]> Pileus Git - ~andy/linux/blob - mm/vmscan.c
e37e6872509064cd332b86dff1416a5e48d7580f
[~andy/linux] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /* Scan (total_size >> priority) pages at once */
82         int priority;
83
84         /*
85          * The memory cgroup that hit its limit and as a result is the
86          * primary target of this reclaim invocation.
87          */
88         struct mem_cgroup *target_mem_cgroup;
89
90         /*
91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
92          * are scanned.
93          */
94         nodemask_t      *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)                    \
101         do {                                                            \
102                 if ((_page)->lru.prev != _base) {                       \
103                         struct page *prev;                              \
104                                                                         \
105                         prev = lru_to_page(&(_page->lru));              \
106                         prefetch(&prev->_field);                        \
107                 }                                                       \
108         } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
115         do {                                                            \
116                 if ((_page)->lru.prev != _base) {                       \
117                         struct page *prev;                              \
118                                                                         \
119                         prev = lru_to_page(&(_page->lru));              \
120                         prefetchw(&prev->_field);                       \
121                 }                                                       \
122         } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;    /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139         return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144         return true;
145 }
146 #endif
147
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150         if (!mem_cgroup_disabled())
151                 return mem_cgroup_get_lru_size(lruvec, lru);
152
153         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161         atomic_long_set(&shrinker->nr_in_batch, 0);
162         down_write(&shrinker_rwsem);
163         list_add_tail(&shrinker->list, &shrinker_list);
164         up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173         down_write(&shrinker_rwsem);
174         list_del(&shrinker->list);
175         up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180                                      struct shrink_control *sc,
181                                      unsigned long nr_to_scan)
182 {
183         sc->nr_to_scan = nr_to_scan;
184         return (*shrinker->shrink)(shrinker, sc);
185 }
186
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208                           unsigned long nr_pages_scanned,
209                           unsigned long lru_pages)
210 {
211         struct shrinker *shrinker;
212         unsigned long ret = 0;
213
214         if (nr_pages_scanned == 0)
215                 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217         if (!down_read_trylock(&shrinker_rwsem)) {
218                 /* Assume we'll be able to shrink next time */
219                 ret = 1;
220                 goto out;
221         }
222
223         list_for_each_entry(shrinker, &shrinker_list, list) {
224                 unsigned long long delta;
225                 long total_scan;
226                 long max_pass;
227                 int shrink_ret = 0;
228                 long nr;
229                 long new_nr;
230                 long batch_size = shrinker->batch ? shrinker->batch
231                                                   : SHRINK_BATCH;
232
233                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234                 if (max_pass <= 0)
235                         continue;
236
237                 /*
238                  * copy the current shrinker scan count into a local variable
239                  * and zero it so that other concurrent shrinker invocations
240                  * don't also do this scanning work.
241                  */
242                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244                 total_scan = nr;
245                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246                 delta *= max_pass;
247                 do_div(delta, lru_pages + 1);
248                 total_scan += delta;
249                 if (total_scan < 0) {
250                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
251                                "delete nr=%ld\n",
252                                shrinker->shrink, total_scan);
253                         total_scan = max_pass;
254                 }
255
256                 /*
257                  * We need to avoid excessive windup on filesystem shrinkers
258                  * due to large numbers of GFP_NOFS allocations causing the
259                  * shrinkers to return -1 all the time. This results in a large
260                  * nr being built up so when a shrink that can do some work
261                  * comes along it empties the entire cache due to nr >>>
262                  * max_pass.  This is bad for sustaining a working set in
263                  * memory.
264                  *
265                  * Hence only allow the shrinker to scan the entire cache when
266                  * a large delta change is calculated directly.
267                  */
268                 if (delta < max_pass / 4)
269                         total_scan = min(total_scan, max_pass / 2);
270
271                 /*
272                  * Avoid risking looping forever due to too large nr value:
273                  * never try to free more than twice the estimate number of
274                  * freeable entries.
275                  */
276                 if (total_scan > max_pass * 2)
277                         total_scan = max_pass * 2;
278
279                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280                                         nr_pages_scanned, lru_pages,
281                                         max_pass, delta, total_scan);
282
283                 while (total_scan >= batch_size) {
284                         int nr_before;
285
286                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
288                                                         batch_size);
289                         if (shrink_ret == -1)
290                                 break;
291                         if (shrink_ret < nr_before)
292                                 ret += nr_before - shrink_ret;
293                         count_vm_events(SLABS_SCANNED, batch_size);
294                         total_scan -= batch_size;
295
296                         cond_resched();
297                 }
298
299                 /*
300                  * move the unused scan count back into the shrinker in a
301                  * manner that handles concurrent updates. If we exhausted the
302                  * scan, there is no need to do an update.
303                  */
304                 if (total_scan > 0)
305                         new_nr = atomic_long_add_return(total_scan,
306                                         &shrinker->nr_in_batch);
307                 else
308                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311         }
312         up_read(&shrinker_rwsem);
313 out:
314         cond_resched();
315         return ret;
316 }
317
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320         /*
321          * A freeable page cache page is referenced only by the caller
322          * that isolated the page, the page cache radix tree and
323          * optional buffer heads at page->private.
324          */
325         return page_count(page) - page_has_private(page) == 2;
326 }
327
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329                               struct scan_control *sc)
330 {
331         if (current->flags & PF_SWAPWRITE)
332                 return 1;
333         if (!bdi_write_congested(bdi))
334                 return 1;
335         if (bdi == current->backing_dev_info)
336                 return 1;
337         return 0;
338 }
339
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353                                 struct page *page, int error)
354 {
355         lock_page(page);
356         if (page_mapping(page) == mapping)
357                 mapping_set_error(mapping, error);
358         unlock_page(page);
359 }
360
361 /* possible outcome of pageout() */
362 typedef enum {
363         /* failed to write page out, page is locked */
364         PAGE_KEEP,
365         /* move page to the active list, page is locked */
366         PAGE_ACTIVATE,
367         /* page has been sent to the disk successfully, page is unlocked */
368         PAGE_SUCCESS,
369         /* page is clean and locked */
370         PAGE_CLEAN,
371 } pageout_t;
372
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378                          struct scan_control *sc)
379 {
380         /*
381          * If the page is dirty, only perform writeback if that write
382          * will be non-blocking.  To prevent this allocation from being
383          * stalled by pagecache activity.  But note that there may be
384          * stalls if we need to run get_block().  We could test
385          * PagePrivate for that.
386          *
387          * If this process is currently in __generic_file_aio_write() against
388          * this page's queue, we can perform writeback even if that
389          * will block.
390          *
391          * If the page is swapcache, write it back even if that would
392          * block, for some throttling. This happens by accident, because
393          * swap_backing_dev_info is bust: it doesn't reflect the
394          * congestion state of the swapdevs.  Easy to fix, if needed.
395          */
396         if (!is_page_cache_freeable(page))
397                 return PAGE_KEEP;
398         if (!mapping) {
399                 /*
400                  * Some data journaling orphaned pages can have
401                  * page->mapping == NULL while being dirty with clean buffers.
402                  */
403                 if (page_has_private(page)) {
404                         if (try_to_free_buffers(page)) {
405                                 ClearPageDirty(page);
406                                 printk("%s: orphaned page\n", __func__);
407                                 return PAGE_CLEAN;
408                         }
409                 }
410                 return PAGE_KEEP;
411         }
412         if (mapping->a_ops->writepage == NULL)
413                 return PAGE_ACTIVATE;
414         if (!may_write_to_queue(mapping->backing_dev_info, sc))
415                 return PAGE_KEEP;
416
417         if (clear_page_dirty_for_io(page)) {
418                 int res;
419                 struct writeback_control wbc = {
420                         .sync_mode = WB_SYNC_NONE,
421                         .nr_to_write = SWAP_CLUSTER_MAX,
422                         .range_start = 0,
423                         .range_end = LLONG_MAX,
424                         .for_reclaim = 1,
425                 };
426
427                 SetPageReclaim(page);
428                 res = mapping->a_ops->writepage(page, &wbc);
429                 if (res < 0)
430                         handle_write_error(mapping, page, res);
431                 if (res == AOP_WRITEPAGE_ACTIVATE) {
432                         ClearPageReclaim(page);
433                         return PAGE_ACTIVATE;
434                 }
435
436                 if (!PageWriteback(page)) {
437                         /* synchronous write or broken a_ops? */
438                         ClearPageReclaim(page);
439                 }
440                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442                 return PAGE_SUCCESS;
443         }
444
445         return PAGE_CLEAN;
446 }
447
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454         BUG_ON(!PageLocked(page));
455         BUG_ON(mapping != page_mapping(page));
456
457         spin_lock_irq(&mapping->tree_lock);
458         /*
459          * The non racy check for a busy page.
460          *
461          * Must be careful with the order of the tests. When someone has
462          * a ref to the page, it may be possible that they dirty it then
463          * drop the reference. So if PageDirty is tested before page_count
464          * here, then the following race may occur:
465          *
466          * get_user_pages(&page);
467          * [user mapping goes away]
468          * write_to(page);
469          *                              !PageDirty(page)    [good]
470          * SetPageDirty(page);
471          * put_page(page);
472          *                              !page_count(page)   [good, discard it]
473          *
474          * [oops, our write_to data is lost]
475          *
476          * Reversing the order of the tests ensures such a situation cannot
477          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478          * load is not satisfied before that of page->_count.
479          *
480          * Note that if SetPageDirty is always performed via set_page_dirty,
481          * and thus under tree_lock, then this ordering is not required.
482          */
483         if (!page_freeze_refs(page, 2))
484                 goto cannot_free;
485         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486         if (unlikely(PageDirty(page))) {
487                 page_unfreeze_refs(page, 2);
488                 goto cannot_free;
489         }
490
491         if (PageSwapCache(page)) {
492                 swp_entry_t swap = { .val = page_private(page) };
493                 __delete_from_swap_cache(page);
494                 spin_unlock_irq(&mapping->tree_lock);
495                 swapcache_free(swap, page);
496         } else {
497                 void (*freepage)(struct page *);
498
499                 freepage = mapping->a_ops->freepage;
500
501                 __delete_from_page_cache(page);
502                 spin_unlock_irq(&mapping->tree_lock);
503                 mem_cgroup_uncharge_cache_page(page);
504
505                 if (freepage != NULL)
506                         freepage(page);
507         }
508
509         return 1;
510
511 cannot_free:
512         spin_unlock_irq(&mapping->tree_lock);
513         return 0;
514 }
515
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524         if (__remove_mapping(mapping, page)) {
525                 /*
526                  * Unfreezing the refcount with 1 rather than 2 effectively
527                  * drops the pagecache ref for us without requiring another
528                  * atomic operation.
529                  */
530                 page_unfreeze_refs(page, 1);
531                 return 1;
532         }
533         return 0;
534 }
535
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547         int lru;
548         int active = !!TestClearPageActive(page);
549         int was_unevictable = PageUnevictable(page);
550
551         VM_BUG_ON(PageLRU(page));
552
553 redo:
554         ClearPageUnevictable(page);
555
556         if (page_evictable(page, NULL)) {
557                 /*
558                  * For evictable pages, we can use the cache.
559                  * In event of a race, worst case is we end up with an
560                  * unevictable page on [in]active list.
561                  * We know how to handle that.
562                  */
563                 lru = active + page_lru_base_type(page);
564                 lru_cache_add_lru(page, lru);
565         } else {
566                 /*
567                  * Put unevictable pages directly on zone's unevictable
568                  * list.
569                  */
570                 lru = LRU_UNEVICTABLE;
571                 add_page_to_unevictable_list(page);
572                 /*
573                  * When racing with an mlock or AS_UNEVICTABLE clearing
574                  * (page is unlocked) make sure that if the other thread
575                  * does not observe our setting of PG_lru and fails
576                  * isolation/check_move_unevictable_pages,
577                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578                  * the page back to the evictable list.
579                  *
580                  * The other side is TestClearPageMlocked() or shmem_lock().
581                  */
582                 smp_mb();
583         }
584
585         /*
586          * page's status can change while we move it among lru. If an evictable
587          * page is on unevictable list, it never be freed. To avoid that,
588          * check after we added it to the list, again.
589          */
590         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591                 if (!isolate_lru_page(page)) {
592                         put_page(page);
593                         goto redo;
594                 }
595                 /* This means someone else dropped this page from LRU
596                  * So, it will be freed or putback to LRU again. There is
597                  * nothing to do here.
598                  */
599         }
600
601         if (was_unevictable && lru != LRU_UNEVICTABLE)
602                 count_vm_event(UNEVICTABLE_PGRESCUED);
603         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604                 count_vm_event(UNEVICTABLE_PGCULLED);
605
606         put_page(page);         /* drop ref from isolate */
607 }
608
609 enum page_references {
610         PAGEREF_RECLAIM,
611         PAGEREF_RECLAIM_CLEAN,
612         PAGEREF_KEEP,
613         PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617                                                   struct scan_control *sc)
618 {
619         int referenced_ptes, referenced_page;
620         unsigned long vm_flags;
621
622         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623                                           &vm_flags);
624         referenced_page = TestClearPageReferenced(page);
625
626         /*
627          * Mlock lost the isolation race with us.  Let try_to_unmap()
628          * move the page to the unevictable list.
629          */
630         if (vm_flags & VM_LOCKED)
631                 return PAGEREF_RECLAIM;
632
633         if (referenced_ptes) {
634                 if (PageSwapBacked(page))
635                         return PAGEREF_ACTIVATE;
636                 /*
637                  * All mapped pages start out with page table
638                  * references from the instantiating fault, so we need
639                  * to look twice if a mapped file page is used more
640                  * than once.
641                  *
642                  * Mark it and spare it for another trip around the
643                  * inactive list.  Another page table reference will
644                  * lead to its activation.
645                  *
646                  * Note: the mark is set for activated pages as well
647                  * so that recently deactivated but used pages are
648                  * quickly recovered.
649                  */
650                 SetPageReferenced(page);
651
652                 if (referenced_page || referenced_ptes > 1)
653                         return PAGEREF_ACTIVATE;
654
655                 /*
656                  * Activate file-backed executable pages after first usage.
657                  */
658                 if (vm_flags & VM_EXEC)
659                         return PAGEREF_ACTIVATE;
660
661                 return PAGEREF_KEEP;
662         }
663
664         /* Reclaim if clean, defer dirty pages to writeback */
665         if (referenced_page && !PageSwapBacked(page))
666                 return PAGEREF_RECLAIM_CLEAN;
667
668         return PAGEREF_RECLAIM;
669 }
670
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675                                       struct zone *zone,
676                                       struct scan_control *sc,
677                                       unsigned long *ret_nr_dirty,
678                                       unsigned long *ret_nr_writeback)
679 {
680         LIST_HEAD(ret_pages);
681         LIST_HEAD(free_pages);
682         int pgactivate = 0;
683         unsigned long nr_dirty = 0;
684         unsigned long nr_congested = 0;
685         unsigned long nr_reclaimed = 0;
686         unsigned long nr_writeback = 0;
687
688         cond_resched();
689
690         while (!list_empty(page_list)) {
691                 enum page_references references;
692                 struct address_space *mapping;
693                 struct page *page;
694                 int may_enter_fs;
695
696                 cond_resched();
697
698                 page = lru_to_page(page_list);
699                 list_del(&page->lru);
700
701                 if (!trylock_page(page))
702                         goto keep;
703
704                 VM_BUG_ON(PageActive(page));
705                 VM_BUG_ON(page_zone(page) != zone);
706
707                 sc->nr_scanned++;
708
709                 if (unlikely(!page_evictable(page, NULL)))
710                         goto cull_mlocked;
711
712                 if (!sc->may_unmap && page_mapped(page))
713                         goto keep_locked;
714
715                 /* Double the slab pressure for mapped and swapcache pages */
716                 if (page_mapped(page) || PageSwapCache(page))
717                         sc->nr_scanned++;
718
719                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721
722                 if (PageWriteback(page)) {
723                         /*
724                          * memcg doesn't have any dirty pages throttling so we
725                          * could easily OOM just because too many pages are in
726                          * writeback and there is nothing else to reclaim.
727                          *
728                          * Check __GFP_IO, certainly because a loop driver
729                          * thread might enter reclaim, and deadlock if it waits
730                          * on a page for which it is needed to do the write
731                          * (loop masks off __GFP_IO|__GFP_FS for this reason);
732                          * but more thought would probably show more reasons.
733                          *
734                          * Don't require __GFP_FS, since we're not going into
735                          * the FS, just waiting on its writeback completion.
736                          * Worryingly, ext4 gfs2 and xfs allocate pages with
737                          * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
738                          * testing may_enter_fs here is liable to OOM on them.
739                          */
740                         if (global_reclaim(sc) ||
741                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
742                                 /*
743                                  * This is slightly racy - end_page_writeback()
744                                  * might have just cleared PageReclaim, then
745                                  * setting PageReclaim here end up interpreted
746                                  * as PageReadahead - but that does not matter
747                                  * enough to care.  What we do want is for this
748                                  * page to have PageReclaim set next time memcg
749                                  * reclaim reaches the tests above, so it will
750                                  * then wait_on_page_writeback() to avoid OOM;
751                                  * and it's also appropriate in global reclaim.
752                                  */
753                                 SetPageReclaim(page);
754                                 nr_writeback++;
755                                 goto keep_locked;
756                         }
757                         wait_on_page_writeback(page);
758                 }
759
760                 references = page_check_references(page, sc);
761                 switch (references) {
762                 case PAGEREF_ACTIVATE:
763                         goto activate_locked;
764                 case PAGEREF_KEEP:
765                         goto keep_locked;
766                 case PAGEREF_RECLAIM:
767                 case PAGEREF_RECLAIM_CLEAN:
768                         ; /* try to reclaim the page below */
769                 }
770
771                 /*
772                  * Anonymous process memory has backing store?
773                  * Try to allocate it some swap space here.
774                  */
775                 if (PageAnon(page) && !PageSwapCache(page)) {
776                         if (!(sc->gfp_mask & __GFP_IO))
777                                 goto keep_locked;
778                         if (!add_to_swap(page))
779                                 goto activate_locked;
780                         may_enter_fs = 1;
781                 }
782
783                 mapping = page_mapping(page);
784
785                 /*
786                  * The page is mapped into the page tables of one or more
787                  * processes. Try to unmap it here.
788                  */
789                 if (page_mapped(page) && mapping) {
790                         switch (try_to_unmap(page, TTU_UNMAP)) {
791                         case SWAP_FAIL:
792                                 goto activate_locked;
793                         case SWAP_AGAIN:
794                                 goto keep_locked;
795                         case SWAP_MLOCK:
796                                 goto cull_mlocked;
797                         case SWAP_SUCCESS:
798                                 ; /* try to free the page below */
799                         }
800                 }
801
802                 if (PageDirty(page)) {
803                         nr_dirty++;
804
805                         /*
806                          * Only kswapd can writeback filesystem pages to
807                          * avoid risk of stack overflow but do not writeback
808                          * unless under significant pressure.
809                          */
810                         if (page_is_file_cache(page) &&
811                                         (!current_is_kswapd() ||
812                                          sc->priority >= DEF_PRIORITY - 2)) {
813                                 /*
814                                  * Immediately reclaim when written back.
815                                  * Similar in principal to deactivate_page()
816                                  * except we already have the page isolated
817                                  * and know it's dirty
818                                  */
819                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
820                                 SetPageReclaim(page);
821
822                                 goto keep_locked;
823                         }
824
825                         if (references == PAGEREF_RECLAIM_CLEAN)
826                                 goto keep_locked;
827                         if (!may_enter_fs)
828                                 goto keep_locked;
829                         if (!sc->may_writepage)
830                                 goto keep_locked;
831
832                         /* Page is dirty, try to write it out here */
833                         switch (pageout(page, mapping, sc)) {
834                         case PAGE_KEEP:
835                                 nr_congested++;
836                                 goto keep_locked;
837                         case PAGE_ACTIVATE:
838                                 goto activate_locked;
839                         case PAGE_SUCCESS:
840                                 if (PageWriteback(page))
841                                         goto keep;
842                                 if (PageDirty(page))
843                                         goto keep;
844
845                                 /*
846                                  * A synchronous write - probably a ramdisk.  Go
847                                  * ahead and try to reclaim the page.
848                                  */
849                                 if (!trylock_page(page))
850                                         goto keep;
851                                 if (PageDirty(page) || PageWriteback(page))
852                                         goto keep_locked;
853                                 mapping = page_mapping(page);
854                         case PAGE_CLEAN:
855                                 ; /* try to free the page below */
856                         }
857                 }
858
859                 /*
860                  * If the page has buffers, try to free the buffer mappings
861                  * associated with this page. If we succeed we try to free
862                  * the page as well.
863                  *
864                  * We do this even if the page is PageDirty().
865                  * try_to_release_page() does not perform I/O, but it is
866                  * possible for a page to have PageDirty set, but it is actually
867                  * clean (all its buffers are clean).  This happens if the
868                  * buffers were written out directly, with submit_bh(). ext3
869                  * will do this, as well as the blockdev mapping.
870                  * try_to_release_page() will discover that cleanness and will
871                  * drop the buffers and mark the page clean - it can be freed.
872                  *
873                  * Rarely, pages can have buffers and no ->mapping.  These are
874                  * the pages which were not successfully invalidated in
875                  * truncate_complete_page().  We try to drop those buffers here
876                  * and if that worked, and the page is no longer mapped into
877                  * process address space (page_count == 1) it can be freed.
878                  * Otherwise, leave the page on the LRU so it is swappable.
879                  */
880                 if (page_has_private(page)) {
881                         if (!try_to_release_page(page, sc->gfp_mask))
882                                 goto activate_locked;
883                         if (!mapping && page_count(page) == 1) {
884                                 unlock_page(page);
885                                 if (put_page_testzero(page))
886                                         goto free_it;
887                                 else {
888                                         /*
889                                          * rare race with speculative reference.
890                                          * the speculative reference will free
891                                          * this page shortly, so we may
892                                          * increment nr_reclaimed here (and
893                                          * leave it off the LRU).
894                                          */
895                                         nr_reclaimed++;
896                                         continue;
897                                 }
898                         }
899                 }
900
901                 if (!mapping || !__remove_mapping(mapping, page))
902                         goto keep_locked;
903
904                 /*
905                  * At this point, we have no other references and there is
906                  * no way to pick any more up (removed from LRU, removed
907                  * from pagecache). Can use non-atomic bitops now (and
908                  * we obviously don't have to worry about waking up a process
909                  * waiting on the page lock, because there are no references.
910                  */
911                 __clear_page_locked(page);
912 free_it:
913                 nr_reclaimed++;
914
915                 /*
916                  * Is there need to periodically free_page_list? It would
917                  * appear not as the counts should be low
918                  */
919                 list_add(&page->lru, &free_pages);
920                 continue;
921
922 cull_mlocked:
923                 if (PageSwapCache(page))
924                         try_to_free_swap(page);
925                 unlock_page(page);
926                 putback_lru_page(page);
927                 continue;
928
929 activate_locked:
930                 /* Not a candidate for swapping, so reclaim swap space. */
931                 if (PageSwapCache(page) && vm_swap_full())
932                         try_to_free_swap(page);
933                 VM_BUG_ON(PageActive(page));
934                 SetPageActive(page);
935                 pgactivate++;
936 keep_locked:
937                 unlock_page(page);
938 keep:
939                 list_add(&page->lru, &ret_pages);
940                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
941         }
942
943         /*
944          * Tag a zone as congested if all the dirty pages encountered were
945          * backed by a congested BDI. In this case, reclaimers should just
946          * back off and wait for congestion to clear because further reclaim
947          * will encounter the same problem
948          */
949         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
950                 zone_set_flag(zone, ZONE_CONGESTED);
951
952         free_hot_cold_page_list(&free_pages, 1);
953
954         list_splice(&ret_pages, page_list);
955         count_vm_events(PGACTIVATE, pgactivate);
956         *ret_nr_dirty += nr_dirty;
957         *ret_nr_writeback += nr_writeback;
958         return nr_reclaimed;
959 }
960
961 /*
962  * Attempt to remove the specified page from its LRU.  Only take this page
963  * if it is of the appropriate PageActive status.  Pages which are being
964  * freed elsewhere are also ignored.
965  *
966  * page:        page to consider
967  * mode:        one of the LRU isolation modes defined above
968  *
969  * returns 0 on success, -ve errno on failure.
970  */
971 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
972 {
973         int ret = -EINVAL;
974
975         /* Only take pages on the LRU. */
976         if (!PageLRU(page))
977                 return ret;
978
979         /* Do not give back unevictable pages for compaction */
980         if (PageUnevictable(page))
981                 return ret;
982
983         ret = -EBUSY;
984
985         /*
986          * To minimise LRU disruption, the caller can indicate that it only
987          * wants to isolate pages it will be able to operate on without
988          * blocking - clean pages for the most part.
989          *
990          * ISOLATE_CLEAN means that only clean pages should be isolated. This
991          * is used by reclaim when it is cannot write to backing storage
992          *
993          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
994          * that it is possible to migrate without blocking
995          */
996         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
997                 /* All the caller can do on PageWriteback is block */
998                 if (PageWriteback(page))
999                         return ret;
1000
1001                 if (PageDirty(page)) {
1002                         struct address_space *mapping;
1003
1004                         /* ISOLATE_CLEAN means only clean pages */
1005                         if (mode & ISOLATE_CLEAN)
1006                                 return ret;
1007
1008                         /*
1009                          * Only pages without mappings or that have a
1010                          * ->migratepage callback are possible to migrate
1011                          * without blocking
1012                          */
1013                         mapping = page_mapping(page);
1014                         if (mapping && !mapping->a_ops->migratepage)
1015                                 return ret;
1016                 }
1017         }
1018
1019         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1020                 return ret;
1021
1022         if (likely(get_page_unless_zero(page))) {
1023                 /*
1024                  * Be careful not to clear PageLRU until after we're
1025                  * sure the page is not being freed elsewhere -- the
1026                  * page release code relies on it.
1027                  */
1028                 ClearPageLRU(page);
1029                 ret = 0;
1030         }
1031
1032         return ret;
1033 }
1034
1035 /*
1036  * zone->lru_lock is heavily contended.  Some of the functions that
1037  * shrink the lists perform better by taking out a batch of pages
1038  * and working on them outside the LRU lock.
1039  *
1040  * For pagecache intensive workloads, this function is the hottest
1041  * spot in the kernel (apart from copy_*_user functions).
1042  *
1043  * Appropriate locks must be held before calling this function.
1044  *
1045  * @nr_to_scan: The number of pages to look through on the list.
1046  * @lruvec:     The LRU vector to pull pages from.
1047  * @dst:        The temp list to put pages on to.
1048  * @nr_scanned: The number of pages that were scanned.
1049  * @sc:         The scan_control struct for this reclaim session
1050  * @mode:       One of the LRU isolation modes
1051  * @lru:        LRU list id for isolating
1052  *
1053  * returns how many pages were moved onto *@dst.
1054  */
1055 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056                 struct lruvec *lruvec, struct list_head *dst,
1057                 unsigned long *nr_scanned, struct scan_control *sc,
1058                 isolate_mode_t mode, enum lru_list lru)
1059 {
1060         struct list_head *src = &lruvec->lists[lru];
1061         unsigned long nr_taken = 0;
1062         unsigned long scan;
1063
1064         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1065                 struct page *page;
1066                 int nr_pages;
1067
1068                 page = lru_to_page(src);
1069                 prefetchw_prev_lru_page(page, src, flags);
1070
1071                 VM_BUG_ON(!PageLRU(page));
1072
1073                 switch (__isolate_lru_page(page, mode)) {
1074                 case 0:
1075                         nr_pages = hpage_nr_pages(page);
1076                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1077                         list_move(&page->lru, dst);
1078                         nr_taken += nr_pages;
1079                         break;
1080
1081                 case -EBUSY:
1082                         /* else it is being freed elsewhere */
1083                         list_move(&page->lru, src);
1084                         continue;
1085
1086                 default:
1087                         BUG();
1088                 }
1089         }
1090
1091         *nr_scanned = scan;
1092         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1093                                     nr_taken, mode, is_file_lru(lru));
1094         return nr_taken;
1095 }
1096
1097 /**
1098  * isolate_lru_page - tries to isolate a page from its LRU list
1099  * @page: page to isolate from its LRU list
1100  *
1101  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1102  * vmstat statistic corresponding to whatever LRU list the page was on.
1103  *
1104  * Returns 0 if the page was removed from an LRU list.
1105  * Returns -EBUSY if the page was not on an LRU list.
1106  *
1107  * The returned page will have PageLRU() cleared.  If it was found on
1108  * the active list, it will have PageActive set.  If it was found on
1109  * the unevictable list, it will have the PageUnevictable bit set. That flag
1110  * may need to be cleared by the caller before letting the page go.
1111  *
1112  * The vmstat statistic corresponding to the list on which the page was
1113  * found will be decremented.
1114  *
1115  * Restrictions:
1116  * (1) Must be called with an elevated refcount on the page. This is a
1117  *     fundamentnal difference from isolate_lru_pages (which is called
1118  *     without a stable reference).
1119  * (2) the lru_lock must not be held.
1120  * (3) interrupts must be enabled.
1121  */
1122 int isolate_lru_page(struct page *page)
1123 {
1124         int ret = -EBUSY;
1125
1126         VM_BUG_ON(!page_count(page));
1127
1128         if (PageLRU(page)) {
1129                 struct zone *zone = page_zone(page);
1130                 struct lruvec *lruvec;
1131
1132                 spin_lock_irq(&zone->lru_lock);
1133                 lruvec = mem_cgroup_page_lruvec(page, zone);
1134                 if (PageLRU(page)) {
1135                         int lru = page_lru(page);
1136                         get_page(page);
1137                         ClearPageLRU(page);
1138                         del_page_from_lru_list(page, lruvec, lru);
1139                         ret = 0;
1140                 }
1141                 spin_unlock_irq(&zone->lru_lock);
1142         }
1143         return ret;
1144 }
1145
1146 /*
1147  * Are there way too many processes in the direct reclaim path already?
1148  */
1149 static int too_many_isolated(struct zone *zone, int file,
1150                 struct scan_control *sc)
1151 {
1152         unsigned long inactive, isolated;
1153
1154         if (current_is_kswapd())
1155                 return 0;
1156
1157         if (!global_reclaim(sc))
1158                 return 0;
1159
1160         if (file) {
1161                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1162                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1163         } else {
1164                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1165                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1166         }
1167
1168         return isolated > inactive;
1169 }
1170
1171 static noinline_for_stack void
1172 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1173 {
1174         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1175         struct zone *zone = lruvec_zone(lruvec);
1176         LIST_HEAD(pages_to_free);
1177
1178         /*
1179          * Put back any unfreeable pages.
1180          */
1181         while (!list_empty(page_list)) {
1182                 struct page *page = lru_to_page(page_list);
1183                 int lru;
1184
1185                 VM_BUG_ON(PageLRU(page));
1186                 list_del(&page->lru);
1187                 if (unlikely(!page_evictable(page, NULL))) {
1188                         spin_unlock_irq(&zone->lru_lock);
1189                         putback_lru_page(page);
1190                         spin_lock_irq(&zone->lru_lock);
1191                         continue;
1192                 }
1193
1194                 lruvec = mem_cgroup_page_lruvec(page, zone);
1195
1196                 SetPageLRU(page);
1197                 lru = page_lru(page);
1198                 add_page_to_lru_list(page, lruvec, lru);
1199
1200                 if (is_active_lru(lru)) {
1201                         int file = is_file_lru(lru);
1202                         int numpages = hpage_nr_pages(page);
1203                         reclaim_stat->recent_rotated[file] += numpages;
1204                 }
1205                 if (put_page_testzero(page)) {
1206                         __ClearPageLRU(page);
1207                         __ClearPageActive(page);
1208                         del_page_from_lru_list(page, lruvec, lru);
1209
1210                         if (unlikely(PageCompound(page))) {
1211                                 spin_unlock_irq(&zone->lru_lock);
1212                                 (*get_compound_page_dtor(page))(page);
1213                                 spin_lock_irq(&zone->lru_lock);
1214                         } else
1215                                 list_add(&page->lru, &pages_to_free);
1216                 }
1217         }
1218
1219         /*
1220          * To save our caller's stack, now use input list for pages to free.
1221          */
1222         list_splice(&pages_to_free, page_list);
1223 }
1224
1225 /*
1226  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1227  * of reclaimed pages
1228  */
1229 static noinline_for_stack unsigned long
1230 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1231                      struct scan_control *sc, enum lru_list lru)
1232 {
1233         LIST_HEAD(page_list);
1234         unsigned long nr_scanned;
1235         unsigned long nr_reclaimed = 0;
1236         unsigned long nr_taken;
1237         unsigned long nr_dirty = 0;
1238         unsigned long nr_writeback = 0;
1239         isolate_mode_t isolate_mode = 0;
1240         int file = is_file_lru(lru);
1241         struct zone *zone = lruvec_zone(lruvec);
1242         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1243
1244         while (unlikely(too_many_isolated(zone, file, sc))) {
1245                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1246
1247                 /* We are about to die and free our memory. Return now. */
1248                 if (fatal_signal_pending(current))
1249                         return SWAP_CLUSTER_MAX;
1250         }
1251
1252         lru_add_drain();
1253
1254         if (!sc->may_unmap)
1255                 isolate_mode |= ISOLATE_UNMAPPED;
1256         if (!sc->may_writepage)
1257                 isolate_mode |= ISOLATE_CLEAN;
1258
1259         spin_lock_irq(&zone->lru_lock);
1260
1261         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1262                                      &nr_scanned, sc, isolate_mode, lru);
1263
1264         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1265         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1266
1267         if (global_reclaim(sc)) {
1268                 zone->pages_scanned += nr_scanned;
1269                 if (current_is_kswapd())
1270                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1271                 else
1272                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1273         }
1274         spin_unlock_irq(&zone->lru_lock);
1275
1276         if (nr_taken == 0)
1277                 return 0;
1278
1279         nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1280                                                 &nr_dirty, &nr_writeback);
1281
1282         spin_lock_irq(&zone->lru_lock);
1283
1284         reclaim_stat->recent_scanned[file] += nr_taken;
1285
1286         if (global_reclaim(sc)) {
1287                 if (current_is_kswapd())
1288                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1289                                                nr_reclaimed);
1290                 else
1291                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1292                                                nr_reclaimed);
1293         }
1294
1295         putback_inactive_pages(lruvec, &page_list);
1296
1297         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1298
1299         spin_unlock_irq(&zone->lru_lock);
1300
1301         free_hot_cold_page_list(&page_list, 1);
1302
1303         /*
1304          * If reclaim is isolating dirty pages under writeback, it implies
1305          * that the long-lived page allocation rate is exceeding the page
1306          * laundering rate. Either the global limits are not being effective
1307          * at throttling processes due to the page distribution throughout
1308          * zones or there is heavy usage of a slow backing device. The
1309          * only option is to throttle from reclaim context which is not ideal
1310          * as there is no guarantee the dirtying process is throttled in the
1311          * same way balance_dirty_pages() manages.
1312          *
1313          * This scales the number of dirty pages that must be under writeback
1314          * before throttling depending on priority. It is a simple backoff
1315          * function that has the most effect in the range DEF_PRIORITY to
1316          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1317          * in trouble and reclaim is considered to be in trouble.
1318          *
1319          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1320          * DEF_PRIORITY-1  50% must be PageWriteback
1321          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1322          * ...
1323          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1324          *                     isolated page is PageWriteback
1325          */
1326         if (nr_writeback && nr_writeback >=
1327                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1328                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1329
1330         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1331                 zone_idx(zone),
1332                 nr_scanned, nr_reclaimed,
1333                 sc->priority,
1334                 trace_shrink_flags(file));
1335         return nr_reclaimed;
1336 }
1337
1338 /*
1339  * This moves pages from the active list to the inactive list.
1340  *
1341  * We move them the other way if the page is referenced by one or more
1342  * processes, from rmap.
1343  *
1344  * If the pages are mostly unmapped, the processing is fast and it is
1345  * appropriate to hold zone->lru_lock across the whole operation.  But if
1346  * the pages are mapped, the processing is slow (page_referenced()) so we
1347  * should drop zone->lru_lock around each page.  It's impossible to balance
1348  * this, so instead we remove the pages from the LRU while processing them.
1349  * It is safe to rely on PG_active against the non-LRU pages in here because
1350  * nobody will play with that bit on a non-LRU page.
1351  *
1352  * The downside is that we have to touch page->_count against each page.
1353  * But we had to alter page->flags anyway.
1354  */
1355
1356 static void move_active_pages_to_lru(struct lruvec *lruvec,
1357                                      struct list_head *list,
1358                                      struct list_head *pages_to_free,
1359                                      enum lru_list lru)
1360 {
1361         struct zone *zone = lruvec_zone(lruvec);
1362         unsigned long pgmoved = 0;
1363         struct page *page;
1364         int nr_pages;
1365
1366         while (!list_empty(list)) {
1367                 page = lru_to_page(list);
1368                 lruvec = mem_cgroup_page_lruvec(page, zone);
1369
1370                 VM_BUG_ON(PageLRU(page));
1371                 SetPageLRU(page);
1372
1373                 nr_pages = hpage_nr_pages(page);
1374                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1375                 list_move(&page->lru, &lruvec->lists[lru]);
1376                 pgmoved += nr_pages;
1377
1378                 if (put_page_testzero(page)) {
1379                         __ClearPageLRU(page);
1380                         __ClearPageActive(page);
1381                         del_page_from_lru_list(page, lruvec, lru);
1382
1383                         if (unlikely(PageCompound(page))) {
1384                                 spin_unlock_irq(&zone->lru_lock);
1385                                 (*get_compound_page_dtor(page))(page);
1386                                 spin_lock_irq(&zone->lru_lock);
1387                         } else
1388                                 list_add(&page->lru, pages_to_free);
1389                 }
1390         }
1391         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1392         if (!is_active_lru(lru))
1393                 __count_vm_events(PGDEACTIVATE, pgmoved);
1394 }
1395
1396 static void shrink_active_list(unsigned long nr_to_scan,
1397                                struct lruvec *lruvec,
1398                                struct scan_control *sc,
1399                                enum lru_list lru)
1400 {
1401         unsigned long nr_taken;
1402         unsigned long nr_scanned;
1403         unsigned long vm_flags;
1404         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1405         LIST_HEAD(l_active);
1406         LIST_HEAD(l_inactive);
1407         struct page *page;
1408         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1409         unsigned long nr_rotated = 0;
1410         isolate_mode_t isolate_mode = 0;
1411         int file = is_file_lru(lru);
1412         struct zone *zone = lruvec_zone(lruvec);
1413
1414         lru_add_drain();
1415
1416         if (!sc->may_unmap)
1417                 isolate_mode |= ISOLATE_UNMAPPED;
1418         if (!sc->may_writepage)
1419                 isolate_mode |= ISOLATE_CLEAN;
1420
1421         spin_lock_irq(&zone->lru_lock);
1422
1423         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1424                                      &nr_scanned, sc, isolate_mode, lru);
1425         if (global_reclaim(sc))
1426                 zone->pages_scanned += nr_scanned;
1427
1428         reclaim_stat->recent_scanned[file] += nr_taken;
1429
1430         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1431         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1432         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1433         spin_unlock_irq(&zone->lru_lock);
1434
1435         while (!list_empty(&l_hold)) {
1436                 cond_resched();
1437                 page = lru_to_page(&l_hold);
1438                 list_del(&page->lru);
1439
1440                 if (unlikely(!page_evictable(page, NULL))) {
1441                         putback_lru_page(page);
1442                         continue;
1443                 }
1444
1445                 if (unlikely(buffer_heads_over_limit)) {
1446                         if (page_has_private(page) && trylock_page(page)) {
1447                                 if (page_has_private(page))
1448                                         try_to_release_page(page, 0);
1449                                 unlock_page(page);
1450                         }
1451                 }
1452
1453                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1454                                     &vm_flags)) {
1455                         nr_rotated += hpage_nr_pages(page);
1456                         /*
1457                          * Identify referenced, file-backed active pages and
1458                          * give them one more trip around the active list. So
1459                          * that executable code get better chances to stay in
1460                          * memory under moderate memory pressure.  Anon pages
1461                          * are not likely to be evicted by use-once streaming
1462                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1463                          * so we ignore them here.
1464                          */
1465                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1466                                 list_add(&page->lru, &l_active);
1467                                 continue;
1468                         }
1469                 }
1470
1471                 ClearPageActive(page);  /* we are de-activating */
1472                 list_add(&page->lru, &l_inactive);
1473         }
1474
1475         /*
1476          * Move pages back to the lru list.
1477          */
1478         spin_lock_irq(&zone->lru_lock);
1479         /*
1480          * Count referenced pages from currently used mappings as rotated,
1481          * even though only some of them are actually re-activated.  This
1482          * helps balance scan pressure between file and anonymous pages in
1483          * get_scan_ratio.
1484          */
1485         reclaim_stat->recent_rotated[file] += nr_rotated;
1486
1487         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1488         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1489         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1490         spin_unlock_irq(&zone->lru_lock);
1491
1492         free_hot_cold_page_list(&l_hold, 1);
1493 }
1494
1495 #ifdef CONFIG_SWAP
1496 static int inactive_anon_is_low_global(struct zone *zone)
1497 {
1498         unsigned long active, inactive;
1499
1500         active = zone_page_state(zone, NR_ACTIVE_ANON);
1501         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1502
1503         if (inactive * zone->inactive_ratio < active)
1504                 return 1;
1505
1506         return 0;
1507 }
1508
1509 /**
1510  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1511  * @lruvec: LRU vector to check
1512  *
1513  * Returns true if the zone does not have enough inactive anon pages,
1514  * meaning some active anon pages need to be deactivated.
1515  */
1516 static int inactive_anon_is_low(struct lruvec *lruvec)
1517 {
1518         /*
1519          * If we don't have swap space, anonymous page deactivation
1520          * is pointless.
1521          */
1522         if (!total_swap_pages)
1523                 return 0;
1524
1525         if (!mem_cgroup_disabled())
1526                 return mem_cgroup_inactive_anon_is_low(lruvec);
1527
1528         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1529 }
1530 #else
1531 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1532 {
1533         return 0;
1534 }
1535 #endif
1536
1537 static int inactive_file_is_low_global(struct zone *zone)
1538 {
1539         unsigned long active, inactive;
1540
1541         active = zone_page_state(zone, NR_ACTIVE_FILE);
1542         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1543
1544         return (active > inactive);
1545 }
1546
1547 /**
1548  * inactive_file_is_low - check if file pages need to be deactivated
1549  * @lruvec: LRU vector to check
1550  *
1551  * When the system is doing streaming IO, memory pressure here
1552  * ensures that active file pages get deactivated, until more
1553  * than half of the file pages are on the inactive list.
1554  *
1555  * Once we get to that situation, protect the system's working
1556  * set from being evicted by disabling active file page aging.
1557  *
1558  * This uses a different ratio than the anonymous pages, because
1559  * the page cache uses a use-once replacement algorithm.
1560  */
1561 static int inactive_file_is_low(struct lruvec *lruvec)
1562 {
1563         if (!mem_cgroup_disabled())
1564                 return mem_cgroup_inactive_file_is_low(lruvec);
1565
1566         return inactive_file_is_low_global(lruvec_zone(lruvec));
1567 }
1568
1569 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1570 {
1571         if (is_file_lru(lru))
1572                 return inactive_file_is_low(lruvec);
1573         else
1574                 return inactive_anon_is_low(lruvec);
1575 }
1576
1577 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1578                                  struct lruvec *lruvec, struct scan_control *sc)
1579 {
1580         if (is_active_lru(lru)) {
1581                 if (inactive_list_is_low(lruvec, lru))
1582                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1583                 return 0;
1584         }
1585
1586         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1587 }
1588
1589 static int vmscan_swappiness(struct scan_control *sc)
1590 {
1591         if (global_reclaim(sc))
1592                 return vm_swappiness;
1593         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1594 }
1595
1596 /*
1597  * Determine how aggressively the anon and file LRU lists should be
1598  * scanned.  The relative value of each set of LRU lists is determined
1599  * by looking at the fraction of the pages scanned we did rotate back
1600  * onto the active list instead of evict.
1601  *
1602  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1603  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1604  */
1605 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1606                            unsigned long *nr)
1607 {
1608         unsigned long anon, file, free;
1609         unsigned long anon_prio, file_prio;
1610         unsigned long ap, fp;
1611         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1612         u64 fraction[2], denominator;
1613         enum lru_list lru;
1614         int noswap = 0;
1615         bool force_scan = false;
1616         struct zone *zone = lruvec_zone(lruvec);
1617
1618         /*
1619          * If the zone or memcg is small, nr[l] can be 0.  This
1620          * results in no scanning on this priority and a potential
1621          * priority drop.  Global direct reclaim can go to the next
1622          * zone and tends to have no problems. Global kswapd is for
1623          * zone balancing and it needs to scan a minimum amount. When
1624          * reclaiming for a memcg, a priority drop can cause high
1625          * latencies, so it's better to scan a minimum amount there as
1626          * well.
1627          */
1628         if (current_is_kswapd() && zone->all_unreclaimable)
1629                 force_scan = true;
1630         if (!global_reclaim(sc))
1631                 force_scan = true;
1632
1633         /* If we have no swap space, do not bother scanning anon pages. */
1634         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1635                 noswap = 1;
1636                 fraction[0] = 0;
1637                 fraction[1] = 1;
1638                 denominator = 1;
1639                 goto out;
1640         }
1641
1642         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1643                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1644         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1645                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1646
1647         if (global_reclaim(sc)) {
1648                 free  = zone_page_state(zone, NR_FREE_PAGES);
1649                 /* If we have very few page cache pages,
1650                    force-scan anon pages. */
1651                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1652                         fraction[0] = 1;
1653                         fraction[1] = 0;
1654                         denominator = 1;
1655                         goto out;
1656                 }
1657         }
1658
1659         /*
1660          * With swappiness at 100, anonymous and file have the same priority.
1661          * This scanning priority is essentially the inverse of IO cost.
1662          */
1663         anon_prio = vmscan_swappiness(sc);
1664         file_prio = 200 - anon_prio;
1665
1666         /*
1667          * OK, so we have swap space and a fair amount of page cache
1668          * pages.  We use the recently rotated / recently scanned
1669          * ratios to determine how valuable each cache is.
1670          *
1671          * Because workloads change over time (and to avoid overflow)
1672          * we keep these statistics as a floating average, which ends
1673          * up weighing recent references more than old ones.
1674          *
1675          * anon in [0], file in [1]
1676          */
1677         spin_lock_irq(&zone->lru_lock);
1678         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1679                 reclaim_stat->recent_scanned[0] /= 2;
1680                 reclaim_stat->recent_rotated[0] /= 2;
1681         }
1682
1683         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1684                 reclaim_stat->recent_scanned[1] /= 2;
1685                 reclaim_stat->recent_rotated[1] /= 2;
1686         }
1687
1688         /*
1689          * The amount of pressure on anon vs file pages is inversely
1690          * proportional to the fraction of recently scanned pages on
1691          * each list that were recently referenced and in active use.
1692          */
1693         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1694         ap /= reclaim_stat->recent_rotated[0] + 1;
1695
1696         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1697         fp /= reclaim_stat->recent_rotated[1] + 1;
1698         spin_unlock_irq(&zone->lru_lock);
1699
1700         fraction[0] = ap;
1701         fraction[1] = fp;
1702         denominator = ap + fp + 1;
1703 out:
1704         for_each_evictable_lru(lru) {
1705                 int file = is_file_lru(lru);
1706                 unsigned long scan;
1707
1708                 scan = get_lru_size(lruvec, lru);
1709                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1710                         scan >>= sc->priority;
1711                         if (!scan && force_scan)
1712                                 scan = SWAP_CLUSTER_MAX;
1713                         scan = div64_u64(scan * fraction[file], denominator);
1714                 }
1715                 nr[lru] = scan;
1716         }
1717 }
1718
1719 /* Use reclaim/compaction for costly allocs or under memory pressure */
1720 static bool in_reclaim_compaction(struct scan_control *sc)
1721 {
1722         if (COMPACTION_BUILD && sc->order &&
1723                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1724                          sc->priority < DEF_PRIORITY - 2))
1725                 return true;
1726
1727         return false;
1728 }
1729
1730 /*
1731  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1732  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1733  * true if more pages should be reclaimed such that when the page allocator
1734  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1735  * It will give up earlier than that if there is difficulty reclaiming pages.
1736  */
1737 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1738                                         unsigned long nr_reclaimed,
1739                                         unsigned long nr_scanned,
1740                                         struct scan_control *sc)
1741 {
1742         unsigned long pages_for_compaction;
1743         unsigned long inactive_lru_pages;
1744
1745         /* If not in reclaim/compaction mode, stop */
1746         if (!in_reclaim_compaction(sc))
1747                 return false;
1748
1749         /* Consider stopping depending on scan and reclaim activity */
1750         if (sc->gfp_mask & __GFP_REPEAT) {
1751                 /*
1752                  * For __GFP_REPEAT allocations, stop reclaiming if the
1753                  * full LRU list has been scanned and we are still failing
1754                  * to reclaim pages. This full LRU scan is potentially
1755                  * expensive but a __GFP_REPEAT caller really wants to succeed
1756                  */
1757                 if (!nr_reclaimed && !nr_scanned)
1758                         return false;
1759         } else {
1760                 /*
1761                  * For non-__GFP_REPEAT allocations which can presumably
1762                  * fail without consequence, stop if we failed to reclaim
1763                  * any pages from the last SWAP_CLUSTER_MAX number of
1764                  * pages that were scanned. This will return to the
1765                  * caller faster at the risk reclaim/compaction and
1766                  * the resulting allocation attempt fails
1767                  */
1768                 if (!nr_reclaimed)
1769                         return false;
1770         }
1771
1772         /*
1773          * If we have not reclaimed enough pages for compaction and the
1774          * inactive lists are large enough, continue reclaiming
1775          */
1776         pages_for_compaction = (2UL << sc->order);
1777         inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1778         if (nr_swap_pages > 0)
1779                 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1780         if (sc->nr_reclaimed < pages_for_compaction &&
1781                         inactive_lru_pages > pages_for_compaction)
1782                 return true;
1783
1784         /* If compaction would go ahead or the allocation would succeed, stop */
1785         switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1786         case COMPACT_PARTIAL:
1787         case COMPACT_CONTINUE:
1788                 return false;
1789         default:
1790                 return true;
1791         }
1792 }
1793
1794 /*
1795  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1796  */
1797 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1798 {
1799         unsigned long nr[NR_LRU_LISTS];
1800         unsigned long nr_to_scan;
1801         enum lru_list lru;
1802         unsigned long nr_reclaimed, nr_scanned;
1803         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1804         struct blk_plug plug;
1805
1806 restart:
1807         nr_reclaimed = 0;
1808         nr_scanned = sc->nr_scanned;
1809         get_scan_count(lruvec, sc, nr);
1810
1811         blk_start_plug(&plug);
1812         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1813                                         nr[LRU_INACTIVE_FILE]) {
1814                 for_each_evictable_lru(lru) {
1815                         if (nr[lru]) {
1816                                 nr_to_scan = min_t(unsigned long,
1817                                                    nr[lru], SWAP_CLUSTER_MAX);
1818                                 nr[lru] -= nr_to_scan;
1819
1820                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1821                                                             lruvec, sc);
1822                         }
1823                 }
1824                 /*
1825                  * On large memory systems, scan >> priority can become
1826                  * really large. This is fine for the starting priority;
1827                  * we want to put equal scanning pressure on each zone.
1828                  * However, if the VM has a harder time of freeing pages,
1829                  * with multiple processes reclaiming pages, the total
1830                  * freeing target can get unreasonably large.
1831                  */
1832                 if (nr_reclaimed >= nr_to_reclaim &&
1833                     sc->priority < DEF_PRIORITY)
1834                         break;
1835         }
1836         blk_finish_plug(&plug);
1837         sc->nr_reclaimed += nr_reclaimed;
1838
1839         /*
1840          * Even if we did not try to evict anon pages at all, we want to
1841          * rebalance the anon lru active/inactive ratio.
1842          */
1843         if (inactive_anon_is_low(lruvec))
1844                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1845                                    sc, LRU_ACTIVE_ANON);
1846
1847         /* reclaim/compaction might need reclaim to continue */
1848         if (should_continue_reclaim(lruvec, nr_reclaimed,
1849                                     sc->nr_scanned - nr_scanned, sc))
1850                 goto restart;
1851
1852         throttle_vm_writeout(sc->gfp_mask);
1853 }
1854
1855 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1856 {
1857         struct mem_cgroup *root = sc->target_mem_cgroup;
1858         struct mem_cgroup_reclaim_cookie reclaim = {
1859                 .zone = zone,
1860                 .priority = sc->priority,
1861         };
1862         struct mem_cgroup *memcg;
1863
1864         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1865         do {
1866                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1867
1868                 shrink_lruvec(lruvec, sc);
1869
1870                 /*
1871                  * Limit reclaim has historically picked one memcg and
1872                  * scanned it with decreasing priority levels until
1873                  * nr_to_reclaim had been reclaimed.  This priority
1874                  * cycle is thus over after a single memcg.
1875                  *
1876                  * Direct reclaim and kswapd, on the other hand, have
1877                  * to scan all memory cgroups to fulfill the overall
1878                  * scan target for the zone.
1879                  */
1880                 if (!global_reclaim(sc)) {
1881                         mem_cgroup_iter_break(root, memcg);
1882                         break;
1883                 }
1884                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1885         } while (memcg);
1886 }
1887
1888 /* Returns true if compaction should go ahead for a high-order request */
1889 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1890 {
1891         unsigned long balance_gap, watermark;
1892         bool watermark_ok;
1893
1894         /* Do not consider compaction for orders reclaim is meant to satisfy */
1895         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1896                 return false;
1897
1898         /*
1899          * Compaction takes time to run and there are potentially other
1900          * callers using the pages just freed. Continue reclaiming until
1901          * there is a buffer of free pages available to give compaction
1902          * a reasonable chance of completing and allocating the page
1903          */
1904         balance_gap = min(low_wmark_pages(zone),
1905                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1906                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1907         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1908         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1909
1910         /*
1911          * If compaction is deferred, reclaim up to a point where
1912          * compaction will have a chance of success when re-enabled
1913          */
1914         if (compaction_deferred(zone, sc->order))
1915                 return watermark_ok;
1916
1917         /* If compaction is not ready to start, keep reclaiming */
1918         if (!compaction_suitable(zone, sc->order))
1919                 return false;
1920
1921         return watermark_ok;
1922 }
1923
1924 /*
1925  * This is the direct reclaim path, for page-allocating processes.  We only
1926  * try to reclaim pages from zones which will satisfy the caller's allocation
1927  * request.
1928  *
1929  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1930  * Because:
1931  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1932  *    allocation or
1933  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1934  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1935  *    zone defense algorithm.
1936  *
1937  * If a zone is deemed to be full of pinned pages then just give it a light
1938  * scan then give up on it.
1939  *
1940  * This function returns true if a zone is being reclaimed for a costly
1941  * high-order allocation and compaction is ready to begin. This indicates to
1942  * the caller that it should consider retrying the allocation instead of
1943  * further reclaim.
1944  */
1945 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1946 {
1947         struct zoneref *z;
1948         struct zone *zone;
1949         unsigned long nr_soft_reclaimed;
1950         unsigned long nr_soft_scanned;
1951         bool aborted_reclaim = false;
1952
1953         /*
1954          * If the number of buffer_heads in the machine exceeds the maximum
1955          * allowed level, force direct reclaim to scan the highmem zone as
1956          * highmem pages could be pinning lowmem pages storing buffer_heads
1957          */
1958         if (buffer_heads_over_limit)
1959                 sc->gfp_mask |= __GFP_HIGHMEM;
1960
1961         for_each_zone_zonelist_nodemask(zone, z, zonelist,
1962                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
1963                 if (!populated_zone(zone))
1964                         continue;
1965                 /*
1966                  * Take care memory controller reclaiming has small influence
1967                  * to global LRU.
1968                  */
1969                 if (global_reclaim(sc)) {
1970                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1971                                 continue;
1972                         if (zone->all_unreclaimable &&
1973                                         sc->priority != DEF_PRIORITY)
1974                                 continue;       /* Let kswapd poll it */
1975                         if (COMPACTION_BUILD) {
1976                                 /*
1977                                  * If we already have plenty of memory free for
1978                                  * compaction in this zone, don't free any more.
1979                                  * Even though compaction is invoked for any
1980                                  * non-zero order, only frequent costly order
1981                                  * reclamation is disruptive enough to become a
1982                                  * noticeable problem, like transparent huge
1983                                  * page allocations.
1984                                  */
1985                                 if (compaction_ready(zone, sc)) {
1986                                         aborted_reclaim = true;
1987                                         continue;
1988                                 }
1989                         }
1990                         /*
1991                          * This steals pages from memory cgroups over softlimit
1992                          * and returns the number of reclaimed pages and
1993                          * scanned pages. This works for global memory pressure
1994                          * and balancing, not for a memcg's limit.
1995                          */
1996                         nr_soft_scanned = 0;
1997                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1998                                                 sc->order, sc->gfp_mask,
1999                                                 &nr_soft_scanned);
2000                         sc->nr_reclaimed += nr_soft_reclaimed;
2001                         sc->nr_scanned += nr_soft_scanned;
2002                         /* need some check for avoid more shrink_zone() */
2003                 }
2004
2005                 shrink_zone(zone, sc);
2006         }
2007
2008         return aborted_reclaim;
2009 }
2010
2011 static bool zone_reclaimable(struct zone *zone)
2012 {
2013         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2014 }
2015
2016 /* All zones in zonelist are unreclaimable? */
2017 static bool all_unreclaimable(struct zonelist *zonelist,
2018                 struct scan_control *sc)
2019 {
2020         struct zoneref *z;
2021         struct zone *zone;
2022
2023         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2024                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2025                 if (!populated_zone(zone))
2026                         continue;
2027                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2028                         continue;
2029                 if (!zone->all_unreclaimable)
2030                         return false;
2031         }
2032
2033         return true;
2034 }
2035
2036 /*
2037  * This is the main entry point to direct page reclaim.
2038  *
2039  * If a full scan of the inactive list fails to free enough memory then we
2040  * are "out of memory" and something needs to be killed.
2041  *
2042  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2043  * high - the zone may be full of dirty or under-writeback pages, which this
2044  * caller can't do much about.  We kick the writeback threads and take explicit
2045  * naps in the hope that some of these pages can be written.  But if the
2046  * allocating task holds filesystem locks which prevent writeout this might not
2047  * work, and the allocation attempt will fail.
2048  *
2049  * returns:     0, if no pages reclaimed
2050  *              else, the number of pages reclaimed
2051  */
2052 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2053                                         struct scan_control *sc,
2054                                         struct shrink_control *shrink)
2055 {
2056         unsigned long total_scanned = 0;
2057         struct reclaim_state *reclaim_state = current->reclaim_state;
2058         struct zoneref *z;
2059         struct zone *zone;
2060         unsigned long writeback_threshold;
2061         bool aborted_reclaim;
2062
2063         delayacct_freepages_start();
2064
2065         if (global_reclaim(sc))
2066                 count_vm_event(ALLOCSTALL);
2067
2068         do {
2069                 sc->nr_scanned = 0;
2070                 aborted_reclaim = shrink_zones(zonelist, sc);
2071
2072                 /*
2073                  * Don't shrink slabs when reclaiming memory from
2074                  * over limit cgroups
2075                  */
2076                 if (global_reclaim(sc)) {
2077                         unsigned long lru_pages = 0;
2078                         for_each_zone_zonelist(zone, z, zonelist,
2079                                         gfp_zone(sc->gfp_mask)) {
2080                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2081                                         continue;
2082
2083                                 lru_pages += zone_reclaimable_pages(zone);
2084                         }
2085
2086                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2087                         if (reclaim_state) {
2088                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2089                                 reclaim_state->reclaimed_slab = 0;
2090                         }
2091                 }
2092                 total_scanned += sc->nr_scanned;
2093                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2094                         goto out;
2095
2096                 /*
2097                  * Try to write back as many pages as we just scanned.  This
2098                  * tends to cause slow streaming writers to write data to the
2099                  * disk smoothly, at the dirtying rate, which is nice.   But
2100                  * that's undesirable in laptop mode, where we *want* lumpy
2101                  * writeout.  So in laptop mode, write out the whole world.
2102                  */
2103                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2104                 if (total_scanned > writeback_threshold) {
2105                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2106                                                 WB_REASON_TRY_TO_FREE_PAGES);
2107                         sc->may_writepage = 1;
2108                 }
2109
2110                 /* Take a nap, wait for some writeback to complete */
2111                 if (!sc->hibernation_mode && sc->nr_scanned &&
2112                     sc->priority < DEF_PRIORITY - 2) {
2113                         struct zone *preferred_zone;
2114
2115                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2116                                                 &cpuset_current_mems_allowed,
2117                                                 &preferred_zone);
2118                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2119                 }
2120         } while (--sc->priority >= 0);
2121
2122 out:
2123         delayacct_freepages_end();
2124
2125         if (sc->nr_reclaimed)
2126                 return sc->nr_reclaimed;
2127
2128         /*
2129          * As hibernation is going on, kswapd is freezed so that it can't mark
2130          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2131          * check.
2132          */
2133         if (oom_killer_disabled)
2134                 return 0;
2135
2136         /* Aborted reclaim to try compaction? don't OOM, then */
2137         if (aborted_reclaim)
2138                 return 1;
2139
2140         /* top priority shrink_zones still had more to do? don't OOM, then */
2141         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2142                 return 1;
2143
2144         return 0;
2145 }
2146
2147 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2148 {
2149         struct zone *zone;
2150         unsigned long pfmemalloc_reserve = 0;
2151         unsigned long free_pages = 0;
2152         int i;
2153         bool wmark_ok;
2154
2155         for (i = 0; i <= ZONE_NORMAL; i++) {
2156                 zone = &pgdat->node_zones[i];
2157                 pfmemalloc_reserve += min_wmark_pages(zone);
2158                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2159         }
2160
2161         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2162
2163         /* kswapd must be awake if processes are being throttled */
2164         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2165                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2166                                                 (enum zone_type)ZONE_NORMAL);
2167                 wake_up_interruptible(&pgdat->kswapd_wait);
2168         }
2169
2170         return wmark_ok;
2171 }
2172
2173 /*
2174  * Throttle direct reclaimers if backing storage is backed by the network
2175  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2176  * depleted. kswapd will continue to make progress and wake the processes
2177  * when the low watermark is reached
2178  */
2179 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2180                                         nodemask_t *nodemask)
2181 {
2182         struct zone *zone;
2183         int high_zoneidx = gfp_zone(gfp_mask);
2184         pg_data_t *pgdat;
2185
2186         /*
2187          * Kernel threads should not be throttled as they may be indirectly
2188          * responsible for cleaning pages necessary for reclaim to make forward
2189          * progress. kjournald for example may enter direct reclaim while
2190          * committing a transaction where throttling it could forcing other
2191          * processes to block on log_wait_commit().
2192          */
2193         if (current->flags & PF_KTHREAD)
2194                 return;
2195
2196         /* Check if the pfmemalloc reserves are ok */
2197         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2198         pgdat = zone->zone_pgdat;
2199         if (pfmemalloc_watermark_ok(pgdat))
2200                 return;
2201
2202         /* Account for the throttling */
2203         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2204
2205         /*
2206          * If the caller cannot enter the filesystem, it's possible that it
2207          * is due to the caller holding an FS lock or performing a journal
2208          * transaction in the case of a filesystem like ext[3|4]. In this case,
2209          * it is not safe to block on pfmemalloc_wait as kswapd could be
2210          * blocked waiting on the same lock. Instead, throttle for up to a
2211          * second before continuing.
2212          */
2213         if (!(gfp_mask & __GFP_FS)) {
2214                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2215                         pfmemalloc_watermark_ok(pgdat), HZ);
2216                 return;
2217         }
2218
2219         /* Throttle until kswapd wakes the process */
2220         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2221                 pfmemalloc_watermark_ok(pgdat));
2222 }
2223
2224 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2225                                 gfp_t gfp_mask, nodemask_t *nodemask)
2226 {
2227         unsigned long nr_reclaimed;
2228         struct scan_control sc = {
2229                 .gfp_mask = gfp_mask,
2230                 .may_writepage = !laptop_mode,
2231                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2232                 .may_unmap = 1,
2233                 .may_swap = 1,
2234                 .order = order,
2235                 .priority = DEF_PRIORITY,
2236                 .target_mem_cgroup = NULL,
2237                 .nodemask = nodemask,
2238         };
2239         struct shrink_control shrink = {
2240                 .gfp_mask = sc.gfp_mask,
2241         };
2242
2243         throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2244
2245         /*
2246          * Do not enter reclaim if fatal signal is pending. 1 is returned so
2247          * that the page allocator does not consider triggering OOM
2248          */
2249         if (fatal_signal_pending(current))
2250                 return 1;
2251
2252         trace_mm_vmscan_direct_reclaim_begin(order,
2253                                 sc.may_writepage,
2254                                 gfp_mask);
2255
2256         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2257
2258         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2259
2260         return nr_reclaimed;
2261 }
2262
2263 #ifdef CONFIG_MEMCG
2264
2265 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2266                                                 gfp_t gfp_mask, bool noswap,
2267                                                 struct zone *zone,
2268                                                 unsigned long *nr_scanned)
2269 {
2270         struct scan_control sc = {
2271                 .nr_scanned = 0,
2272                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2273                 .may_writepage = !laptop_mode,
2274                 .may_unmap = 1,
2275                 .may_swap = !noswap,
2276                 .order = 0,
2277                 .priority = 0,
2278                 .target_mem_cgroup = memcg,
2279         };
2280         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2281
2282         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2283                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2284
2285         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2286                                                       sc.may_writepage,
2287                                                       sc.gfp_mask);
2288
2289         /*
2290          * NOTE: Although we can get the priority field, using it
2291          * here is not a good idea, since it limits the pages we can scan.
2292          * if we don't reclaim here, the shrink_zone from balance_pgdat
2293          * will pick up pages from other mem cgroup's as well. We hack
2294          * the priority and make it zero.
2295          */
2296         shrink_lruvec(lruvec, &sc);
2297
2298         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2299
2300         *nr_scanned = sc.nr_scanned;
2301         return sc.nr_reclaimed;
2302 }
2303
2304 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2305                                            gfp_t gfp_mask,
2306                                            bool noswap)
2307 {
2308         struct zonelist *zonelist;
2309         unsigned long nr_reclaimed;
2310         int nid;
2311         struct scan_control sc = {
2312                 .may_writepage = !laptop_mode,
2313                 .may_unmap = 1,
2314                 .may_swap = !noswap,
2315                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2316                 .order = 0,
2317                 .priority = DEF_PRIORITY,
2318                 .target_mem_cgroup = memcg,
2319                 .nodemask = NULL, /* we don't care the placement */
2320                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2321                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2322         };
2323         struct shrink_control shrink = {
2324                 .gfp_mask = sc.gfp_mask,
2325         };
2326
2327         /*
2328          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2329          * take care of from where we get pages. So the node where we start the
2330          * scan does not need to be the current node.
2331          */
2332         nid = mem_cgroup_select_victim_node(memcg);
2333
2334         zonelist = NODE_DATA(nid)->node_zonelists;
2335
2336         trace_mm_vmscan_memcg_reclaim_begin(0,
2337                                             sc.may_writepage,
2338                                             sc.gfp_mask);
2339
2340         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2341
2342         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2343
2344         return nr_reclaimed;
2345 }
2346 #endif
2347
2348 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2349 {
2350         struct mem_cgroup *memcg;
2351
2352         if (!total_swap_pages)
2353                 return;
2354
2355         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2356         do {
2357                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2358
2359                 if (inactive_anon_is_low(lruvec))
2360                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2361                                            sc, LRU_ACTIVE_ANON);
2362
2363                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2364         } while (memcg);
2365 }
2366
2367 /*
2368  * pgdat_balanced is used when checking if a node is balanced for high-order
2369  * allocations. Only zones that meet watermarks and are in a zone allowed
2370  * by the callers classzone_idx are added to balanced_pages. The total of
2371  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2372  * for the node to be considered balanced. Forcing all zones to be balanced
2373  * for high orders can cause excessive reclaim when there are imbalanced zones.
2374  * The choice of 25% is due to
2375  *   o a 16M DMA zone that is balanced will not balance a zone on any
2376  *     reasonable sized machine
2377  *   o On all other machines, the top zone must be at least a reasonable
2378  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2379  *     would need to be at least 256M for it to be balance a whole node.
2380  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2381  *     to balance a node on its own. These seemed like reasonable ratios.
2382  */
2383 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2384                                                 int classzone_idx)
2385 {
2386         unsigned long present_pages = 0;
2387         int i;
2388
2389         for (i = 0; i <= classzone_idx; i++)
2390                 present_pages += pgdat->node_zones[i].present_pages;
2391
2392         /* A special case here: if zone has no page, we think it's balanced */
2393         return balanced_pages >= (present_pages >> 2);
2394 }
2395
2396 /*
2397  * Prepare kswapd for sleeping. This verifies that there are no processes
2398  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2399  *
2400  * Returns true if kswapd is ready to sleep
2401  */
2402 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2403                                         int classzone_idx)
2404 {
2405         int i;
2406         unsigned long balanced = 0;
2407         bool all_zones_ok = true;
2408
2409         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2410         if (remaining)
2411                 return false;
2412
2413         /*
2414          * There is a potential race between when kswapd checks its watermarks
2415          * and a process gets throttled. There is also a potential race if
2416          * processes get throttled, kswapd wakes, a large process exits therby
2417          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2418          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2419          * so wake them now if necessary. If necessary, processes will wake
2420          * kswapd and get throttled again
2421          */
2422         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2423                 wake_up(&pgdat->pfmemalloc_wait);
2424                 return false;
2425         }
2426
2427         /* Check the watermark levels */
2428         for (i = 0; i <= classzone_idx; i++) {
2429                 struct zone *zone = pgdat->node_zones + i;
2430
2431                 if (!populated_zone(zone))
2432                         continue;
2433
2434                 /*
2435                  * balance_pgdat() skips over all_unreclaimable after
2436                  * DEF_PRIORITY. Effectively, it considers them balanced so
2437                  * they must be considered balanced here as well if kswapd
2438                  * is to sleep
2439                  */
2440                 if (zone->all_unreclaimable) {
2441                         balanced += zone->present_pages;
2442                         continue;
2443                 }
2444
2445                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2446                                                         i, 0))
2447                         all_zones_ok = false;
2448                 else
2449                         balanced += zone->present_pages;
2450         }
2451
2452         /*
2453          * For high-order requests, the balanced zones must contain at least
2454          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2455          * must be balanced
2456          */
2457         if (order)
2458                 return pgdat_balanced(pgdat, balanced, classzone_idx);
2459         else
2460                 return all_zones_ok;
2461 }
2462
2463 /*
2464  * For kswapd, balance_pgdat() will work across all this node's zones until
2465  * they are all at high_wmark_pages(zone).
2466  *
2467  * Returns the final order kswapd was reclaiming at
2468  *
2469  * There is special handling here for zones which are full of pinned pages.
2470  * This can happen if the pages are all mlocked, or if they are all used by
2471  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2472  * What we do is to detect the case where all pages in the zone have been
2473  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2474  * dead and from now on, only perform a short scan.  Basically we're polling
2475  * the zone for when the problem goes away.
2476  *
2477  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2478  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2479  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2480  * lower zones regardless of the number of free pages in the lower zones. This
2481  * interoperates with the page allocator fallback scheme to ensure that aging
2482  * of pages is balanced across the zones.
2483  */
2484 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2485                                                         int *classzone_idx)
2486 {
2487         int all_zones_ok;
2488         unsigned long balanced;
2489         int i;
2490         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2491         unsigned long total_scanned;
2492         struct reclaim_state *reclaim_state = current->reclaim_state;
2493         unsigned long nr_soft_reclaimed;
2494         unsigned long nr_soft_scanned;
2495         struct scan_control sc = {
2496                 .gfp_mask = GFP_KERNEL,
2497                 .may_unmap = 1,
2498                 .may_swap = 1,
2499                 /*
2500                  * kswapd doesn't want to be bailed out while reclaim. because
2501                  * we want to put equal scanning pressure on each zone.
2502                  */
2503                 .nr_to_reclaim = ULONG_MAX,
2504                 .order = order,
2505                 .target_mem_cgroup = NULL,
2506         };
2507         struct shrink_control shrink = {
2508                 .gfp_mask = sc.gfp_mask,
2509         };
2510 loop_again:
2511         total_scanned = 0;
2512         sc.priority = DEF_PRIORITY;
2513         sc.nr_reclaimed = 0;
2514         sc.may_writepage = !laptop_mode;
2515         count_vm_event(PAGEOUTRUN);
2516
2517         do {
2518                 unsigned long lru_pages = 0;
2519                 int has_under_min_watermark_zone = 0;
2520
2521                 all_zones_ok = 1;
2522                 balanced = 0;
2523
2524                 /*
2525                  * Scan in the highmem->dma direction for the highest
2526                  * zone which needs scanning
2527                  */
2528                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2529                         struct zone *zone = pgdat->node_zones + i;
2530
2531                         if (!populated_zone(zone))
2532                                 continue;
2533
2534                         if (zone->all_unreclaimable &&
2535                             sc.priority != DEF_PRIORITY)
2536                                 continue;
2537
2538                         /*
2539                          * Do some background aging of the anon list, to give
2540                          * pages a chance to be referenced before reclaiming.
2541                          */
2542                         age_active_anon(zone, &sc);
2543
2544                         /*
2545                          * If the number of buffer_heads in the machine
2546                          * exceeds the maximum allowed level and this node
2547                          * has a highmem zone, force kswapd to reclaim from
2548                          * it to relieve lowmem pressure.
2549                          */
2550                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2551                                 end_zone = i;
2552                                 break;
2553                         }
2554
2555                         if (!zone_watermark_ok_safe(zone, order,
2556                                         high_wmark_pages(zone), 0, 0)) {
2557                                 end_zone = i;
2558                                 break;
2559                         } else {
2560                                 /* If balanced, clear the congested flag */
2561                                 zone_clear_flag(zone, ZONE_CONGESTED);
2562                         }
2563                 }
2564                 if (i < 0)
2565                         goto out;
2566
2567                 for (i = 0; i <= end_zone; i++) {
2568                         struct zone *zone = pgdat->node_zones + i;
2569
2570                         lru_pages += zone_reclaimable_pages(zone);
2571                 }
2572
2573                 /*
2574                  * Now scan the zone in the dma->highmem direction, stopping
2575                  * at the last zone which needs scanning.
2576                  *
2577                  * We do this because the page allocator works in the opposite
2578                  * direction.  This prevents the page allocator from allocating
2579                  * pages behind kswapd's direction of progress, which would
2580                  * cause too much scanning of the lower zones.
2581                  */
2582                 for (i = 0; i <= end_zone; i++) {
2583                         struct zone *zone = pgdat->node_zones + i;
2584                         int nr_slab, testorder;
2585                         unsigned long balance_gap;
2586
2587                         if (!populated_zone(zone))
2588                                 continue;
2589
2590                         if (zone->all_unreclaimable &&
2591                             sc.priority != DEF_PRIORITY)
2592                                 continue;
2593
2594                         sc.nr_scanned = 0;
2595
2596                         nr_soft_scanned = 0;
2597                         /*
2598                          * Call soft limit reclaim before calling shrink_zone.
2599                          */
2600                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2601                                                         order, sc.gfp_mask,
2602                                                         &nr_soft_scanned);
2603                         sc.nr_reclaimed += nr_soft_reclaimed;
2604                         total_scanned += nr_soft_scanned;
2605
2606                         /*
2607                          * We put equal pressure on every zone, unless
2608                          * one zone has way too many pages free
2609                          * already. The "too many pages" is defined
2610                          * as the high wmark plus a "gap" where the
2611                          * gap is either the low watermark or 1%
2612                          * of the zone, whichever is smaller.
2613                          */
2614                         balance_gap = min(low_wmark_pages(zone),
2615                                 (zone->present_pages +
2616                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2617                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2618                         /*
2619                          * Kswapd reclaims only single pages with compaction
2620                          * enabled. Trying too hard to reclaim until contiguous
2621                          * free pages have become available can hurt performance
2622                          * by evicting too much useful data from memory.
2623                          * Do not reclaim more than needed for compaction.
2624                          */
2625                         testorder = order;
2626                         if (COMPACTION_BUILD && order &&
2627                                         compaction_suitable(zone, order) !=
2628                                                 COMPACT_SKIPPED)
2629                                 testorder = 0;
2630
2631                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2632                                     !zone_watermark_ok_safe(zone, testorder,
2633                                         high_wmark_pages(zone) + balance_gap,
2634                                         end_zone, 0)) {
2635                                 shrink_zone(zone, &sc);
2636
2637                                 reclaim_state->reclaimed_slab = 0;
2638                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2639                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2640                                 total_scanned += sc.nr_scanned;
2641
2642                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2643                                         zone->all_unreclaimable = 1;
2644                         }
2645
2646                         /*
2647                          * If we've done a decent amount of scanning and
2648                          * the reclaim ratio is low, start doing writepage
2649                          * even in laptop mode
2650                          */
2651                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2652                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2653                                 sc.may_writepage = 1;
2654
2655                         if (zone->all_unreclaimable) {
2656                                 if (end_zone && end_zone == i)
2657                                         end_zone--;
2658                                 continue;
2659                         }
2660
2661                         if (!zone_watermark_ok_safe(zone, testorder,
2662                                         high_wmark_pages(zone), end_zone, 0)) {
2663                                 all_zones_ok = 0;
2664                                 /*
2665                                  * We are still under min water mark.  This
2666                                  * means that we have a GFP_ATOMIC allocation
2667                                  * failure risk. Hurry up!
2668                                  */
2669                                 if (!zone_watermark_ok_safe(zone, order,
2670                                             min_wmark_pages(zone), end_zone, 0))
2671                                         has_under_min_watermark_zone = 1;
2672                         } else {
2673                                 /*
2674                                  * If a zone reaches its high watermark,
2675                                  * consider it to be no longer congested. It's
2676                                  * possible there are dirty pages backed by
2677                                  * congested BDIs but as pressure is relieved,
2678                                  * speculatively avoid congestion waits
2679                                  */
2680                                 zone_clear_flag(zone, ZONE_CONGESTED);
2681                                 if (i <= *classzone_idx)
2682                                         balanced += zone->present_pages;
2683                         }
2684
2685                 }
2686
2687                 /*
2688                  * If the low watermark is met there is no need for processes
2689                  * to be throttled on pfmemalloc_wait as they should not be
2690                  * able to safely make forward progress. Wake them
2691                  */
2692                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2693                                 pfmemalloc_watermark_ok(pgdat))
2694                         wake_up(&pgdat->pfmemalloc_wait);
2695
2696                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2697                         break;          /* kswapd: all done */
2698                 /*
2699                  * OK, kswapd is getting into trouble.  Take a nap, then take
2700                  * another pass across the zones.
2701                  */
2702                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2703                         if (has_under_min_watermark_zone)
2704                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2705                         else
2706                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2707                 }
2708
2709                 /*
2710                  * We do this so kswapd doesn't build up large priorities for
2711                  * example when it is freeing in parallel with allocators. It
2712                  * matches the direct reclaim path behaviour in terms of impact
2713                  * on zone->*_priority.
2714                  */
2715                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2716                         break;
2717         } while (--sc.priority >= 0);
2718 out:
2719
2720         /*
2721          * order-0: All zones must meet high watermark for a balanced node
2722          * high-order: Balanced zones must make up at least 25% of the node
2723          *             for the node to be balanced
2724          */
2725         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2726                 cond_resched();
2727
2728                 try_to_freeze();
2729
2730                 /*
2731                  * Fragmentation may mean that the system cannot be
2732                  * rebalanced for high-order allocations in all zones.
2733                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2734                  * it means the zones have been fully scanned and are still
2735                  * not balanced. For high-order allocations, there is
2736                  * little point trying all over again as kswapd may
2737                  * infinite loop.
2738                  *
2739                  * Instead, recheck all watermarks at order-0 as they
2740                  * are the most important. If watermarks are ok, kswapd will go
2741                  * back to sleep. High-order users can still perform direct
2742                  * reclaim if they wish.
2743                  */
2744                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2745                         order = sc.order = 0;
2746
2747                 goto loop_again;
2748         }
2749
2750         /*
2751          * If kswapd was reclaiming at a higher order, it has the option of
2752          * sleeping without all zones being balanced. Before it does, it must
2753          * ensure that the watermarks for order-0 on *all* zones are met and
2754          * that the congestion flags are cleared. The congestion flag must
2755          * be cleared as kswapd is the only mechanism that clears the flag
2756          * and it is potentially going to sleep here.
2757          */
2758         if (order) {
2759                 int zones_need_compaction = 1;
2760
2761                 for (i = 0; i <= end_zone; i++) {
2762                         struct zone *zone = pgdat->node_zones + i;
2763
2764                         if (!populated_zone(zone))
2765                                 continue;
2766
2767                         if (zone->all_unreclaimable &&
2768                             sc.priority != DEF_PRIORITY)
2769                                 continue;
2770
2771                         /* Would compaction fail due to lack of free memory? */
2772                         if (COMPACTION_BUILD &&
2773                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2774                                 goto loop_again;
2775
2776                         /* Confirm the zone is balanced for order-0 */
2777                         if (!zone_watermark_ok(zone, 0,
2778                                         high_wmark_pages(zone), 0, 0)) {
2779                                 order = sc.order = 0;
2780                                 goto loop_again;
2781                         }
2782
2783                         /* Check if the memory needs to be defragmented. */
2784                         if (zone_watermark_ok(zone, order,
2785                                     low_wmark_pages(zone), *classzone_idx, 0))
2786                                 zones_need_compaction = 0;
2787
2788                         /* If balanced, clear the congested flag */
2789                         zone_clear_flag(zone, ZONE_CONGESTED);
2790                 }
2791
2792                 if (zones_need_compaction)
2793                         compact_pgdat(pgdat, order);
2794         }
2795
2796         /*
2797          * Return the order we were reclaiming at so prepare_kswapd_sleep()
2798          * makes a decision on the order we were last reclaiming at. However,
2799          * if another caller entered the allocator slow path while kswapd
2800          * was awake, order will remain at the higher level
2801          */
2802         *classzone_idx = end_zone;
2803         return order;
2804 }
2805
2806 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2807 {
2808         long remaining = 0;
2809         DEFINE_WAIT(wait);
2810
2811         if (freezing(current) || kthread_should_stop())
2812                 return;
2813
2814         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2815
2816         /* Try to sleep for a short interval */
2817         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2818                 remaining = schedule_timeout(HZ/10);
2819                 finish_wait(&pgdat->kswapd_wait, &wait);
2820                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2821         }
2822
2823         /*
2824          * After a short sleep, check if it was a premature sleep. If not, then
2825          * go fully to sleep until explicitly woken up.
2826          */
2827         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2828                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2829
2830                 /*
2831                  * vmstat counters are not perfectly accurate and the estimated
2832                  * value for counters such as NR_FREE_PAGES can deviate from the
2833                  * true value by nr_online_cpus * threshold. To avoid the zone
2834                  * watermarks being breached while under pressure, we reduce the
2835                  * per-cpu vmstat threshold while kswapd is awake and restore
2836                  * them before going back to sleep.
2837                  */
2838                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2839
2840                 if (!kthread_should_stop())
2841                         schedule();
2842
2843                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2844         } else {
2845                 if (remaining)
2846                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2847                 else
2848                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2849         }
2850         finish_wait(&pgdat->kswapd_wait, &wait);
2851 }
2852
2853 /*
2854  * The background pageout daemon, started as a kernel thread
2855  * from the init process.
2856  *
2857  * This basically trickles out pages so that we have _some_
2858  * free memory available even if there is no other activity
2859  * that frees anything up. This is needed for things like routing
2860  * etc, where we otherwise might have all activity going on in
2861  * asynchronous contexts that cannot page things out.
2862  *
2863  * If there are applications that are active memory-allocators
2864  * (most normal use), this basically shouldn't matter.
2865  */
2866 static int kswapd(void *p)
2867 {
2868         unsigned long order, new_order;
2869         unsigned balanced_order;
2870         int classzone_idx, new_classzone_idx;
2871         int balanced_classzone_idx;
2872         pg_data_t *pgdat = (pg_data_t*)p;
2873         struct task_struct *tsk = current;
2874
2875         struct reclaim_state reclaim_state = {
2876                 .reclaimed_slab = 0,
2877         };
2878         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2879
2880         lockdep_set_current_reclaim_state(GFP_KERNEL);
2881
2882         if (!cpumask_empty(cpumask))
2883                 set_cpus_allowed_ptr(tsk, cpumask);
2884         current->reclaim_state = &reclaim_state;
2885
2886         /*
2887          * Tell the memory management that we're a "memory allocator",
2888          * and that if we need more memory we should get access to it
2889          * regardless (see "__alloc_pages()"). "kswapd" should
2890          * never get caught in the normal page freeing logic.
2891          *
2892          * (Kswapd normally doesn't need memory anyway, but sometimes
2893          * you need a small amount of memory in order to be able to
2894          * page out something else, and this flag essentially protects
2895          * us from recursively trying to free more memory as we're
2896          * trying to free the first piece of memory in the first place).
2897          */
2898         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2899         set_freezable();
2900
2901         order = new_order = 0;
2902         balanced_order = 0;
2903         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2904         balanced_classzone_idx = classzone_idx;
2905         for ( ; ; ) {
2906                 int ret;
2907
2908                 /*
2909                  * If the last balance_pgdat was unsuccessful it's unlikely a
2910                  * new request of a similar or harder type will succeed soon
2911                  * so consider going to sleep on the basis we reclaimed at
2912                  */
2913                 if (balanced_classzone_idx >= new_classzone_idx &&
2914                                         balanced_order == new_order) {
2915                         new_order = pgdat->kswapd_max_order;
2916                         new_classzone_idx = pgdat->classzone_idx;
2917                         pgdat->kswapd_max_order =  0;
2918                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2919                 }
2920
2921                 if (order < new_order || classzone_idx > new_classzone_idx) {
2922                         /*
2923                          * Don't sleep if someone wants a larger 'order'
2924                          * allocation or has tigher zone constraints
2925                          */
2926                         order = new_order;
2927                         classzone_idx = new_classzone_idx;
2928                 } else {
2929                         kswapd_try_to_sleep(pgdat, balanced_order,
2930                                                 balanced_classzone_idx);
2931                         order = pgdat->kswapd_max_order;
2932                         classzone_idx = pgdat->classzone_idx;
2933                         new_order = order;
2934                         new_classzone_idx = classzone_idx;
2935                         pgdat->kswapd_max_order = 0;
2936                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2937                 }
2938
2939                 ret = try_to_freeze();
2940                 if (kthread_should_stop())
2941                         break;
2942
2943                 /*
2944                  * We can speed up thawing tasks if we don't call balance_pgdat
2945                  * after returning from the refrigerator
2946                  */
2947                 if (!ret) {
2948                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2949                         balanced_classzone_idx = classzone_idx;
2950                         balanced_order = balance_pgdat(pgdat, order,
2951                                                 &balanced_classzone_idx);
2952                 }
2953         }
2954         return 0;
2955 }
2956
2957 /*
2958  * A zone is low on free memory, so wake its kswapd task to service it.
2959  */
2960 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2961 {
2962         pg_data_t *pgdat;
2963
2964         if (!populated_zone(zone))
2965                 return;
2966
2967         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2968                 return;
2969         pgdat = zone->zone_pgdat;
2970         if (pgdat->kswapd_max_order < order) {
2971                 pgdat->kswapd_max_order = order;
2972                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2973         }
2974         if (!waitqueue_active(&pgdat->kswapd_wait))
2975                 return;
2976         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2977                 return;
2978
2979         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2980         wake_up_interruptible(&pgdat->kswapd_wait);
2981 }
2982
2983 /*
2984  * The reclaimable count would be mostly accurate.
2985  * The less reclaimable pages may be
2986  * - mlocked pages, which will be moved to unevictable list when encountered
2987  * - mapped pages, which may require several travels to be reclaimed
2988  * - dirty pages, which is not "instantly" reclaimable
2989  */
2990 unsigned long global_reclaimable_pages(void)
2991 {
2992         int nr;
2993
2994         nr = global_page_state(NR_ACTIVE_FILE) +
2995              global_page_state(NR_INACTIVE_FILE);
2996
2997         if (nr_swap_pages > 0)
2998                 nr += global_page_state(NR_ACTIVE_ANON) +
2999                       global_page_state(NR_INACTIVE_ANON);
3000
3001         return nr;
3002 }
3003
3004 unsigned long zone_reclaimable_pages(struct zone *zone)
3005 {
3006         int nr;
3007
3008         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3009              zone_page_state(zone, NR_INACTIVE_FILE);
3010
3011         if (nr_swap_pages > 0)
3012                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3013                       zone_page_state(zone, NR_INACTIVE_ANON);
3014
3015         return nr;
3016 }
3017
3018 #ifdef CONFIG_HIBERNATION
3019 /*
3020  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3021  * freed pages.
3022  *
3023  * Rather than trying to age LRUs the aim is to preserve the overall
3024  * LRU order by reclaiming preferentially
3025  * inactive > active > active referenced > active mapped
3026  */
3027 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3028 {
3029         struct reclaim_state reclaim_state;
3030         struct scan_control sc = {
3031                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3032                 .may_swap = 1,
3033                 .may_unmap = 1,
3034                 .may_writepage = 1,
3035                 .nr_to_reclaim = nr_to_reclaim,
3036                 .hibernation_mode = 1,
3037                 .order = 0,
3038                 .priority = DEF_PRIORITY,
3039         };
3040         struct shrink_control shrink = {
3041                 .gfp_mask = sc.gfp_mask,
3042         };
3043         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3044         struct task_struct *p = current;
3045         unsigned long nr_reclaimed;
3046
3047         p->flags |= PF_MEMALLOC;
3048         lockdep_set_current_reclaim_state(sc.gfp_mask);
3049         reclaim_state.reclaimed_slab = 0;
3050         p->reclaim_state = &reclaim_state;
3051
3052         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3053
3054         p->reclaim_state = NULL;
3055         lockdep_clear_current_reclaim_state();
3056         p->flags &= ~PF_MEMALLOC;
3057
3058         return nr_reclaimed;
3059 }
3060 #endif /* CONFIG_HIBERNATION */
3061
3062 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3063    not required for correctness.  So if the last cpu in a node goes
3064    away, we get changed to run anywhere: as the first one comes back,
3065    restore their cpu bindings. */
3066 static int __devinit cpu_callback(struct notifier_block *nfb,
3067                                   unsigned long action, void *hcpu)
3068 {
3069         int nid;
3070
3071         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3072                 for_each_node_state(nid, N_HIGH_MEMORY) {
3073                         pg_data_t *pgdat = NODE_DATA(nid);
3074                         const struct cpumask *mask;
3075
3076                         mask = cpumask_of_node(pgdat->node_id);
3077
3078                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3079                                 /* One of our CPUs online: restore mask */
3080                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3081                 }
3082         }
3083         return NOTIFY_OK;
3084 }
3085
3086 /*
3087  * This kswapd start function will be called by init and node-hot-add.
3088  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3089  */
3090 int kswapd_run(int nid)
3091 {
3092         pg_data_t *pgdat = NODE_DATA(nid);
3093         int ret = 0;
3094
3095         if (pgdat->kswapd)
3096                 return 0;
3097
3098         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3099         if (IS_ERR(pgdat->kswapd)) {
3100                 /* failure at boot is fatal */
3101                 BUG_ON(system_state == SYSTEM_BOOTING);
3102                 printk("Failed to start kswapd on node %d\n",nid);
3103                 ret = -1;
3104         }
3105         return ret;
3106 }
3107
3108 /*
3109  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3110  * hold lock_memory_hotplug().
3111  */
3112 void kswapd_stop(int nid)
3113 {
3114         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3115
3116         if (kswapd) {
3117                 kthread_stop(kswapd);
3118                 NODE_DATA(nid)->kswapd = NULL;
3119         }
3120 }
3121
3122 static int __init kswapd_init(void)
3123 {
3124         int nid;
3125
3126         swap_setup();
3127         for_each_node_state(nid, N_HIGH_MEMORY)
3128                 kswapd_run(nid);
3129         hotcpu_notifier(cpu_callback, 0);
3130         return 0;
3131 }
3132
3133 module_init(kswapd_init)
3134
3135 #ifdef CONFIG_NUMA
3136 /*
3137  * Zone reclaim mode
3138  *
3139  * If non-zero call zone_reclaim when the number of free pages falls below
3140  * the watermarks.
3141  */
3142 int zone_reclaim_mode __read_mostly;
3143
3144 #define RECLAIM_OFF 0
3145 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3146 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3147 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3148
3149 /*
3150  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3151  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3152  * a zone.
3153  */
3154 #define ZONE_RECLAIM_PRIORITY 4
3155
3156 /*
3157  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3158  * occur.
3159  */
3160 int sysctl_min_unmapped_ratio = 1;
3161
3162 /*
3163  * If the number of slab pages in a zone grows beyond this percentage then
3164  * slab reclaim needs to occur.
3165  */
3166 int sysctl_min_slab_ratio = 5;
3167
3168 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3169 {
3170         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3171         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3172                 zone_page_state(zone, NR_ACTIVE_FILE);
3173
3174         /*
3175          * It's possible for there to be more file mapped pages than
3176          * accounted for by the pages on the file LRU lists because
3177          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3178          */
3179         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3180 }
3181
3182 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3183 static long zone_pagecache_reclaimable(struct zone *zone)
3184 {
3185         long nr_pagecache_reclaimable;
3186         long delta = 0;
3187
3188         /*
3189          * If RECLAIM_SWAP is set, then all file pages are considered
3190          * potentially reclaimable. Otherwise, we have to worry about
3191          * pages like swapcache and zone_unmapped_file_pages() provides
3192          * a better estimate
3193          */
3194         if (zone_reclaim_mode & RECLAIM_SWAP)
3195                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3196         else
3197                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3198
3199         /* If we can't clean pages, remove dirty pages from consideration */
3200         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3201                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3202
3203         /* Watch for any possible underflows due to delta */
3204         if (unlikely(delta > nr_pagecache_reclaimable))
3205                 delta = nr_pagecache_reclaimable;
3206
3207         return nr_pagecache_reclaimable - delta;
3208 }
3209
3210 /*
3211  * Try to free up some pages from this zone through reclaim.
3212  */
3213 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3214 {
3215         /* Minimum pages needed in order to stay on node */
3216         const unsigned long nr_pages = 1 << order;
3217         struct task_struct *p = current;
3218         struct reclaim_state reclaim_state;
3219         struct scan_control sc = {
3220                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3221                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3222                 .may_swap = 1,
3223                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3224                                        SWAP_CLUSTER_MAX),
3225                 .gfp_mask = gfp_mask,
3226                 .order = order,
3227                 .priority = ZONE_RECLAIM_PRIORITY,
3228         };
3229         struct shrink_control shrink = {
3230                 .gfp_mask = sc.gfp_mask,
3231         };
3232         unsigned long nr_slab_pages0, nr_slab_pages1;
3233
3234         cond_resched();
3235         /*
3236          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3237          * and we also need to be able to write out pages for RECLAIM_WRITE
3238          * and RECLAIM_SWAP.
3239          */
3240         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3241         lockdep_set_current_reclaim_state(gfp_mask);
3242         reclaim_state.reclaimed_slab = 0;
3243         p->reclaim_state = &reclaim_state;
3244
3245         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3246                 /*
3247                  * Free memory by calling shrink zone with increasing
3248                  * priorities until we have enough memory freed.
3249                  */
3250                 do {
3251                         shrink_zone(zone, &sc);
3252                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3253         }
3254
3255         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3256         if (nr_slab_pages0 > zone->min_slab_pages) {
3257                 /*
3258                  * shrink_slab() does not currently allow us to determine how
3259                  * many pages were freed in this zone. So we take the current
3260                  * number of slab pages and shake the slab until it is reduced
3261                  * by the same nr_pages that we used for reclaiming unmapped
3262                  * pages.
3263                  *
3264                  * Note that shrink_slab will free memory on all zones and may
3265                  * take a long time.
3266                  */
3267                 for (;;) {
3268                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3269
3270                         /* No reclaimable slab or very low memory pressure */
3271                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3272                                 break;
3273
3274                         /* Freed enough memory */
3275                         nr_slab_pages1 = zone_page_state(zone,
3276                                                         NR_SLAB_RECLAIMABLE);
3277                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3278                                 break;
3279                 }
3280
3281                 /*
3282                  * Update nr_reclaimed by the number of slab pages we
3283                  * reclaimed from this zone.
3284                  */
3285                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3286                 if (nr_slab_pages1 < nr_slab_pages0)
3287                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3288         }
3289
3290         p->reclaim_state = NULL;
3291         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3292         lockdep_clear_current_reclaim_state();
3293         return sc.nr_reclaimed >= nr_pages;
3294 }
3295
3296 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3297 {
3298         int node_id;
3299         int ret;
3300
3301         /*
3302          * Zone reclaim reclaims unmapped file backed pages and
3303          * slab pages if we are over the defined limits.
3304          *
3305          * A small portion of unmapped file backed pages is needed for
3306          * file I/O otherwise pages read by file I/O will be immediately
3307          * thrown out if the zone is overallocated. So we do not reclaim
3308          * if less than a specified percentage of the zone is used by
3309          * unmapped file backed pages.
3310          */
3311         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3312             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3313                 return ZONE_RECLAIM_FULL;
3314
3315         if (zone->all_unreclaimable)
3316                 return ZONE_RECLAIM_FULL;
3317
3318         /*
3319          * Do not scan if the allocation should not be delayed.
3320          */
3321         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3322                 return ZONE_RECLAIM_NOSCAN;
3323
3324         /*
3325          * Only run zone reclaim on the local zone or on zones that do not
3326          * have associated processors. This will favor the local processor
3327          * over remote processors and spread off node memory allocations
3328          * as wide as possible.
3329          */
3330         node_id = zone_to_nid(zone);
3331         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3332                 return ZONE_RECLAIM_NOSCAN;
3333
3334         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3335                 return ZONE_RECLAIM_NOSCAN;
3336
3337         ret = __zone_reclaim(zone, gfp_mask, order);
3338         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3339
3340         if (!ret)
3341                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3342
3343         return ret;
3344 }
3345 #endif
3346
3347 /*
3348  * page_evictable - test whether a page is evictable
3349  * @page: the page to test
3350  * @vma: the VMA in which the page is or will be mapped, may be NULL
3351  *
3352  * Test whether page is evictable--i.e., should be placed on active/inactive
3353  * lists vs unevictable list.  The vma argument is !NULL when called from the
3354  * fault path to determine how to instantate a new page.
3355  *
3356  * Reasons page might not be evictable:
3357  * (1) page's mapping marked unevictable
3358  * (2) page is part of an mlocked VMA
3359  *
3360  */
3361 int page_evictable(struct page *page, struct vm_area_struct *vma)
3362 {
3363
3364         if (mapping_unevictable(page_mapping(page)))
3365                 return 0;
3366
3367         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3368                 return 0;
3369
3370         return 1;
3371 }
3372
3373 #ifdef CONFIG_SHMEM
3374 /**
3375  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3376  * @pages:      array of pages to check
3377  * @nr_pages:   number of pages to check
3378  *
3379  * Checks pages for evictability and moves them to the appropriate lru list.
3380  *
3381  * This function is only used for SysV IPC SHM_UNLOCK.
3382  */
3383 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3384 {
3385         struct lruvec *lruvec;
3386         struct zone *zone = NULL;
3387         int pgscanned = 0;
3388         int pgrescued = 0;
3389         int i;
3390
3391         for (i = 0; i < nr_pages; i++) {
3392                 struct page *page = pages[i];
3393                 struct zone *pagezone;
3394
3395                 pgscanned++;
3396                 pagezone = page_zone(page);
3397                 if (pagezone != zone) {
3398                         if (zone)
3399                                 spin_unlock_irq(&zone->lru_lock);
3400                         zone = pagezone;
3401                         spin_lock_irq(&zone->lru_lock);
3402                 }
3403                 lruvec = mem_cgroup_page_lruvec(page, zone);
3404
3405                 if (!PageLRU(page) || !PageUnevictable(page))
3406                         continue;
3407
3408                 if (page_evictable(page, NULL)) {
3409                         enum lru_list lru = page_lru_base_type(page);
3410
3411                         VM_BUG_ON(PageActive(page));
3412                         ClearPageUnevictable(page);
3413                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3414                         add_page_to_lru_list(page, lruvec, lru);
3415                         pgrescued++;
3416                 }
3417         }
3418
3419         if (zone) {
3420                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3421                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3422                 spin_unlock_irq(&zone->lru_lock);
3423         }
3424 }
3425 #endif /* CONFIG_SHMEM */
3426
3427 static void warn_scan_unevictable_pages(void)
3428 {
3429         printk_once(KERN_WARNING
3430                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3431                     "disabled for lack of a legitimate use case.  If you have "
3432                     "one, please send an email to linux-mm@kvack.org.\n",
3433                     current->comm);
3434 }
3435
3436 /*
3437  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3438  * all nodes' unevictable lists for evictable pages
3439  */
3440 unsigned long scan_unevictable_pages;
3441
3442 int scan_unevictable_handler(struct ctl_table *table, int write,
3443                            void __user *buffer,
3444                            size_t *length, loff_t *ppos)
3445 {
3446         warn_scan_unevictable_pages();
3447         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3448         scan_unevictable_pages = 0;
3449         return 0;
3450 }
3451
3452 #ifdef CONFIG_NUMA
3453 /*
3454  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3455  * a specified node's per zone unevictable lists for evictable pages.
3456  */
3457
3458 static ssize_t read_scan_unevictable_node(struct device *dev,
3459                                           struct device_attribute *attr,
3460                                           char *buf)
3461 {
3462         warn_scan_unevictable_pages();
3463         return sprintf(buf, "0\n");     /* always zero; should fit... */
3464 }
3465
3466 static ssize_t write_scan_unevictable_node(struct device *dev,
3467                                            struct device_attribute *attr,
3468                                         const char *buf, size_t count)
3469 {
3470         warn_scan_unevictable_pages();
3471         return 1;
3472 }
3473
3474
3475 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3476                         read_scan_unevictable_node,
3477                         write_scan_unevictable_node);
3478
3479 int scan_unevictable_register_node(struct node *node)
3480 {
3481         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3482 }
3483
3484 void scan_unevictable_unregister_node(struct node *node)
3485 {
3486         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3487 }
3488 #endif