]> Pileus Git - ~andy/linux/blob - mm/vmscan.c
ARM: perf: fix group validation for mixed software and hardware groups
[~andy/linux] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 unsigned long zone_reclaimable_pages(struct zone *zone)
150 {
151         int nr;
152
153         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
154              zone_page_state(zone, NR_INACTIVE_FILE);
155
156         if (get_nr_swap_pages() > 0)
157                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
158                       zone_page_state(zone, NR_INACTIVE_ANON);
159
160         return nr;
161 }
162
163 bool zone_reclaimable(struct zone *zone)
164 {
165         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
166 }
167
168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
169 {
170         if (!mem_cgroup_disabled())
171                 return mem_cgroup_get_lru_size(lruvec, lru);
172
173         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
174 }
175
176 /*
177  * Add a shrinker callback to be called from the vm.
178  */
179 int register_shrinker(struct shrinker *shrinker)
180 {
181         size_t size = sizeof(*shrinker->nr_deferred);
182
183         /*
184          * If we only have one possible node in the system anyway, save
185          * ourselves the trouble and disable NUMA aware behavior. This way we
186          * will save memory and some small loop time later.
187          */
188         if (nr_node_ids == 1)
189                 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
190
191         if (shrinker->flags & SHRINKER_NUMA_AWARE)
192                 size *= nr_node_ids;
193
194         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
195         if (!shrinker->nr_deferred)
196                 return -ENOMEM;
197
198         down_write(&shrinker_rwsem);
199         list_add_tail(&shrinker->list, &shrinker_list);
200         up_write(&shrinker_rwsem);
201         return 0;
202 }
203 EXPORT_SYMBOL(register_shrinker);
204
205 /*
206  * Remove one
207  */
208 void unregister_shrinker(struct shrinker *shrinker)
209 {
210         down_write(&shrinker_rwsem);
211         list_del(&shrinker->list);
212         up_write(&shrinker_rwsem);
213 }
214 EXPORT_SYMBOL(unregister_shrinker);
215
216 #define SHRINK_BATCH 128
217
218 static unsigned long
219 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
220                  unsigned long nr_pages_scanned, unsigned long lru_pages)
221 {
222         unsigned long freed = 0;
223         unsigned long long delta;
224         long total_scan;
225         long max_pass;
226         long nr;
227         long new_nr;
228         int nid = shrinkctl->nid;
229         long batch_size = shrinker->batch ? shrinker->batch
230                                           : SHRINK_BATCH;
231
232         max_pass = shrinker->count_objects(shrinker, shrinkctl);
233         if (max_pass == 0)
234                 return 0;
235
236         /*
237          * copy the current shrinker scan count into a local variable
238          * and zero it so that other concurrent shrinker invocations
239          * don't also do this scanning work.
240          */
241         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
242
243         total_scan = nr;
244         delta = (4 * nr_pages_scanned) / shrinker->seeks;
245         delta *= max_pass;
246         do_div(delta, lru_pages + 1);
247         total_scan += delta;
248         if (total_scan < 0) {
249                 printk(KERN_ERR
250                 "shrink_slab: %pF negative objects to delete nr=%ld\n",
251                        shrinker->scan_objects, total_scan);
252                 total_scan = max_pass;
253         }
254
255         /*
256          * We need to avoid excessive windup on filesystem shrinkers
257          * due to large numbers of GFP_NOFS allocations causing the
258          * shrinkers to return -1 all the time. This results in a large
259          * nr being built up so when a shrink that can do some work
260          * comes along it empties the entire cache due to nr >>>
261          * max_pass.  This is bad for sustaining a working set in
262          * memory.
263          *
264          * Hence only allow the shrinker to scan the entire cache when
265          * a large delta change is calculated directly.
266          */
267         if (delta < max_pass / 4)
268                 total_scan = min(total_scan, max_pass / 2);
269
270         /*
271          * Avoid risking looping forever due to too large nr value:
272          * never try to free more than twice the estimate number of
273          * freeable entries.
274          */
275         if (total_scan > max_pass * 2)
276                 total_scan = max_pass * 2;
277
278         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
279                                 nr_pages_scanned, lru_pages,
280                                 max_pass, delta, total_scan);
281
282         while (total_scan >= batch_size) {
283                 unsigned long ret;
284
285                 shrinkctl->nr_to_scan = batch_size;
286                 ret = shrinker->scan_objects(shrinker, shrinkctl);
287                 if (ret == SHRINK_STOP)
288                         break;
289                 freed += ret;
290
291                 count_vm_events(SLABS_SCANNED, batch_size);
292                 total_scan -= batch_size;
293
294                 cond_resched();
295         }
296
297         /*
298          * move the unused scan count back into the shrinker in a
299          * manner that handles concurrent updates. If we exhausted the
300          * scan, there is no need to do an update.
301          */
302         if (total_scan > 0)
303                 new_nr = atomic_long_add_return(total_scan,
304                                                 &shrinker->nr_deferred[nid]);
305         else
306                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
307
308         trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
309         return freed;
310 }
311
312 /*
313  * Call the shrink functions to age shrinkable caches
314  *
315  * Here we assume it costs one seek to replace a lru page and that it also
316  * takes a seek to recreate a cache object.  With this in mind we age equal
317  * percentages of the lru and ageable caches.  This should balance the seeks
318  * generated by these structures.
319  *
320  * If the vm encountered mapped pages on the LRU it increase the pressure on
321  * slab to avoid swapping.
322  *
323  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
324  *
325  * `lru_pages' represents the number of on-LRU pages in all the zones which
326  * are eligible for the caller's allocation attempt.  It is used for balancing
327  * slab reclaim versus page reclaim.
328  *
329  * Returns the number of slab objects which we shrunk.
330  */
331 unsigned long shrink_slab(struct shrink_control *shrinkctl,
332                           unsigned long nr_pages_scanned,
333                           unsigned long lru_pages)
334 {
335         struct shrinker *shrinker;
336         unsigned long freed = 0;
337
338         if (nr_pages_scanned == 0)
339                 nr_pages_scanned = SWAP_CLUSTER_MAX;
340
341         if (!down_read_trylock(&shrinker_rwsem)) {
342                 /*
343                  * If we would return 0, our callers would understand that we
344                  * have nothing else to shrink and give up trying. By returning
345                  * 1 we keep it going and assume we'll be able to shrink next
346                  * time.
347                  */
348                 freed = 1;
349                 goto out;
350         }
351
352         list_for_each_entry(shrinker, &shrinker_list, list) {
353                 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
354                         if (!node_online(shrinkctl->nid))
355                                 continue;
356
357                         if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
358                             (shrinkctl->nid != 0))
359                                 break;
360
361                         freed += shrink_slab_node(shrinkctl, shrinker,
362                                  nr_pages_scanned, lru_pages);
363
364                 }
365         }
366         up_read(&shrinker_rwsem);
367 out:
368         cond_resched();
369         return freed;
370 }
371
372 static inline int is_page_cache_freeable(struct page *page)
373 {
374         /*
375          * A freeable page cache page is referenced only by the caller
376          * that isolated the page, the page cache radix tree and
377          * optional buffer heads at page->private.
378          */
379         return page_count(page) - page_has_private(page) == 2;
380 }
381
382 static int may_write_to_queue(struct backing_dev_info *bdi,
383                               struct scan_control *sc)
384 {
385         if (current->flags & PF_SWAPWRITE)
386                 return 1;
387         if (!bdi_write_congested(bdi))
388                 return 1;
389         if (bdi == current->backing_dev_info)
390                 return 1;
391         return 0;
392 }
393
394 /*
395  * We detected a synchronous write error writing a page out.  Probably
396  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
397  * fsync(), msync() or close().
398  *
399  * The tricky part is that after writepage we cannot touch the mapping: nothing
400  * prevents it from being freed up.  But we have a ref on the page and once
401  * that page is locked, the mapping is pinned.
402  *
403  * We're allowed to run sleeping lock_page() here because we know the caller has
404  * __GFP_FS.
405  */
406 static void handle_write_error(struct address_space *mapping,
407                                 struct page *page, int error)
408 {
409         lock_page(page);
410         if (page_mapping(page) == mapping)
411                 mapping_set_error(mapping, error);
412         unlock_page(page);
413 }
414
415 /* possible outcome of pageout() */
416 typedef enum {
417         /* failed to write page out, page is locked */
418         PAGE_KEEP,
419         /* move page to the active list, page is locked */
420         PAGE_ACTIVATE,
421         /* page has been sent to the disk successfully, page is unlocked */
422         PAGE_SUCCESS,
423         /* page is clean and locked */
424         PAGE_CLEAN,
425 } pageout_t;
426
427 /*
428  * pageout is called by shrink_page_list() for each dirty page.
429  * Calls ->writepage().
430  */
431 static pageout_t pageout(struct page *page, struct address_space *mapping,
432                          struct scan_control *sc)
433 {
434         /*
435          * If the page is dirty, only perform writeback if that write
436          * will be non-blocking.  To prevent this allocation from being
437          * stalled by pagecache activity.  But note that there may be
438          * stalls if we need to run get_block().  We could test
439          * PagePrivate for that.
440          *
441          * If this process is currently in __generic_file_aio_write() against
442          * this page's queue, we can perform writeback even if that
443          * will block.
444          *
445          * If the page is swapcache, write it back even if that would
446          * block, for some throttling. This happens by accident, because
447          * swap_backing_dev_info is bust: it doesn't reflect the
448          * congestion state of the swapdevs.  Easy to fix, if needed.
449          */
450         if (!is_page_cache_freeable(page))
451                 return PAGE_KEEP;
452         if (!mapping) {
453                 /*
454                  * Some data journaling orphaned pages can have
455                  * page->mapping == NULL while being dirty with clean buffers.
456                  */
457                 if (page_has_private(page)) {
458                         if (try_to_free_buffers(page)) {
459                                 ClearPageDirty(page);
460                                 printk("%s: orphaned page\n", __func__);
461                                 return PAGE_CLEAN;
462                         }
463                 }
464                 return PAGE_KEEP;
465         }
466         if (mapping->a_ops->writepage == NULL)
467                 return PAGE_ACTIVATE;
468         if (!may_write_to_queue(mapping->backing_dev_info, sc))
469                 return PAGE_KEEP;
470
471         if (clear_page_dirty_for_io(page)) {
472                 int res;
473                 struct writeback_control wbc = {
474                         .sync_mode = WB_SYNC_NONE,
475                         .nr_to_write = SWAP_CLUSTER_MAX,
476                         .range_start = 0,
477                         .range_end = LLONG_MAX,
478                         .for_reclaim = 1,
479                 };
480
481                 SetPageReclaim(page);
482                 res = mapping->a_ops->writepage(page, &wbc);
483                 if (res < 0)
484                         handle_write_error(mapping, page, res);
485                 if (res == AOP_WRITEPAGE_ACTIVATE) {
486                         ClearPageReclaim(page);
487                         return PAGE_ACTIVATE;
488                 }
489
490                 if (!PageWriteback(page)) {
491                         /* synchronous write or broken a_ops? */
492                         ClearPageReclaim(page);
493                 }
494                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
495                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
496                 return PAGE_SUCCESS;
497         }
498
499         return PAGE_CLEAN;
500 }
501
502 /*
503  * Same as remove_mapping, but if the page is removed from the mapping, it
504  * gets returned with a refcount of 0.
505  */
506 static int __remove_mapping(struct address_space *mapping, struct page *page)
507 {
508         BUG_ON(!PageLocked(page));
509         BUG_ON(mapping != page_mapping(page));
510
511         spin_lock_irq(&mapping->tree_lock);
512         /*
513          * The non racy check for a busy page.
514          *
515          * Must be careful with the order of the tests. When someone has
516          * a ref to the page, it may be possible that they dirty it then
517          * drop the reference. So if PageDirty is tested before page_count
518          * here, then the following race may occur:
519          *
520          * get_user_pages(&page);
521          * [user mapping goes away]
522          * write_to(page);
523          *                              !PageDirty(page)    [good]
524          * SetPageDirty(page);
525          * put_page(page);
526          *                              !page_count(page)   [good, discard it]
527          *
528          * [oops, our write_to data is lost]
529          *
530          * Reversing the order of the tests ensures such a situation cannot
531          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
532          * load is not satisfied before that of page->_count.
533          *
534          * Note that if SetPageDirty is always performed via set_page_dirty,
535          * and thus under tree_lock, then this ordering is not required.
536          */
537         if (!page_freeze_refs(page, 2))
538                 goto cannot_free;
539         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
540         if (unlikely(PageDirty(page))) {
541                 page_unfreeze_refs(page, 2);
542                 goto cannot_free;
543         }
544
545         if (PageSwapCache(page)) {
546                 swp_entry_t swap = { .val = page_private(page) };
547                 __delete_from_swap_cache(page);
548                 spin_unlock_irq(&mapping->tree_lock);
549                 swapcache_free(swap, page);
550         } else {
551                 void (*freepage)(struct page *);
552
553                 freepage = mapping->a_ops->freepage;
554
555                 __delete_from_page_cache(page);
556                 spin_unlock_irq(&mapping->tree_lock);
557                 mem_cgroup_uncharge_cache_page(page);
558
559                 if (freepage != NULL)
560                         freepage(page);
561         }
562
563         return 1;
564
565 cannot_free:
566         spin_unlock_irq(&mapping->tree_lock);
567         return 0;
568 }
569
570 /*
571  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
572  * someone else has a ref on the page, abort and return 0.  If it was
573  * successfully detached, return 1.  Assumes the caller has a single ref on
574  * this page.
575  */
576 int remove_mapping(struct address_space *mapping, struct page *page)
577 {
578         if (__remove_mapping(mapping, page)) {
579                 /*
580                  * Unfreezing the refcount with 1 rather than 2 effectively
581                  * drops the pagecache ref for us without requiring another
582                  * atomic operation.
583                  */
584                 page_unfreeze_refs(page, 1);
585                 return 1;
586         }
587         return 0;
588 }
589
590 /**
591  * putback_lru_page - put previously isolated page onto appropriate LRU list
592  * @page: page to be put back to appropriate lru list
593  *
594  * Add previously isolated @page to appropriate LRU list.
595  * Page may still be unevictable for other reasons.
596  *
597  * lru_lock must not be held, interrupts must be enabled.
598  */
599 void putback_lru_page(struct page *page)
600 {
601         bool is_unevictable;
602         int was_unevictable = PageUnevictable(page);
603
604         VM_BUG_ON(PageLRU(page));
605
606 redo:
607         ClearPageUnevictable(page);
608
609         if (page_evictable(page)) {
610                 /*
611                  * For evictable pages, we can use the cache.
612                  * In event of a race, worst case is we end up with an
613                  * unevictable page on [in]active list.
614                  * We know how to handle that.
615                  */
616                 is_unevictable = false;
617                 lru_cache_add(page);
618         } else {
619                 /*
620                  * Put unevictable pages directly on zone's unevictable
621                  * list.
622                  */
623                 is_unevictable = true;
624                 add_page_to_unevictable_list(page);
625                 /*
626                  * When racing with an mlock or AS_UNEVICTABLE clearing
627                  * (page is unlocked) make sure that if the other thread
628                  * does not observe our setting of PG_lru and fails
629                  * isolation/check_move_unevictable_pages,
630                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
631                  * the page back to the evictable list.
632                  *
633                  * The other side is TestClearPageMlocked() or shmem_lock().
634                  */
635                 smp_mb();
636         }
637
638         /*
639          * page's status can change while we move it among lru. If an evictable
640          * page is on unevictable list, it never be freed. To avoid that,
641          * check after we added it to the list, again.
642          */
643         if (is_unevictable && page_evictable(page)) {
644                 if (!isolate_lru_page(page)) {
645                         put_page(page);
646                         goto redo;
647                 }
648                 /* This means someone else dropped this page from LRU
649                  * So, it will be freed or putback to LRU again. There is
650                  * nothing to do here.
651                  */
652         }
653
654         if (was_unevictable && !is_unevictable)
655                 count_vm_event(UNEVICTABLE_PGRESCUED);
656         else if (!was_unevictable && is_unevictable)
657                 count_vm_event(UNEVICTABLE_PGCULLED);
658
659         put_page(page);         /* drop ref from isolate */
660 }
661
662 enum page_references {
663         PAGEREF_RECLAIM,
664         PAGEREF_RECLAIM_CLEAN,
665         PAGEREF_KEEP,
666         PAGEREF_ACTIVATE,
667 };
668
669 static enum page_references page_check_references(struct page *page,
670                                                   struct scan_control *sc)
671 {
672         int referenced_ptes, referenced_page;
673         unsigned long vm_flags;
674
675         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
676                                           &vm_flags);
677         referenced_page = TestClearPageReferenced(page);
678
679         /*
680          * Mlock lost the isolation race with us.  Let try_to_unmap()
681          * move the page to the unevictable list.
682          */
683         if (vm_flags & VM_LOCKED)
684                 return PAGEREF_RECLAIM;
685
686         if (referenced_ptes) {
687                 if (PageSwapBacked(page))
688                         return PAGEREF_ACTIVATE;
689                 /*
690                  * All mapped pages start out with page table
691                  * references from the instantiating fault, so we need
692                  * to look twice if a mapped file page is used more
693                  * than once.
694                  *
695                  * Mark it and spare it for another trip around the
696                  * inactive list.  Another page table reference will
697                  * lead to its activation.
698                  *
699                  * Note: the mark is set for activated pages as well
700                  * so that recently deactivated but used pages are
701                  * quickly recovered.
702                  */
703                 SetPageReferenced(page);
704
705                 if (referenced_page || referenced_ptes > 1)
706                         return PAGEREF_ACTIVATE;
707
708                 /*
709                  * Activate file-backed executable pages after first usage.
710                  */
711                 if (vm_flags & VM_EXEC)
712                         return PAGEREF_ACTIVATE;
713
714                 return PAGEREF_KEEP;
715         }
716
717         /* Reclaim if clean, defer dirty pages to writeback */
718         if (referenced_page && !PageSwapBacked(page))
719                 return PAGEREF_RECLAIM_CLEAN;
720
721         return PAGEREF_RECLAIM;
722 }
723
724 /* Check if a page is dirty or under writeback */
725 static void page_check_dirty_writeback(struct page *page,
726                                        bool *dirty, bool *writeback)
727 {
728         struct address_space *mapping;
729
730         /*
731          * Anonymous pages are not handled by flushers and must be written
732          * from reclaim context. Do not stall reclaim based on them
733          */
734         if (!page_is_file_cache(page)) {
735                 *dirty = false;
736                 *writeback = false;
737                 return;
738         }
739
740         /* By default assume that the page flags are accurate */
741         *dirty = PageDirty(page);
742         *writeback = PageWriteback(page);
743
744         /* Verify dirty/writeback state if the filesystem supports it */
745         if (!page_has_private(page))
746                 return;
747
748         mapping = page_mapping(page);
749         if (mapping && mapping->a_ops->is_dirty_writeback)
750                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
751 }
752
753 /*
754  * shrink_page_list() returns the number of reclaimed pages
755  */
756 static unsigned long shrink_page_list(struct list_head *page_list,
757                                       struct zone *zone,
758                                       struct scan_control *sc,
759                                       enum ttu_flags ttu_flags,
760                                       unsigned long *ret_nr_dirty,
761                                       unsigned long *ret_nr_unqueued_dirty,
762                                       unsigned long *ret_nr_congested,
763                                       unsigned long *ret_nr_writeback,
764                                       unsigned long *ret_nr_immediate,
765                                       bool force_reclaim)
766 {
767         LIST_HEAD(ret_pages);
768         LIST_HEAD(free_pages);
769         int pgactivate = 0;
770         unsigned long nr_unqueued_dirty = 0;
771         unsigned long nr_dirty = 0;
772         unsigned long nr_congested = 0;
773         unsigned long nr_reclaimed = 0;
774         unsigned long nr_writeback = 0;
775         unsigned long nr_immediate = 0;
776
777         cond_resched();
778
779         mem_cgroup_uncharge_start();
780         while (!list_empty(page_list)) {
781                 struct address_space *mapping;
782                 struct page *page;
783                 int may_enter_fs;
784                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
785                 bool dirty, writeback;
786
787                 cond_resched();
788
789                 page = lru_to_page(page_list);
790                 list_del(&page->lru);
791
792                 if (!trylock_page(page))
793                         goto keep;
794
795                 VM_BUG_ON(PageActive(page));
796                 VM_BUG_ON(page_zone(page) != zone);
797
798                 sc->nr_scanned++;
799
800                 if (unlikely(!page_evictable(page)))
801                         goto cull_mlocked;
802
803                 if (!sc->may_unmap && page_mapped(page))
804                         goto keep_locked;
805
806                 /* Double the slab pressure for mapped and swapcache pages */
807                 if (page_mapped(page) || PageSwapCache(page))
808                         sc->nr_scanned++;
809
810                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
811                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
812
813                 /*
814                  * The number of dirty pages determines if a zone is marked
815                  * reclaim_congested which affects wait_iff_congested. kswapd
816                  * will stall and start writing pages if the tail of the LRU
817                  * is all dirty unqueued pages.
818                  */
819                 page_check_dirty_writeback(page, &dirty, &writeback);
820                 if (dirty || writeback)
821                         nr_dirty++;
822
823                 if (dirty && !writeback)
824                         nr_unqueued_dirty++;
825
826                 /*
827                  * Treat this page as congested if the underlying BDI is or if
828                  * pages are cycling through the LRU so quickly that the
829                  * pages marked for immediate reclaim are making it to the
830                  * end of the LRU a second time.
831                  */
832                 mapping = page_mapping(page);
833                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
834                     (writeback && PageReclaim(page)))
835                         nr_congested++;
836
837                 /*
838                  * If a page at the tail of the LRU is under writeback, there
839                  * are three cases to consider.
840                  *
841                  * 1) If reclaim is encountering an excessive number of pages
842                  *    under writeback and this page is both under writeback and
843                  *    PageReclaim then it indicates that pages are being queued
844                  *    for IO but are being recycled through the LRU before the
845                  *    IO can complete. Waiting on the page itself risks an
846                  *    indefinite stall if it is impossible to writeback the
847                  *    page due to IO error or disconnected storage so instead
848                  *    note that the LRU is being scanned too quickly and the
849                  *    caller can stall after page list has been processed.
850                  *
851                  * 2) Global reclaim encounters a page, memcg encounters a
852                  *    page that is not marked for immediate reclaim or
853                  *    the caller does not have __GFP_IO. In this case mark
854                  *    the page for immediate reclaim and continue scanning.
855                  *
856                  *    __GFP_IO is checked  because a loop driver thread might
857                  *    enter reclaim, and deadlock if it waits on a page for
858                  *    which it is needed to do the write (loop masks off
859                  *    __GFP_IO|__GFP_FS for this reason); but more thought
860                  *    would probably show more reasons.
861                  *
862                  *    Don't require __GFP_FS, since we're not going into the
863                  *    FS, just waiting on its writeback completion. Worryingly,
864                  *    ext4 gfs2 and xfs allocate pages with
865                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
866                  *    may_enter_fs here is liable to OOM on them.
867                  *
868                  * 3) memcg encounters a page that is not already marked
869                  *    PageReclaim. memcg does not have any dirty pages
870                  *    throttling so we could easily OOM just because too many
871                  *    pages are in writeback and there is nothing else to
872                  *    reclaim. Wait for the writeback to complete.
873                  */
874                 if (PageWriteback(page)) {
875                         /* Case 1 above */
876                         if (current_is_kswapd() &&
877                             PageReclaim(page) &&
878                             zone_is_reclaim_writeback(zone)) {
879                                 nr_immediate++;
880                                 goto keep_locked;
881
882                         /* Case 2 above */
883                         } else if (global_reclaim(sc) ||
884                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
885                                 /*
886                                  * This is slightly racy - end_page_writeback()
887                                  * might have just cleared PageReclaim, then
888                                  * setting PageReclaim here end up interpreted
889                                  * as PageReadahead - but that does not matter
890                                  * enough to care.  What we do want is for this
891                                  * page to have PageReclaim set next time memcg
892                                  * reclaim reaches the tests above, so it will
893                                  * then wait_on_page_writeback() to avoid OOM;
894                                  * and it's also appropriate in global reclaim.
895                                  */
896                                 SetPageReclaim(page);
897                                 nr_writeback++;
898
899                                 goto keep_locked;
900
901                         /* Case 3 above */
902                         } else {
903                                 wait_on_page_writeback(page);
904                         }
905                 }
906
907                 if (!force_reclaim)
908                         references = page_check_references(page, sc);
909
910                 switch (references) {
911                 case PAGEREF_ACTIVATE:
912                         goto activate_locked;
913                 case PAGEREF_KEEP:
914                         goto keep_locked;
915                 case PAGEREF_RECLAIM:
916                 case PAGEREF_RECLAIM_CLEAN:
917                         ; /* try to reclaim the page below */
918                 }
919
920                 /*
921                  * Anonymous process memory has backing store?
922                  * Try to allocate it some swap space here.
923                  */
924                 if (PageAnon(page) && !PageSwapCache(page)) {
925                         if (!(sc->gfp_mask & __GFP_IO))
926                                 goto keep_locked;
927                         if (!add_to_swap(page, page_list))
928                                 goto activate_locked;
929                         may_enter_fs = 1;
930
931                         /* Adding to swap updated mapping */
932                         mapping = page_mapping(page);
933                 }
934
935                 /*
936                  * The page is mapped into the page tables of one or more
937                  * processes. Try to unmap it here.
938                  */
939                 if (page_mapped(page) && mapping) {
940                         switch (try_to_unmap(page, ttu_flags)) {
941                         case SWAP_FAIL:
942                                 goto activate_locked;
943                         case SWAP_AGAIN:
944                                 goto keep_locked;
945                         case SWAP_MLOCK:
946                                 goto cull_mlocked;
947                         case SWAP_SUCCESS:
948                                 ; /* try to free the page below */
949                         }
950                 }
951
952                 if (PageDirty(page)) {
953                         /*
954                          * Only kswapd can writeback filesystem pages to
955                          * avoid risk of stack overflow but only writeback
956                          * if many dirty pages have been encountered.
957                          */
958                         if (page_is_file_cache(page) &&
959                                         (!current_is_kswapd() ||
960                                          !zone_is_reclaim_dirty(zone))) {
961                                 /*
962                                  * Immediately reclaim when written back.
963                                  * Similar in principal to deactivate_page()
964                                  * except we already have the page isolated
965                                  * and know it's dirty
966                                  */
967                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
968                                 SetPageReclaim(page);
969
970                                 goto keep_locked;
971                         }
972
973                         if (references == PAGEREF_RECLAIM_CLEAN)
974                                 goto keep_locked;
975                         if (!may_enter_fs)
976                                 goto keep_locked;
977                         if (!sc->may_writepage)
978                                 goto keep_locked;
979
980                         /* Page is dirty, try to write it out here */
981                         switch (pageout(page, mapping, sc)) {
982                         case PAGE_KEEP:
983                                 goto keep_locked;
984                         case PAGE_ACTIVATE:
985                                 goto activate_locked;
986                         case PAGE_SUCCESS:
987                                 if (PageWriteback(page))
988                                         goto keep;
989                                 if (PageDirty(page))
990                                         goto keep;
991
992                                 /*
993                                  * A synchronous write - probably a ramdisk.  Go
994                                  * ahead and try to reclaim the page.
995                                  */
996                                 if (!trylock_page(page))
997                                         goto keep;
998                                 if (PageDirty(page) || PageWriteback(page))
999                                         goto keep_locked;
1000                                 mapping = page_mapping(page);
1001                         case PAGE_CLEAN:
1002                                 ; /* try to free the page below */
1003                         }
1004                 }
1005
1006                 /*
1007                  * If the page has buffers, try to free the buffer mappings
1008                  * associated with this page. If we succeed we try to free
1009                  * the page as well.
1010                  *
1011                  * We do this even if the page is PageDirty().
1012                  * try_to_release_page() does not perform I/O, but it is
1013                  * possible for a page to have PageDirty set, but it is actually
1014                  * clean (all its buffers are clean).  This happens if the
1015                  * buffers were written out directly, with submit_bh(). ext3
1016                  * will do this, as well as the blockdev mapping.
1017                  * try_to_release_page() will discover that cleanness and will
1018                  * drop the buffers and mark the page clean - it can be freed.
1019                  *
1020                  * Rarely, pages can have buffers and no ->mapping.  These are
1021                  * the pages which were not successfully invalidated in
1022                  * truncate_complete_page().  We try to drop those buffers here
1023                  * and if that worked, and the page is no longer mapped into
1024                  * process address space (page_count == 1) it can be freed.
1025                  * Otherwise, leave the page on the LRU so it is swappable.
1026                  */
1027                 if (page_has_private(page)) {
1028                         if (!try_to_release_page(page, sc->gfp_mask))
1029                                 goto activate_locked;
1030                         if (!mapping && page_count(page) == 1) {
1031                                 unlock_page(page);
1032                                 if (put_page_testzero(page))
1033                                         goto free_it;
1034                                 else {
1035                                         /*
1036                                          * rare race with speculative reference.
1037                                          * the speculative reference will free
1038                                          * this page shortly, so we may
1039                                          * increment nr_reclaimed here (and
1040                                          * leave it off the LRU).
1041                                          */
1042                                         nr_reclaimed++;
1043                                         continue;
1044                                 }
1045                         }
1046                 }
1047
1048                 if (!mapping || !__remove_mapping(mapping, page))
1049                         goto keep_locked;
1050
1051                 /*
1052                  * At this point, we have no other references and there is
1053                  * no way to pick any more up (removed from LRU, removed
1054                  * from pagecache). Can use non-atomic bitops now (and
1055                  * we obviously don't have to worry about waking up a process
1056                  * waiting on the page lock, because there are no references.
1057                  */
1058                 __clear_page_locked(page);
1059 free_it:
1060                 nr_reclaimed++;
1061
1062                 /*
1063                  * Is there need to periodically free_page_list? It would
1064                  * appear not as the counts should be low
1065                  */
1066                 list_add(&page->lru, &free_pages);
1067                 continue;
1068
1069 cull_mlocked:
1070                 if (PageSwapCache(page))
1071                         try_to_free_swap(page);
1072                 unlock_page(page);
1073                 putback_lru_page(page);
1074                 continue;
1075
1076 activate_locked:
1077                 /* Not a candidate for swapping, so reclaim swap space. */
1078                 if (PageSwapCache(page) && vm_swap_full())
1079                         try_to_free_swap(page);
1080                 VM_BUG_ON(PageActive(page));
1081                 SetPageActive(page);
1082                 pgactivate++;
1083 keep_locked:
1084                 unlock_page(page);
1085 keep:
1086                 list_add(&page->lru, &ret_pages);
1087                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1088         }
1089
1090         free_hot_cold_page_list(&free_pages, 1);
1091
1092         list_splice(&ret_pages, page_list);
1093         count_vm_events(PGACTIVATE, pgactivate);
1094         mem_cgroup_uncharge_end();
1095         *ret_nr_dirty += nr_dirty;
1096         *ret_nr_congested += nr_congested;
1097         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1098         *ret_nr_writeback += nr_writeback;
1099         *ret_nr_immediate += nr_immediate;
1100         return nr_reclaimed;
1101 }
1102
1103 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1104                                             struct list_head *page_list)
1105 {
1106         struct scan_control sc = {
1107                 .gfp_mask = GFP_KERNEL,
1108                 .priority = DEF_PRIORITY,
1109                 .may_unmap = 1,
1110         };
1111         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1112         struct page *page, *next;
1113         LIST_HEAD(clean_pages);
1114
1115         list_for_each_entry_safe(page, next, page_list, lru) {
1116                 if (page_is_file_cache(page) && !PageDirty(page)) {
1117                         ClearPageActive(page);
1118                         list_move(&page->lru, &clean_pages);
1119                 }
1120         }
1121
1122         ret = shrink_page_list(&clean_pages, zone, &sc,
1123                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1124                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1125         list_splice(&clean_pages, page_list);
1126         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1127         return ret;
1128 }
1129
1130 /*
1131  * Attempt to remove the specified page from its LRU.  Only take this page
1132  * if it is of the appropriate PageActive status.  Pages which are being
1133  * freed elsewhere are also ignored.
1134  *
1135  * page:        page to consider
1136  * mode:        one of the LRU isolation modes defined above
1137  *
1138  * returns 0 on success, -ve errno on failure.
1139  */
1140 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1141 {
1142         int ret = -EINVAL;
1143
1144         /* Only take pages on the LRU. */
1145         if (!PageLRU(page))
1146                 return ret;
1147
1148         /* Compaction should not handle unevictable pages but CMA can do so */
1149         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1150                 return ret;
1151
1152         ret = -EBUSY;
1153
1154         /*
1155          * To minimise LRU disruption, the caller can indicate that it only
1156          * wants to isolate pages it will be able to operate on without
1157          * blocking - clean pages for the most part.
1158          *
1159          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1160          * is used by reclaim when it is cannot write to backing storage
1161          *
1162          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1163          * that it is possible to migrate without blocking
1164          */
1165         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1166                 /* All the caller can do on PageWriteback is block */
1167                 if (PageWriteback(page))
1168                         return ret;
1169
1170                 if (PageDirty(page)) {
1171                         struct address_space *mapping;
1172
1173                         /* ISOLATE_CLEAN means only clean pages */
1174                         if (mode & ISOLATE_CLEAN)
1175                                 return ret;
1176
1177                         /*
1178                          * Only pages without mappings or that have a
1179                          * ->migratepage callback are possible to migrate
1180                          * without blocking
1181                          */
1182                         mapping = page_mapping(page);
1183                         if (mapping && !mapping->a_ops->migratepage)
1184                                 return ret;
1185                 }
1186         }
1187
1188         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1189                 return ret;
1190
1191         if (likely(get_page_unless_zero(page))) {
1192                 /*
1193                  * Be careful not to clear PageLRU until after we're
1194                  * sure the page is not being freed elsewhere -- the
1195                  * page release code relies on it.
1196                  */
1197                 ClearPageLRU(page);
1198                 ret = 0;
1199         }
1200
1201         return ret;
1202 }
1203
1204 /*
1205  * zone->lru_lock is heavily contended.  Some of the functions that
1206  * shrink the lists perform better by taking out a batch of pages
1207  * and working on them outside the LRU lock.
1208  *
1209  * For pagecache intensive workloads, this function is the hottest
1210  * spot in the kernel (apart from copy_*_user functions).
1211  *
1212  * Appropriate locks must be held before calling this function.
1213  *
1214  * @nr_to_scan: The number of pages to look through on the list.
1215  * @lruvec:     The LRU vector to pull pages from.
1216  * @dst:        The temp list to put pages on to.
1217  * @nr_scanned: The number of pages that were scanned.
1218  * @sc:         The scan_control struct for this reclaim session
1219  * @mode:       One of the LRU isolation modes
1220  * @lru:        LRU list id for isolating
1221  *
1222  * returns how many pages were moved onto *@dst.
1223  */
1224 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1225                 struct lruvec *lruvec, struct list_head *dst,
1226                 unsigned long *nr_scanned, struct scan_control *sc,
1227                 isolate_mode_t mode, enum lru_list lru)
1228 {
1229         struct list_head *src = &lruvec->lists[lru];
1230         unsigned long nr_taken = 0;
1231         unsigned long scan;
1232
1233         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1234                 struct page *page;
1235                 int nr_pages;
1236
1237                 page = lru_to_page(src);
1238                 prefetchw_prev_lru_page(page, src, flags);
1239
1240                 VM_BUG_ON(!PageLRU(page));
1241
1242                 switch (__isolate_lru_page(page, mode)) {
1243                 case 0:
1244                         nr_pages = hpage_nr_pages(page);
1245                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1246                         list_move(&page->lru, dst);
1247                         nr_taken += nr_pages;
1248                         break;
1249
1250                 case -EBUSY:
1251                         /* else it is being freed elsewhere */
1252                         list_move(&page->lru, src);
1253                         continue;
1254
1255                 default:
1256                         BUG();
1257                 }
1258         }
1259
1260         *nr_scanned = scan;
1261         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1262                                     nr_taken, mode, is_file_lru(lru));
1263         return nr_taken;
1264 }
1265
1266 /**
1267  * isolate_lru_page - tries to isolate a page from its LRU list
1268  * @page: page to isolate from its LRU list
1269  *
1270  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1271  * vmstat statistic corresponding to whatever LRU list the page was on.
1272  *
1273  * Returns 0 if the page was removed from an LRU list.
1274  * Returns -EBUSY if the page was not on an LRU list.
1275  *
1276  * The returned page will have PageLRU() cleared.  If it was found on
1277  * the active list, it will have PageActive set.  If it was found on
1278  * the unevictable list, it will have the PageUnevictable bit set. That flag
1279  * may need to be cleared by the caller before letting the page go.
1280  *
1281  * The vmstat statistic corresponding to the list on which the page was
1282  * found will be decremented.
1283  *
1284  * Restrictions:
1285  * (1) Must be called with an elevated refcount on the page. This is a
1286  *     fundamentnal difference from isolate_lru_pages (which is called
1287  *     without a stable reference).
1288  * (2) the lru_lock must not be held.
1289  * (3) interrupts must be enabled.
1290  */
1291 int isolate_lru_page(struct page *page)
1292 {
1293         int ret = -EBUSY;
1294
1295         VM_BUG_ON(!page_count(page));
1296
1297         if (PageLRU(page)) {
1298                 struct zone *zone = page_zone(page);
1299                 struct lruvec *lruvec;
1300
1301                 spin_lock_irq(&zone->lru_lock);
1302                 lruvec = mem_cgroup_page_lruvec(page, zone);
1303                 if (PageLRU(page)) {
1304                         int lru = page_lru(page);
1305                         get_page(page);
1306                         ClearPageLRU(page);
1307                         del_page_from_lru_list(page, lruvec, lru);
1308                         ret = 0;
1309                 }
1310                 spin_unlock_irq(&zone->lru_lock);
1311         }
1312         return ret;
1313 }
1314
1315 /*
1316  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1317  * then get resheduled. When there are massive number of tasks doing page
1318  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1319  * the LRU list will go small and be scanned faster than necessary, leading to
1320  * unnecessary swapping, thrashing and OOM.
1321  */
1322 static int too_many_isolated(struct zone *zone, int file,
1323                 struct scan_control *sc)
1324 {
1325         unsigned long inactive, isolated;
1326
1327         if (current_is_kswapd())
1328                 return 0;
1329
1330         if (!global_reclaim(sc))
1331                 return 0;
1332
1333         if (file) {
1334                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1335                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1336         } else {
1337                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1338                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1339         }
1340
1341         /*
1342          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1343          * won't get blocked by normal direct-reclaimers, forming a circular
1344          * deadlock.
1345          */
1346         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1347                 inactive >>= 3;
1348
1349         return isolated > inactive;
1350 }
1351
1352 static noinline_for_stack void
1353 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1354 {
1355         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1356         struct zone *zone = lruvec_zone(lruvec);
1357         LIST_HEAD(pages_to_free);
1358
1359         /*
1360          * Put back any unfreeable pages.
1361          */
1362         while (!list_empty(page_list)) {
1363                 struct page *page = lru_to_page(page_list);
1364                 int lru;
1365
1366                 VM_BUG_ON(PageLRU(page));
1367                 list_del(&page->lru);
1368                 if (unlikely(!page_evictable(page))) {
1369                         spin_unlock_irq(&zone->lru_lock);
1370                         putback_lru_page(page);
1371                         spin_lock_irq(&zone->lru_lock);
1372                         continue;
1373                 }
1374
1375                 lruvec = mem_cgroup_page_lruvec(page, zone);
1376
1377                 SetPageLRU(page);
1378                 lru = page_lru(page);
1379                 add_page_to_lru_list(page, lruvec, lru);
1380
1381                 if (is_active_lru(lru)) {
1382                         int file = is_file_lru(lru);
1383                         int numpages = hpage_nr_pages(page);
1384                         reclaim_stat->recent_rotated[file] += numpages;
1385                 }
1386                 if (put_page_testzero(page)) {
1387                         __ClearPageLRU(page);
1388                         __ClearPageActive(page);
1389                         del_page_from_lru_list(page, lruvec, lru);
1390
1391                         if (unlikely(PageCompound(page))) {
1392                                 spin_unlock_irq(&zone->lru_lock);
1393                                 (*get_compound_page_dtor(page))(page);
1394                                 spin_lock_irq(&zone->lru_lock);
1395                         } else
1396                                 list_add(&page->lru, &pages_to_free);
1397                 }
1398         }
1399
1400         /*
1401          * To save our caller's stack, now use input list for pages to free.
1402          */
1403         list_splice(&pages_to_free, page_list);
1404 }
1405
1406 /*
1407  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1408  * of reclaimed pages
1409  */
1410 static noinline_for_stack unsigned long
1411 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1412                      struct scan_control *sc, enum lru_list lru)
1413 {
1414         LIST_HEAD(page_list);
1415         unsigned long nr_scanned;
1416         unsigned long nr_reclaimed = 0;
1417         unsigned long nr_taken;
1418         unsigned long nr_dirty = 0;
1419         unsigned long nr_congested = 0;
1420         unsigned long nr_unqueued_dirty = 0;
1421         unsigned long nr_writeback = 0;
1422         unsigned long nr_immediate = 0;
1423         isolate_mode_t isolate_mode = 0;
1424         int file = is_file_lru(lru);
1425         struct zone *zone = lruvec_zone(lruvec);
1426         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1427
1428         while (unlikely(too_many_isolated(zone, file, sc))) {
1429                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1430
1431                 /* We are about to die and free our memory. Return now. */
1432                 if (fatal_signal_pending(current))
1433                         return SWAP_CLUSTER_MAX;
1434         }
1435
1436         lru_add_drain();
1437
1438         if (!sc->may_unmap)
1439                 isolate_mode |= ISOLATE_UNMAPPED;
1440         if (!sc->may_writepage)
1441                 isolate_mode |= ISOLATE_CLEAN;
1442
1443         spin_lock_irq(&zone->lru_lock);
1444
1445         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1446                                      &nr_scanned, sc, isolate_mode, lru);
1447
1448         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1449         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1450
1451         if (global_reclaim(sc)) {
1452                 zone->pages_scanned += nr_scanned;
1453                 if (current_is_kswapd())
1454                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1455                 else
1456                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1457         }
1458         spin_unlock_irq(&zone->lru_lock);
1459
1460         if (nr_taken == 0)
1461                 return 0;
1462
1463         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1464                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1465                                 &nr_writeback, &nr_immediate,
1466                                 false);
1467
1468         spin_lock_irq(&zone->lru_lock);
1469
1470         reclaim_stat->recent_scanned[file] += nr_taken;
1471
1472         if (global_reclaim(sc)) {
1473                 if (current_is_kswapd())
1474                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1475                                                nr_reclaimed);
1476                 else
1477                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1478                                                nr_reclaimed);
1479         }
1480
1481         putback_inactive_pages(lruvec, &page_list);
1482
1483         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1484
1485         spin_unlock_irq(&zone->lru_lock);
1486
1487         free_hot_cold_page_list(&page_list, 1);
1488
1489         /*
1490          * If reclaim is isolating dirty pages under writeback, it implies
1491          * that the long-lived page allocation rate is exceeding the page
1492          * laundering rate. Either the global limits are not being effective
1493          * at throttling processes due to the page distribution throughout
1494          * zones or there is heavy usage of a slow backing device. The
1495          * only option is to throttle from reclaim context which is not ideal
1496          * as there is no guarantee the dirtying process is throttled in the
1497          * same way balance_dirty_pages() manages.
1498          *
1499          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1500          * of pages under pages flagged for immediate reclaim and stall if any
1501          * are encountered in the nr_immediate check below.
1502          */
1503         if (nr_writeback && nr_writeback == nr_taken)
1504                 zone_set_flag(zone, ZONE_WRITEBACK);
1505
1506         /*
1507          * memcg will stall in page writeback so only consider forcibly
1508          * stalling for global reclaim
1509          */
1510         if (global_reclaim(sc)) {
1511                 /*
1512                  * Tag a zone as congested if all the dirty pages scanned were
1513                  * backed by a congested BDI and wait_iff_congested will stall.
1514                  */
1515                 if (nr_dirty && nr_dirty == nr_congested)
1516                         zone_set_flag(zone, ZONE_CONGESTED);
1517
1518                 /*
1519                  * If dirty pages are scanned that are not queued for IO, it
1520                  * implies that flushers are not keeping up. In this case, flag
1521                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1522                  * pages from reclaim context. It will forcibly stall in the
1523                  * next check.
1524                  */
1525                 if (nr_unqueued_dirty == nr_taken)
1526                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1527
1528                 /*
1529                  * In addition, if kswapd scans pages marked marked for
1530                  * immediate reclaim and under writeback (nr_immediate), it
1531                  * implies that pages are cycling through the LRU faster than
1532                  * they are written so also forcibly stall.
1533                  */
1534                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1535                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1536         }
1537
1538         /*
1539          * Stall direct reclaim for IO completions if underlying BDIs or zone
1540          * is congested. Allow kswapd to continue until it starts encountering
1541          * unqueued dirty pages or cycling through the LRU too quickly.
1542          */
1543         if (!sc->hibernation_mode && !current_is_kswapd())
1544                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1545
1546         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1547                 zone_idx(zone),
1548                 nr_scanned, nr_reclaimed,
1549                 sc->priority,
1550                 trace_shrink_flags(file));
1551         return nr_reclaimed;
1552 }
1553
1554 /*
1555  * This moves pages from the active list to the inactive list.
1556  *
1557  * We move them the other way if the page is referenced by one or more
1558  * processes, from rmap.
1559  *
1560  * If the pages are mostly unmapped, the processing is fast and it is
1561  * appropriate to hold zone->lru_lock across the whole operation.  But if
1562  * the pages are mapped, the processing is slow (page_referenced()) so we
1563  * should drop zone->lru_lock around each page.  It's impossible to balance
1564  * this, so instead we remove the pages from the LRU while processing them.
1565  * It is safe to rely on PG_active against the non-LRU pages in here because
1566  * nobody will play with that bit on a non-LRU page.
1567  *
1568  * The downside is that we have to touch page->_count against each page.
1569  * But we had to alter page->flags anyway.
1570  */
1571
1572 static void move_active_pages_to_lru(struct lruvec *lruvec,
1573                                      struct list_head *list,
1574                                      struct list_head *pages_to_free,
1575                                      enum lru_list lru)
1576 {
1577         struct zone *zone = lruvec_zone(lruvec);
1578         unsigned long pgmoved = 0;
1579         struct page *page;
1580         int nr_pages;
1581
1582         while (!list_empty(list)) {
1583                 page = lru_to_page(list);
1584                 lruvec = mem_cgroup_page_lruvec(page, zone);
1585
1586                 VM_BUG_ON(PageLRU(page));
1587                 SetPageLRU(page);
1588
1589                 nr_pages = hpage_nr_pages(page);
1590                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1591                 list_move(&page->lru, &lruvec->lists[lru]);
1592                 pgmoved += nr_pages;
1593
1594                 if (put_page_testzero(page)) {
1595                         __ClearPageLRU(page);
1596                         __ClearPageActive(page);
1597                         del_page_from_lru_list(page, lruvec, lru);
1598
1599                         if (unlikely(PageCompound(page))) {
1600                                 spin_unlock_irq(&zone->lru_lock);
1601                                 (*get_compound_page_dtor(page))(page);
1602                                 spin_lock_irq(&zone->lru_lock);
1603                         } else
1604                                 list_add(&page->lru, pages_to_free);
1605                 }
1606         }
1607         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1608         if (!is_active_lru(lru))
1609                 __count_vm_events(PGDEACTIVATE, pgmoved);
1610 }
1611
1612 static void shrink_active_list(unsigned long nr_to_scan,
1613                                struct lruvec *lruvec,
1614                                struct scan_control *sc,
1615                                enum lru_list lru)
1616 {
1617         unsigned long nr_taken;
1618         unsigned long nr_scanned;
1619         unsigned long vm_flags;
1620         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1621         LIST_HEAD(l_active);
1622         LIST_HEAD(l_inactive);
1623         struct page *page;
1624         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1625         unsigned long nr_rotated = 0;
1626         isolate_mode_t isolate_mode = 0;
1627         int file = is_file_lru(lru);
1628         struct zone *zone = lruvec_zone(lruvec);
1629
1630         lru_add_drain();
1631
1632         if (!sc->may_unmap)
1633                 isolate_mode |= ISOLATE_UNMAPPED;
1634         if (!sc->may_writepage)
1635                 isolate_mode |= ISOLATE_CLEAN;
1636
1637         spin_lock_irq(&zone->lru_lock);
1638
1639         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1640                                      &nr_scanned, sc, isolate_mode, lru);
1641         if (global_reclaim(sc))
1642                 zone->pages_scanned += nr_scanned;
1643
1644         reclaim_stat->recent_scanned[file] += nr_taken;
1645
1646         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1647         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1648         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1649         spin_unlock_irq(&zone->lru_lock);
1650
1651         while (!list_empty(&l_hold)) {
1652                 cond_resched();
1653                 page = lru_to_page(&l_hold);
1654                 list_del(&page->lru);
1655
1656                 if (unlikely(!page_evictable(page))) {
1657                         putback_lru_page(page);
1658                         continue;
1659                 }
1660
1661                 if (unlikely(buffer_heads_over_limit)) {
1662                         if (page_has_private(page) && trylock_page(page)) {
1663                                 if (page_has_private(page))
1664                                         try_to_release_page(page, 0);
1665                                 unlock_page(page);
1666                         }
1667                 }
1668
1669                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1670                                     &vm_flags)) {
1671                         nr_rotated += hpage_nr_pages(page);
1672                         /*
1673                          * Identify referenced, file-backed active pages and
1674                          * give them one more trip around the active list. So
1675                          * that executable code get better chances to stay in
1676                          * memory under moderate memory pressure.  Anon pages
1677                          * are not likely to be evicted by use-once streaming
1678                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1679                          * so we ignore them here.
1680                          */
1681                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1682                                 list_add(&page->lru, &l_active);
1683                                 continue;
1684                         }
1685                 }
1686
1687                 ClearPageActive(page);  /* we are de-activating */
1688                 list_add(&page->lru, &l_inactive);
1689         }
1690
1691         /*
1692          * Move pages back to the lru list.
1693          */
1694         spin_lock_irq(&zone->lru_lock);
1695         /*
1696          * Count referenced pages from currently used mappings as rotated,
1697          * even though only some of them are actually re-activated.  This
1698          * helps balance scan pressure between file and anonymous pages in
1699          * get_scan_ratio.
1700          */
1701         reclaim_stat->recent_rotated[file] += nr_rotated;
1702
1703         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1704         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1705         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1706         spin_unlock_irq(&zone->lru_lock);
1707
1708         free_hot_cold_page_list(&l_hold, 1);
1709 }
1710
1711 #ifdef CONFIG_SWAP
1712 static int inactive_anon_is_low_global(struct zone *zone)
1713 {
1714         unsigned long active, inactive;
1715
1716         active = zone_page_state(zone, NR_ACTIVE_ANON);
1717         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1718
1719         if (inactive * zone->inactive_ratio < active)
1720                 return 1;
1721
1722         return 0;
1723 }
1724
1725 /**
1726  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1727  * @lruvec: LRU vector to check
1728  *
1729  * Returns true if the zone does not have enough inactive anon pages,
1730  * meaning some active anon pages need to be deactivated.
1731  */
1732 static int inactive_anon_is_low(struct lruvec *lruvec)
1733 {
1734         /*
1735          * If we don't have swap space, anonymous page deactivation
1736          * is pointless.
1737          */
1738         if (!total_swap_pages)
1739                 return 0;
1740
1741         if (!mem_cgroup_disabled())
1742                 return mem_cgroup_inactive_anon_is_low(lruvec);
1743
1744         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1745 }
1746 #else
1747 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1748 {
1749         return 0;
1750 }
1751 #endif
1752
1753 /**
1754  * inactive_file_is_low - check if file pages need to be deactivated
1755  * @lruvec: LRU vector to check
1756  *
1757  * When the system is doing streaming IO, memory pressure here
1758  * ensures that active file pages get deactivated, until more
1759  * than half of the file pages are on the inactive list.
1760  *
1761  * Once we get to that situation, protect the system's working
1762  * set from being evicted by disabling active file page aging.
1763  *
1764  * This uses a different ratio than the anonymous pages, because
1765  * the page cache uses a use-once replacement algorithm.
1766  */
1767 static int inactive_file_is_low(struct lruvec *lruvec)
1768 {
1769         unsigned long inactive;
1770         unsigned long active;
1771
1772         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1773         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1774
1775         return active > inactive;
1776 }
1777
1778 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1779 {
1780         if (is_file_lru(lru))
1781                 return inactive_file_is_low(lruvec);
1782         else
1783                 return inactive_anon_is_low(lruvec);
1784 }
1785
1786 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1787                                  struct lruvec *lruvec, struct scan_control *sc)
1788 {
1789         if (is_active_lru(lru)) {
1790                 if (inactive_list_is_low(lruvec, lru))
1791                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1792                 return 0;
1793         }
1794
1795         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1796 }
1797
1798 static int vmscan_swappiness(struct scan_control *sc)
1799 {
1800         if (global_reclaim(sc))
1801                 return vm_swappiness;
1802         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1803 }
1804
1805 enum scan_balance {
1806         SCAN_EQUAL,
1807         SCAN_FRACT,
1808         SCAN_ANON,
1809         SCAN_FILE,
1810 };
1811
1812 /*
1813  * Determine how aggressively the anon and file LRU lists should be
1814  * scanned.  The relative value of each set of LRU lists is determined
1815  * by looking at the fraction of the pages scanned we did rotate back
1816  * onto the active list instead of evict.
1817  *
1818  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1819  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1820  */
1821 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1822                            unsigned long *nr)
1823 {
1824         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1825         u64 fraction[2];
1826         u64 denominator = 0;    /* gcc */
1827         struct zone *zone = lruvec_zone(lruvec);
1828         unsigned long anon_prio, file_prio;
1829         enum scan_balance scan_balance;
1830         unsigned long anon, file, free;
1831         bool force_scan = false;
1832         unsigned long ap, fp;
1833         enum lru_list lru;
1834
1835         /*
1836          * If the zone or memcg is small, nr[l] can be 0.  This
1837          * results in no scanning on this priority and a potential
1838          * priority drop.  Global direct reclaim can go to the next
1839          * zone and tends to have no problems. Global kswapd is for
1840          * zone balancing and it needs to scan a minimum amount. When
1841          * reclaiming for a memcg, a priority drop can cause high
1842          * latencies, so it's better to scan a minimum amount there as
1843          * well.
1844          */
1845         if (current_is_kswapd() && !zone_reclaimable(zone))
1846                 force_scan = true;
1847         if (!global_reclaim(sc))
1848                 force_scan = true;
1849
1850         /* If we have no swap space, do not bother scanning anon pages. */
1851         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1852                 scan_balance = SCAN_FILE;
1853                 goto out;
1854         }
1855
1856         /*
1857          * Global reclaim will swap to prevent OOM even with no
1858          * swappiness, but memcg users want to use this knob to
1859          * disable swapping for individual groups completely when
1860          * using the memory controller's swap limit feature would be
1861          * too expensive.
1862          */
1863         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1864                 scan_balance = SCAN_FILE;
1865                 goto out;
1866         }
1867
1868         /*
1869          * Do not apply any pressure balancing cleverness when the
1870          * system is close to OOM, scan both anon and file equally
1871          * (unless the swappiness setting disagrees with swapping).
1872          */
1873         if (!sc->priority && vmscan_swappiness(sc)) {
1874                 scan_balance = SCAN_EQUAL;
1875                 goto out;
1876         }
1877
1878         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1879                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1880         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1881                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1882
1883         /*
1884          * If it's foreseeable that reclaiming the file cache won't be
1885          * enough to get the zone back into a desirable shape, we have
1886          * to swap.  Better start now and leave the - probably heavily
1887          * thrashing - remaining file pages alone.
1888          */
1889         if (global_reclaim(sc)) {
1890                 free = zone_page_state(zone, NR_FREE_PAGES);
1891                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1892                         scan_balance = SCAN_ANON;
1893                         goto out;
1894                 }
1895         }
1896
1897         /*
1898          * There is enough inactive page cache, do not reclaim
1899          * anything from the anonymous working set right now.
1900          */
1901         if (!inactive_file_is_low(lruvec)) {
1902                 scan_balance = SCAN_FILE;
1903                 goto out;
1904         }
1905
1906         scan_balance = SCAN_FRACT;
1907
1908         /*
1909          * With swappiness at 100, anonymous and file have the same priority.
1910          * This scanning priority is essentially the inverse of IO cost.
1911          */
1912         anon_prio = vmscan_swappiness(sc);
1913         file_prio = 200 - anon_prio;
1914
1915         /*
1916          * OK, so we have swap space and a fair amount of page cache
1917          * pages.  We use the recently rotated / recently scanned
1918          * ratios to determine how valuable each cache is.
1919          *
1920          * Because workloads change over time (and to avoid overflow)
1921          * we keep these statistics as a floating average, which ends
1922          * up weighing recent references more than old ones.
1923          *
1924          * anon in [0], file in [1]
1925          */
1926         spin_lock_irq(&zone->lru_lock);
1927         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1928                 reclaim_stat->recent_scanned[0] /= 2;
1929                 reclaim_stat->recent_rotated[0] /= 2;
1930         }
1931
1932         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1933                 reclaim_stat->recent_scanned[1] /= 2;
1934                 reclaim_stat->recent_rotated[1] /= 2;
1935         }
1936
1937         /*
1938          * The amount of pressure on anon vs file pages is inversely
1939          * proportional to the fraction of recently scanned pages on
1940          * each list that were recently referenced and in active use.
1941          */
1942         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1943         ap /= reclaim_stat->recent_rotated[0] + 1;
1944
1945         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1946         fp /= reclaim_stat->recent_rotated[1] + 1;
1947         spin_unlock_irq(&zone->lru_lock);
1948
1949         fraction[0] = ap;
1950         fraction[1] = fp;
1951         denominator = ap + fp + 1;
1952 out:
1953         for_each_evictable_lru(lru) {
1954                 int file = is_file_lru(lru);
1955                 unsigned long size;
1956                 unsigned long scan;
1957
1958                 size = get_lru_size(lruvec, lru);
1959                 scan = size >> sc->priority;
1960
1961                 if (!scan && force_scan)
1962                         scan = min(size, SWAP_CLUSTER_MAX);
1963
1964                 switch (scan_balance) {
1965                 case SCAN_EQUAL:
1966                         /* Scan lists relative to size */
1967                         break;
1968                 case SCAN_FRACT:
1969                         /*
1970                          * Scan types proportional to swappiness and
1971                          * their relative recent reclaim efficiency.
1972                          */
1973                         scan = div64_u64(scan * fraction[file], denominator);
1974                         break;
1975                 case SCAN_FILE:
1976                 case SCAN_ANON:
1977                         /* Scan one type exclusively */
1978                         if ((scan_balance == SCAN_FILE) != file)
1979                                 scan = 0;
1980                         break;
1981                 default:
1982                         /* Look ma, no brain */
1983                         BUG();
1984                 }
1985                 nr[lru] = scan;
1986         }
1987 }
1988
1989 /*
1990  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1991  */
1992 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1993 {
1994         unsigned long nr[NR_LRU_LISTS];
1995         unsigned long targets[NR_LRU_LISTS];
1996         unsigned long nr_to_scan;
1997         enum lru_list lru;
1998         unsigned long nr_reclaimed = 0;
1999         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2000         struct blk_plug plug;
2001         bool scan_adjusted = false;
2002
2003         get_scan_count(lruvec, sc, nr);
2004
2005         /* Record the original scan target for proportional adjustments later */
2006         memcpy(targets, nr, sizeof(nr));
2007
2008         blk_start_plug(&plug);
2009         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2010                                         nr[LRU_INACTIVE_FILE]) {
2011                 unsigned long nr_anon, nr_file, percentage;
2012                 unsigned long nr_scanned;
2013
2014                 for_each_evictable_lru(lru) {
2015                         if (nr[lru]) {
2016                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2017                                 nr[lru] -= nr_to_scan;
2018
2019                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2020                                                             lruvec, sc);
2021                         }
2022                 }
2023
2024                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2025                         continue;
2026
2027                 /*
2028                  * For global direct reclaim, reclaim only the number of pages
2029                  * requested. Less care is taken to scan proportionally as it
2030                  * is more important to minimise direct reclaim stall latency
2031                  * than it is to properly age the LRU lists.
2032                  */
2033                 if (global_reclaim(sc) && !current_is_kswapd())
2034                         break;
2035
2036                 /*
2037                  * For kswapd and memcg, reclaim at least the number of pages
2038                  * requested. Ensure that the anon and file LRUs shrink
2039                  * proportionally what was requested by get_scan_count(). We
2040                  * stop reclaiming one LRU and reduce the amount scanning
2041                  * proportional to the original scan target.
2042                  */
2043                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2044                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2045
2046                 if (nr_file > nr_anon) {
2047                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2048                                                 targets[LRU_ACTIVE_ANON] + 1;
2049                         lru = LRU_BASE;
2050                         percentage = nr_anon * 100 / scan_target;
2051                 } else {
2052                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2053                                                 targets[LRU_ACTIVE_FILE] + 1;
2054                         lru = LRU_FILE;
2055                         percentage = nr_file * 100 / scan_target;
2056                 }
2057
2058                 /* Stop scanning the smaller of the LRU */
2059                 nr[lru] = 0;
2060                 nr[lru + LRU_ACTIVE] = 0;
2061
2062                 /*
2063                  * Recalculate the other LRU scan count based on its original
2064                  * scan target and the percentage scanning already complete
2065                  */
2066                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2067                 nr_scanned = targets[lru] - nr[lru];
2068                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2069                 nr[lru] -= min(nr[lru], nr_scanned);
2070
2071                 lru += LRU_ACTIVE;
2072                 nr_scanned = targets[lru] - nr[lru];
2073                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2074                 nr[lru] -= min(nr[lru], nr_scanned);
2075
2076                 scan_adjusted = true;
2077         }
2078         blk_finish_plug(&plug);
2079         sc->nr_reclaimed += nr_reclaimed;
2080
2081         /*
2082          * Even if we did not try to evict anon pages at all, we want to
2083          * rebalance the anon lru active/inactive ratio.
2084          */
2085         if (inactive_anon_is_low(lruvec))
2086                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2087                                    sc, LRU_ACTIVE_ANON);
2088
2089         throttle_vm_writeout(sc->gfp_mask);
2090 }
2091
2092 /* Use reclaim/compaction for costly allocs or under memory pressure */
2093 static bool in_reclaim_compaction(struct scan_control *sc)
2094 {
2095         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2096                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2097                          sc->priority < DEF_PRIORITY - 2))
2098                 return true;
2099
2100         return false;
2101 }
2102
2103 /*
2104  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2105  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2106  * true if more pages should be reclaimed such that when the page allocator
2107  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2108  * It will give up earlier than that if there is difficulty reclaiming pages.
2109  */
2110 static inline bool should_continue_reclaim(struct zone *zone,
2111                                         unsigned long nr_reclaimed,
2112                                         unsigned long nr_scanned,
2113                                         struct scan_control *sc)
2114 {
2115         unsigned long pages_for_compaction;
2116         unsigned long inactive_lru_pages;
2117
2118         /* If not in reclaim/compaction mode, stop */
2119         if (!in_reclaim_compaction(sc))
2120                 return false;
2121
2122         /* Consider stopping depending on scan and reclaim activity */
2123         if (sc->gfp_mask & __GFP_REPEAT) {
2124                 /*
2125                  * For __GFP_REPEAT allocations, stop reclaiming if the
2126                  * full LRU list has been scanned and we are still failing
2127                  * to reclaim pages. This full LRU scan is potentially
2128                  * expensive but a __GFP_REPEAT caller really wants to succeed
2129                  */
2130                 if (!nr_reclaimed && !nr_scanned)
2131                         return false;
2132         } else {
2133                 /*
2134                  * For non-__GFP_REPEAT allocations which can presumably
2135                  * fail without consequence, stop if we failed to reclaim
2136                  * any pages from the last SWAP_CLUSTER_MAX number of
2137                  * pages that were scanned. This will return to the
2138                  * caller faster at the risk reclaim/compaction and
2139                  * the resulting allocation attempt fails
2140                  */
2141                 if (!nr_reclaimed)
2142                         return false;
2143         }
2144
2145         /*
2146          * If we have not reclaimed enough pages for compaction and the
2147          * inactive lists are large enough, continue reclaiming
2148          */
2149         pages_for_compaction = (2UL << sc->order);
2150         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2151         if (get_nr_swap_pages() > 0)
2152                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2153         if (sc->nr_reclaimed < pages_for_compaction &&
2154                         inactive_lru_pages > pages_for_compaction)
2155                 return true;
2156
2157         /* If compaction would go ahead or the allocation would succeed, stop */
2158         switch (compaction_suitable(zone, sc->order)) {
2159         case COMPACT_PARTIAL:
2160         case COMPACT_CONTINUE:
2161                 return false;
2162         default:
2163                 return true;
2164         }
2165 }
2166
2167 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2168 {
2169         unsigned long nr_reclaimed, nr_scanned;
2170
2171         do {
2172                 struct mem_cgroup *root = sc->target_mem_cgroup;
2173                 struct mem_cgroup_reclaim_cookie reclaim = {
2174                         .zone = zone,
2175                         .priority = sc->priority,
2176                 };
2177                 struct mem_cgroup *memcg;
2178
2179                 nr_reclaimed = sc->nr_reclaimed;
2180                 nr_scanned = sc->nr_scanned;
2181
2182                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2183                 do {
2184                         struct lruvec *lruvec;
2185
2186                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2187
2188                         shrink_lruvec(lruvec, sc);
2189
2190                         /*
2191                          * Direct reclaim and kswapd have to scan all memory
2192                          * cgroups to fulfill the overall scan target for the
2193                          * zone.
2194                          *
2195                          * Limit reclaim, on the other hand, only cares about
2196                          * nr_to_reclaim pages to be reclaimed and it will
2197                          * retry with decreasing priority if one round over the
2198                          * whole hierarchy is not sufficient.
2199                          */
2200                         if (!global_reclaim(sc) &&
2201                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2202                                 mem_cgroup_iter_break(root, memcg);
2203                                 break;
2204                         }
2205                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2206                 } while (memcg);
2207
2208                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2209                            sc->nr_scanned - nr_scanned,
2210                            sc->nr_reclaimed - nr_reclaimed);
2211
2212         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2213                                          sc->nr_scanned - nr_scanned, sc));
2214 }
2215
2216 /* Returns true if compaction should go ahead for a high-order request */
2217 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2218 {
2219         unsigned long balance_gap, watermark;
2220         bool watermark_ok;
2221
2222         /* Do not consider compaction for orders reclaim is meant to satisfy */
2223         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2224                 return false;
2225
2226         /*
2227          * Compaction takes time to run and there are potentially other
2228          * callers using the pages just freed. Continue reclaiming until
2229          * there is a buffer of free pages available to give compaction
2230          * a reasonable chance of completing and allocating the page
2231          */
2232         balance_gap = min(low_wmark_pages(zone),
2233                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2234                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2235         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2236         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2237
2238         /*
2239          * If compaction is deferred, reclaim up to a point where
2240          * compaction will have a chance of success when re-enabled
2241          */
2242         if (compaction_deferred(zone, sc->order))
2243                 return watermark_ok;
2244
2245         /* If compaction is not ready to start, keep reclaiming */
2246         if (!compaction_suitable(zone, sc->order))
2247                 return false;
2248
2249         return watermark_ok;
2250 }
2251
2252 /*
2253  * This is the direct reclaim path, for page-allocating processes.  We only
2254  * try to reclaim pages from zones which will satisfy the caller's allocation
2255  * request.
2256  *
2257  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2258  * Because:
2259  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2260  *    allocation or
2261  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2262  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2263  *    zone defense algorithm.
2264  *
2265  * If a zone is deemed to be full of pinned pages then just give it a light
2266  * scan then give up on it.
2267  *
2268  * This function returns true if a zone is being reclaimed for a costly
2269  * high-order allocation and compaction is ready to begin. This indicates to
2270  * the caller that it should consider retrying the allocation instead of
2271  * further reclaim.
2272  */
2273 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2274 {
2275         struct zoneref *z;
2276         struct zone *zone;
2277         unsigned long nr_soft_reclaimed;
2278         unsigned long nr_soft_scanned;
2279         bool aborted_reclaim = false;
2280
2281         /*
2282          * If the number of buffer_heads in the machine exceeds the maximum
2283          * allowed level, force direct reclaim to scan the highmem zone as
2284          * highmem pages could be pinning lowmem pages storing buffer_heads
2285          */
2286         if (buffer_heads_over_limit)
2287                 sc->gfp_mask |= __GFP_HIGHMEM;
2288
2289         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2290                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2291                 if (!populated_zone(zone))
2292                         continue;
2293                 /*
2294                  * Take care memory controller reclaiming has small influence
2295                  * to global LRU.
2296                  */
2297                 if (global_reclaim(sc)) {
2298                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2299                                 continue;
2300                         if (sc->priority != DEF_PRIORITY &&
2301                             !zone_reclaimable(zone))
2302                                 continue;       /* Let kswapd poll it */
2303                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2304                                 /*
2305                                  * If we already have plenty of memory free for
2306                                  * compaction in this zone, don't free any more.
2307                                  * Even though compaction is invoked for any
2308                                  * non-zero order, only frequent costly order
2309                                  * reclamation is disruptive enough to become a
2310                                  * noticeable problem, like transparent huge
2311                                  * page allocations.
2312                                  */
2313                                 if (compaction_ready(zone, sc)) {
2314                                         aborted_reclaim = true;
2315                                         continue;
2316                                 }
2317                         }
2318                         /*
2319                          * This steals pages from memory cgroups over softlimit
2320                          * and returns the number of reclaimed pages and
2321                          * scanned pages. This works for global memory pressure
2322                          * and balancing, not for a memcg's limit.
2323                          */
2324                         nr_soft_scanned = 0;
2325                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2326                                                 sc->order, sc->gfp_mask,
2327                                                 &nr_soft_scanned);
2328                         sc->nr_reclaimed += nr_soft_reclaimed;
2329                         sc->nr_scanned += nr_soft_scanned;
2330                         /* need some check for avoid more shrink_zone() */
2331                 }
2332
2333                 shrink_zone(zone, sc);
2334         }
2335
2336         return aborted_reclaim;
2337 }
2338
2339 /* All zones in zonelist are unreclaimable? */
2340 static bool all_unreclaimable(struct zonelist *zonelist,
2341                 struct scan_control *sc)
2342 {
2343         struct zoneref *z;
2344         struct zone *zone;
2345
2346         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2347                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2348                 if (!populated_zone(zone))
2349                         continue;
2350                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2351                         continue;
2352                 if (zone_reclaimable(zone))
2353                         return false;
2354         }
2355
2356         return true;
2357 }
2358
2359 /*
2360  * This is the main entry point to direct page reclaim.
2361  *
2362  * If a full scan of the inactive list fails to free enough memory then we
2363  * are "out of memory" and something needs to be killed.
2364  *
2365  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2366  * high - the zone may be full of dirty or under-writeback pages, which this
2367  * caller can't do much about.  We kick the writeback threads and take explicit
2368  * naps in the hope that some of these pages can be written.  But if the
2369  * allocating task holds filesystem locks which prevent writeout this might not
2370  * work, and the allocation attempt will fail.
2371  *
2372  * returns:     0, if no pages reclaimed
2373  *              else, the number of pages reclaimed
2374  */
2375 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2376                                         struct scan_control *sc,
2377                                         struct shrink_control *shrink)
2378 {
2379         unsigned long total_scanned = 0;
2380         struct reclaim_state *reclaim_state = current->reclaim_state;
2381         struct zoneref *z;
2382         struct zone *zone;
2383         unsigned long writeback_threshold;
2384         bool aborted_reclaim;
2385
2386         delayacct_freepages_start();
2387
2388         if (global_reclaim(sc))
2389                 count_vm_event(ALLOCSTALL);
2390
2391         do {
2392                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2393                                 sc->priority);
2394                 sc->nr_scanned = 0;
2395                 aborted_reclaim = shrink_zones(zonelist, sc);
2396
2397                 /*
2398                  * Don't shrink slabs when reclaiming memory from over limit
2399                  * cgroups but do shrink slab at least once when aborting
2400                  * reclaim for compaction to avoid unevenly scanning file/anon
2401                  * LRU pages over slab pages.
2402                  */
2403                 if (global_reclaim(sc)) {
2404                         unsigned long lru_pages = 0;
2405
2406                         nodes_clear(shrink->nodes_to_scan);
2407                         for_each_zone_zonelist(zone, z, zonelist,
2408                                         gfp_zone(sc->gfp_mask)) {
2409                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2410                                         continue;
2411
2412                                 lru_pages += zone_reclaimable_pages(zone);
2413                                 node_set(zone_to_nid(zone),
2414                                          shrink->nodes_to_scan);
2415                         }
2416
2417                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2418                         if (reclaim_state) {
2419                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2420                                 reclaim_state->reclaimed_slab = 0;
2421                         }
2422                 }
2423                 total_scanned += sc->nr_scanned;
2424                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2425                         goto out;
2426
2427                 /*
2428                  * If we're getting trouble reclaiming, start doing
2429                  * writepage even in laptop mode.
2430                  */
2431                 if (sc->priority < DEF_PRIORITY - 2)
2432                         sc->may_writepage = 1;
2433
2434                 /*
2435                  * Try to write back as many pages as we just scanned.  This
2436                  * tends to cause slow streaming writers to write data to the
2437                  * disk smoothly, at the dirtying rate, which is nice.   But
2438                  * that's undesirable in laptop mode, where we *want* lumpy
2439                  * writeout.  So in laptop mode, write out the whole world.
2440                  */
2441                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2442                 if (total_scanned > writeback_threshold) {
2443                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2444                                                 WB_REASON_TRY_TO_FREE_PAGES);
2445                         sc->may_writepage = 1;
2446                 }
2447         } while (--sc->priority >= 0 && !aborted_reclaim);
2448
2449 out:
2450         delayacct_freepages_end();
2451
2452         if (sc->nr_reclaimed)
2453                 return sc->nr_reclaimed;
2454
2455         /*
2456          * As hibernation is going on, kswapd is freezed so that it can't mark
2457          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2458          * check.
2459          */
2460         if (oom_killer_disabled)
2461                 return 0;
2462
2463         /* Aborted reclaim to try compaction? don't OOM, then */
2464         if (aborted_reclaim)
2465                 return 1;
2466
2467         /* top priority shrink_zones still had more to do? don't OOM, then */
2468         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2469                 return 1;
2470
2471         return 0;
2472 }
2473
2474 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2475 {
2476         struct zone *zone;
2477         unsigned long pfmemalloc_reserve = 0;
2478         unsigned long free_pages = 0;
2479         int i;
2480         bool wmark_ok;
2481
2482         for (i = 0; i <= ZONE_NORMAL; i++) {
2483                 zone = &pgdat->node_zones[i];
2484                 pfmemalloc_reserve += min_wmark_pages(zone);
2485                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2486         }
2487
2488         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2489
2490         /* kswapd must be awake if processes are being throttled */
2491         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2492                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2493                                                 (enum zone_type)ZONE_NORMAL);
2494                 wake_up_interruptible(&pgdat->kswapd_wait);
2495         }
2496
2497         return wmark_ok;
2498 }
2499
2500 /*
2501  * Throttle direct reclaimers if backing storage is backed by the network
2502  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2503  * depleted. kswapd will continue to make progress and wake the processes
2504  * when the low watermark is reached.
2505  *
2506  * Returns true if a fatal signal was delivered during throttling. If this
2507  * happens, the page allocator should not consider triggering the OOM killer.
2508  */
2509 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2510                                         nodemask_t *nodemask)
2511 {
2512         struct zone *zone;
2513         int high_zoneidx = gfp_zone(gfp_mask);
2514         pg_data_t *pgdat;
2515
2516         /*
2517          * Kernel threads should not be throttled as they may be indirectly
2518          * responsible for cleaning pages necessary for reclaim to make forward
2519          * progress. kjournald for example may enter direct reclaim while
2520          * committing a transaction where throttling it could forcing other
2521          * processes to block on log_wait_commit().
2522          */
2523         if (current->flags & PF_KTHREAD)
2524                 goto out;
2525
2526         /*
2527          * If a fatal signal is pending, this process should not throttle.
2528          * It should return quickly so it can exit and free its memory
2529          */
2530         if (fatal_signal_pending(current))
2531                 goto out;
2532
2533         /* Check if the pfmemalloc reserves are ok */
2534         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2535         pgdat = zone->zone_pgdat;
2536         if (pfmemalloc_watermark_ok(pgdat))
2537                 goto out;
2538
2539         /* Account for the throttling */
2540         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2541
2542         /*
2543          * If the caller cannot enter the filesystem, it's possible that it
2544          * is due to the caller holding an FS lock or performing a journal
2545          * transaction in the case of a filesystem like ext[3|4]. In this case,
2546          * it is not safe to block on pfmemalloc_wait as kswapd could be
2547          * blocked waiting on the same lock. Instead, throttle for up to a
2548          * second before continuing.
2549          */
2550         if (!(gfp_mask & __GFP_FS)) {
2551                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2552                         pfmemalloc_watermark_ok(pgdat), HZ);
2553
2554                 goto check_pending;
2555         }
2556
2557         /* Throttle until kswapd wakes the process */
2558         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2559                 pfmemalloc_watermark_ok(pgdat));
2560
2561 check_pending:
2562         if (fatal_signal_pending(current))
2563                 return true;
2564
2565 out:
2566         return false;
2567 }
2568
2569 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2570                                 gfp_t gfp_mask, nodemask_t *nodemask)
2571 {
2572         unsigned long nr_reclaimed;
2573         struct scan_control sc = {
2574                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2575                 .may_writepage = !laptop_mode,
2576                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2577                 .may_unmap = 1,
2578                 .may_swap = 1,
2579                 .order = order,
2580                 .priority = DEF_PRIORITY,
2581                 .target_mem_cgroup = NULL,
2582                 .nodemask = nodemask,
2583         };
2584         struct shrink_control shrink = {
2585                 .gfp_mask = sc.gfp_mask,
2586         };
2587
2588         /*
2589          * Do not enter reclaim if fatal signal was delivered while throttled.
2590          * 1 is returned so that the page allocator does not OOM kill at this
2591          * point.
2592          */
2593         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2594                 return 1;
2595
2596         trace_mm_vmscan_direct_reclaim_begin(order,
2597                                 sc.may_writepage,
2598                                 gfp_mask);
2599
2600         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2601
2602         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2603
2604         return nr_reclaimed;
2605 }
2606
2607 #ifdef CONFIG_MEMCG
2608
2609 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2610                                                 gfp_t gfp_mask, bool noswap,
2611                                                 struct zone *zone,
2612                                                 unsigned long *nr_scanned)
2613 {
2614         struct scan_control sc = {
2615                 .nr_scanned = 0,
2616                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2617                 .may_writepage = !laptop_mode,
2618                 .may_unmap = 1,
2619                 .may_swap = !noswap,
2620                 .order = 0,
2621                 .priority = 0,
2622                 .target_mem_cgroup = memcg,
2623         };
2624         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2625
2626         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2628
2629         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2630                                                       sc.may_writepage,
2631                                                       sc.gfp_mask);
2632
2633         /*
2634          * NOTE: Although we can get the priority field, using it
2635          * here is not a good idea, since it limits the pages we can scan.
2636          * if we don't reclaim here, the shrink_zone from balance_pgdat
2637          * will pick up pages from other mem cgroup's as well. We hack
2638          * the priority and make it zero.
2639          */
2640         shrink_lruvec(lruvec, &sc);
2641
2642         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2643
2644         *nr_scanned = sc.nr_scanned;
2645         return sc.nr_reclaimed;
2646 }
2647
2648 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2649                                            gfp_t gfp_mask,
2650                                            bool noswap)
2651 {
2652         struct zonelist *zonelist;
2653         unsigned long nr_reclaimed;
2654         int nid;
2655         struct scan_control sc = {
2656                 .may_writepage = !laptop_mode,
2657                 .may_unmap = 1,
2658                 .may_swap = !noswap,
2659                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2660                 .order = 0,
2661                 .priority = DEF_PRIORITY,
2662                 .target_mem_cgroup = memcg,
2663                 .nodemask = NULL, /* we don't care the placement */
2664                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2665                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2666         };
2667         struct shrink_control shrink = {
2668                 .gfp_mask = sc.gfp_mask,
2669         };
2670
2671         /*
2672          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2673          * take care of from where we get pages. So the node where we start the
2674          * scan does not need to be the current node.
2675          */
2676         nid = mem_cgroup_select_victim_node(memcg);
2677
2678         zonelist = NODE_DATA(nid)->node_zonelists;
2679
2680         trace_mm_vmscan_memcg_reclaim_begin(0,
2681                                             sc.may_writepage,
2682                                             sc.gfp_mask);
2683
2684         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2685
2686         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2687
2688         return nr_reclaimed;
2689 }
2690 #endif
2691
2692 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2693 {
2694         struct mem_cgroup *memcg;
2695
2696         if (!total_swap_pages)
2697                 return;
2698
2699         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2700         do {
2701                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2702
2703                 if (inactive_anon_is_low(lruvec))
2704                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2705                                            sc, LRU_ACTIVE_ANON);
2706
2707                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2708         } while (memcg);
2709 }
2710
2711 static bool zone_balanced(struct zone *zone, int order,
2712                           unsigned long balance_gap, int classzone_idx)
2713 {
2714         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2715                                     balance_gap, classzone_idx, 0))
2716                 return false;
2717
2718         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2719             !compaction_suitable(zone, order))
2720                 return false;
2721
2722         return true;
2723 }
2724
2725 /*
2726  * pgdat_balanced() is used when checking if a node is balanced.
2727  *
2728  * For order-0, all zones must be balanced!
2729  *
2730  * For high-order allocations only zones that meet watermarks and are in a
2731  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2732  * total of balanced pages must be at least 25% of the zones allowed by
2733  * classzone_idx for the node to be considered balanced. Forcing all zones to
2734  * be balanced for high orders can cause excessive reclaim when there are
2735  * imbalanced zones.
2736  * The choice of 25% is due to
2737  *   o a 16M DMA zone that is balanced will not balance a zone on any
2738  *     reasonable sized machine
2739  *   o On all other machines, the top zone must be at least a reasonable
2740  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2741  *     would need to be at least 256M for it to be balance a whole node.
2742  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2743  *     to balance a node on its own. These seemed like reasonable ratios.
2744  */
2745 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2746 {
2747         unsigned long managed_pages = 0;
2748         unsigned long balanced_pages = 0;
2749         int i;
2750
2751         /* Check the watermark levels */
2752         for (i = 0; i <= classzone_idx; i++) {
2753                 struct zone *zone = pgdat->node_zones + i;
2754
2755                 if (!populated_zone(zone))
2756                         continue;
2757
2758                 managed_pages += zone->managed_pages;
2759
2760                 /*
2761                  * A special case here:
2762                  *
2763                  * balance_pgdat() skips over all_unreclaimable after
2764                  * DEF_PRIORITY. Effectively, it considers them balanced so
2765                  * they must be considered balanced here as well!
2766                  */
2767                 if (!zone_reclaimable(zone)) {
2768                         balanced_pages += zone->managed_pages;
2769                         continue;
2770                 }
2771
2772                 if (zone_balanced(zone, order, 0, i))
2773                         balanced_pages += zone->managed_pages;
2774                 else if (!order)
2775                         return false;
2776         }
2777
2778         if (order)
2779                 return balanced_pages >= (managed_pages >> 2);
2780         else
2781                 return true;
2782 }
2783
2784 /*
2785  * Prepare kswapd for sleeping. This verifies that there are no processes
2786  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2787  *
2788  * Returns true if kswapd is ready to sleep
2789  */
2790 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2791                                         int classzone_idx)
2792 {
2793         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2794         if (remaining)
2795                 return false;
2796
2797         /*
2798          * There is a potential race between when kswapd checks its watermarks
2799          * and a process gets throttled. There is also a potential race if
2800          * processes get throttled, kswapd wakes, a large process exits therby
2801          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2802          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2803          * so wake them now if necessary. If necessary, processes will wake
2804          * kswapd and get throttled again
2805          */
2806         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2807                 wake_up(&pgdat->pfmemalloc_wait);
2808                 return false;
2809         }
2810
2811         return pgdat_balanced(pgdat, order, classzone_idx);
2812 }
2813
2814 /*
2815  * kswapd shrinks the zone by the number of pages required to reach
2816  * the high watermark.
2817  *
2818  * Returns true if kswapd scanned at least the requested number of pages to
2819  * reclaim or if the lack of progress was due to pages under writeback.
2820  * This is used to determine if the scanning priority needs to be raised.
2821  */
2822 static bool kswapd_shrink_zone(struct zone *zone,
2823                                int classzone_idx,
2824                                struct scan_control *sc,
2825                                unsigned long lru_pages,
2826                                unsigned long *nr_attempted)
2827 {
2828         int testorder = sc->order;
2829         unsigned long balance_gap;
2830         struct reclaim_state *reclaim_state = current->reclaim_state;
2831         struct shrink_control shrink = {
2832                 .gfp_mask = sc->gfp_mask,
2833         };
2834         bool lowmem_pressure;
2835
2836         /* Reclaim above the high watermark. */
2837         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2838
2839         /*
2840          * Kswapd reclaims only single pages with compaction enabled. Trying
2841          * too hard to reclaim until contiguous free pages have become
2842          * available can hurt performance by evicting too much useful data
2843          * from memory. Do not reclaim more than needed for compaction.
2844          */
2845         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2846                         compaction_suitable(zone, sc->order) !=
2847                                 COMPACT_SKIPPED)
2848                 testorder = 0;
2849
2850         /*
2851          * We put equal pressure on every zone, unless one zone has way too
2852          * many pages free already. The "too many pages" is defined as the
2853          * high wmark plus a "gap" where the gap is either the low
2854          * watermark or 1% of the zone, whichever is smaller.
2855          */
2856         balance_gap = min(low_wmark_pages(zone),
2857                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2858                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2859
2860         /*
2861          * If there is no low memory pressure or the zone is balanced then no
2862          * reclaim is necessary
2863          */
2864         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2865         if (!lowmem_pressure && zone_balanced(zone, testorder,
2866                                                 balance_gap, classzone_idx))
2867                 return true;
2868
2869         shrink_zone(zone, sc);
2870         nodes_clear(shrink.nodes_to_scan);
2871         node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2872
2873         reclaim_state->reclaimed_slab = 0;
2874         shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2875         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2876
2877         /* Account for the number of pages attempted to reclaim */
2878         *nr_attempted += sc->nr_to_reclaim;
2879
2880         zone_clear_flag(zone, ZONE_WRITEBACK);
2881
2882         /*
2883          * If a zone reaches its high watermark, consider it to be no longer
2884          * congested. It's possible there are dirty pages backed by congested
2885          * BDIs but as pressure is relieved, speculatively avoid congestion
2886          * waits.
2887          */
2888         if (zone_reclaimable(zone) &&
2889             zone_balanced(zone, testorder, 0, classzone_idx)) {
2890                 zone_clear_flag(zone, ZONE_CONGESTED);
2891                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2892         }
2893
2894         return sc->nr_scanned >= sc->nr_to_reclaim;
2895 }
2896
2897 /*
2898  * For kswapd, balance_pgdat() will work across all this node's zones until
2899  * they are all at high_wmark_pages(zone).
2900  *
2901  * Returns the final order kswapd was reclaiming at
2902  *
2903  * There is special handling here for zones which are full of pinned pages.
2904  * This can happen if the pages are all mlocked, or if they are all used by
2905  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2906  * What we do is to detect the case where all pages in the zone have been
2907  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2908  * dead and from now on, only perform a short scan.  Basically we're polling
2909  * the zone for when the problem goes away.
2910  *
2911  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2912  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2913  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2914  * lower zones regardless of the number of free pages in the lower zones. This
2915  * interoperates with the page allocator fallback scheme to ensure that aging
2916  * of pages is balanced across the zones.
2917  */
2918 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2919                                                         int *classzone_idx)
2920 {
2921         int i;
2922         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2923         unsigned long nr_soft_reclaimed;
2924         unsigned long nr_soft_scanned;
2925         struct scan_control sc = {
2926                 .gfp_mask = GFP_KERNEL,
2927                 .priority = DEF_PRIORITY,
2928                 .may_unmap = 1,
2929                 .may_swap = 1,
2930                 .may_writepage = !laptop_mode,
2931                 .order = order,
2932                 .target_mem_cgroup = NULL,
2933         };
2934         count_vm_event(PAGEOUTRUN);
2935
2936         do {
2937                 unsigned long lru_pages = 0;
2938                 unsigned long nr_attempted = 0;
2939                 bool raise_priority = true;
2940                 bool pgdat_needs_compaction = (order > 0);
2941
2942                 sc.nr_reclaimed = 0;
2943
2944                 /*
2945                  * Scan in the highmem->dma direction for the highest
2946                  * zone which needs scanning
2947                  */
2948                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2949                         struct zone *zone = pgdat->node_zones + i;
2950
2951                         if (!populated_zone(zone))
2952                                 continue;
2953
2954                         if (sc.priority != DEF_PRIORITY &&
2955                             !zone_reclaimable(zone))
2956                                 continue;
2957
2958                         /*
2959                          * Do some background aging of the anon list, to give
2960                          * pages a chance to be referenced before reclaiming.
2961                          */
2962                         age_active_anon(zone, &sc);
2963
2964                         /*
2965                          * If the number of buffer_heads in the machine
2966                          * exceeds the maximum allowed level and this node
2967                          * has a highmem zone, force kswapd to reclaim from
2968                          * it to relieve lowmem pressure.
2969                          */
2970                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2971                                 end_zone = i;
2972                                 break;
2973                         }
2974
2975                         if (!zone_balanced(zone, order, 0, 0)) {
2976                                 end_zone = i;
2977                                 break;
2978                         } else {
2979                                 /*
2980                                  * If balanced, clear the dirty and congested
2981                                  * flags
2982                                  */
2983                                 zone_clear_flag(zone, ZONE_CONGESTED);
2984                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2985                         }
2986                 }
2987
2988                 if (i < 0)
2989                         goto out;
2990
2991                 for (i = 0; i <= end_zone; i++) {
2992                         struct zone *zone = pgdat->node_zones + i;
2993
2994                         if (!populated_zone(zone))
2995                                 continue;
2996
2997                         lru_pages += zone_reclaimable_pages(zone);
2998
2999                         /*
3000                          * If any zone is currently balanced then kswapd will
3001                          * not call compaction as it is expected that the
3002                          * necessary pages are already available.
3003                          */
3004                         if (pgdat_needs_compaction &&
3005                                         zone_watermark_ok(zone, order,
3006                                                 low_wmark_pages(zone),
3007                                                 *classzone_idx, 0))
3008                                 pgdat_needs_compaction = false;
3009                 }
3010
3011                 /*
3012                  * If we're getting trouble reclaiming, start doing writepage
3013                  * even in laptop mode.
3014                  */
3015                 if (sc.priority < DEF_PRIORITY - 2)
3016                         sc.may_writepage = 1;
3017
3018                 /*
3019                  * Now scan the zone in the dma->highmem direction, stopping
3020                  * at the last zone which needs scanning.
3021                  *
3022                  * We do this because the page allocator works in the opposite
3023                  * direction.  This prevents the page allocator from allocating
3024                  * pages behind kswapd's direction of progress, which would
3025                  * cause too much scanning of the lower zones.
3026                  */
3027                 for (i = 0; i <= end_zone; i++) {
3028                         struct zone *zone = pgdat->node_zones + i;
3029
3030                         if (!populated_zone(zone))
3031                                 continue;
3032
3033                         if (sc.priority != DEF_PRIORITY &&
3034                             !zone_reclaimable(zone))
3035                                 continue;
3036
3037                         sc.nr_scanned = 0;
3038
3039                         nr_soft_scanned = 0;
3040                         /*
3041                          * Call soft limit reclaim before calling shrink_zone.
3042                          */
3043                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3044                                                         order, sc.gfp_mask,
3045                                                         &nr_soft_scanned);
3046                         sc.nr_reclaimed += nr_soft_reclaimed;
3047
3048                         /*
3049                          * There should be no need to raise the scanning
3050                          * priority if enough pages are already being scanned
3051                          * that that high watermark would be met at 100%
3052                          * efficiency.
3053                          */
3054                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3055                                         lru_pages, &nr_attempted))
3056                                 raise_priority = false;
3057                 }
3058
3059                 /*
3060                  * If the low watermark is met there is no need for processes
3061                  * to be throttled on pfmemalloc_wait as they should not be
3062                  * able to safely make forward progress. Wake them
3063                  */
3064                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3065                                 pfmemalloc_watermark_ok(pgdat))
3066                         wake_up(&pgdat->pfmemalloc_wait);
3067
3068                 /*
3069                  * Fragmentation may mean that the system cannot be rebalanced
3070                  * for high-order allocations in all zones. If twice the
3071                  * allocation size has been reclaimed and the zones are still
3072                  * not balanced then recheck the watermarks at order-0 to
3073                  * prevent kswapd reclaiming excessively. Assume that a
3074                  * process requested a high-order can direct reclaim/compact.
3075                  */
3076                 if (order && sc.nr_reclaimed >= 2UL << order)
3077                         order = sc.order = 0;
3078
3079                 /* Check if kswapd should be suspending */
3080                 if (try_to_freeze() || kthread_should_stop())
3081                         break;
3082
3083                 /*
3084                  * Compact if necessary and kswapd is reclaiming at least the
3085                  * high watermark number of pages as requsted
3086                  */
3087                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3088                         compact_pgdat(pgdat, order);
3089
3090                 /*
3091                  * Raise priority if scanning rate is too low or there was no
3092                  * progress in reclaiming pages
3093                  */
3094                 if (raise_priority || !sc.nr_reclaimed)
3095                         sc.priority--;
3096         } while (sc.priority >= 1 &&
3097                  !pgdat_balanced(pgdat, order, *classzone_idx));
3098
3099 out:
3100         /*
3101          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3102          * makes a decision on the order we were last reclaiming at. However,
3103          * if another caller entered the allocator slow path while kswapd
3104          * was awake, order will remain at the higher level
3105          */
3106         *classzone_idx = end_zone;
3107         return order;
3108 }
3109
3110 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3111 {
3112         long remaining = 0;
3113         DEFINE_WAIT(wait);
3114
3115         if (freezing(current) || kthread_should_stop())
3116                 return;
3117
3118         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3119
3120         /* Try to sleep for a short interval */
3121         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3122                 remaining = schedule_timeout(HZ/10);
3123                 finish_wait(&pgdat->kswapd_wait, &wait);
3124                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3125         }
3126
3127         /*
3128          * After a short sleep, check if it was a premature sleep. If not, then
3129          * go fully to sleep until explicitly woken up.
3130          */
3131         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3132                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3133
3134                 /*
3135                  * vmstat counters are not perfectly accurate and the estimated
3136                  * value for counters such as NR_FREE_PAGES can deviate from the
3137                  * true value by nr_online_cpus * threshold. To avoid the zone
3138                  * watermarks being breached while under pressure, we reduce the
3139                  * per-cpu vmstat threshold while kswapd is awake and restore
3140                  * them before going back to sleep.
3141                  */
3142                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3143
3144                 /*
3145                  * Compaction records what page blocks it recently failed to
3146                  * isolate pages from and skips them in the future scanning.
3147                  * When kswapd is going to sleep, it is reasonable to assume
3148                  * that pages and compaction may succeed so reset the cache.
3149                  */
3150                 reset_isolation_suitable(pgdat);
3151
3152                 if (!kthread_should_stop())
3153                         schedule();
3154
3155                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3156         } else {
3157                 if (remaining)
3158                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3159                 else
3160                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3161         }
3162         finish_wait(&pgdat->kswapd_wait, &wait);
3163 }
3164
3165 /*
3166  * The background pageout daemon, started as a kernel thread
3167  * from the init process.
3168  *
3169  * This basically trickles out pages so that we have _some_
3170  * free memory available even if there is no other activity
3171  * that frees anything up. This is needed for things like routing
3172  * etc, where we otherwise might have all activity going on in
3173  * asynchronous contexts that cannot page things out.
3174  *
3175  * If there are applications that are active memory-allocators
3176  * (most normal use), this basically shouldn't matter.
3177  */
3178 static int kswapd(void *p)
3179 {
3180         unsigned long order, new_order;
3181         unsigned balanced_order;
3182         int classzone_idx, new_classzone_idx;
3183         int balanced_classzone_idx;
3184         pg_data_t *pgdat = (pg_data_t*)p;
3185         struct task_struct *tsk = current;
3186
3187         struct reclaim_state reclaim_state = {
3188                 .reclaimed_slab = 0,
3189         };
3190         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3191
3192         lockdep_set_current_reclaim_state(GFP_KERNEL);
3193
3194         if (!cpumask_empty(cpumask))
3195                 set_cpus_allowed_ptr(tsk, cpumask);
3196         current->reclaim_state = &reclaim_state;
3197
3198         /*
3199          * Tell the memory management that we're a "memory allocator",
3200          * and that if we need more memory we should get access to it
3201          * regardless (see "__alloc_pages()"). "kswapd" should
3202          * never get caught in the normal page freeing logic.
3203          *
3204          * (Kswapd normally doesn't need memory anyway, but sometimes
3205          * you need a small amount of memory in order to be able to
3206          * page out something else, and this flag essentially protects
3207          * us from recursively trying to free more memory as we're
3208          * trying to free the first piece of memory in the first place).
3209          */
3210         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3211         set_freezable();
3212
3213         order = new_order = 0;
3214         balanced_order = 0;
3215         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3216         balanced_classzone_idx = classzone_idx;
3217         for ( ; ; ) {
3218                 bool ret;
3219
3220                 /*
3221                  * If the last balance_pgdat was unsuccessful it's unlikely a
3222                  * new request of a similar or harder type will succeed soon
3223                  * so consider going to sleep on the basis we reclaimed at
3224                  */
3225                 if (balanced_classzone_idx >= new_classzone_idx &&
3226                                         balanced_order == new_order) {
3227                         new_order = pgdat->kswapd_max_order;
3228                         new_classzone_idx = pgdat->classzone_idx;
3229                         pgdat->kswapd_max_order =  0;
3230                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3231                 }
3232
3233                 if (order < new_order || classzone_idx > new_classzone_idx) {
3234                         /*
3235                          * Don't sleep if someone wants a larger 'order'
3236                          * allocation or has tigher zone constraints
3237                          */
3238                         order = new_order;
3239                         classzone_idx = new_classzone_idx;
3240                 } else {
3241                         kswapd_try_to_sleep(pgdat, balanced_order,
3242                                                 balanced_classzone_idx);
3243                         order = pgdat->kswapd_max_order;
3244                         classzone_idx = pgdat->classzone_idx;
3245                         new_order = order;
3246                         new_classzone_idx = classzone_idx;
3247                         pgdat->kswapd_max_order = 0;
3248                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3249                 }
3250
3251                 ret = try_to_freeze();
3252                 if (kthread_should_stop())
3253                         break;
3254
3255                 /*
3256                  * We can speed up thawing tasks if we don't call balance_pgdat
3257                  * after returning from the refrigerator
3258                  */
3259                 if (!ret) {
3260                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3261                         balanced_classzone_idx = classzone_idx;
3262                         balanced_order = balance_pgdat(pgdat, order,
3263                                                 &balanced_classzone_idx);
3264                 }
3265         }
3266
3267         current->reclaim_state = NULL;
3268         return 0;
3269 }
3270
3271 /*
3272  * A zone is low on free memory, so wake its kswapd task to service it.
3273  */
3274 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3275 {
3276         pg_data_t *pgdat;
3277
3278         if (!populated_zone(zone))
3279                 return;
3280
3281         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3282                 return;
3283         pgdat = zone->zone_pgdat;
3284         if (pgdat->kswapd_max_order < order) {
3285                 pgdat->kswapd_max_order = order;
3286                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3287         }
3288         if (!waitqueue_active(&pgdat->kswapd_wait))
3289                 return;
3290         if (zone_balanced(zone, order, 0, 0))
3291                 return;
3292
3293         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3294         wake_up_interruptible(&pgdat->kswapd_wait);
3295 }
3296
3297 /*
3298  * The reclaimable count would be mostly accurate.
3299  * The less reclaimable pages may be
3300  * - mlocked pages, which will be moved to unevictable list when encountered
3301  * - mapped pages, which may require several travels to be reclaimed
3302  * - dirty pages, which is not "instantly" reclaimable
3303  */
3304 unsigned long global_reclaimable_pages(void)
3305 {
3306         int nr;
3307
3308         nr = global_page_state(NR_ACTIVE_FILE) +
3309              global_page_state(NR_INACTIVE_FILE);
3310
3311         if (get_nr_swap_pages() > 0)
3312                 nr += global_page_state(NR_ACTIVE_ANON) +
3313                       global_page_state(NR_INACTIVE_ANON);
3314
3315         return nr;
3316 }
3317
3318 #ifdef CONFIG_HIBERNATION
3319 /*
3320  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3321  * freed pages.
3322  *
3323  * Rather than trying to age LRUs the aim is to preserve the overall
3324  * LRU order by reclaiming preferentially
3325  * inactive > active > active referenced > active mapped
3326  */
3327 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3328 {
3329         struct reclaim_state reclaim_state;
3330         struct scan_control sc = {
3331                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3332                 .may_swap = 1,
3333                 .may_unmap = 1,
3334                 .may_writepage = 1,
3335                 .nr_to_reclaim = nr_to_reclaim,
3336                 .hibernation_mode = 1,
3337                 .order = 0,
3338                 .priority = DEF_PRIORITY,
3339         };
3340         struct shrink_control shrink = {
3341                 .gfp_mask = sc.gfp_mask,
3342         };
3343         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3344         struct task_struct *p = current;
3345         unsigned long nr_reclaimed;
3346
3347         p->flags |= PF_MEMALLOC;
3348         lockdep_set_current_reclaim_state(sc.gfp_mask);
3349         reclaim_state.reclaimed_slab = 0;
3350         p->reclaim_state = &reclaim_state;
3351
3352         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3353
3354         p->reclaim_state = NULL;
3355         lockdep_clear_current_reclaim_state();
3356         p->flags &= ~PF_MEMALLOC;
3357
3358         return nr_reclaimed;
3359 }
3360 #endif /* CONFIG_HIBERNATION */
3361
3362 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3363    not required for correctness.  So if the last cpu in a node goes
3364    away, we get changed to run anywhere: as the first one comes back,
3365    restore their cpu bindings. */
3366 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3367                         void *hcpu)
3368 {
3369         int nid;
3370
3371         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3372                 for_each_node_state(nid, N_MEMORY) {
3373                         pg_data_t *pgdat = NODE_DATA(nid);
3374                         const struct cpumask *mask;
3375
3376                         mask = cpumask_of_node(pgdat->node_id);
3377
3378                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3379                                 /* One of our CPUs online: restore mask */
3380                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3381                 }
3382         }
3383         return NOTIFY_OK;
3384 }
3385
3386 /*
3387  * This kswapd start function will be called by init and node-hot-add.
3388  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3389  */
3390 int kswapd_run(int nid)
3391 {
3392         pg_data_t *pgdat = NODE_DATA(nid);
3393         int ret = 0;
3394
3395         if (pgdat->kswapd)
3396                 return 0;
3397
3398         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3399         if (IS_ERR(pgdat->kswapd)) {
3400                 /* failure at boot is fatal */
3401                 BUG_ON(system_state == SYSTEM_BOOTING);
3402                 pr_err("Failed to start kswapd on node %d\n", nid);
3403                 ret = PTR_ERR(pgdat->kswapd);
3404                 pgdat->kswapd = NULL;
3405         }
3406         return ret;
3407 }
3408
3409 /*
3410  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3411  * hold lock_memory_hotplug().
3412  */
3413 void kswapd_stop(int nid)
3414 {
3415         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3416
3417         if (kswapd) {
3418                 kthread_stop(kswapd);
3419                 NODE_DATA(nid)->kswapd = NULL;
3420         }
3421 }
3422
3423 static int __init kswapd_init(void)
3424 {
3425         int nid;
3426
3427         swap_setup();
3428         for_each_node_state(nid, N_MEMORY)
3429                 kswapd_run(nid);
3430         hotcpu_notifier(cpu_callback, 0);
3431         return 0;
3432 }
3433
3434 module_init(kswapd_init)
3435
3436 #ifdef CONFIG_NUMA
3437 /*
3438  * Zone reclaim mode
3439  *
3440  * If non-zero call zone_reclaim when the number of free pages falls below
3441  * the watermarks.
3442  */
3443 int zone_reclaim_mode __read_mostly;
3444
3445 #define RECLAIM_OFF 0
3446 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3447 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3448 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3449
3450 /*
3451  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3452  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3453  * a zone.
3454  */
3455 #define ZONE_RECLAIM_PRIORITY 4
3456
3457 /*
3458  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3459  * occur.
3460  */
3461 int sysctl_min_unmapped_ratio = 1;
3462
3463 /*
3464  * If the number of slab pages in a zone grows beyond this percentage then
3465  * slab reclaim needs to occur.
3466  */
3467 int sysctl_min_slab_ratio = 5;
3468
3469 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3470 {
3471         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3472         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3473                 zone_page_state(zone, NR_ACTIVE_FILE);
3474
3475         /*
3476          * It's possible for there to be more file mapped pages than
3477          * accounted for by the pages on the file LRU lists because
3478          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3479          */
3480         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3481 }
3482
3483 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3484 static long zone_pagecache_reclaimable(struct zone *zone)
3485 {
3486         long nr_pagecache_reclaimable;
3487         long delta = 0;
3488
3489         /*
3490          * If RECLAIM_SWAP is set, then all file pages are considered
3491          * potentially reclaimable. Otherwise, we have to worry about
3492          * pages like swapcache and zone_unmapped_file_pages() provides
3493          * a better estimate
3494          */
3495         if (zone_reclaim_mode & RECLAIM_SWAP)
3496                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3497         else
3498                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3499
3500         /* If we can't clean pages, remove dirty pages from consideration */
3501         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3502                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3503
3504         /* Watch for any possible underflows due to delta */
3505         if (unlikely(delta > nr_pagecache_reclaimable))
3506                 delta = nr_pagecache_reclaimable;
3507
3508         return nr_pagecache_reclaimable - delta;
3509 }
3510
3511 /*
3512  * Try to free up some pages from this zone through reclaim.
3513  */
3514 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3515 {
3516         /* Minimum pages needed in order to stay on node */
3517         const unsigned long nr_pages = 1 << order;
3518         struct task_struct *p = current;
3519         struct reclaim_state reclaim_state;
3520         struct scan_control sc = {
3521                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3522                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3523                 .may_swap = 1,
3524                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3525                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3526                 .order = order,
3527                 .priority = ZONE_RECLAIM_PRIORITY,
3528         };
3529         struct shrink_control shrink = {
3530                 .gfp_mask = sc.gfp_mask,
3531         };
3532         unsigned long nr_slab_pages0, nr_slab_pages1;
3533
3534         cond_resched();
3535         /*
3536          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3537          * and we also need to be able to write out pages for RECLAIM_WRITE
3538          * and RECLAIM_SWAP.
3539          */
3540         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3541         lockdep_set_current_reclaim_state(gfp_mask);
3542         reclaim_state.reclaimed_slab = 0;
3543         p->reclaim_state = &reclaim_state;
3544
3545         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3546                 /*
3547                  * Free memory by calling shrink zone with increasing
3548                  * priorities until we have enough memory freed.
3549                  */
3550                 do {
3551                         shrink_zone(zone, &sc);
3552                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3553         }
3554
3555         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3556         if (nr_slab_pages0 > zone->min_slab_pages) {
3557                 /*
3558                  * shrink_slab() does not currently allow us to determine how
3559                  * many pages were freed in this zone. So we take the current
3560                  * number of slab pages and shake the slab until it is reduced
3561                  * by the same nr_pages that we used for reclaiming unmapped
3562                  * pages.
3563                  */
3564                 nodes_clear(shrink.nodes_to_scan);
3565                 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3566                 for (;;) {
3567                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3568
3569                         /* No reclaimable slab or very low memory pressure */
3570                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3571                                 break;
3572
3573                         /* Freed enough memory */
3574                         nr_slab_pages1 = zone_page_state(zone,
3575                                                         NR_SLAB_RECLAIMABLE);
3576                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3577                                 break;
3578                 }
3579
3580                 /*
3581                  * Update nr_reclaimed by the number of slab pages we
3582                  * reclaimed from this zone.
3583                  */
3584                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3585                 if (nr_slab_pages1 < nr_slab_pages0)
3586                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3587         }
3588
3589         p->reclaim_state = NULL;
3590         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3591         lockdep_clear_current_reclaim_state();
3592         return sc.nr_reclaimed >= nr_pages;
3593 }
3594
3595 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3596 {
3597         int node_id;
3598         int ret;
3599
3600         /*
3601          * Zone reclaim reclaims unmapped file backed pages and
3602          * slab pages if we are over the defined limits.
3603          *
3604          * A small portion of unmapped file backed pages is needed for
3605          * file I/O otherwise pages read by file I/O will be immediately
3606          * thrown out if the zone is overallocated. So we do not reclaim
3607          * if less than a specified percentage of the zone is used by
3608          * unmapped file backed pages.
3609          */
3610         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3611             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3612                 return ZONE_RECLAIM_FULL;
3613
3614         if (!zone_reclaimable(zone))
3615                 return ZONE_RECLAIM_FULL;
3616
3617         /*
3618          * Do not scan if the allocation should not be delayed.
3619          */
3620         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3621                 return ZONE_RECLAIM_NOSCAN;
3622
3623         /*
3624          * Only run zone reclaim on the local zone or on zones that do not
3625          * have associated processors. This will favor the local processor
3626          * over remote processors and spread off node memory allocations
3627          * as wide as possible.
3628          */
3629         node_id = zone_to_nid(zone);
3630         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3631                 return ZONE_RECLAIM_NOSCAN;
3632
3633         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3634                 return ZONE_RECLAIM_NOSCAN;
3635
3636         ret = __zone_reclaim(zone, gfp_mask, order);
3637         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3638
3639         if (!ret)
3640                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3641
3642         return ret;
3643 }
3644 #endif
3645
3646 /*
3647  * page_evictable - test whether a page is evictable
3648  * @page: the page to test
3649  *
3650  * Test whether page is evictable--i.e., should be placed on active/inactive
3651  * lists vs unevictable list.
3652  *
3653  * Reasons page might not be evictable:
3654  * (1) page's mapping marked unevictable
3655  * (2) page is part of an mlocked VMA
3656  *
3657  */
3658 int page_evictable(struct page *page)
3659 {
3660         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3661 }
3662
3663 #ifdef CONFIG_SHMEM
3664 /**
3665  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3666  * @pages:      array of pages to check
3667  * @nr_pages:   number of pages to check
3668  *
3669  * Checks pages for evictability and moves them to the appropriate lru list.
3670  *
3671  * This function is only used for SysV IPC SHM_UNLOCK.
3672  */
3673 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3674 {
3675         struct lruvec *lruvec;
3676         struct zone *zone = NULL;
3677         int pgscanned = 0;
3678         int pgrescued = 0;
3679         int i;
3680
3681         for (i = 0; i < nr_pages; i++) {
3682                 struct page *page = pages[i];
3683                 struct zone *pagezone;
3684
3685                 pgscanned++;
3686                 pagezone = page_zone(page);
3687                 if (pagezone != zone) {
3688                         if (zone)
3689                                 spin_unlock_irq(&zone->lru_lock);
3690                         zone = pagezone;
3691                         spin_lock_irq(&zone->lru_lock);
3692                 }
3693                 lruvec = mem_cgroup_page_lruvec(page, zone);
3694
3695                 if (!PageLRU(page) || !PageUnevictable(page))
3696                         continue;
3697
3698                 if (page_evictable(page)) {
3699                         enum lru_list lru = page_lru_base_type(page);
3700
3701                         VM_BUG_ON(PageActive(page));
3702                         ClearPageUnevictable(page);
3703                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3704                         add_page_to_lru_list(page, lruvec, lru);
3705                         pgrescued++;
3706                 }
3707         }
3708
3709         if (zone) {
3710                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3711                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3712                 spin_unlock_irq(&zone->lru_lock);
3713         }
3714 }
3715 #endif /* CONFIG_SHMEM */
3716
3717 static void warn_scan_unevictable_pages(void)
3718 {
3719         printk_once(KERN_WARNING
3720                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3721                     "disabled for lack of a legitimate use case.  If you have "
3722                     "one, please send an email to linux-mm@kvack.org.\n",
3723                     current->comm);
3724 }
3725
3726 /*
3727  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3728  * all nodes' unevictable lists for evictable pages
3729  */
3730 unsigned long scan_unevictable_pages;
3731
3732 int scan_unevictable_handler(struct ctl_table *table, int write,
3733                            void __user *buffer,
3734                            size_t *length, loff_t *ppos)
3735 {
3736         warn_scan_unevictable_pages();
3737         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3738         scan_unevictable_pages = 0;
3739         return 0;
3740 }
3741
3742 #ifdef CONFIG_NUMA
3743 /*
3744  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3745  * a specified node's per zone unevictable lists for evictable pages.
3746  */
3747
3748 static ssize_t read_scan_unevictable_node(struct device *dev,
3749                                           struct device_attribute *attr,
3750                                           char *buf)
3751 {
3752         warn_scan_unevictable_pages();
3753         return sprintf(buf, "0\n");     /* always zero; should fit... */
3754 }
3755
3756 static ssize_t write_scan_unevictable_node(struct device *dev,
3757                                            struct device_attribute *attr,
3758                                         const char *buf, size_t count)
3759 {
3760         warn_scan_unevictable_pages();
3761         return 1;
3762 }
3763
3764
3765 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3766                         read_scan_unevictable_node,
3767                         write_scan_unevictable_node);
3768
3769 int scan_unevictable_register_node(struct node *node)
3770 {
3771         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3772 }
3773
3774 void scan_unevictable_unregister_node(struct node *node)
3775 {
3776         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3777 }
3778 #endif