]> Pileus Git - ~andy/linux/blob - mm/vmscan.c
[PATCH] vmscan: remove duplicate increment of reclaim_in_progress
[~andy/linux] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56         unsigned long nr_to_scan;
57
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Incremented by the number of pages reclaimed */
62         unsigned long nr_reclaimed;
63
64         unsigned long nr_mapped;        /* From page_state */
65
66         /* Ask shrink_caches, or shrink_zone to scan at this priority */
67         unsigned int priority;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can pages be swapped as part of reclaim? */
75         int may_swap;
76
77         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79          * In this context, it doesn't matter that we scan the
80          * whole list at once. */
81         int swap_cluster_max;
82 };
83
84 /*
85  * The list of shrinker callbacks used by to apply pressure to
86  * ageable caches.
87  */
88 struct shrinker {
89         shrinker_t              shrinker;
90         struct list_head        list;
91         int                     seeks;  /* seeks to recreate an obj */
92         long                    nr;     /* objs pending delete */
93 };
94
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field)                    \
99         do {                                                            \
100                 if ((_page)->lru.prev != _base) {                       \
101                         struct page *prev;                              \
102                                                                         \
103                         prev = lru_to_page(&(_page->lru));              \
104                         prefetch(&prev->_field);                        \
105                 }                                                       \
106         } while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
113         do {                                                            \
114                 if ((_page)->lru.prev != _base) {                       \
115                         struct page *prev;                              \
116                                                                         \
117                         prev = lru_to_page(&(_page->lru));              \
118                         prefetchw(&prev->_field);                       \
119                 }                                                       \
120         } while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 /*
126  * From 0 .. 100.  Higher means more swappy.
127  */
128 int vm_swappiness = 60;
129 static long total_memory;
130
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133
134 /*
135  * Add a shrinker callback to be called from the vm
136  */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139         struct shrinker *shrinker;
140
141         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142         if (shrinker) {
143                 shrinker->shrinker = theshrinker;
144                 shrinker->seeks = seeks;
145                 shrinker->nr = 0;
146                 down_write(&shrinker_rwsem);
147                 list_add_tail(&shrinker->list, &shrinker_list);
148                 up_write(&shrinker_rwsem);
149         }
150         return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153
154 /*
155  * Remove one
156  */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159         down_write(&shrinker_rwsem);
160         list_del(&shrinker->list);
161         up_write(&shrinker_rwsem);
162         kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165
166 #define SHRINK_BATCH 128
167 /*
168  * Call the shrink functions to age shrinkable caches
169  *
170  * Here we assume it costs one seek to replace a lru page and that it also
171  * takes a seek to recreate a cache object.  With this in mind we age equal
172  * percentages of the lru and ageable caches.  This should balance the seeks
173  * generated by these structures.
174  *
175  * If the vm encounted mapped pages on the LRU it increase the pressure on
176  * slab to avoid swapping.
177  *
178  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179  *
180  * `lru_pages' represents the number of on-LRU pages in all the zones which
181  * are eligible for the caller's allocation attempt.  It is used for balancing
182  * slab reclaim versus page reclaim.
183  *
184  * Returns the number of slab objects which we shrunk.
185  */
186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
187 {
188         struct shrinker *shrinker;
189         int ret = 0;
190
191         if (scanned == 0)
192                 scanned = SWAP_CLUSTER_MAX;
193
194         if (!down_read_trylock(&shrinker_rwsem))
195                 return 1;       /* Assume we'll be able to shrink next time */
196
197         list_for_each_entry(shrinker, &shrinker_list, list) {
198                 unsigned long long delta;
199                 unsigned long total_scan;
200                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
201
202                 delta = (4 * scanned) / shrinker->seeks;
203                 delta *= max_pass;
204                 do_div(delta, lru_pages + 1);
205                 shrinker->nr += delta;
206                 if (shrinker->nr < 0) {
207                         printk(KERN_ERR "%s: nr=%ld\n",
208                                         __FUNCTION__, shrinker->nr);
209                         shrinker->nr = max_pass;
210                 }
211
212                 /*
213                  * Avoid risking looping forever due to too large nr value:
214                  * never try to free more than twice the estimate number of
215                  * freeable entries.
216                  */
217                 if (shrinker->nr > max_pass * 2)
218                         shrinker->nr = max_pass * 2;
219
220                 total_scan = shrinker->nr;
221                 shrinker->nr = 0;
222
223                 while (total_scan >= SHRINK_BATCH) {
224                         long this_scan = SHRINK_BATCH;
225                         int shrink_ret;
226                         int nr_before;
227
228                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
229                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230                         if (shrink_ret == -1)
231                                 break;
232                         if (shrink_ret < nr_before)
233                                 ret += nr_before - shrink_ret;
234                         mod_page_state(slabs_scanned, this_scan);
235                         total_scan -= this_scan;
236
237                         cond_resched();
238                 }
239
240                 shrinker->nr += total_scan;
241         }
242         up_read(&shrinker_rwsem);
243         return ret;
244 }
245
246 /* Called without lock on whether page is mapped, so answer is unstable */
247 static inline int page_mapping_inuse(struct page *page)
248 {
249         struct address_space *mapping;
250
251         /* Page is in somebody's page tables. */
252         if (page_mapped(page))
253                 return 1;
254
255         /* Be more reluctant to reclaim swapcache than pagecache */
256         if (PageSwapCache(page))
257                 return 1;
258
259         mapping = page_mapping(page);
260         if (!mapping)
261                 return 0;
262
263         /* File is mmap'd by somebody? */
264         return mapping_mapped(mapping);
265 }
266
267 static inline int is_page_cache_freeable(struct page *page)
268 {
269         return page_count(page) - !!PagePrivate(page) == 2;
270 }
271
272 static int may_write_to_queue(struct backing_dev_info *bdi)
273 {
274         if (current->flags & PF_SWAPWRITE)
275                 return 1;
276         if (!bdi_write_congested(bdi))
277                 return 1;
278         if (bdi == current->backing_dev_info)
279                 return 1;
280         return 0;
281 }
282
283 /*
284  * We detected a synchronous write error writing a page out.  Probably
285  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286  * fsync(), msync() or close().
287  *
288  * The tricky part is that after writepage we cannot touch the mapping: nothing
289  * prevents it from being freed up.  But we have a ref on the page and once
290  * that page is locked, the mapping is pinned.
291  *
292  * We're allowed to run sleeping lock_page() here because we know the caller has
293  * __GFP_FS.
294  */
295 static void handle_write_error(struct address_space *mapping,
296                                 struct page *page, int error)
297 {
298         lock_page(page);
299         if (page_mapping(page) == mapping) {
300                 if (error == -ENOSPC)
301                         set_bit(AS_ENOSPC, &mapping->flags);
302                 else
303                         set_bit(AS_EIO, &mapping->flags);
304         }
305         unlock_page(page);
306 }
307
308 /*
309  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313         /*
314          * If the page is dirty, only perform writeback if that write
315          * will be non-blocking.  To prevent this allocation from being
316          * stalled by pagecache activity.  But note that there may be
317          * stalls if we need to run get_block().  We could test
318          * PagePrivate for that.
319          *
320          * If this process is currently in generic_file_write() against
321          * this page's queue, we can perform writeback even if that
322          * will block.
323          *
324          * If the page is swapcache, write it back even if that would
325          * block, for some throttling. This happens by accident, because
326          * swap_backing_dev_info is bust: it doesn't reflect the
327          * congestion state of the swapdevs.  Easy to fix, if needed.
328          * See swapfile.c:page_queue_congested().
329          */
330         if (!is_page_cache_freeable(page))
331                 return PAGE_KEEP;
332         if (!mapping) {
333                 /*
334                  * Some data journaling orphaned pages can have
335                  * page->mapping == NULL while being dirty with clean buffers.
336                  */
337                 if (PagePrivate(page)) {
338                         if (try_to_free_buffers(page)) {
339                                 ClearPageDirty(page);
340                                 printk("%s: orphaned page\n", __FUNCTION__);
341                                 return PAGE_CLEAN;
342                         }
343                 }
344                 return PAGE_KEEP;
345         }
346         if (mapping->a_ops->writepage == NULL)
347                 return PAGE_ACTIVATE;
348         if (!may_write_to_queue(mapping->backing_dev_info))
349                 return PAGE_KEEP;
350
351         if (clear_page_dirty_for_io(page)) {
352                 int res;
353                 struct writeback_control wbc = {
354                         .sync_mode = WB_SYNC_NONE,
355                         .nr_to_write = SWAP_CLUSTER_MAX,
356                         .nonblocking = 1,
357                         .for_reclaim = 1,
358                 };
359
360                 SetPageReclaim(page);
361                 res = mapping->a_ops->writepage(page, &wbc);
362                 if (res < 0)
363                         handle_write_error(mapping, page, res);
364                 if (res == AOP_WRITEPAGE_ACTIVATE) {
365                         ClearPageReclaim(page);
366                         return PAGE_ACTIVATE;
367                 }
368                 if (!PageWriteback(page)) {
369                         /* synchronous write or broken a_ops? */
370                         ClearPageReclaim(page);
371                 }
372
373                 return PAGE_SUCCESS;
374         }
375
376         return PAGE_CLEAN;
377 }
378
379 static int remove_mapping(struct address_space *mapping, struct page *page)
380 {
381         if (!mapping)
382                 return 0;               /* truncate got there first */
383
384         write_lock_irq(&mapping->tree_lock);
385
386         /*
387          * The non-racy check for busy page.  It is critical to check
388          * PageDirty _after_ making sure that the page is freeable and
389          * not in use by anybody.       (pagecache + us == 2)
390          */
391         if (unlikely(page_count(page) != 2))
392                 goto cannot_free;
393         smp_rmb();
394         if (unlikely(PageDirty(page)))
395                 goto cannot_free;
396
397         if (PageSwapCache(page)) {
398                 swp_entry_t swap = { .val = page_private(page) };
399                 __delete_from_swap_cache(page);
400                 write_unlock_irq(&mapping->tree_lock);
401                 swap_free(swap);
402                 __put_page(page);       /* The pagecache ref */
403                 return 1;
404         }
405
406         __remove_from_page_cache(page);
407         write_unlock_irq(&mapping->tree_lock);
408         __put_page(page);
409         return 1;
410
411 cannot_free:
412         write_unlock_irq(&mapping->tree_lock);
413         return 0;
414 }
415
416 /*
417  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418  */
419 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420 {
421         LIST_HEAD(ret_pages);
422         struct pagevec freed_pvec;
423         int pgactivate = 0;
424         int reclaimed = 0;
425
426         cond_resched();
427
428         pagevec_init(&freed_pvec, 1);
429         while (!list_empty(page_list)) {
430                 struct address_space *mapping;
431                 struct page *page;
432                 int may_enter_fs;
433                 int referenced;
434
435                 cond_resched();
436
437                 page = lru_to_page(page_list);
438                 list_del(&page->lru);
439
440                 if (TestSetPageLocked(page))
441                         goto keep;
442
443                 BUG_ON(PageActive(page));
444
445                 sc->nr_scanned++;
446
447                 if (!sc->may_swap && page_mapped(page))
448                         goto keep_locked;
449
450                 /* Double the slab pressure for mapped and swapcache pages */
451                 if (page_mapped(page) || PageSwapCache(page))
452                         sc->nr_scanned++;
453
454                 if (PageWriteback(page))
455                         goto keep_locked;
456
457                 referenced = page_referenced(page, 1);
458                 /* In active use or really unfreeable?  Activate it. */
459                 if (referenced && page_mapping_inuse(page))
460                         goto activate_locked;
461
462 #ifdef CONFIG_SWAP
463                 /*
464                  * Anonymous process memory has backing store?
465                  * Try to allocate it some swap space here.
466                  */
467                 if (PageAnon(page) && !PageSwapCache(page)) {
468                         if (!sc->may_swap)
469                                 goto keep_locked;
470                         if (!add_to_swap(page, GFP_ATOMIC))
471                                 goto activate_locked;
472                 }
473 #endif /* CONFIG_SWAP */
474
475                 mapping = page_mapping(page);
476                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
477                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
478
479                 /*
480                  * The page is mapped into the page tables of one or more
481                  * processes. Try to unmap it here.
482                  */
483                 if (page_mapped(page) && mapping) {
484                         /*
485                          * No unmapping if we do not swap
486                          */
487                         if (!sc->may_swap)
488                                 goto keep_locked;
489
490                         switch (try_to_unmap(page, 0)) {
491                         case SWAP_FAIL:
492                                 goto activate_locked;
493                         case SWAP_AGAIN:
494                                 goto keep_locked;
495                         case SWAP_SUCCESS:
496                                 ; /* try to free the page below */
497                         }
498                 }
499
500                 if (PageDirty(page)) {
501                         if (referenced)
502                                 goto keep_locked;
503                         if (!may_enter_fs)
504                                 goto keep_locked;
505                         if (!sc->may_writepage)
506                                 goto keep_locked;
507
508                         /* Page is dirty, try to write it out here */
509                         switch(pageout(page, mapping)) {
510                         case PAGE_KEEP:
511                                 goto keep_locked;
512                         case PAGE_ACTIVATE:
513                                 goto activate_locked;
514                         case PAGE_SUCCESS:
515                                 if (PageWriteback(page) || PageDirty(page))
516                                         goto keep;
517                                 /*
518                                  * A synchronous write - probably a ramdisk.  Go
519                                  * ahead and try to reclaim the page.
520                                  */
521                                 if (TestSetPageLocked(page))
522                                         goto keep;
523                                 if (PageDirty(page) || PageWriteback(page))
524                                         goto keep_locked;
525                                 mapping = page_mapping(page);
526                         case PAGE_CLEAN:
527                                 ; /* try to free the page below */
528                         }
529                 }
530
531                 /*
532                  * If the page has buffers, try to free the buffer mappings
533                  * associated with this page. If we succeed we try to free
534                  * the page as well.
535                  *
536                  * We do this even if the page is PageDirty().
537                  * try_to_release_page() does not perform I/O, but it is
538                  * possible for a page to have PageDirty set, but it is actually
539                  * clean (all its buffers are clean).  This happens if the
540                  * buffers were written out directly, with submit_bh(). ext3
541                  * will do this, as well as the blockdev mapping. 
542                  * try_to_release_page() will discover that cleanness and will
543                  * drop the buffers and mark the page clean - it can be freed.
544                  *
545                  * Rarely, pages can have buffers and no ->mapping.  These are
546                  * the pages which were not successfully invalidated in
547                  * truncate_complete_page().  We try to drop those buffers here
548                  * and if that worked, and the page is no longer mapped into
549                  * process address space (page_count == 1) it can be freed.
550                  * Otherwise, leave the page on the LRU so it is swappable.
551                  */
552                 if (PagePrivate(page)) {
553                         if (!try_to_release_page(page, sc->gfp_mask))
554                                 goto activate_locked;
555                         if (!mapping && page_count(page) == 1)
556                                 goto free_it;
557                 }
558
559                 if (!remove_mapping(mapping, page))
560                         goto keep_locked;
561
562 free_it:
563                 unlock_page(page);
564                 reclaimed++;
565                 if (!pagevec_add(&freed_pvec, page))
566                         __pagevec_release_nonlru(&freed_pvec);
567                 continue;
568
569 activate_locked:
570                 SetPageActive(page);
571                 pgactivate++;
572 keep_locked:
573                 unlock_page(page);
574 keep:
575                 list_add(&page->lru, &ret_pages);
576                 BUG_ON(PageLRU(page));
577         }
578         list_splice(&ret_pages, page_list);
579         if (pagevec_count(&freed_pvec))
580                 __pagevec_release_nonlru(&freed_pvec);
581         mod_page_state(pgactivate, pgactivate);
582         sc->nr_reclaimed += reclaimed;
583         return reclaimed;
584 }
585
586 #ifdef CONFIG_MIGRATION
587 static inline void move_to_lru(struct page *page)
588 {
589         list_del(&page->lru);
590         if (PageActive(page)) {
591                 /*
592                  * lru_cache_add_active checks that
593                  * the PG_active bit is off.
594                  */
595                 ClearPageActive(page);
596                 lru_cache_add_active(page);
597         } else {
598                 lru_cache_add(page);
599         }
600         put_page(page);
601 }
602
603 /*
604  * Add isolated pages on the list back to the LRU.
605  *
606  * returns the number of pages put back.
607  */
608 int putback_lru_pages(struct list_head *l)
609 {
610         struct page *page;
611         struct page *page2;
612         int count = 0;
613
614         list_for_each_entry_safe(page, page2, l, lru) {
615                 move_to_lru(page);
616                 count++;
617         }
618         return count;
619 }
620
621 /*
622  * Non migratable page
623  */
624 int fail_migrate_page(struct page *newpage, struct page *page)
625 {
626         return -EIO;
627 }
628 EXPORT_SYMBOL(fail_migrate_page);
629
630 /*
631  * swapout a single page
632  * page is locked upon entry, unlocked on exit
633  */
634 static int swap_page(struct page *page)
635 {
636         struct address_space *mapping = page_mapping(page);
637
638         if (page_mapped(page) && mapping)
639                 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
640                         goto unlock_retry;
641
642         if (PageDirty(page)) {
643                 /* Page is dirty, try to write it out here */
644                 switch(pageout(page, mapping)) {
645                 case PAGE_KEEP:
646                 case PAGE_ACTIVATE:
647                         goto unlock_retry;
648
649                 case PAGE_SUCCESS:
650                         goto retry;
651
652                 case PAGE_CLEAN:
653                         ; /* try to free the page below */
654                 }
655         }
656
657         if (PagePrivate(page)) {
658                 if (!try_to_release_page(page, GFP_KERNEL) ||
659                     (!mapping && page_count(page) == 1))
660                         goto unlock_retry;
661         }
662
663         if (remove_mapping(mapping, page)) {
664                 /* Success */
665                 unlock_page(page);
666                 return 0;
667         }
668
669 unlock_retry:
670         unlock_page(page);
671
672 retry:
673         return -EAGAIN;
674 }
675 EXPORT_SYMBOL(swap_page);
676
677 /*
678  * Page migration was first developed in the context of the memory hotplug
679  * project. The main authors of the migration code are:
680  *
681  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
682  * Hirokazu Takahashi <taka@valinux.co.jp>
683  * Dave Hansen <haveblue@us.ibm.com>
684  * Christoph Lameter <clameter@sgi.com>
685  */
686
687 /*
688  * Remove references for a page and establish the new page with the correct
689  * basic settings to be able to stop accesses to the page.
690  */
691 int migrate_page_remove_references(struct page *newpage,
692                                 struct page *page, int nr_refs)
693 {
694         struct address_space *mapping = page_mapping(page);
695         struct page **radix_pointer;
696
697         /*
698          * Avoid doing any of the following work if the page count
699          * indicates that the page is in use or truncate has removed
700          * the page.
701          */
702         if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
703                 return 1;
704
705         /*
706          * Establish swap ptes for anonymous pages or destroy pte
707          * maps for files.
708          *
709          * In order to reestablish file backed mappings the fault handlers
710          * will take the radix tree_lock which may then be used to stop
711          * processses from accessing this page until the new page is ready.
712          *
713          * A process accessing via a swap pte (an anonymous page) will take a
714          * page_lock on the old page which will block the process until the
715          * migration attempt is complete. At that time the PageSwapCache bit
716          * will be examined. If the page was migrated then the PageSwapCache
717          * bit will be clear and the operation to retrieve the page will be
718          * retried which will find the new page in the radix tree. Then a new
719          * direct mapping may be generated based on the radix tree contents.
720          *
721          * If the page was not migrated then the PageSwapCache bit
722          * is still set and the operation may continue.
723          */
724         try_to_unmap(page, 1);
725
726         /*
727          * Give up if we were unable to remove all mappings.
728          */
729         if (page_mapcount(page))
730                 return 1;
731
732         write_lock_irq(&mapping->tree_lock);
733
734         radix_pointer = (struct page **)radix_tree_lookup_slot(
735                                                 &mapping->page_tree,
736                                                 page_index(page));
737
738         if (!page_mapping(page) || page_count(page) != nr_refs ||
739                         *radix_pointer != page) {
740                 write_unlock_irq(&mapping->tree_lock);
741                 return 1;
742         }
743
744         /*
745          * Now we know that no one else is looking at the page.
746          *
747          * Certain minimal information about a page must be available
748          * in order for other subsystems to properly handle the page if they
749          * find it through the radix tree update before we are finished
750          * copying the page.
751          */
752         get_page(newpage);
753         newpage->index = page->index;
754         newpage->mapping = page->mapping;
755         if (PageSwapCache(page)) {
756                 SetPageSwapCache(newpage);
757                 set_page_private(newpage, page_private(page));
758         }
759
760         *radix_pointer = newpage;
761         __put_page(page);
762         write_unlock_irq(&mapping->tree_lock);
763
764         return 0;
765 }
766 EXPORT_SYMBOL(migrate_page_remove_references);
767
768 /*
769  * Copy the page to its new location
770  */
771 void migrate_page_copy(struct page *newpage, struct page *page)
772 {
773         copy_highpage(newpage, page);
774
775         if (PageError(page))
776                 SetPageError(newpage);
777         if (PageReferenced(page))
778                 SetPageReferenced(newpage);
779         if (PageUptodate(page))
780                 SetPageUptodate(newpage);
781         if (PageActive(page))
782                 SetPageActive(newpage);
783         if (PageChecked(page))
784                 SetPageChecked(newpage);
785         if (PageMappedToDisk(page))
786                 SetPageMappedToDisk(newpage);
787
788         if (PageDirty(page)) {
789                 clear_page_dirty_for_io(page);
790                 set_page_dirty(newpage);
791         }
792
793         ClearPageSwapCache(page);
794         ClearPageActive(page);
795         ClearPagePrivate(page);
796         set_page_private(page, 0);
797         page->mapping = NULL;
798
799         /*
800          * If any waiters have accumulated on the new page then
801          * wake them up.
802          */
803         if (PageWriteback(newpage))
804                 end_page_writeback(newpage);
805 }
806 EXPORT_SYMBOL(migrate_page_copy);
807
808 /*
809  * Common logic to directly migrate a single page suitable for
810  * pages that do not use PagePrivate.
811  *
812  * Pages are locked upon entry and exit.
813  */
814 int migrate_page(struct page *newpage, struct page *page)
815 {
816         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
817
818         if (migrate_page_remove_references(newpage, page, 2))
819                 return -EAGAIN;
820
821         migrate_page_copy(newpage, page);
822
823         /*
824          * Remove auxiliary swap entries and replace
825          * them with real ptes.
826          *
827          * Note that a real pte entry will allow processes that are not
828          * waiting on the page lock to use the new page via the page tables
829          * before the new page is unlocked.
830          */
831         remove_from_swap(newpage);
832         return 0;
833 }
834 EXPORT_SYMBOL(migrate_page);
835
836 /*
837  * migrate_pages
838  *
839  * Two lists are passed to this function. The first list
840  * contains the pages isolated from the LRU to be migrated.
841  * The second list contains new pages that the pages isolated
842  * can be moved to. If the second list is NULL then all
843  * pages are swapped out.
844  *
845  * The function returns after 10 attempts or if no pages
846  * are movable anymore because to has become empty
847  * or no retryable pages exist anymore.
848  *
849  * Return: Number of pages not migrated when "to" ran empty.
850  */
851 int migrate_pages(struct list_head *from, struct list_head *to,
852                   struct list_head *moved, struct list_head *failed)
853 {
854         int retry;
855         int nr_failed = 0;
856         int pass = 0;
857         struct page *page;
858         struct page *page2;
859         int swapwrite = current->flags & PF_SWAPWRITE;
860         int rc;
861
862         if (!swapwrite)
863                 current->flags |= PF_SWAPWRITE;
864
865 redo:
866         retry = 0;
867
868         list_for_each_entry_safe(page, page2, from, lru) {
869                 struct page *newpage = NULL;
870                 struct address_space *mapping;
871
872                 cond_resched();
873
874                 rc = 0;
875                 if (page_count(page) == 1)
876                         /* page was freed from under us. So we are done. */
877                         goto next;
878
879                 if (to && list_empty(to))
880                         break;
881
882                 /*
883                  * Skip locked pages during the first two passes to give the
884                  * functions holding the lock time to release the page. Later we
885                  * use lock_page() to have a higher chance of acquiring the
886                  * lock.
887                  */
888                 rc = -EAGAIN;
889                 if (pass > 2)
890                         lock_page(page);
891                 else
892                         if (TestSetPageLocked(page))
893                                 goto next;
894
895                 /*
896                  * Only wait on writeback if we have already done a pass where
897                  * we we may have triggered writeouts for lots of pages.
898                  */
899                 if (pass > 0) {
900                         wait_on_page_writeback(page);
901                 } else {
902                         if (PageWriteback(page))
903                                 goto unlock_page;
904                 }
905
906                 /*
907                  * Anonymous pages must have swap cache references otherwise
908                  * the information contained in the page maps cannot be
909                  * preserved.
910                  */
911                 if (PageAnon(page) && !PageSwapCache(page)) {
912                         if (!add_to_swap(page, GFP_KERNEL)) {
913                                 rc = -ENOMEM;
914                                 goto unlock_page;
915                         }
916                 }
917
918                 if (!to) {
919                         rc = swap_page(page);
920                         goto next;
921                 }
922
923                 newpage = lru_to_page(to);
924                 lock_page(newpage);
925
926                 /*
927                  * Pages are properly locked and writeback is complete.
928                  * Try to migrate the page.
929                  */
930                 mapping = page_mapping(page);
931                 if (!mapping)
932                         goto unlock_both;
933
934                 if (mapping->a_ops->migratepage) {
935                         /*
936                          * Most pages have a mapping and most filesystems
937                          * should provide a migration function. Anonymous
938                          * pages are part of swap space which also has its
939                          * own migration function. This is the most common
940                          * path for page migration.
941                          */
942                         rc = mapping->a_ops->migratepage(newpage, page);
943                         goto unlock_both;
944                 }
945
946                 /*
947                  * Default handling if a filesystem does not provide
948                  * a migration function. We can only migrate clean
949                  * pages so try to write out any dirty pages first.
950                  */
951                 if (PageDirty(page)) {
952                         switch (pageout(page, mapping)) {
953                         case PAGE_KEEP:
954                         case PAGE_ACTIVATE:
955                                 goto unlock_both;
956
957                         case PAGE_SUCCESS:
958                                 unlock_page(newpage);
959                                 goto next;
960
961                         case PAGE_CLEAN:
962                                 ; /* try to migrate the page below */
963                         }
964                 }
965
966                 /*
967                  * Buffers are managed in a filesystem specific way.
968                  * We must have no buffers or drop them.
969                  */
970                 if (!page_has_buffers(page) ||
971                     try_to_release_page(page, GFP_KERNEL)) {
972                         rc = migrate_page(newpage, page);
973                         goto unlock_both;
974                 }
975
976                 /*
977                  * On early passes with mapped pages simply
978                  * retry. There may be a lock held for some
979                  * buffers that may go away. Later
980                  * swap them out.
981                  */
982                 if (pass > 4) {
983                         /*
984                          * Persistently unable to drop buffers..... As a
985                          * measure of last resort we fall back to
986                          * swap_page().
987                          */
988                         unlock_page(newpage);
989                         newpage = NULL;
990                         rc = swap_page(page);
991                         goto next;
992                 }
993
994 unlock_both:
995                 unlock_page(newpage);
996
997 unlock_page:
998                 unlock_page(page);
999
1000 next:
1001                 if (rc == -EAGAIN) {
1002                         retry++;
1003                 } else if (rc) {
1004                         /* Permanent failure */
1005                         list_move(&page->lru, failed);
1006                         nr_failed++;
1007                 } else {
1008                         if (newpage) {
1009                                 /* Successful migration. Return page to LRU */
1010                                 move_to_lru(newpage);
1011                         }
1012                         list_move(&page->lru, moved);
1013                 }
1014         }
1015         if (retry && pass++ < 10)
1016                 goto redo;
1017
1018         if (!swapwrite)
1019                 current->flags &= ~PF_SWAPWRITE;
1020
1021         return nr_failed + retry;
1022 }
1023
1024 /*
1025  * Isolate one page from the LRU lists and put it on the
1026  * indicated list with elevated refcount.
1027  *
1028  * Result:
1029  *  0 = page not on LRU list
1030  *  1 = page removed from LRU list and added to the specified list.
1031  */
1032 int isolate_lru_page(struct page *page)
1033 {
1034         int ret = 0;
1035
1036         if (PageLRU(page)) {
1037                 struct zone *zone = page_zone(page);
1038                 spin_lock_irq(&zone->lru_lock);
1039                 if (TestClearPageLRU(page)) {
1040                         ret = 1;
1041                         get_page(page);
1042                         if (PageActive(page))
1043                                 del_page_from_active_list(zone, page);
1044                         else
1045                                 del_page_from_inactive_list(zone, page);
1046                 }
1047                 spin_unlock_irq(&zone->lru_lock);
1048         }
1049
1050         return ret;
1051 }
1052 #endif
1053
1054 /*
1055  * zone->lru_lock is heavily contended.  Some of the functions that
1056  * shrink the lists perform better by taking out a batch of pages
1057  * and working on them outside the LRU lock.
1058  *
1059  * For pagecache intensive workloads, this function is the hottest
1060  * spot in the kernel (apart from copy_*_user functions).
1061  *
1062  * Appropriate locks must be held before calling this function.
1063  *
1064  * @nr_to_scan: The number of pages to look through on the list.
1065  * @src:        The LRU list to pull pages off.
1066  * @dst:        The temp list to put pages on to.
1067  * @scanned:    The number of pages that were scanned.
1068  *
1069  * returns how many pages were moved onto *@dst.
1070  */
1071 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
1072                              struct list_head *dst, int *scanned)
1073 {
1074         int nr_taken = 0;
1075         struct page *page;
1076         int scan = 0;
1077
1078         while (scan++ < nr_to_scan && !list_empty(src)) {
1079                 page = lru_to_page(src);
1080                 prefetchw_prev_lru_page(page, src, flags);
1081
1082                 if (!TestClearPageLRU(page))
1083                         BUG();
1084                 list_del(&page->lru);
1085                 if (get_page_testone(page)) {
1086                         /*
1087                          * It is being freed elsewhere
1088                          */
1089                         __put_page(page);
1090                         SetPageLRU(page);
1091                         list_add(&page->lru, src);
1092                         continue;
1093                 } else {
1094                         list_add(&page->lru, dst);
1095                         nr_taken++;
1096                 }
1097         }
1098
1099         *scanned = scan;
1100         return nr_taken;
1101 }
1102
1103 /*
1104  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1105  */
1106 static void shrink_cache(struct zone *zone, struct scan_control *sc)
1107 {
1108         LIST_HEAD(page_list);
1109         struct pagevec pvec;
1110         int max_scan = sc->nr_to_scan;
1111
1112         pagevec_init(&pvec, 1);
1113
1114         lru_add_drain();
1115         spin_lock_irq(&zone->lru_lock);
1116         while (max_scan > 0) {
1117                 struct page *page;
1118                 int nr_taken;
1119                 int nr_scan;
1120                 int nr_freed;
1121
1122                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1123                                              &zone->inactive_list,
1124                                              &page_list, &nr_scan);
1125                 zone->nr_inactive -= nr_taken;
1126                 zone->pages_scanned += nr_scan;
1127                 spin_unlock_irq(&zone->lru_lock);
1128
1129                 if (nr_taken == 0)
1130                         goto done;
1131
1132                 max_scan -= nr_scan;
1133                 nr_freed = shrink_list(&page_list, sc);
1134
1135                 local_irq_disable();
1136                 if (current_is_kswapd()) {
1137                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1138                         __mod_page_state(kswapd_steal, nr_freed);
1139                 } else
1140                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1141                 __mod_page_state_zone(zone, pgsteal, nr_freed);
1142
1143                 spin_lock(&zone->lru_lock);
1144                 /*
1145                  * Put back any unfreeable pages.
1146                  */
1147                 while (!list_empty(&page_list)) {
1148                         page = lru_to_page(&page_list);
1149                         if (TestSetPageLRU(page))
1150                                 BUG();
1151                         list_del(&page->lru);
1152                         if (PageActive(page))
1153                                 add_page_to_active_list(zone, page);
1154                         else
1155                                 add_page_to_inactive_list(zone, page);
1156                         if (!pagevec_add(&pvec, page)) {
1157                                 spin_unlock_irq(&zone->lru_lock);
1158                                 __pagevec_release(&pvec);
1159                                 spin_lock_irq(&zone->lru_lock);
1160                         }
1161                 }
1162         }
1163         spin_unlock_irq(&zone->lru_lock);
1164 done:
1165         pagevec_release(&pvec);
1166 }
1167
1168 /*
1169  * This moves pages from the active list to the inactive list.
1170  *
1171  * We move them the other way if the page is referenced by one or more
1172  * processes, from rmap.
1173  *
1174  * If the pages are mostly unmapped, the processing is fast and it is
1175  * appropriate to hold zone->lru_lock across the whole operation.  But if
1176  * the pages are mapped, the processing is slow (page_referenced()) so we
1177  * should drop zone->lru_lock around each page.  It's impossible to balance
1178  * this, so instead we remove the pages from the LRU while processing them.
1179  * It is safe to rely on PG_active against the non-LRU pages in here because
1180  * nobody will play with that bit on a non-LRU page.
1181  *
1182  * The downside is that we have to touch page->_count against each page.
1183  * But we had to alter page->flags anyway.
1184  */
1185 static void
1186 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
1187 {
1188         int pgmoved;
1189         int pgdeactivate = 0;
1190         int pgscanned;
1191         int nr_pages = sc->nr_to_scan;
1192         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1193         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1194         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1195         struct page *page;
1196         struct pagevec pvec;
1197         int reclaim_mapped = 0;
1198         long mapped_ratio;
1199         long distress;
1200         long swap_tendency;
1201
1202         lru_add_drain();
1203         spin_lock_irq(&zone->lru_lock);
1204         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1205                                     &l_hold, &pgscanned);
1206         zone->pages_scanned += pgscanned;
1207         zone->nr_active -= pgmoved;
1208         spin_unlock_irq(&zone->lru_lock);
1209
1210         /*
1211          * `distress' is a measure of how much trouble we're having reclaiming
1212          * pages.  0 -> no problems.  100 -> great trouble.
1213          */
1214         distress = 100 >> zone->prev_priority;
1215
1216         /*
1217          * The point of this algorithm is to decide when to start reclaiming
1218          * mapped memory instead of just pagecache.  Work out how much memory
1219          * is mapped.
1220          */
1221         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1222
1223         /*
1224          * Now decide how much we really want to unmap some pages.  The mapped
1225          * ratio is downgraded - just because there's a lot of mapped memory
1226          * doesn't necessarily mean that page reclaim isn't succeeding.
1227          *
1228          * The distress ratio is important - we don't want to start going oom.
1229          *
1230          * A 100% value of vm_swappiness overrides this algorithm altogether.
1231          */
1232         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1233
1234         /*
1235          * Now use this metric to decide whether to start moving mapped memory
1236          * onto the inactive list.
1237          */
1238         if (swap_tendency >= 100 && sc->may_swap)
1239                 reclaim_mapped = 1;
1240
1241         while (!list_empty(&l_hold)) {
1242                 cond_resched();
1243                 page = lru_to_page(&l_hold);
1244                 list_del(&page->lru);
1245                 if (page_mapped(page)) {
1246                         if (!reclaim_mapped ||
1247                             (total_swap_pages == 0 && PageAnon(page)) ||
1248                             page_referenced(page, 0)) {
1249                                 list_add(&page->lru, &l_active);
1250                                 continue;
1251                         }
1252                 }
1253                 list_add(&page->lru, &l_inactive);
1254         }
1255
1256         pagevec_init(&pvec, 1);
1257         pgmoved = 0;
1258         spin_lock_irq(&zone->lru_lock);
1259         while (!list_empty(&l_inactive)) {
1260                 page = lru_to_page(&l_inactive);
1261                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1262                 if (TestSetPageLRU(page))
1263                         BUG();
1264                 if (!TestClearPageActive(page))
1265                         BUG();
1266                 list_move(&page->lru, &zone->inactive_list);
1267                 pgmoved++;
1268                 if (!pagevec_add(&pvec, page)) {
1269                         zone->nr_inactive += pgmoved;
1270                         spin_unlock_irq(&zone->lru_lock);
1271                         pgdeactivate += pgmoved;
1272                         pgmoved = 0;
1273                         if (buffer_heads_over_limit)
1274                                 pagevec_strip(&pvec);
1275                         __pagevec_release(&pvec);
1276                         spin_lock_irq(&zone->lru_lock);
1277                 }
1278         }
1279         zone->nr_inactive += pgmoved;
1280         pgdeactivate += pgmoved;
1281         if (buffer_heads_over_limit) {
1282                 spin_unlock_irq(&zone->lru_lock);
1283                 pagevec_strip(&pvec);
1284                 spin_lock_irq(&zone->lru_lock);
1285         }
1286
1287         pgmoved = 0;
1288         while (!list_empty(&l_active)) {
1289                 page = lru_to_page(&l_active);
1290                 prefetchw_prev_lru_page(page, &l_active, flags);
1291                 if (TestSetPageLRU(page))
1292                         BUG();
1293                 BUG_ON(!PageActive(page));
1294                 list_move(&page->lru, &zone->active_list);
1295                 pgmoved++;
1296                 if (!pagevec_add(&pvec, page)) {
1297                         zone->nr_active += pgmoved;
1298                         pgmoved = 0;
1299                         spin_unlock_irq(&zone->lru_lock);
1300                         __pagevec_release(&pvec);
1301                         spin_lock_irq(&zone->lru_lock);
1302                 }
1303         }
1304         zone->nr_active += pgmoved;
1305         spin_unlock(&zone->lru_lock);
1306
1307         __mod_page_state_zone(zone, pgrefill, pgscanned);
1308         __mod_page_state(pgdeactivate, pgdeactivate);
1309         local_irq_enable();
1310
1311         pagevec_release(&pvec);
1312 }
1313
1314 /*
1315  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1316  */
1317 static void
1318 shrink_zone(struct zone *zone, struct scan_control *sc)
1319 {
1320         unsigned long nr_active;
1321         unsigned long nr_inactive;
1322
1323         atomic_inc(&zone->reclaim_in_progress);
1324
1325         /*
1326          * Add one to `nr_to_scan' just to make sure that the kernel will
1327          * slowly sift through the active list.
1328          */
1329         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1330         nr_active = zone->nr_scan_active;
1331         if (nr_active >= sc->swap_cluster_max)
1332                 zone->nr_scan_active = 0;
1333         else
1334                 nr_active = 0;
1335
1336         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1337         nr_inactive = zone->nr_scan_inactive;
1338         if (nr_inactive >= sc->swap_cluster_max)
1339                 zone->nr_scan_inactive = 0;
1340         else
1341                 nr_inactive = 0;
1342
1343         while (nr_active || nr_inactive) {
1344                 if (nr_active) {
1345                         sc->nr_to_scan = min(nr_active,
1346                                         (unsigned long)sc->swap_cluster_max);
1347                         nr_active -= sc->nr_to_scan;
1348                         refill_inactive_zone(zone, sc);
1349                 }
1350
1351                 if (nr_inactive) {
1352                         sc->nr_to_scan = min(nr_inactive,
1353                                         (unsigned long)sc->swap_cluster_max);
1354                         nr_inactive -= sc->nr_to_scan;
1355                         shrink_cache(zone, sc);
1356                 }
1357         }
1358
1359         throttle_vm_writeout();
1360
1361         atomic_dec(&zone->reclaim_in_progress);
1362 }
1363
1364 /*
1365  * This is the direct reclaim path, for page-allocating processes.  We only
1366  * try to reclaim pages from zones which will satisfy the caller's allocation
1367  * request.
1368  *
1369  * We reclaim from a zone even if that zone is over pages_high.  Because:
1370  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1371  *    allocation or
1372  * b) The zones may be over pages_high but they must go *over* pages_high to
1373  *    satisfy the `incremental min' zone defense algorithm.
1374  *
1375  * Returns the number of reclaimed pages.
1376  *
1377  * If a zone is deemed to be full of pinned pages then just give it a light
1378  * scan then give up on it.
1379  */
1380 static void
1381 shrink_caches(struct zone **zones, struct scan_control *sc)
1382 {
1383         int i;
1384
1385         for (i = 0; zones[i] != NULL; i++) {
1386                 struct zone *zone = zones[i];
1387
1388                 if (!populated_zone(zone))
1389                         continue;
1390
1391                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1392                         continue;
1393
1394                 zone->temp_priority = sc->priority;
1395                 if (zone->prev_priority > sc->priority)
1396                         zone->prev_priority = sc->priority;
1397
1398                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1399                         continue;       /* Let kswapd poll it */
1400
1401                 shrink_zone(zone, sc);
1402         }
1403 }
1404  
1405 /*
1406  * This is the main entry point to direct page reclaim.
1407  *
1408  * If a full scan of the inactive list fails to free enough memory then we
1409  * are "out of memory" and something needs to be killed.
1410  *
1411  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1412  * high - the zone may be full of dirty or under-writeback pages, which this
1413  * caller can't do much about.  We kick pdflush and take explicit naps in the
1414  * hope that some of these pages can be written.  But if the allocating task
1415  * holds filesystem locks which prevent writeout this might not work, and the
1416  * allocation attempt will fail.
1417  */
1418 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1419 {
1420         int priority;
1421         int ret = 0;
1422         int total_scanned = 0, total_reclaimed = 0;
1423         struct reclaim_state *reclaim_state = current->reclaim_state;
1424         struct scan_control sc;
1425         unsigned long lru_pages = 0;
1426         int i;
1427
1428         sc.gfp_mask = gfp_mask;
1429         sc.may_writepage = !laptop_mode;
1430         sc.may_swap = 1;
1431
1432         inc_page_state(allocstall);
1433
1434         for (i = 0; zones[i] != NULL; i++) {
1435                 struct zone *zone = zones[i];
1436
1437                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1438                         continue;
1439
1440                 zone->temp_priority = DEF_PRIORITY;
1441                 lru_pages += zone->nr_active + zone->nr_inactive;
1442         }
1443
1444         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1445                 sc.nr_mapped = read_page_state(nr_mapped);
1446                 sc.nr_scanned = 0;
1447                 sc.nr_reclaimed = 0;
1448                 sc.priority = priority;
1449                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1450                 if (!priority)
1451                         disable_swap_token();
1452                 shrink_caches(zones, &sc);
1453                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1454                 if (reclaim_state) {
1455                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1456                         reclaim_state->reclaimed_slab = 0;
1457                 }
1458                 total_scanned += sc.nr_scanned;
1459                 total_reclaimed += sc.nr_reclaimed;
1460                 if (total_reclaimed >= sc.swap_cluster_max) {
1461                         ret = 1;
1462                         goto out;
1463                 }
1464
1465                 /*
1466                  * Try to write back as many pages as we just scanned.  This
1467                  * tends to cause slow streaming writers to write data to the
1468                  * disk smoothly, at the dirtying rate, which is nice.   But
1469                  * that's undesirable in laptop mode, where we *want* lumpy
1470                  * writeout.  So in laptop mode, write out the whole world.
1471                  */
1472                 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1473                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1474                         sc.may_writepage = 1;
1475                 }
1476
1477                 /* Take a nap, wait for some writeback to complete */
1478                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1479                         blk_congestion_wait(WRITE, HZ/10);
1480         }
1481 out:
1482         for (i = 0; zones[i] != 0; i++) {
1483                 struct zone *zone = zones[i];
1484
1485                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1486                         continue;
1487
1488                 zone->prev_priority = zone->temp_priority;
1489         }
1490         return ret;
1491 }
1492
1493 /*
1494  * For kswapd, balance_pgdat() will work across all this node's zones until
1495  * they are all at pages_high.
1496  *
1497  * If `nr_pages' is non-zero then it is the number of pages which are to be
1498  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1499  * special.
1500  *
1501  * Returns the number of pages which were actually freed.
1502  *
1503  * There is special handling here for zones which are full of pinned pages.
1504  * This can happen if the pages are all mlocked, or if they are all used by
1505  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1506  * What we do is to detect the case where all pages in the zone have been
1507  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1508  * dead and from now on, only perform a short scan.  Basically we're polling
1509  * the zone for when the problem goes away.
1510  *
1511  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1512  * zones which have free_pages > pages_high, but once a zone is found to have
1513  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1514  * of the number of free pages in the lower zones.  This interoperates with
1515  * the page allocator fallback scheme to ensure that aging of pages is balanced
1516  * across the zones.
1517  */
1518 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1519 {
1520         int to_free = nr_pages;
1521         int all_zones_ok;
1522         int priority;
1523         int i;
1524         int total_scanned, total_reclaimed;
1525         struct reclaim_state *reclaim_state = current->reclaim_state;
1526         struct scan_control sc;
1527
1528 loop_again:
1529         total_scanned = 0;
1530         total_reclaimed = 0;
1531         sc.gfp_mask = GFP_KERNEL;
1532         sc.may_writepage = !laptop_mode;
1533         sc.may_swap = 1;
1534         sc.nr_mapped = read_page_state(nr_mapped);
1535
1536         inc_page_state(pageoutrun);
1537
1538         for (i = 0; i < pgdat->nr_zones; i++) {
1539                 struct zone *zone = pgdat->node_zones + i;
1540
1541                 zone->temp_priority = DEF_PRIORITY;
1542         }
1543
1544         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1545                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1546                 unsigned long lru_pages = 0;
1547
1548                 /* The swap token gets in the way of swapout... */
1549                 if (!priority)
1550                         disable_swap_token();
1551
1552                 all_zones_ok = 1;
1553
1554                 if (nr_pages == 0) {
1555                         /*
1556                          * Scan in the highmem->dma direction for the highest
1557                          * zone which needs scanning
1558                          */
1559                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1560                                 struct zone *zone = pgdat->node_zones + i;
1561
1562                                 if (!populated_zone(zone))
1563                                         continue;
1564
1565                                 if (zone->all_unreclaimable &&
1566                                                 priority != DEF_PRIORITY)
1567                                         continue;
1568
1569                                 if (!zone_watermark_ok(zone, order,
1570                                                 zone->pages_high, 0, 0)) {
1571                                         end_zone = i;
1572                                         goto scan;
1573                                 }
1574                         }
1575                         goto out;
1576                 } else {
1577                         end_zone = pgdat->nr_zones - 1;
1578                 }
1579 scan:
1580                 for (i = 0; i <= end_zone; i++) {
1581                         struct zone *zone = pgdat->node_zones + i;
1582
1583                         lru_pages += zone->nr_active + zone->nr_inactive;
1584                 }
1585
1586                 /*
1587                  * Now scan the zone in the dma->highmem direction, stopping
1588                  * at the last zone which needs scanning.
1589                  *
1590                  * We do this because the page allocator works in the opposite
1591                  * direction.  This prevents the page allocator from allocating
1592                  * pages behind kswapd's direction of progress, which would
1593                  * cause too much scanning of the lower zones.
1594                  */
1595                 for (i = 0; i <= end_zone; i++) {
1596                         struct zone *zone = pgdat->node_zones + i;
1597                         int nr_slab;
1598
1599                         if (!populated_zone(zone))
1600                                 continue;
1601
1602                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1603                                 continue;
1604
1605                         if (nr_pages == 0) {    /* Not software suspend */
1606                                 if (!zone_watermark_ok(zone, order,
1607                                                 zone->pages_high, end_zone, 0))
1608                                         all_zones_ok = 0;
1609                         }
1610                         zone->temp_priority = priority;
1611                         if (zone->prev_priority > priority)
1612                                 zone->prev_priority = priority;
1613                         sc.nr_scanned = 0;
1614                         sc.nr_reclaimed = 0;
1615                         sc.priority = priority;
1616                         sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1617                         shrink_zone(zone, &sc);
1618                         reclaim_state->reclaimed_slab = 0;
1619                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1620                                                 lru_pages);
1621                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1622                         total_reclaimed += sc.nr_reclaimed;
1623                         total_scanned += sc.nr_scanned;
1624                         if (zone->all_unreclaimable)
1625                                 continue;
1626                         if (nr_slab == 0 && zone->pages_scanned >=
1627                                     (zone->nr_active + zone->nr_inactive) * 4)
1628                                 zone->all_unreclaimable = 1;
1629                         /*
1630                          * If we've done a decent amount of scanning and
1631                          * the reclaim ratio is low, start doing writepage
1632                          * even in laptop mode
1633                          */
1634                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1635                             total_scanned > total_reclaimed+total_reclaimed/2)
1636                                 sc.may_writepage = 1;
1637                 }
1638                 if (nr_pages && to_free > total_reclaimed)
1639                         continue;       /* swsusp: need to do more work */
1640                 if (all_zones_ok)
1641                         break;          /* kswapd: all done */
1642                 /*
1643                  * OK, kswapd is getting into trouble.  Take a nap, then take
1644                  * another pass across the zones.
1645                  */
1646                 if (total_scanned && priority < DEF_PRIORITY - 2)
1647                         blk_congestion_wait(WRITE, HZ/10);
1648
1649                 /*
1650                  * We do this so kswapd doesn't build up large priorities for
1651                  * example when it is freeing in parallel with allocators. It
1652                  * matches the direct reclaim path behaviour in terms of impact
1653                  * on zone->*_priority.
1654                  */
1655                 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1656                         break;
1657         }
1658 out:
1659         for (i = 0; i < pgdat->nr_zones; i++) {
1660                 struct zone *zone = pgdat->node_zones + i;
1661
1662                 zone->prev_priority = zone->temp_priority;
1663         }
1664         if (!all_zones_ok) {
1665                 cond_resched();
1666                 goto loop_again;
1667         }
1668
1669         return total_reclaimed;
1670 }
1671
1672 /*
1673  * The background pageout daemon, started as a kernel thread
1674  * from the init process. 
1675  *
1676  * This basically trickles out pages so that we have _some_
1677  * free memory available even if there is no other activity
1678  * that frees anything up. This is needed for things like routing
1679  * etc, where we otherwise might have all activity going on in
1680  * asynchronous contexts that cannot page things out.
1681  *
1682  * If there are applications that are active memory-allocators
1683  * (most normal use), this basically shouldn't matter.
1684  */
1685 static int kswapd(void *p)
1686 {
1687         unsigned long order;
1688         pg_data_t *pgdat = (pg_data_t*)p;
1689         struct task_struct *tsk = current;
1690         DEFINE_WAIT(wait);
1691         struct reclaim_state reclaim_state = {
1692                 .reclaimed_slab = 0,
1693         };
1694         cpumask_t cpumask;
1695
1696         daemonize("kswapd%d", pgdat->node_id);
1697         cpumask = node_to_cpumask(pgdat->node_id);
1698         if (!cpus_empty(cpumask))
1699                 set_cpus_allowed(tsk, cpumask);
1700         current->reclaim_state = &reclaim_state;
1701
1702         /*
1703          * Tell the memory management that we're a "memory allocator",
1704          * and that if we need more memory we should get access to it
1705          * regardless (see "__alloc_pages()"). "kswapd" should
1706          * never get caught in the normal page freeing logic.
1707          *
1708          * (Kswapd normally doesn't need memory anyway, but sometimes
1709          * you need a small amount of memory in order to be able to
1710          * page out something else, and this flag essentially protects
1711          * us from recursively trying to free more memory as we're
1712          * trying to free the first piece of memory in the first place).
1713          */
1714         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1715
1716         order = 0;
1717         for ( ; ; ) {
1718                 unsigned long new_order;
1719
1720                 try_to_freeze();
1721
1722                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1723                 new_order = pgdat->kswapd_max_order;
1724                 pgdat->kswapd_max_order = 0;
1725                 if (order < new_order) {
1726                         /*
1727                          * Don't sleep if someone wants a larger 'order'
1728                          * allocation
1729                          */
1730                         order = new_order;
1731                 } else {
1732                         schedule();
1733                         order = pgdat->kswapd_max_order;
1734                 }
1735                 finish_wait(&pgdat->kswapd_wait, &wait);
1736
1737                 balance_pgdat(pgdat, 0, order);
1738         }
1739         return 0;
1740 }
1741
1742 /*
1743  * A zone is low on free memory, so wake its kswapd task to service it.
1744  */
1745 void wakeup_kswapd(struct zone *zone, int order)
1746 {
1747         pg_data_t *pgdat;
1748
1749         if (!populated_zone(zone))
1750                 return;
1751
1752         pgdat = zone->zone_pgdat;
1753         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1754                 return;
1755         if (pgdat->kswapd_max_order < order)
1756                 pgdat->kswapd_max_order = order;
1757         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1758                 return;
1759         if (!waitqueue_active(&pgdat->kswapd_wait))
1760                 return;
1761         wake_up_interruptible(&pgdat->kswapd_wait);
1762 }
1763
1764 #ifdef CONFIG_PM
1765 /*
1766  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1767  * pages.
1768  */
1769 int shrink_all_memory(int nr_pages)
1770 {
1771         pg_data_t *pgdat;
1772         int nr_to_free = nr_pages;
1773         int ret = 0;
1774         struct reclaim_state reclaim_state = {
1775                 .reclaimed_slab = 0,
1776         };
1777
1778         current->reclaim_state = &reclaim_state;
1779         for_each_pgdat(pgdat) {
1780                 int freed;
1781                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1782                 ret += freed;
1783                 nr_to_free -= freed;
1784                 if (nr_to_free <= 0)
1785                         break;
1786         }
1787         current->reclaim_state = NULL;
1788         return ret;
1789 }
1790 #endif
1791
1792 #ifdef CONFIG_HOTPLUG_CPU
1793 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1794    not required for correctness.  So if the last cpu in a node goes
1795    away, we get changed to run anywhere: as the first one comes back,
1796    restore their cpu bindings. */
1797 static int __devinit cpu_callback(struct notifier_block *nfb,
1798                                   unsigned long action,
1799                                   void *hcpu)
1800 {
1801         pg_data_t *pgdat;
1802         cpumask_t mask;
1803
1804         if (action == CPU_ONLINE) {
1805                 for_each_pgdat(pgdat) {
1806                         mask = node_to_cpumask(pgdat->node_id);
1807                         if (any_online_cpu(mask) != NR_CPUS)
1808                                 /* One of our CPUs online: restore mask */
1809                                 set_cpus_allowed(pgdat->kswapd, mask);
1810                 }
1811         }
1812         return NOTIFY_OK;
1813 }
1814 #endif /* CONFIG_HOTPLUG_CPU */
1815
1816 static int __init kswapd_init(void)
1817 {
1818         pg_data_t *pgdat;
1819         swap_setup();
1820         for_each_pgdat(pgdat)
1821                 pgdat->kswapd
1822                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1823         total_memory = nr_free_pagecache_pages();
1824         hotcpu_notifier(cpu_callback, 0);
1825         return 0;
1826 }
1827
1828 module_init(kswapd_init)
1829
1830 #ifdef CONFIG_NUMA
1831 /*
1832  * Zone reclaim mode
1833  *
1834  * If non-zero call zone_reclaim when the number of free pages falls below
1835  * the watermarks.
1836  *
1837  * In the future we may add flags to the mode. However, the page allocator
1838  * should only have to check that zone_reclaim_mode != 0 before calling
1839  * zone_reclaim().
1840  */
1841 int zone_reclaim_mode __read_mostly;
1842
1843 #define RECLAIM_OFF 0
1844 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1845 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1846 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1847 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1848
1849 /*
1850  * Mininum time between zone reclaim scans
1851  */
1852 int zone_reclaim_interval __read_mostly = 30*HZ;
1853
1854 /*
1855  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1856  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1857  * a zone.
1858  */
1859 #define ZONE_RECLAIM_PRIORITY 4
1860
1861 /*
1862  * Try to free up some pages from this zone through reclaim.
1863  */
1864 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1865 {
1866         int nr_pages;
1867         struct task_struct *p = current;
1868         struct reclaim_state reclaim_state;
1869         struct scan_control sc;
1870         cpumask_t mask;
1871         int node_id;
1872
1873         if (time_before(jiffies,
1874                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1875                         return 0;
1876
1877         if (!(gfp_mask & __GFP_WAIT) ||
1878                 zone->all_unreclaimable ||
1879                 atomic_read(&zone->reclaim_in_progress) > 0)
1880                         return 0;
1881
1882         node_id = zone->zone_pgdat->node_id;
1883         mask = node_to_cpumask(node_id);
1884         if (!cpus_empty(mask) && node_id != numa_node_id())
1885                 return 0;
1886
1887         sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
1888         sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
1889         sc.nr_scanned = 0;
1890         sc.nr_reclaimed = 0;
1891         sc.priority = ZONE_RECLAIM_PRIORITY + 1;
1892         sc.nr_mapped = read_page_state(nr_mapped);
1893         sc.gfp_mask = gfp_mask;
1894
1895         disable_swap_token();
1896
1897         nr_pages = 1 << order;
1898         if (nr_pages > SWAP_CLUSTER_MAX)
1899                 sc.swap_cluster_max = nr_pages;
1900         else
1901                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1902
1903         cond_resched();
1904         p->flags |= PF_MEMALLOC;
1905         reclaim_state.reclaimed_slab = 0;
1906         p->reclaim_state = &reclaim_state;
1907
1908         /*
1909          * Free memory by calling shrink zone with increasing priorities
1910          * until we have enough memory freed.
1911          */
1912         do {
1913                 sc.priority--;
1914                 shrink_zone(zone, &sc);
1915
1916         } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
1917
1918         if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1919                 /*
1920                  * shrink_slab does not currently allow us to determine
1921                  * how many pages were freed in the zone. So we just
1922                  * shake the slab and then go offnode for a single allocation.
1923                  *
1924                  * shrink_slab will free memory on all zones and may take
1925                  * a long time.
1926                  */
1927                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1928                 sc.nr_reclaimed = 1;    /* Avoid getting the off node timeout */
1929         }
1930
1931         p->reclaim_state = NULL;
1932         current->flags &= ~PF_MEMALLOC;
1933
1934         if (sc.nr_reclaimed == 0)
1935                 zone->last_unsuccessful_zone_reclaim = jiffies;
1936
1937         return sc.nr_reclaimed >= nr_pages;
1938 }
1939 #endif
1940