel DNS facility.
1136  */
1137 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1138 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1139                 struct sockaddr_storage *ss, char delim, const char **ipend)
1140 {
1141         const char *end, *delim_p;
1142         char *colon_p, *ip_addr = NULL;
1143         int ip_len, ret;
1144
1145         /*
1146          * The end of the hostname occurs immediately preceding the delimiter or
1147          * the port marker (':') where the delimiter takes precedence.
1148          */
1149         delim_p = memchr(name, delim, namelen);
1150         colon_p = memchr(name, ':', namelen);
1151
1152         if (delim_p && colon_p)
1153                 end = delim_p < colon_p ? delim_p : colon_p;
1154         else if (!delim_p && colon_p)
1155                 end = colon_p;
1156         else {
1157                 end = delim_p;
1158                 if (!end) /* case: hostname:/ */
1159                         end = name + namelen;
1160         }
1161
1162         if (end <= name)
1163                 return -EINVAL;
1164
1165         /* do dns_resolve upcall */
1166         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1167         if (ip_len > 0)
1168                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1169         else
1170                 ret = -ESRCH;
1171
1172         kfree(ip_addr);
1173
1174         *ipend = end;
1175
1176         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1177                         ret, ret ? "failed" : ceph_pr_addr(ss));
1178
1179         return ret;
1180 }
1181 #else
1182 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1183                 struct sockaddr_storage *ss, char delim, const char **ipend)
1184 {
1185         return -EINVAL;
1186 }
1187 #endif
1188
1189 /*
1190  * Parse a server name (IP or hostname). If a valid IP address is not found
1191  * then try to extract a hostname to resolve using userspace DNS upcall.
1192  */
1193 static int ceph_parse_server_name(const char *name, size_t namelen,
1194                         struct sockaddr_storage *ss, char delim, const char **ipend)
1195 {
1196         int ret;
1197
1198         ret = ceph_pton(name, namelen, ss, delim, ipend);
1199         if (ret)
1200                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1201
1202         return ret;
1203 }
1204
1205 /*
1206  * Parse an ip[:port] list into an addr array.  Use the default
1207  * monitor port if a port isn't specified.
1208  */
1209 int ceph_parse_ips(const char *c, const char *end,
1210                    struct ceph_entity_addr *addr,
1211                    int max_count, int *count)
1212 {
1213         int i, ret = -EINVAL;
1214         const char *p = c;
1215
1216         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1217         for (i = 0; i < max_count; i++) {
1218                 const char *ipend;
1219                 struct sockaddr_storage *ss = &addr[i].in_addr;
1220                 int port;
1221                 char delim = ',';
1222
1223                 if (*p == '[') {
1224                         delim = ']';
1225                         p++;
1226                 }
1227
1228                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1229                 if (ret)
1230                         goto bad;
1231                 ret = -EINVAL;
1232
1233                 p = ipend;
1234
1235                 if (delim == ']') {
1236                         if (*p != ']') {
1237                                 dout("missing matching ']'\n");
1238                                 goto bad;
1239                         }
1240                         p++;
1241                 }
1242
1243                 /* port? */
1244                 if (p < end && *p == ':') {
1245                         port = 0;
1246                         p++;
1247                         while (p < end && *p >= '0' && *p <= '9') {
1248                                 port = (port * 10) + (*p - '0');
1249                                 p++;
1250                         }
1251                         if (port > 65535 || port == 0)
1252                                 goto bad;
1253                 } else {
1254                         port = CEPH_MON_PORT;
1255                 }
1256
1257                 addr_set_port(ss, port);
1258
1259                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1260
1261                 if (p == end)
1262                         break;
1263                 if (*p != ',')
1264                         goto bad;
1265                 p++;
1266         }
1267
1268         if (p != end)
1269                 goto bad;
1270
1271         if (count)
1272                 *count = i + 1;
1273         return 0;
1274
1275 bad:
1276         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1277         return ret;
1278 }
1279 EXPORT_SYMBOL(ceph_parse_ips);
1280
1281 static int process_banner(struct ceph_connection *con)
1282 {
1283         dout("process_banner on %p\n", con);
1284
1285         if (verify_hello(con) < 0)
1286                 return -1;
1287
1288         ceph_decode_addr(&con->actual_peer_addr);
1289         ceph_decode_addr(&con->peer_addr_for_me);
1290
1291         /*
1292          * Make sure the other end is who we wanted.  note that the other
1293          * end may not yet know their ip address, so if it's 0.0.0.0, give
1294          * them the benefit of the doubt.
1295          */
1296         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1297                    sizeof(con->peer_addr)) != 0 &&
1298             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1299               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1300                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1301                            ceph_pr_addr(&con->peer_addr.in_addr),
1302                            (int)le32_to_cpu(con->peer_addr.nonce),
1303                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1304                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1305                 con->error_msg = "wrong peer at address";
1306                 return -1;
1307         }
1308
1309         /*
1310          * did we learn our address?
1311          */
1312         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1313                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1314
1315                 memcpy(&con->msgr->inst.addr.in_addr,
1316                        &con->peer_addr_for_me.in_addr,
1317                        sizeof(con->peer_addr_for_me.in_addr));
1318                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1319                 encode_my_addr(con->msgr);
1320                 dout("process_banner learned my addr is %s\n",
1321                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1322         }
1323
1324         set_bit(NEGOTIATING, &con->state);
1325         prepare_read_connect(con);
1326         return 0;
1327 }
1328
1329 static void fail_protocol(struct ceph_connection *con)
1330 {
1331         reset_connection(con);
1332         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1333
1334         mutex_unlock(&con->mutex);
1335         if (con->ops->bad_proto)
1336                 con->ops->bad_proto(con);
1337         mutex_lock(&con->mutex);
1338 }
1339
1340 static int process_connect(struct ceph_connection *con)
1341 {
1342         u64 sup_feat = con->msgr->supported_features;
1343         u64 req_feat = con->msgr->required_features;
1344         u64 server_feat = le64_to_cpu(con->in_reply.features);
1345         int ret;
1346
1347         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1348
1349         switch (con->in_reply.tag) {
1350         case CEPH_MSGR_TAG_FEATURES:
1351                 pr_err("%s%lld %s feature set mismatch,"
1352                        " my %llx < server's %llx, missing %llx\n",
1353                        ENTITY_NAME(con->peer_name),
1354                        ceph_pr_addr(&con->peer_addr.in_addr),
1355                        sup_feat, server_feat, server_feat & ~sup_feat);
1356                 con->error_msg = "missing required protocol features";
1357                 fail_protocol(con);
1358                 return -1;
1359
1360         case CEPH_MSGR_TAG_BADPROTOVER:
1361                 pr_err("%s%lld %s protocol version mismatch,"
1362                        " my %d != server's %d\n",
1363                        ENTITY_NAME(con->peer_name),
1364                        ceph_pr_addr(&con->peer_addr.in_addr),
1365                        le32_to_cpu(con->out_connect.protocol_version),
1366                        le32_to_cpu(con->in_reply.protocol_version));
1367                 con->error_msg = "protocol version mismatch";
1368                 fail_protocol(con);
1369                 return -1;
1370
1371         case CEPH_MSGR_TAG_BADAUTHORIZER:
1372                 con->auth_retry++;
1373                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1374                      con->auth_retry);
1375                 if (con->auth_retry == 2) {
1376                         con->error_msg = "connect authorization failure";
1377                         return -1;
1378                 }
1379                 con->auth_retry = 1;
1380                 ret = prepare_write_connect(con->msgr, con, 0);
1381                 if (ret < 0)
1382                         return ret;
1383                 prepare_read_connect(con);
1384                 break;
1385
1386         case CEPH_MSGR_TAG_RESETSESSION:
1387                 /*
1388                  * If we connected with a large connect_seq but the peer
1389                  * has no record of a session with us (no connection, or
1390                  * connect_seq == 0), they will send RESETSESION to indicate
1391                  * that they must have reset their session, and may have
1392                  * dropped messages.
1393                  */
1394                 dout("process_connect got RESET peer seq %u\n",
1395                      le32_to_cpu(con->in_connect.connect_seq));
1396                 pr_err("%s%lld %s connection reset\n",
1397                        ENTITY_NAME(con->peer_name),
1398                        ceph_pr_addr(&con->peer_addr.in_addr));
1399                 reset_connection(con);
1400                 prepare_write_connect(con->msgr, con, 0);
1401                 prepare_read_connect(con);
1402
1403                 /* Tell ceph about it. */
1404                 mutex_unlock(&con->mutex);
1405                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1406                 if (con->ops->peer_reset)
1407                         con->ops->peer_reset(con);
1408                 mutex_lock(&con->mutex);
1409                 if (test_bit(CLOSED, &con->state) ||
1410                     test_bit(OPENING, &con->state))
1411                         return -EAGAIN;
1412                 break;
1413
1414         case CEPH_MSGR_TAG_RETRY_SESSION:
1415                 /*
1416                  * If we sent a smaller connect_seq than the peer has, try
1417                  * again with a larger value.
1418                  */
1419                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1420                      le32_to_cpu(con->out_connect.connect_seq),
1421                      le32_to_cpu(con->in_connect.connect_seq));
1422                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1423                 prepare_write_connect(con->msgr, con, 0);
1424                 prepare_read_connect(con);
1425                 break;
1426
1427         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1428                 /*
1429                  * If we sent a smaller global_seq than the peer has, try
1430                  * again with a larger value.
1431                  */
1432                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1433                      con->peer_global_seq,
1434                      le32_to_cpu(con->in_connect.global_seq));
1435                 get_global_seq(con->msgr,
1436                                le32_to_cpu(con->in_connect.global_seq));
1437                 prepare_write_connect(con->msgr, con, 0);
1438                 prepare_read_connect(con);
1439                 break;
1440
1441         case CEPH_MSGR_TAG_READY:
1442                 if (req_feat & ~server_feat) {
1443                         pr_err("%s%lld %s protocol feature mismatch,"
1444                                " my required %llx > server's %llx, need %llx\n",
1445                                ENTITY_NAME(con->peer_name),
1446                                ceph_pr_addr(&con->peer_addr.in_addr),
1447                                req_feat, server_feat, req_feat & ~server_feat);
1448                         con->error_msg = "missing required protocol features";
1449                         fail_protocol(con);
1450                         return -1;
1451                 }
1452                 clear_bit(CONNECTING, &con->state);
1453                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1454                 con->connect_seq++;
1455                 con->peer_features = server_feat;
1456                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1457                      con->peer_global_seq,
1458                      le32_to_cpu(con->in_reply.connect_seq),
1459                      con->connect_seq);
1460                 WARN_ON(con->connect_seq !=
1461                         le32_to_cpu(con->in_reply.connect_seq));
1462
1463                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1464                         set_bit(LOSSYTX, &con->state);
1465
1466                 prepare_read_tag(con);
1467                 break;
1468
1469         case CEPH_MSGR_TAG_WAIT:
1470                 /*
1471                  * If there is a connection race (we are opening
1472                  * connections to each other), one of us may just have
1473                  * to WAIT.  This shouldn't happen if we are the
1474                  * client.
1475                  */
1476                 pr_err("process_connect got WAIT as client\n");
1477                 con->error_msg = "protocol error, got WAIT as client";
1478                 return -1;
1479
1480         default:
1481                 pr_err("connect protocol error, will retry\n");
1482                 con->error_msg = "protocol error, garbage tag during connect";
1483                 return -1;
1484         }
1485         return 0;
1486 }
1487
1488
1489 /*
1490  * read (part of) an ack
1491  */
1492 static int read_partial_ack(struct ceph_connection *con)
1493 {
1494         int to = 0;
1495
1496         return read_partial(con, &to, sizeof(con->in_temp_ack),
1497                             &con->in_temp_ack);
1498 }
1499
1500
1501 /*
1502  * We can finally discard anything that's been acked.
1503  */
1504 static void process_ack(struct ceph_connection *con)
1505 {
1506         struct ceph_msg *m;
1507         u64 ack = le64_to_cpu(con->in_temp_ack);
1508         u64 seq;
1509
1510         while (!list_empty(&con->out_sent)) {
1511                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1512                                      list_head);
1513                 seq = le64_to_cpu(m->hdr.seq);
1514                 if (seq > ack)
1515                         break;
1516                 dout("got ack for seq %llu type %d at %p\n", seq,
1517                      le16_to_cpu(m->hdr.type), m);
1518                 m->ack_stamp = jiffies;
1519                 ceph_msg_remove(m);
1520         }
1521         prepare_read_tag(con);
1522 }
1523
1524
1525
1526
1527 static int read_partial_message_section(struct ceph_connection *con,
1528                                         struct kvec *section,
1529                                         unsigned int sec_len, u32 *crc)
1530 {
1531         int ret, left;
1532
1533         BUG_ON(!section);
1534
1535         while (section->iov_len < sec_len) {
1536                 BUG_ON(section->iov_base == NULL);
1537                 left = sec_len - section->iov_len;
1538                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1539                                        section->iov_len, left);
1540                 if (ret <= 0)
1541                         return ret;
1542                 section->iov_len += ret;
1543         }
1544         if (section->iov_len == sec_len)
1545                 *crc = crc32c(0, section->iov_base, section->iov_len);
1546
1547         return 1;
1548 }
1549
1550 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1551                                 struct ceph_msg_header *hdr,
1552                                 int *skip);
1553
1554
1555 static int read_partial_message_pages(struct ceph_connection *con,
1556                                       struct page **pages,
1557                                       unsigned data_len, bool do_datacrc)
1558 {
1559         void *p;
1560         int ret;
1561         int left;
1562
1563         left = min((int)(data_len - con->in_msg_pos.data_pos),
1564                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1565         /* (page) data */
1566         BUG_ON(pages == NULL);
1567         p = kmap(pages[con->in_msg_pos.page]);
1568         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1569                                left);
1570         if (ret > 0 && do_datacrc)
1571                 con->in_data_crc =
1572                         crc32c(con->in_data_crc,
1573                                   p + con->in_msg_pos.page_pos, ret);
1574         kunmap(pages[con->in_msg_pos.page]);
1575         if (ret <= 0)
1576                 return ret;
1577         con->in_msg_pos.data_pos += ret;
1578         con->in_msg_pos.page_pos += ret;
1579         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1580                 con->in_msg_pos.page_pos = 0;
1581                 con->in_msg_pos.page++;
1582         }
1583
1584         return ret;
1585 }
1586
1587 #ifdef CONFIG_BLOCK
1588 static int read_partial_message_bio(struct ceph_connection *con,
1589                                     struct bio **bio_iter, int *bio_seg,
1590                                     unsigned data_len, bool do_datacrc)
1591 {
1592         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1593         void *p;
1594         int ret, left;
1595
1596         if (IS_ERR(bv))
1597                 return PTR_ERR(bv);
1598
1599         left = min((int)(data_len - con->in_msg_pos.data_pos),
1600                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1601
1602         p = kmap(bv->bv_page) + bv->bv_offset;
1603
1604         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1605                                left);
1606         if (ret > 0 && do_datacrc)
1607                 con->in_data_crc =
1608                         crc32c(con->in_data_crc,
1609                                   p + con->in_msg_pos.page_pos, ret);
1610         kunmap(bv->bv_page);
1611         if (ret <= 0)
1612                 return ret;
1613         con->in_msg_pos.data_pos += ret;
1614         con->in_msg_pos.page_pos += ret;
1615         if (con->in_msg_pos.page_pos == bv->bv_len) {
1616                 con->in_msg_pos.page_pos = 0;
1617                 iter_bio_next(bio_iter, bio_seg);
1618         }
1619
1620         return ret;
1621 }
1622 #endif
1623
1624 /*
1625  * read (part of) a message.
1626  */
1627 static int read_partial_message(struct ceph_connection *con)
1628 {
1629         struct ceph_msg *m = con->in_msg;
1630         int ret;
1631         int to;
1632         unsigned front_len, middle_len, data_len;
1633         bool do_datacrc = !con->msgr->nocrc;
1634         int skip;
1635         u64 seq;
1636         u32 crc;
1637
1638         dout("read_partial_message con %p msg %p\n", con, m);
1639
1640         /* header */
1641         to = 0;
1642         ret = read_partial(con, &to, sizeof (con->in_hdr), &con->in_hdr);
1643         if (ret <= 0)
1644                 return ret;
1645
1646         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1647         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1648                 pr_err("read_partial_message bad hdr "
1649                        " crc %u != expected %u\n",
1650                        crc, con->in_hdr.crc);
1651                 return -EBADMSG;
1652         }
1653
1654         front_len = le32_to_cpu(con->in_hdr.front_len);
1655         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1656                 return -EIO;
1657         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1658         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1659                 return -EIO;
1660         data_len = le32_to_cpu(con->in_hdr.data_len);
1661         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1662                 return -EIO;
1663
1664         /* verify seq# */
1665         seq = le64_to_cpu(con->in_hdr.seq);
1666         if ((s64)seq - (s64)con->in_seq < 1) {
1667                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1668                         ENTITY_NAME(con->peer_name),
1669                         ceph_pr_addr(&con->peer_addr.in_addr),
1670                         seq, con->in_seq + 1);
1671                 con->in_base_pos = -front_len - middle_len - data_len -
1672                         sizeof(m->footer);
1673                 con->in_tag = CEPH_MSGR_TAG_READY;
1674                 return 0;
1675         } else if ((s64)seq - (s64)con->in_seq > 1) {
1676                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1677                        seq, con->in_seq + 1);
1678                 con->error_msg = "bad message sequence # for incoming message";
1679                 return -EBADMSG;
1680         }
1681
1682         /* allocate message? */
1683         if (!con->in_msg) {
1684                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1685                      con->in_hdr.front_len, con->in_hdr.data_len);
1686                 skip = 0;
1687                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1688                 if (skip) {
1689                         /* skip this message */
1690                         dout("alloc_msg said skip message\n");
1691                         BUG_ON(con->in_msg);
1692                         con->in_base_pos = -front_len - middle_len - data_len -
1693                                 sizeof(m->footer);
1694                         con->in_tag = CEPH_MSGR_TAG_READY;
1695                         con->in_seq++;
1696                         return 0;
1697                 }
1698                 if (!con->in_msg) {
1699                         con->error_msg =
1700                                 "error allocating memory for incoming message";
1701                         return -ENOMEM;
1702                 }
1703                 m = con->in_msg;
1704                 m->front.iov_len = 0;    /* haven't read it yet */
1705                 if (m->middle)
1706                         m->middle->vec.iov_len = 0;
1707
1708                 con->in_msg_pos.page = 0;
1709                 if (m->pages)
1710                         con->in_msg_pos.page_pos = m->page_alignment;
1711                 else
1712                         con->in_msg_pos.page_pos = 0;
1713                 con->in_msg_pos.data_pos = 0;
1714         }
1715
1716         /* front */
1717         ret = read_partial_message_section(con, &m->front, front_len,
1718                                            &con->in_front_crc);
1719         if (ret <= 0)
1720                 return ret;
1721
1722         /* middle */
1723         if (m->middle) {
1724                 ret = read_partial_message_section(con, &m->middle->vec,
1725                                                    middle_len,
1726                                                    &con->in_middle_crc);
1727                 if (ret <= 0)
1728                         return ret;
1729         }
1730 #ifdef CONFIG_BLOCK
1731         if (m->bio && !m->bio_iter)
1732                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1733 #endif
1734
1735         /* (page) data */
1736         while (con->in_msg_pos.data_pos < data_len) {
1737                 if (m->pages) {
1738                         ret = read_partial_message_pages(con, m->pages,
1739                                                  data_len, do_datacrc);
1740                         if (ret <= 0)
1741                                 return ret;
1742 #ifdef CONFIG_BLOCK
1743                 } else if (m->bio) {
1744
1745                         ret = read_partial_message_bio(con,
1746                                                  &m->bio_iter, &m->bio_seg,
1747                                                  data_len, do_datacrc);
1748                         if (ret <= 0)
1749                                 return ret;
1750 #endif
1751                 } else {
1752                         BUG_ON(1);
1753                 }
1754         }
1755
1756         /* footer */
1757         to = sizeof (m->hdr);
1758         ret = read_partial(con, &to, sizeof (m->footer), &m->footer);
1759         if (ret <= 0)
1760                 return ret;
1761
1762         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1763              m, front_len, m->footer.front_crc, middle_len,
1764              m->footer.middle_crc, data_len, m->footer.data_crc);
1765
1766         /* crc ok? */
1767         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1768                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1769                        m, con->in_front_crc, m->footer.front_crc);
1770                 return -EBADMSG;
1771         }
1772         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1773                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1774                        m, con->in_middle_crc, m->footer.middle_crc);
1775                 return -EBADMSG;
1776         }
1777         if (do_datacrc &&
1778             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1779             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1780                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1781                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1782                 return -EBADMSG;
1783         }
1784
1785         return 1; /* done! */
1786 }
1787
1788 /*
1789  * Process message.  This happens in the worker thread.  The callback should
1790  * be careful not to do anything that waits on other incoming messages or it
1791  * may deadlock.
1792  */
1793 static void process_message(struct ceph_connection *con)
1794 {
1795         struct ceph_msg *msg;
1796
1797         msg = con->in_msg;
1798         con->in_msg = NULL;
1799
1800         /* if first message, set peer_name */
1801         if (con->peer_name.type == 0)
1802                 con->peer_name = msg->hdr.src;
1803
1804         con->in_seq++;
1805         mutex_unlock(&con->mutex);
1806
1807         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1808              msg, le64_to_cpu(msg->hdr.seq),
1809              ENTITY_NAME(msg->hdr.src),
1810              le16_to_cpu(msg->hdr.type),
1811              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1812              le32_to_cpu(msg->hdr.front_len),
1813              le32_to_cpu(msg->hdr.data_len),
1814              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1815         con->ops->dispatch(con, msg);
1816
1817         mutex_lock(&con->mutex);
1818         prepare_read_tag(con);
1819 }
1820
1821
1822 /*
1823  * Write something to the socket.  Called in a worker thread when the
1824  * socket appears to be writeable and we have something ready to send.
1825  */
1826 static int try_write(struct ceph_connection *con)
1827 {
1828         struct ceph_messenger *msgr = con->msgr;
1829         int ret = 1;
1830
1831         dout("try_write start %p state %lu nref %d\n", con, con->state,
1832              atomic_read(&con->nref));
1833
1834 more:
1835         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1836
1837         /* open the socket first? */
1838         if (con->sock == NULL) {
1839                 prepare_write_connect(msgr, con, 1);
1840                 prepare_read_banner(con);
1841                 set_bit(CONNECTING, &con->state);
1842                 clear_bit(NEGOTIATING, &con->state);
1843
1844                 BUG_ON(con->in_msg);
1845                 con->in_tag = CEPH_MSGR_TAG_READY;
1846                 dout("try_write initiating connect on %p new state %lu\n",
1847                      con, con->state);
1848                 ret = ceph_tcp_connect(con);
1849                 if (ret < 0) {
1850                         con->error_msg = "connect error";
1851                         goto out;
1852                 }
1853         }
1854
1855 more_kvec:
1856         /* kvec data queued? */
1857         if (con->out_skip) {
1858                 ret = write_partial_skip(con);
1859                 if (ret <= 0)
1860                         goto out;
1861         }
1862         if (con->out_kvec_left) {
1863                 ret = write_partial_kvec(con);
1864                 if (ret <= 0)
1865                         goto out;
1866         }
1867
1868         /* msg pages? */
1869         if (con->out_msg) {
1870                 if (con->out_msg_done) {
1871                         ceph_msg_put(con->out_msg);
1872                         con->out_msg = NULL;   /* we're done with this one */
1873                         goto do_next;
1874                 }
1875
1876                 ret = write_partial_msg_pages(con);
1877                 if (ret == 1)
1878                         goto more_kvec;  /* we need to send the footer, too! */
1879                 if (ret == 0)
1880                         goto out;
1881                 if (ret < 0) {
1882                         dout("try_write write_partial_msg_pages err %d\n",
1883                              ret);
1884                         goto out;
1885                 }
1886         }
1887
1888 do_next:
1889         if (!test_bit(CONNECTING, &con->state)) {
1890                 /* is anything else pending? */
1891                 if (!list_empty(&con->out_queue)) {
1892                         prepare_write_message(con);
1893                         goto more;
1894                 }
1895                 if (con->in_seq > con->in_seq_acked) {
1896                         prepare_write_ack(con);
1897                         goto more;
1898                 }
1899                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1900                         prepare_write_keepalive(con);
1901                         goto more;
1902                 }
1903         }
1904
1905         /* Nothing to do! */
1906         clear_bit(WRITE_PENDING, &con->state);
1907         dout("try_write nothing else to write.\n");
1908         ret = 0;
1909 out:
1910         dout("try_write done on %p ret %d\n", con, ret);
1911         return ret;
1912 }
1913
1914
1915
1916 /*
1917  * Read what we can from the socket.
1918  */
1919 static int try_read(struct ceph_connection *con)
1920 {
1921         int ret = -1;
1922
1923         if (!con->sock)
1924                 return 0;
1925
1926         if (test_bit(STANDBY, &con->state))
1927                 return 0;
1928
1929         dout("try_read start on %p\n", con);
1930
1931 more:
1932         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1933              con->in_base_pos);
1934
1935         /*
1936          * process_connect and process_message drop and re-take
1937          * con->mutex.  make sure we handle a racing close or reopen.
1938          */
1939         if (test_bit(CLOSED, &con->state) ||
1940             test_bit(OPENING, &con->state)) {
1941                 ret = -EAGAIN;
1942                 goto out;
1943         }
1944
1945         if (test_bit(CONNECTING, &con->state)) {
1946                 if (!test_bit(NEGOTIATING, &con->state)) {
1947                         dout("try_read connecting\n");
1948                         ret = read_partial_banner(con);
1949                         if (ret <= 0)
1950                                 goto out;
1951                         ret = process_banner(con);
1952                         if (ret < 0)
1953                                 goto out;
1954                 }
1955                 ret = read_partial_connect(con);
1956                 if (ret <= 0)
1957                         goto out;
1958                 ret = process_connect(con);
1959                 if (ret < 0)
1960                         goto out;
1961                 goto more;
1962         }
1963
1964         if (con->in_base_pos < 0) {
1965                 /*
1966                  * skipping + discarding content.
1967                  *
1968                  * FIXME: there must be a better way to do this!
1969                  */
1970                 static char buf[SKIP_BUF_SIZE];
1971                 int skip = min((int) sizeof (buf), -con->in_base_pos);
1972
1973                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1974                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1975                 if (ret <= 0)
1976                         goto out;
1977                 con->in_base_pos += ret;
1978                 if (con->in_base_pos)
1979                         goto more;
1980         }
1981         if (con->in_tag == CEPH_MSGR_TAG_READY) {
1982                 /*
1983                  * what's next?
1984                  */
1985                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1986                 if (ret <= 0)
1987                         goto out;
1988                 dout("try_read got tag %d\n", (int)con->in_tag);
1989                 switch (con->in_tag) {
1990                 case CEPH_MSGR_TAG_MSG:
1991                         prepare_read_message(con);
1992                         break;
1993                 case CEPH_MSGR_TAG_ACK:
1994                         prepare_read_ack(con);
1995                         break;
1996                 case CEPH_MSGR_TAG_CLOSE:
1997                         set_bit(CLOSED, &con->state);   /* fixme */
1998                         goto out;
1999                 default:
2000                         goto bad_tag;
2001                 }
2002         }
2003         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2004                 ret = read_partial_message(con);
2005                 if (ret <= 0) {
2006                         switch (ret) {
2007                         case -EBADMSG:
2008                                 con->error_msg = "bad crc";
2009                                 ret = -EIO;
2010                                 break;
2011                         case -EIO:
2012                                 con->error_msg = "io error";
2013                                 break;
2014                         }
2015                         goto out;
2016                 }
2017                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2018                         goto more;
2019                 process_message(con);
2020                 goto more;
2021         }
2022         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2023                 ret = read_partial_ack(con);
2024                 if (ret <= 0)
2025                         goto out;
2026                 process_ack(con);
2027                 goto more;
2028         }
2029
2030 out:
2031         dout("try_read done on %p ret %d\n", con, ret);
2032         return ret;
2033
2034 bad_tag:
2035         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2036         con->error_msg = "protocol error, garbage tag";
2037         ret = -1;
2038         goto out;
2039 }
2040
2041
2042 /*
2043  * Atomically queue work on a connection.  Bump @con reference to
2044  * avoid races with connection teardown.
2045  */
2046 static void queue_con(struct ceph_connection *con)
2047 {
2048         if (test_bit(DEAD, &con->state)) {
2049                 dout("queue_con %p ignoring: DEAD\n",
2050                      con);
2051                 return;
2052         }
2053
2054         if (!con->ops->get(con)) {
2055                 dout("queue_con %p ref count 0\n", con);
2056                 return;
2057         }
2058
2059         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2060                 dout("queue_con %p - already queued\n", con);
2061                 con->ops->put(con);
2062         } else {
2063                 dout("queue_con %p\n", con);
2064         }
2065 }
2066
2067 /*
2068  * Do some work on a connection.  Drop a connection ref when we're done.
2069  */
2070 static void con_work(struct work_struct *work)
2071 {
2072         struct ceph_connection *con = container_of(work, struct ceph_connection,
2073                                                    work.work);
2074         int ret;
2075
2076         mutex_lock(&con->mutex);
2077 restart:
2078         if (test_and_clear_bit(BACKOFF, &con->state)) {
2079                 dout("con_work %p backing off\n", con);
2080                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2081                                        round_jiffies_relative(con->delay))) {
2082                         dout("con_work %p backoff %lu\n", con, con->delay);
2083                         mutex_unlock(&con->mutex);
2084                         return;
2085                 } else {
2086                         con->ops->put(con);
2087                         dout("con_work %p FAILED to back off %lu\n", con,
2088                              con->delay);
2089                 }
2090         }
2091
2092         if (test_bit(STANDBY, &con->state)) {
2093                 dout("con_work %p STANDBY\n", con);
2094                 goto done;
2095         }
2096         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2097                 dout("con_work CLOSED\n");
2098                 con_close_socket(con);
2099                 goto done;
2100         }
2101         if (test_and_clear_bit(OPENING, &con->state)) {
2102                 /* reopen w/ new peer */
2103                 dout("con_work OPENING\n");
2104                 con_close_socket(con);
2105         }
2106
2107         if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2108                 goto fault;
2109
2110         ret = try_read(con);
2111         if (ret == -EAGAIN)
2112                 goto restart;
2113         if (ret < 0)
2114                 goto fault;
2115
2116         ret = try_write(con);
2117         if (ret == -EAGAIN)
2118                 goto restart;
2119         if (ret < 0)
2120                 goto fault;
2121
2122 done:
2123         mutex_unlock(&con->mutex);
2124 done_unlocked:
2125         con->ops->put(con);
2126         return;
2127
2128 fault:
2129         mutex_unlock(&con->mutex);
2130         ceph_fault(con);     /* error/fault path */
2131         goto done_unlocked;
2132 }
2133
2134
2135 /*
2136  * Generic error/fault handler.  A retry mechanism is used with
2137  * exponential backoff
2138  */
2139 static void ceph_fault(struct ceph_connection *con)
2140 {
2141         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2142                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2143         dout("fault %p state %lu to peer %s\n",
2144              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2145
2146         if (test_bit(LOSSYTX, &con->state)) {
2147                 dout("fault on LOSSYTX channel\n");
2148                 goto out;
2149         }
2150
2151         mutex_lock(&con->mutex);
2152         if (test_bit(CLOSED, &con->state))
2153                 goto out_unlock;
2154
2155         con_close_socket(con);
2156
2157         if (con->in_msg) {
2158                 ceph_msg_put(con->in_msg);
2159                 con->in_msg = NULL;
2160         }
2161
2162         /* Requeue anything that hasn't been acked */
2163         list_splice_init(&con->out_sent, &con->out_queue);
2164
2165         /* If there are no messages queued or keepalive pending, place
2166          * the connection in a STANDBY state */
2167         if (list_empty(&con->out_queue) &&
2168             !test_bit(KEEPALIVE_PENDING, &con->state)) {
2169                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2170                 clear_bit(WRITE_PENDING, &con->state);
2171                 set_bit(STANDBY, &con->state);
2172         } else {
2173                 /* retry after a delay. */
2174                 if (con->delay == 0)
2175                         con->delay = BASE_DELAY_INTERVAL;
2176                 else if (con->delay < MAX_DELAY_INTERVAL)
2177                         con->delay *= 2;
2178                 con->ops->get(con);
2179                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2180                                        round_jiffies_relative(con->delay))) {
2181                         dout("fault queued %p delay %lu\n", con, con->delay);
2182                 } else {
2183                         con->ops->put(con);
2184                         dout("fault failed to queue %p delay %lu, backoff\n",
2185                              con, con->delay);
2186                         /*
2187                          * In many cases we see a socket state change
2188                          * while con_work is running and end up
2189                          * queuing (non-delayed) work, such that we
2190                          * can't backoff with a delay.  Set a flag so
2191                          * that when con_work restarts we schedule the
2192                          * delay then.
2193                          */
2194                         set_bit(BACKOFF, &con->state);
2195                 }
2196         }
2197
2198 out_unlock:
2199         mutex_unlock(&con->mutex);
2200 out:
2201         /*
2202          * in case we faulted due to authentication, invalidate our
2203          * current tickets so that we can get new ones.
2204          */
2205         if (con->auth_retry && con->ops->invalidate_authorizer) {
2206                 dout("calling invalidate_authorizer()\n");
2207                 con->ops->invalidate_authorizer(con);
2208         }
2209
2210         if (con->ops->fault)
2211                 con->ops->fault(con);
2212 }
2213
2214
2215
2216 /*
2217  * create a new messenger instance
2218  */
2219 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2220                                              u32 supported_features,
2221                                              u32 required_features)
2222 {
2223         struct ceph_messenger *msgr;
2224
2225         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2226         if (msgr == NULL)
2227                 return ERR_PTR(-ENOMEM);
2228
2229         msgr->supported_features = supported_features;
2230         msgr->required_features = required_features;
2231
2232         spin_lock_init(&msgr->global_seq_lock);
2233
2234         if (myaddr)
2235                 msgr->inst.addr = *myaddr;
2236
2237         /* select a random nonce */
2238         msgr->inst.addr.type = 0;
2239         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2240         encode_my_addr(msgr);
2241
2242         dout("messenger_create %p\n", msgr);
2243         return msgr;
2244 }
2245 EXPORT_SYMBOL(ceph_messenger_create);
2246
2247 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2248 {
2249         dout("destroy %p\n", msgr);
2250         kfree(msgr);
2251         dout("destroyed messenger %p\n", msgr);
2252 }
2253 EXPORT_SYMBOL(ceph_messenger_destroy);
2254
2255 static void clear_standby(struct ceph_connection *con)
2256 {
2257         /* come back from STANDBY? */
2258         if (test_and_clear_bit(STANDBY, &con->state)) {
2259                 mutex_lock(&con->mutex);
2260                 dout("clear_standby %p and ++connect_seq\n", con);
2261                 con->connect_seq++;
2262                 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2263                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2264                 mutex_unlock(&con->mutex);
2265         }
2266 }
2267
2268 /*
2269  * Queue up an outgoing message on the given connection.
2270  */
2271 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2272 {
2273         if (test_bit(CLOSED, &con->state)) {
2274                 dout("con_send %p closed, dropping %p\n", con, msg);
2275                 ceph_msg_put(msg);
2276                 return;
2277         }
2278
2279         /* set src+dst */
2280         msg->hdr.src = con->msgr->inst.name;
2281
2282         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2283
2284         msg->needs_out_seq = true;
2285
2286         /* queue */
2287         mutex_lock(&con->mutex);
2288         BUG_ON(!list_empty(&msg->list_head));
2289         list_add_tail(&msg->list_head, &con->out_queue);
2290         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2291              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2292              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2293              le32_to_cpu(msg->hdr.front_len),
2294              le32_to_cpu(msg->hdr.middle_len),
2295              le32_to_cpu(msg->hdr.data_len));
2296         mutex_unlock(&con->mutex);
2297
2298         /* if there wasn't anything waiting to send before, queue
2299          * new work */
2300         clear_standby(con);
2301         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2302                 queue_con(con);
2303 }
2304 EXPORT_SYMBOL(ceph_con_send);
2305
2306 /*
2307  * Revoke a message that was previously queued for send
2308  */
2309 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2310 {
2311         mutex_lock(&con->mutex);
2312         if (!list_empty(&msg->list_head)) {
2313                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2314                 list_del_init(&msg->list_head);
2315                 ceph_msg_put(msg);
2316                 msg->hdr.seq = 0;
2317         }
2318         if (con->out_msg == msg) {
2319                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2320                 con->out_msg = NULL;
2321                 if (con->out_kvec_is_msg) {
2322                         con->out_skip = con->out_kvec_bytes;
2323                         con->out_kvec_is_msg = false;
2324                 }
2325                 ceph_msg_put(msg);
2326                 msg->hdr.seq = 0;
2327         }
2328         mutex_unlock(&con->mutex);
2329 }
2330
2331 /*
2332  * Revoke a message that we may be reading data into
2333  */
2334 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2335 {
2336         mutex_lock(&con->mutex);
2337         if (con->in_msg && con->in_msg == msg) {
2338                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2339                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2340                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2341
2342                 /* skip rest of message */
2343                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2344                         con->in_base_pos = con->in_base_pos -
2345                                 sizeof(struct ceph_msg_header) -
2346                                 front_len -
2347                                 middle_len -
2348                                 data_len -
2349                                 sizeof(struct ceph_msg_footer);
2350                 ceph_msg_put(con->in_msg);
2351                 con->in_msg = NULL;
2352                 con->in_tag = CEPH_MSGR_TAG_READY;
2353                 con->in_seq++;
2354         } else {
2355                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2356                      con, con->in_msg, msg);
2357         }
2358         mutex_unlock(&con->mutex);
2359 }
2360
2361 /*
2362  * Queue a keepalive byte to ensure the tcp connection is alive.
2363  */
2364 void ceph_con_keepalive(struct ceph_connection *con)
2365 {
2366         dout("con_keepalive %p\n", con);
2367         clear_standby(con);
2368         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2369             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2370                 queue_con(con);
2371 }
2372 EXPORT_SYMBOL(ceph_con_keepalive);
2373
2374
2375 /*
2376  * construct a new message with given type, size
2377  * the new msg has a ref count of 1.
2378  */
2379 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2380                               bool can_fail)
2381 {
2382         struct ceph_msg *m;
2383
2384         m = kmalloc(sizeof(*m), flags);
2385         if (m == NULL)
2386                 goto out;
2387         kref_init(&m->kref);
2388         INIT_LIST_HEAD(&m->list_head);
2389
2390         m->hdr.tid = 0;
2391         m->hdr.type = cpu_to_le16(type);
2392         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2393         m->hdr.version = 0;
2394         m->hdr.front_len = cpu_to_le32(front_len);
2395         m->hdr.middle_len = 0;
2396         m->hdr.data_len = 0;
2397         m->hdr.data_off = 0;
2398         m->hdr.reserved = 0;
2399         m->footer.front_crc = 0;
2400         m->footer.middle_crc = 0;
2401         m->footer.data_crc = 0;
2402         m->footer.flags = 0;
2403         m->front_max = front_len;
2404         m->front_is_vmalloc = false;
2405         m->more_to_follow = false;
2406         m->ack_stamp = 0;
2407         m->pool = NULL;
2408
2409         /* middle */
2410         m->middle = NULL;
2411
2412         /* data */
2413         m->nr_pages = 0;
2414         m->page_alignment = 0;
2415         m->pages = NULL;
2416         m->pagelist = NULL;
2417         m->bio = NULL;
2418         m->bio_iter = NULL;
2419         m->bio_seg = 0;
2420         m->trail = NULL;
2421
2422         /* front */
2423         if (front_len) {
2424                 if (front_len > PAGE_CACHE_SIZE) {
2425                         m->front.iov_base = __vmalloc(front_len, flags,
2426                                                       PAGE_KERNEL);
2427                         m->front_is_vmalloc = true;
2428                 } else {
2429                         m->front.iov_base = kmalloc(front_len, flags);
2430                 }
2431                 if (m->front.iov_base == NULL) {
2432                         dout("ceph_msg_new can't allocate %d bytes\n",
2433                              front_len);
2434                         goto out2;
2435                 }
2436         } else {
2437                 m->front.iov_base = NULL;
2438         }
2439         m->front.iov_len = front_len;
2440
2441         dout("ceph_msg_new %p front %d\n", m, front_len);
2442         return m;
2443
2444 out2:
2445         ceph_msg_put(m);
2446 out:
2447         if (!can_fail) {
2448                 pr_err("msg_new can't create type %d front %d\n", type,
2449                        front_len);
2450                 WARN_ON(1);
2451         } else {
2452                 dout("msg_new can't create type %d front %d\n", type,
2453                      front_len);
2454         }
2455         return NULL;
2456 }
2457 EXPORT_SYMBOL(ceph_msg_new);
2458
2459 /*
2460  * Allocate "middle" portion of a message, if it is needed and wasn't
2461  * allocated by alloc_msg.  This allows us to read a small fixed-size
2462  * per-type header in the front and then gracefully fail (i.e.,
2463  * propagate the error to the caller based on info in the front) when
2464  * the middle is too large.
2465  */
2466 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2467 {
2468         int type = le16_to_cpu(msg->hdr.type);
2469         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2470
2471         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2472              ceph_msg_type_name(type), middle_len);
2473         BUG_ON(!middle_len);
2474         BUG_ON(msg->middle);
2475
2476         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2477         if (!msg->middle)
2478                 return -ENOMEM;
2479         return 0;
2480 }
2481
2482 /*
2483  * Generic message allocator, for incoming messages.
2484  */
2485 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2486                                 struct ceph_msg_header *hdr,
2487                                 int *skip)
2488 {
2489         int type = le16_to_cpu(hdr->type);
2490         int front_len = le32_to_cpu(hdr->front_len);
2491         int middle_len = le32_to_cpu(hdr->middle_len);
2492         struct ceph_msg *msg = NULL;
2493         int ret;
2494
2495         if (con->ops->alloc_msg) {
2496                 mutex_unlock(&con->mutex);
2497                 msg = con->ops->alloc_msg(con, hdr, skip);
2498                 mutex_lock(&con->mutex);
2499                 if (!msg || *skip)
2500                         return NULL;
2501         }
2502         if (!msg) {
2503                 *skip = 0;
2504                 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2505                 if (!msg) {
2506                         pr_err("unable to allocate msg type %d len %d\n",
2507                                type, front_len);
2508                         return NULL;
2509                 }
2510                 msg->page_alignment = le16_to_cpu(hdr->data_off);
2511         }
2512         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2513
2514         if (middle_len && !msg->middle) {
2515                 ret = ceph_alloc_middle(con, msg);
2516                 if (ret < 0) {
2517                         ceph_msg_put(msg);
2518                         return NULL;
2519                 }
2520         }
2521
2522         return msg;
2523 }
2524
2525
2526 /*
2527  * Free a generically kmalloc'd message.
2528  */
2529 void ceph_msg_kfree(struct ceph_msg *m)
2530 {
2531         dout("msg_kfree %p\n", m);
2532         if (m->front_is_vmalloc)
2533                 vfree(m->front.iov_base);
2534         else
2535                 kfree(m->front.iov_base);
2536         kfree(m);
2537 }
2538
2539 /*
2540  * Drop a msg ref.  Destroy as needed.
2541  */
2542 void ceph_msg_last_put(struct kref *kref)
2543 {
2544         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2545
2546         dout("ceph_msg_put last one on %p\n", m);
2547         WARN_ON(!list_empty(&m->list_head));
2548
2549         /* drop middle, data, if any */
2550         if (m->middle) {
2551                 ceph_buffer_put(m->middle);
2552                 m->middle = NULL;
2553         }
2554         m->nr_pages = 0;
2555         m->pages = NULL;
2556
2557         if (m->pagelist) {
2558                 ceph_pagelist_release(m->pagelist);
2559                 kfree(m->pagelist);
2560                 m->pagelist = NULL;
2561         }
2562
2563         m->trail = NULL;
2564
2565         if (m->pool)
2566                 ceph_msgpool_put(m->pool, m);
2567         else
2568                 ceph_msg_kfree(m);
2569 }
2570 EXPORT_SYMBOL(ceph_msg_last_put);
2571
2572 void ceph_msg_dump(struct ceph_msg *msg)
2573 {
2574         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2575                  msg->front_max, msg->nr_pages);
2576         print_hex_dump(KERN_DEBUG, "header: ",
2577                        DUMP_PREFIX_OFFSET, 16, 1,
2578                        &msg->hdr, sizeof(msg->hdr), true);
2579         print_hex_dump(KERN_DEBUG, " front: ",
2580                        DUMP_PREFIX_OFFSET, 16, 1,
2581                        msg->front.iov_base, msg->front.iov_len, true);
2582         if (msg->middle)
2583                 print_hex_dump(KERN_DEBUG, "middle: ",
2584                                DUMP_PREFIX_OFFSET, 16, 1,
2585                                msg->middle->vec.iov_base,
2586                                msg->middle->vec.iov_len, true);
2587         print_hex_dump(KERN_DEBUG, "footer: ",
2588                        DUMP_PREFIX_OFFSET, 16, 1,
2589                        &msg->footer, sizeof(msg->footer), true);
2590 }
2591 EXPORT_SYMBOL(ceph_msg_dump);