]> Pileus Git - ~andy/linux/blob - mm/vmscan.c
revert "memcg: enhance memcg iterator to support predicates"
[~andy/linux] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142
143 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
144 {
145         return !mem_cgroup_disabled();
146 }
147 #else
148 static bool global_reclaim(struct scan_control *sc)
149 {
150         return true;
151 }
152
153 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
154 {
155         return false;
156 }
157 #endif
158
159 unsigned long zone_reclaimable_pages(struct zone *zone)
160 {
161         int nr;
162
163         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
164              zone_page_state(zone, NR_INACTIVE_FILE);
165
166         if (get_nr_swap_pages() > 0)
167                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
168                       zone_page_state(zone, NR_INACTIVE_ANON);
169
170         return nr;
171 }
172
173 bool zone_reclaimable(struct zone *zone)
174 {
175         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
176 }
177
178 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
179 {
180         if (!mem_cgroup_disabled())
181                 return mem_cgroup_get_lru_size(lruvec, lru);
182
183         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
184 }
185
186 /*
187  * Add a shrinker callback to be called from the vm.
188  */
189 int register_shrinker(struct shrinker *shrinker)
190 {
191         size_t size = sizeof(*shrinker->nr_deferred);
192
193         /*
194          * If we only have one possible node in the system anyway, save
195          * ourselves the trouble and disable NUMA aware behavior. This way we
196          * will save memory and some small loop time later.
197          */
198         if (nr_node_ids == 1)
199                 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
200
201         if (shrinker->flags & SHRINKER_NUMA_AWARE)
202                 size *= nr_node_ids;
203
204         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
205         if (!shrinker->nr_deferred)
206                 return -ENOMEM;
207
208         down_write(&shrinker_rwsem);
209         list_add_tail(&shrinker->list, &shrinker_list);
210         up_write(&shrinker_rwsem);
211         return 0;
212 }
213 EXPORT_SYMBOL(register_shrinker);
214
215 /*
216  * Remove one
217  */
218 void unregister_shrinker(struct shrinker *shrinker)
219 {
220         down_write(&shrinker_rwsem);
221         list_del(&shrinker->list);
222         up_write(&shrinker_rwsem);
223 }
224 EXPORT_SYMBOL(unregister_shrinker);
225
226 #define SHRINK_BATCH 128
227
228 static unsigned long
229 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
230                  unsigned long nr_pages_scanned, unsigned long lru_pages)
231 {
232         unsigned long freed = 0;
233         unsigned long long delta;
234         long total_scan;
235         long max_pass;
236         long nr;
237         long new_nr;
238         int nid = shrinkctl->nid;
239         long batch_size = shrinker->batch ? shrinker->batch
240                                           : SHRINK_BATCH;
241
242         max_pass = shrinker->count_objects(shrinker, shrinkctl);
243         if (max_pass == 0)
244                 return 0;
245
246         /*
247          * copy the current shrinker scan count into a local variable
248          * and zero it so that other concurrent shrinker invocations
249          * don't also do this scanning work.
250          */
251         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
252
253         total_scan = nr;
254         delta = (4 * nr_pages_scanned) / shrinker->seeks;
255         delta *= max_pass;
256         do_div(delta, lru_pages + 1);
257         total_scan += delta;
258         if (total_scan < 0) {
259                 printk(KERN_ERR
260                 "shrink_slab: %pF negative objects to delete nr=%ld\n",
261                        shrinker->scan_objects, total_scan);
262                 total_scan = max_pass;
263         }
264
265         /*
266          * We need to avoid excessive windup on filesystem shrinkers
267          * due to large numbers of GFP_NOFS allocations causing the
268          * shrinkers to return -1 all the time. This results in a large
269          * nr being built up so when a shrink that can do some work
270          * comes along it empties the entire cache due to nr >>>
271          * max_pass.  This is bad for sustaining a working set in
272          * memory.
273          *
274          * Hence only allow the shrinker to scan the entire cache when
275          * a large delta change is calculated directly.
276          */
277         if (delta < max_pass / 4)
278                 total_scan = min(total_scan, max_pass / 2);
279
280         /*
281          * Avoid risking looping forever due to too large nr value:
282          * never try to free more than twice the estimate number of
283          * freeable entries.
284          */
285         if (total_scan > max_pass * 2)
286                 total_scan = max_pass * 2;
287
288         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
289                                 nr_pages_scanned, lru_pages,
290                                 max_pass, delta, total_scan);
291
292         while (total_scan >= batch_size) {
293                 unsigned long ret;
294
295                 shrinkctl->nr_to_scan = batch_size;
296                 ret = shrinker->scan_objects(shrinker, shrinkctl);
297                 if (ret == SHRINK_STOP)
298                         break;
299                 freed += ret;
300
301                 count_vm_events(SLABS_SCANNED, batch_size);
302                 total_scan -= batch_size;
303
304                 cond_resched();
305         }
306
307         /*
308          * move the unused scan count back into the shrinker in a
309          * manner that handles concurrent updates. If we exhausted the
310          * scan, there is no need to do an update.
311          */
312         if (total_scan > 0)
313                 new_nr = atomic_long_add_return(total_scan,
314                                                 &shrinker->nr_deferred[nid]);
315         else
316                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
317
318         trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
319         return freed;
320 }
321
322 /*
323  * Call the shrink functions to age shrinkable caches
324  *
325  * Here we assume it costs one seek to replace a lru page and that it also
326  * takes a seek to recreate a cache object.  With this in mind we age equal
327  * percentages of the lru and ageable caches.  This should balance the seeks
328  * generated by these structures.
329  *
330  * If the vm encountered mapped pages on the LRU it increase the pressure on
331  * slab to avoid swapping.
332  *
333  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
334  *
335  * `lru_pages' represents the number of on-LRU pages in all the zones which
336  * are eligible for the caller's allocation attempt.  It is used for balancing
337  * slab reclaim versus page reclaim.
338  *
339  * Returns the number of slab objects which we shrunk.
340  */
341 unsigned long shrink_slab(struct shrink_control *shrinkctl,
342                           unsigned long nr_pages_scanned,
343                           unsigned long lru_pages)
344 {
345         struct shrinker *shrinker;
346         unsigned long freed = 0;
347
348         if (nr_pages_scanned == 0)
349                 nr_pages_scanned = SWAP_CLUSTER_MAX;
350
351         if (!down_read_trylock(&shrinker_rwsem)) {
352                 /*
353                  * If we would return 0, our callers would understand that we
354                  * have nothing else to shrink and give up trying. By returning
355                  * 1 we keep it going and assume we'll be able to shrink next
356                  * time.
357                  */
358                 freed = 1;
359                 goto out;
360         }
361
362         list_for_each_entry(shrinker, &shrinker_list, list) {
363                 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
364                         if (!node_online(shrinkctl->nid))
365                                 continue;
366
367                         if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
368                             (shrinkctl->nid != 0))
369                                 break;
370
371                         freed += shrink_slab_node(shrinkctl, shrinker,
372                                  nr_pages_scanned, lru_pages);
373
374                 }
375         }
376         up_read(&shrinker_rwsem);
377 out:
378         cond_resched();
379         return freed;
380 }
381
382 static inline int is_page_cache_freeable(struct page *page)
383 {
384         /*
385          * A freeable page cache page is referenced only by the caller
386          * that isolated the page, the page cache radix tree and
387          * optional buffer heads at page->private.
388          */
389         return page_count(page) - page_has_private(page) == 2;
390 }
391
392 static int may_write_to_queue(struct backing_dev_info *bdi,
393                               struct scan_control *sc)
394 {
395         if (current->flags & PF_SWAPWRITE)
396                 return 1;
397         if (!bdi_write_congested(bdi))
398                 return 1;
399         if (bdi == current->backing_dev_info)
400                 return 1;
401         return 0;
402 }
403
404 /*
405  * We detected a synchronous write error writing a page out.  Probably
406  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
407  * fsync(), msync() or close().
408  *
409  * The tricky part is that after writepage we cannot touch the mapping: nothing
410  * prevents it from being freed up.  But we have a ref on the page and once
411  * that page is locked, the mapping is pinned.
412  *
413  * We're allowed to run sleeping lock_page() here because we know the caller has
414  * __GFP_FS.
415  */
416 static void handle_write_error(struct address_space *mapping,
417                                 struct page *page, int error)
418 {
419         lock_page(page);
420         if (page_mapping(page) == mapping)
421                 mapping_set_error(mapping, error);
422         unlock_page(page);
423 }
424
425 /* possible outcome of pageout() */
426 typedef enum {
427         /* failed to write page out, page is locked */
428         PAGE_KEEP,
429         /* move page to the active list, page is locked */
430         PAGE_ACTIVATE,
431         /* page has been sent to the disk successfully, page is unlocked */
432         PAGE_SUCCESS,
433         /* page is clean and locked */
434         PAGE_CLEAN,
435 } pageout_t;
436
437 /*
438  * pageout is called by shrink_page_list() for each dirty page.
439  * Calls ->writepage().
440  */
441 static pageout_t pageout(struct page *page, struct address_space *mapping,
442                          struct scan_control *sc)
443 {
444         /*
445          * If the page is dirty, only perform writeback if that write
446          * will be non-blocking.  To prevent this allocation from being
447          * stalled by pagecache activity.  But note that there may be
448          * stalls if we need to run get_block().  We could test
449          * PagePrivate for that.
450          *
451          * If this process is currently in __generic_file_aio_write() against
452          * this page's queue, we can perform writeback even if that
453          * will block.
454          *
455          * If the page is swapcache, write it back even if that would
456          * block, for some throttling. This happens by accident, because
457          * swap_backing_dev_info is bust: it doesn't reflect the
458          * congestion state of the swapdevs.  Easy to fix, if needed.
459          */
460         if (!is_page_cache_freeable(page))
461                 return PAGE_KEEP;
462         if (!mapping) {
463                 /*
464                  * Some data journaling orphaned pages can have
465                  * page->mapping == NULL while being dirty with clean buffers.
466                  */
467                 if (page_has_private(page)) {
468                         if (try_to_free_buffers(page)) {
469                                 ClearPageDirty(page);
470                                 printk("%s: orphaned page\n", __func__);
471                                 return PAGE_CLEAN;
472                         }
473                 }
474                 return PAGE_KEEP;
475         }
476         if (mapping->a_ops->writepage == NULL)
477                 return PAGE_ACTIVATE;
478         if (!may_write_to_queue(mapping->backing_dev_info, sc))
479                 return PAGE_KEEP;
480
481         if (clear_page_dirty_for_io(page)) {
482                 int res;
483                 struct writeback_control wbc = {
484                         .sync_mode = WB_SYNC_NONE,
485                         .nr_to_write = SWAP_CLUSTER_MAX,
486                         .range_start = 0,
487                         .range_end = LLONG_MAX,
488                         .for_reclaim = 1,
489                 };
490
491                 SetPageReclaim(page);
492                 res = mapping->a_ops->writepage(page, &wbc);
493                 if (res < 0)
494                         handle_write_error(mapping, page, res);
495                 if (res == AOP_WRITEPAGE_ACTIVATE) {
496                         ClearPageReclaim(page);
497                         return PAGE_ACTIVATE;
498                 }
499
500                 if (!PageWriteback(page)) {
501                         /* synchronous write or broken a_ops? */
502                         ClearPageReclaim(page);
503                 }
504                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
505                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
506                 return PAGE_SUCCESS;
507         }
508
509         return PAGE_CLEAN;
510 }
511
512 /*
513  * Same as remove_mapping, but if the page is removed from the mapping, it
514  * gets returned with a refcount of 0.
515  */
516 static int __remove_mapping(struct address_space *mapping, struct page *page)
517 {
518         BUG_ON(!PageLocked(page));
519         BUG_ON(mapping != page_mapping(page));
520
521         spin_lock_irq(&mapping->tree_lock);
522         /*
523          * The non racy check for a busy page.
524          *
525          * Must be careful with the order of the tests. When someone has
526          * a ref to the page, it may be possible that they dirty it then
527          * drop the reference. So if PageDirty is tested before page_count
528          * here, then the following race may occur:
529          *
530          * get_user_pages(&page);
531          * [user mapping goes away]
532          * write_to(page);
533          *                              !PageDirty(page)    [good]
534          * SetPageDirty(page);
535          * put_page(page);
536          *                              !page_count(page)   [good, discard it]
537          *
538          * [oops, our write_to data is lost]
539          *
540          * Reversing the order of the tests ensures such a situation cannot
541          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
542          * load is not satisfied before that of page->_count.
543          *
544          * Note that if SetPageDirty is always performed via set_page_dirty,
545          * and thus under tree_lock, then this ordering is not required.
546          */
547         if (!page_freeze_refs(page, 2))
548                 goto cannot_free;
549         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
550         if (unlikely(PageDirty(page))) {
551                 page_unfreeze_refs(page, 2);
552                 goto cannot_free;
553         }
554
555         if (PageSwapCache(page)) {
556                 swp_entry_t swap = { .val = page_private(page) };
557                 __delete_from_swap_cache(page);
558                 spin_unlock_irq(&mapping->tree_lock);
559                 swapcache_free(swap, page);
560         } else {
561                 void (*freepage)(struct page *);
562
563                 freepage = mapping->a_ops->freepage;
564
565                 __delete_from_page_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 mem_cgroup_uncharge_cache_page(page);
568
569                 if (freepage != NULL)
570                         freepage(page);
571         }
572
573         return 1;
574
575 cannot_free:
576         spin_unlock_irq(&mapping->tree_lock);
577         return 0;
578 }
579
580 /*
581  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
582  * someone else has a ref on the page, abort and return 0.  If it was
583  * successfully detached, return 1.  Assumes the caller has a single ref on
584  * this page.
585  */
586 int remove_mapping(struct address_space *mapping, struct page *page)
587 {
588         if (__remove_mapping(mapping, page)) {
589                 /*
590                  * Unfreezing the refcount with 1 rather than 2 effectively
591                  * drops the pagecache ref for us without requiring another
592                  * atomic operation.
593                  */
594                 page_unfreeze_refs(page, 1);
595                 return 1;
596         }
597         return 0;
598 }
599
600 /**
601  * putback_lru_page - put previously isolated page onto appropriate LRU list
602  * @page: page to be put back to appropriate lru list
603  *
604  * Add previously isolated @page to appropriate LRU list.
605  * Page may still be unevictable for other reasons.
606  *
607  * lru_lock must not be held, interrupts must be enabled.
608  */
609 void putback_lru_page(struct page *page)
610 {
611         bool is_unevictable;
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 is_unevictable = false;
627                 lru_cache_add(page);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 is_unevictable = true;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock or AS_UNEVICTABLE clearing
637                  * (page is unlocked) make sure that if the other thread
638                  * does not observe our setting of PG_lru and fails
639                  * isolation/check_move_unevictable_pages,
640                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked() or shmem_lock().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (is_unevictable && page_evictable(page)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && !is_unevictable)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && is_unevictable)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
686                                           &vm_flags);
687         referenced_page = TestClearPageReferenced(page);
688
689         /*
690          * Mlock lost the isolation race with us.  Let try_to_unmap()
691          * move the page to the unevictable list.
692          */
693         if (vm_flags & VM_LOCKED)
694                 return PAGEREF_RECLAIM;
695
696         if (referenced_ptes) {
697                 if (PageSwapBacked(page))
698                         return PAGEREF_ACTIVATE;
699                 /*
700                  * All mapped pages start out with page table
701                  * references from the instantiating fault, so we need
702                  * to look twice if a mapped file page is used more
703                  * than once.
704                  *
705                  * Mark it and spare it for another trip around the
706                  * inactive list.  Another page table reference will
707                  * lead to its activation.
708                  *
709                  * Note: the mark is set for activated pages as well
710                  * so that recently deactivated but used pages are
711                  * quickly recovered.
712                  */
713                 SetPageReferenced(page);
714
715                 if (referenced_page || referenced_ptes > 1)
716                         return PAGEREF_ACTIVATE;
717
718                 /*
719                  * Activate file-backed executable pages after first usage.
720                  */
721                 if (vm_flags & VM_EXEC)
722                         return PAGEREF_ACTIVATE;
723
724                 return PAGEREF_KEEP;
725         }
726
727         /* Reclaim if clean, defer dirty pages to writeback */
728         if (referenced_page && !PageSwapBacked(page))
729                 return PAGEREF_RECLAIM_CLEAN;
730
731         return PAGEREF_RECLAIM;
732 }
733
734 /* Check if a page is dirty or under writeback */
735 static void page_check_dirty_writeback(struct page *page,
736                                        bool *dirty, bool *writeback)
737 {
738         struct address_space *mapping;
739
740         /*
741          * Anonymous pages are not handled by flushers and must be written
742          * from reclaim context. Do not stall reclaim based on them
743          */
744         if (!page_is_file_cache(page)) {
745                 *dirty = false;
746                 *writeback = false;
747                 return;
748         }
749
750         /* By default assume that the page flags are accurate */
751         *dirty = PageDirty(page);
752         *writeback = PageWriteback(page);
753
754         /* Verify dirty/writeback state if the filesystem supports it */
755         if (!page_has_private(page))
756                 return;
757
758         mapping = page_mapping(page);
759         if (mapping && mapping->a_ops->is_dirty_writeback)
760                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
761 }
762
763 /*
764  * shrink_page_list() returns the number of reclaimed pages
765  */
766 static unsigned long shrink_page_list(struct list_head *page_list,
767                                       struct zone *zone,
768                                       struct scan_control *sc,
769                                       enum ttu_flags ttu_flags,
770                                       unsigned long *ret_nr_dirty,
771                                       unsigned long *ret_nr_unqueued_dirty,
772                                       unsigned long *ret_nr_congested,
773                                       unsigned long *ret_nr_writeback,
774                                       unsigned long *ret_nr_immediate,
775                                       bool force_reclaim)
776 {
777         LIST_HEAD(ret_pages);
778         LIST_HEAD(free_pages);
779         int pgactivate = 0;
780         unsigned long nr_unqueued_dirty = 0;
781         unsigned long nr_dirty = 0;
782         unsigned long nr_congested = 0;
783         unsigned long nr_reclaimed = 0;
784         unsigned long nr_writeback = 0;
785         unsigned long nr_immediate = 0;
786
787         cond_resched();
788
789         mem_cgroup_uncharge_start();
790         while (!list_empty(page_list)) {
791                 struct address_space *mapping;
792                 struct page *page;
793                 int may_enter_fs;
794                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
795                 bool dirty, writeback;
796
797                 cond_resched();
798
799                 page = lru_to_page(page_list);
800                 list_del(&page->lru);
801
802                 if (!trylock_page(page))
803                         goto keep;
804
805                 VM_BUG_ON(PageActive(page));
806                 VM_BUG_ON(page_zone(page) != zone);
807
808                 sc->nr_scanned++;
809
810                 if (unlikely(!page_evictable(page)))
811                         goto cull_mlocked;
812
813                 if (!sc->may_unmap && page_mapped(page))
814                         goto keep_locked;
815
816                 /* Double the slab pressure for mapped and swapcache pages */
817                 if (page_mapped(page) || PageSwapCache(page))
818                         sc->nr_scanned++;
819
820                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
821                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
822
823                 /*
824                  * The number of dirty pages determines if a zone is marked
825                  * reclaim_congested which affects wait_iff_congested. kswapd
826                  * will stall and start writing pages if the tail of the LRU
827                  * is all dirty unqueued pages.
828                  */
829                 page_check_dirty_writeback(page, &dirty, &writeback);
830                 if (dirty || writeback)
831                         nr_dirty++;
832
833                 if (dirty && !writeback)
834                         nr_unqueued_dirty++;
835
836                 /*
837                  * Treat this page as congested if the underlying BDI is or if
838                  * pages are cycling through the LRU so quickly that the
839                  * pages marked for immediate reclaim are making it to the
840                  * end of the LRU a second time.
841                  */
842                 mapping = page_mapping(page);
843                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
844                     (writeback && PageReclaim(page)))
845                         nr_congested++;
846
847                 /*
848                  * If a page at the tail of the LRU is under writeback, there
849                  * are three cases to consider.
850                  *
851                  * 1) If reclaim is encountering an excessive number of pages
852                  *    under writeback and this page is both under writeback and
853                  *    PageReclaim then it indicates that pages are being queued
854                  *    for IO but are being recycled through the LRU before the
855                  *    IO can complete. Waiting on the page itself risks an
856                  *    indefinite stall if it is impossible to writeback the
857                  *    page due to IO error or disconnected storage so instead
858                  *    note that the LRU is being scanned too quickly and the
859                  *    caller can stall after page list has been processed.
860                  *
861                  * 2) Global reclaim encounters a page, memcg encounters a
862                  *    page that is not marked for immediate reclaim or
863                  *    the caller does not have __GFP_IO. In this case mark
864                  *    the page for immediate reclaim and continue scanning.
865                  *
866                  *    __GFP_IO is checked  because a loop driver thread might
867                  *    enter reclaim, and deadlock if it waits on a page for
868                  *    which it is needed to do the write (loop masks off
869                  *    __GFP_IO|__GFP_FS for this reason); but more thought
870                  *    would probably show more reasons.
871                  *
872                  *    Don't require __GFP_FS, since we're not going into the
873                  *    FS, just waiting on its writeback completion. Worryingly,
874                  *    ext4 gfs2 and xfs allocate pages with
875                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
876                  *    may_enter_fs here is liable to OOM on them.
877                  *
878                  * 3) memcg encounters a page that is not already marked
879                  *    PageReclaim. memcg does not have any dirty pages
880                  *    throttling so we could easily OOM just because too many
881                  *    pages are in writeback and there is nothing else to
882                  *    reclaim. Wait for the writeback to complete.
883                  */
884                 if (PageWriteback(page)) {
885                         /* Case 1 above */
886                         if (current_is_kswapd() &&
887                             PageReclaim(page) &&
888                             zone_is_reclaim_writeback(zone)) {
889                                 nr_immediate++;
890                                 goto keep_locked;
891
892                         /* Case 2 above */
893                         } else if (global_reclaim(sc) ||
894                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
895                                 /*
896                                  * This is slightly racy - end_page_writeback()
897                                  * might have just cleared PageReclaim, then
898                                  * setting PageReclaim here end up interpreted
899                                  * as PageReadahead - but that does not matter
900                                  * enough to care.  What we do want is for this
901                                  * page to have PageReclaim set next time memcg
902                                  * reclaim reaches the tests above, so it will
903                                  * then wait_on_page_writeback() to avoid OOM;
904                                  * and it's also appropriate in global reclaim.
905                                  */
906                                 SetPageReclaim(page);
907                                 nr_writeback++;
908
909                                 goto keep_locked;
910
911                         /* Case 3 above */
912                         } else {
913                                 wait_on_page_writeback(page);
914                         }
915                 }
916
917                 if (!force_reclaim)
918                         references = page_check_references(page, sc);
919
920                 switch (references) {
921                 case PAGEREF_ACTIVATE:
922                         goto activate_locked;
923                 case PAGEREF_KEEP:
924                         goto keep_locked;
925                 case PAGEREF_RECLAIM:
926                 case PAGEREF_RECLAIM_CLEAN:
927                         ; /* try to reclaim the page below */
928                 }
929
930                 /*
931                  * Anonymous process memory has backing store?
932                  * Try to allocate it some swap space here.
933                  */
934                 if (PageAnon(page) && !PageSwapCache(page)) {
935                         if (!(sc->gfp_mask & __GFP_IO))
936                                 goto keep_locked;
937                         if (!add_to_swap(page, page_list))
938                                 goto activate_locked;
939                         may_enter_fs = 1;
940
941                         /* Adding to swap updated mapping */
942                         mapping = page_mapping(page);
943                 }
944
945                 /*
946                  * The page is mapped into the page tables of one or more
947                  * processes. Try to unmap it here.
948                  */
949                 if (page_mapped(page) && mapping) {
950                         switch (try_to_unmap(page, ttu_flags)) {
951                         case SWAP_FAIL:
952                                 goto activate_locked;
953                         case SWAP_AGAIN:
954                                 goto keep_locked;
955                         case SWAP_MLOCK:
956                                 goto cull_mlocked;
957                         case SWAP_SUCCESS:
958                                 ; /* try to free the page below */
959                         }
960                 }
961
962                 if (PageDirty(page)) {
963                         /*
964                          * Only kswapd can writeback filesystem pages to
965                          * avoid risk of stack overflow but only writeback
966                          * if many dirty pages have been encountered.
967                          */
968                         if (page_is_file_cache(page) &&
969                                         (!current_is_kswapd() ||
970                                          !zone_is_reclaim_dirty(zone))) {
971                                 /*
972                                  * Immediately reclaim when written back.
973                                  * Similar in principal to deactivate_page()
974                                  * except we already have the page isolated
975                                  * and know it's dirty
976                                  */
977                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
978                                 SetPageReclaim(page);
979
980                                 goto keep_locked;
981                         }
982
983                         if (references == PAGEREF_RECLAIM_CLEAN)
984                                 goto keep_locked;
985                         if (!may_enter_fs)
986                                 goto keep_locked;
987                         if (!sc->may_writepage)
988                                 goto keep_locked;
989
990                         /* Page is dirty, try to write it out here */
991                         switch (pageout(page, mapping, sc)) {
992                         case PAGE_KEEP:
993                                 goto keep_locked;
994                         case PAGE_ACTIVATE:
995                                 goto activate_locked;
996                         case PAGE_SUCCESS:
997                                 if (PageWriteback(page))
998                                         goto keep;
999                                 if (PageDirty(page))
1000                                         goto keep;
1001
1002                                 /*
1003                                  * A synchronous write - probably a ramdisk.  Go
1004                                  * ahead and try to reclaim the page.
1005                                  */
1006                                 if (!trylock_page(page))
1007                                         goto keep;
1008                                 if (PageDirty(page) || PageWriteback(page))
1009                                         goto keep_locked;
1010                                 mapping = page_mapping(page);
1011                         case PAGE_CLEAN:
1012                                 ; /* try to free the page below */
1013                         }
1014                 }
1015
1016                 /*
1017                  * If the page has buffers, try to free the buffer mappings
1018                  * associated with this page. If we succeed we try to free
1019                  * the page as well.
1020                  *
1021                  * We do this even if the page is PageDirty().
1022                  * try_to_release_page() does not perform I/O, but it is
1023                  * possible for a page to have PageDirty set, but it is actually
1024                  * clean (all its buffers are clean).  This happens if the
1025                  * buffers were written out directly, with submit_bh(). ext3
1026                  * will do this, as well as the blockdev mapping.
1027                  * try_to_release_page() will discover that cleanness and will
1028                  * drop the buffers and mark the page clean - it can be freed.
1029                  *
1030                  * Rarely, pages can have buffers and no ->mapping.  These are
1031                  * the pages which were not successfully invalidated in
1032                  * truncate_complete_page().  We try to drop those buffers here
1033                  * and if that worked, and the page is no longer mapped into
1034                  * process address space (page_count == 1) it can be freed.
1035                  * Otherwise, leave the page on the LRU so it is swappable.
1036                  */
1037                 if (page_has_private(page)) {
1038                         if (!try_to_release_page(page, sc->gfp_mask))
1039                                 goto activate_locked;
1040                         if (!mapping && page_count(page) == 1) {
1041                                 unlock_page(page);
1042                                 if (put_page_testzero(page))
1043                                         goto free_it;
1044                                 else {
1045                                         /*
1046                                          * rare race with speculative reference.
1047                                          * the speculative reference will free
1048                                          * this page shortly, so we may
1049                                          * increment nr_reclaimed here (and
1050                                          * leave it off the LRU).
1051                                          */
1052                                         nr_reclaimed++;
1053                                         continue;
1054                                 }
1055                         }
1056                 }
1057
1058                 if (!mapping || !__remove_mapping(mapping, page))
1059                         goto keep_locked;
1060
1061                 /*
1062                  * At this point, we have no other references and there is
1063                  * no way to pick any more up (removed from LRU, removed
1064                  * from pagecache). Can use non-atomic bitops now (and
1065                  * we obviously don't have to worry about waking up a process
1066                  * waiting on the page lock, because there are no references.
1067                  */
1068                 __clear_page_locked(page);
1069 free_it:
1070                 nr_reclaimed++;
1071
1072                 /*
1073                  * Is there need to periodically free_page_list? It would
1074                  * appear not as the counts should be low
1075                  */
1076                 list_add(&page->lru, &free_pages);
1077                 continue;
1078
1079 cull_mlocked:
1080                 if (PageSwapCache(page))
1081                         try_to_free_swap(page);
1082                 unlock_page(page);
1083                 putback_lru_page(page);
1084                 continue;
1085
1086 activate_locked:
1087                 /* Not a candidate for swapping, so reclaim swap space. */
1088                 if (PageSwapCache(page) && vm_swap_full())
1089                         try_to_free_swap(page);
1090                 VM_BUG_ON(PageActive(page));
1091                 SetPageActive(page);
1092                 pgactivate++;
1093 keep_locked:
1094                 unlock_page(page);
1095 keep:
1096                 list_add(&page->lru, &ret_pages);
1097                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1098         }
1099
1100         free_hot_cold_page_list(&free_pages, 1);
1101
1102         list_splice(&ret_pages, page_list);
1103         count_vm_events(PGACTIVATE, pgactivate);
1104         mem_cgroup_uncharge_end();
1105         *ret_nr_dirty += nr_dirty;
1106         *ret_nr_congested += nr_congested;
1107         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1108         *ret_nr_writeback += nr_writeback;
1109         *ret_nr_immediate += nr_immediate;
1110         return nr_reclaimed;
1111 }
1112
1113 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1114                                             struct list_head *page_list)
1115 {
1116         struct scan_control sc = {
1117                 .gfp_mask = GFP_KERNEL,
1118                 .priority = DEF_PRIORITY,
1119                 .may_unmap = 1,
1120         };
1121         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1122         struct page *page, *next;
1123         LIST_HEAD(clean_pages);
1124
1125         list_for_each_entry_safe(page, next, page_list, lru) {
1126                 if (page_is_file_cache(page) && !PageDirty(page)) {
1127                         ClearPageActive(page);
1128                         list_move(&page->lru, &clean_pages);
1129                 }
1130         }
1131
1132         ret = shrink_page_list(&clean_pages, zone, &sc,
1133                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1134                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1135         list_splice(&clean_pages, page_list);
1136         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1137         return ret;
1138 }
1139
1140 /*
1141  * Attempt to remove the specified page from its LRU.  Only take this page
1142  * if it is of the appropriate PageActive status.  Pages which are being
1143  * freed elsewhere are also ignored.
1144  *
1145  * page:        page to consider
1146  * mode:        one of the LRU isolation modes defined above
1147  *
1148  * returns 0 on success, -ve errno on failure.
1149  */
1150 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1151 {
1152         int ret = -EINVAL;
1153
1154         /* Only take pages on the LRU. */
1155         if (!PageLRU(page))
1156                 return ret;
1157
1158         /* Compaction should not handle unevictable pages but CMA can do so */
1159         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1160                 return ret;
1161
1162         ret = -EBUSY;
1163
1164         /*
1165          * To minimise LRU disruption, the caller can indicate that it only
1166          * wants to isolate pages it will be able to operate on without
1167          * blocking - clean pages for the most part.
1168          *
1169          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1170          * is used by reclaim when it is cannot write to backing storage
1171          *
1172          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1173          * that it is possible to migrate without blocking
1174          */
1175         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1176                 /* All the caller can do on PageWriteback is block */
1177                 if (PageWriteback(page))
1178                         return ret;
1179
1180                 if (PageDirty(page)) {
1181                         struct address_space *mapping;
1182
1183                         /* ISOLATE_CLEAN means only clean pages */
1184                         if (mode & ISOLATE_CLEAN)
1185                                 return ret;
1186
1187                         /*
1188                          * Only pages without mappings or that have a
1189                          * ->migratepage callback are possible to migrate
1190                          * without blocking
1191                          */
1192                         mapping = page_mapping(page);
1193                         if (mapping && !mapping->a_ops->migratepage)
1194                                 return ret;
1195                 }
1196         }
1197
1198         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1199                 return ret;
1200
1201         if (likely(get_page_unless_zero(page))) {
1202                 /*
1203                  * Be careful not to clear PageLRU until after we're
1204                  * sure the page is not being freed elsewhere -- the
1205                  * page release code relies on it.
1206                  */
1207                 ClearPageLRU(page);
1208                 ret = 0;
1209         }
1210
1211         return ret;
1212 }
1213
1214 /*
1215  * zone->lru_lock is heavily contended.  Some of the functions that
1216  * shrink the lists perform better by taking out a batch of pages
1217  * and working on them outside the LRU lock.
1218  *
1219  * For pagecache intensive workloads, this function is the hottest
1220  * spot in the kernel (apart from copy_*_user functions).
1221  *
1222  * Appropriate locks must be held before calling this function.
1223  *
1224  * @nr_to_scan: The number of pages to look through on the list.
1225  * @lruvec:     The LRU vector to pull pages from.
1226  * @dst:        The temp list to put pages on to.
1227  * @nr_scanned: The number of pages that were scanned.
1228  * @sc:         The scan_control struct for this reclaim session
1229  * @mode:       One of the LRU isolation modes
1230  * @lru:        LRU list id for isolating
1231  *
1232  * returns how many pages were moved onto *@dst.
1233  */
1234 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1235                 struct lruvec *lruvec, struct list_head *dst,
1236                 unsigned long *nr_scanned, struct scan_control *sc,
1237                 isolate_mode_t mode, enum lru_list lru)
1238 {
1239         struct list_head *src = &lruvec->lists[lru];
1240         unsigned long nr_taken = 0;
1241         unsigned long scan;
1242
1243         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1244                 struct page *page;
1245                 int nr_pages;
1246
1247                 page = lru_to_page(src);
1248                 prefetchw_prev_lru_page(page, src, flags);
1249
1250                 VM_BUG_ON(!PageLRU(page));
1251
1252                 switch (__isolate_lru_page(page, mode)) {
1253                 case 0:
1254                         nr_pages = hpage_nr_pages(page);
1255                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1256                         list_move(&page->lru, dst);
1257                         nr_taken += nr_pages;
1258                         break;
1259
1260                 case -EBUSY:
1261                         /* else it is being freed elsewhere */
1262                         list_move(&page->lru, src);
1263                         continue;
1264
1265                 default:
1266                         BUG();
1267                 }
1268         }
1269
1270         *nr_scanned = scan;
1271         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1272                                     nr_taken, mode, is_file_lru(lru));
1273         return nr_taken;
1274 }
1275
1276 /**
1277  * isolate_lru_page - tries to isolate a page from its LRU list
1278  * @page: page to isolate from its LRU list
1279  *
1280  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1281  * vmstat statistic corresponding to whatever LRU list the page was on.
1282  *
1283  * Returns 0 if the page was removed from an LRU list.
1284  * Returns -EBUSY if the page was not on an LRU list.
1285  *
1286  * The returned page will have PageLRU() cleared.  If it was found on
1287  * the active list, it will have PageActive set.  If it was found on
1288  * the unevictable list, it will have the PageUnevictable bit set. That flag
1289  * may need to be cleared by the caller before letting the page go.
1290  *
1291  * The vmstat statistic corresponding to the list on which the page was
1292  * found will be decremented.
1293  *
1294  * Restrictions:
1295  * (1) Must be called with an elevated refcount on the page. This is a
1296  *     fundamentnal difference from isolate_lru_pages (which is called
1297  *     without a stable reference).
1298  * (2) the lru_lock must not be held.
1299  * (3) interrupts must be enabled.
1300  */
1301 int isolate_lru_page(struct page *page)
1302 {
1303         int ret = -EBUSY;
1304
1305         VM_BUG_ON(!page_count(page));
1306
1307         if (PageLRU(page)) {
1308                 struct zone *zone = page_zone(page);
1309                 struct lruvec *lruvec;
1310
1311                 spin_lock_irq(&zone->lru_lock);
1312                 lruvec = mem_cgroup_page_lruvec(page, zone);
1313                 if (PageLRU(page)) {
1314                         int lru = page_lru(page);
1315                         get_page(page);
1316                         ClearPageLRU(page);
1317                         del_page_from_lru_list(page, lruvec, lru);
1318                         ret = 0;
1319                 }
1320                 spin_unlock_irq(&zone->lru_lock);
1321         }
1322         return ret;
1323 }
1324
1325 /*
1326  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1327  * then get resheduled. When there are massive number of tasks doing page
1328  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1329  * the LRU list will go small and be scanned faster than necessary, leading to
1330  * unnecessary swapping, thrashing and OOM.
1331  */
1332 static int too_many_isolated(struct zone *zone, int file,
1333                 struct scan_control *sc)
1334 {
1335         unsigned long inactive, isolated;
1336
1337         if (current_is_kswapd())
1338                 return 0;
1339
1340         if (!global_reclaim(sc))
1341                 return 0;
1342
1343         if (file) {
1344                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1345                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1346         } else {
1347                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1348                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1349         }
1350
1351         /*
1352          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1353          * won't get blocked by normal direct-reclaimers, forming a circular
1354          * deadlock.
1355          */
1356         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1357                 inactive >>= 3;
1358
1359         return isolated > inactive;
1360 }
1361
1362 static noinline_for_stack void
1363 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1364 {
1365         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1366         struct zone *zone = lruvec_zone(lruvec);
1367         LIST_HEAD(pages_to_free);
1368
1369         /*
1370          * Put back any unfreeable pages.
1371          */
1372         while (!list_empty(page_list)) {
1373                 struct page *page = lru_to_page(page_list);
1374                 int lru;
1375
1376                 VM_BUG_ON(PageLRU(page));
1377                 list_del(&page->lru);
1378                 if (unlikely(!page_evictable(page))) {
1379                         spin_unlock_irq(&zone->lru_lock);
1380                         putback_lru_page(page);
1381                         spin_lock_irq(&zone->lru_lock);
1382                         continue;
1383                 }
1384
1385                 lruvec = mem_cgroup_page_lruvec(page, zone);
1386
1387                 SetPageLRU(page);
1388                 lru = page_lru(page);
1389                 add_page_to_lru_list(page, lruvec, lru);
1390
1391                 if (is_active_lru(lru)) {
1392                         int file = is_file_lru(lru);
1393                         int numpages = hpage_nr_pages(page);
1394                         reclaim_stat->recent_rotated[file] += numpages;
1395                 }
1396                 if (put_page_testzero(page)) {
1397                         __ClearPageLRU(page);
1398                         __ClearPageActive(page);
1399                         del_page_from_lru_list(page, lruvec, lru);
1400
1401                         if (unlikely(PageCompound(page))) {
1402                                 spin_unlock_irq(&zone->lru_lock);
1403                                 (*get_compound_page_dtor(page))(page);
1404                                 spin_lock_irq(&zone->lru_lock);
1405                         } else
1406                                 list_add(&page->lru, &pages_to_free);
1407                 }
1408         }
1409
1410         /*
1411          * To save our caller's stack, now use input list for pages to free.
1412          */
1413         list_splice(&pages_to_free, page_list);
1414 }
1415
1416 /*
1417  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1418  * of reclaimed pages
1419  */
1420 static noinline_for_stack unsigned long
1421 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1422                      struct scan_control *sc, enum lru_list lru)
1423 {
1424         LIST_HEAD(page_list);
1425         unsigned long nr_scanned;
1426         unsigned long nr_reclaimed = 0;
1427         unsigned long nr_taken;
1428         unsigned long nr_dirty = 0;
1429         unsigned long nr_congested = 0;
1430         unsigned long nr_unqueued_dirty = 0;
1431         unsigned long nr_writeback = 0;
1432         unsigned long nr_immediate = 0;
1433         isolate_mode_t isolate_mode = 0;
1434         int file = is_file_lru(lru);
1435         struct zone *zone = lruvec_zone(lruvec);
1436         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1437
1438         while (unlikely(too_many_isolated(zone, file, sc))) {
1439                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1440
1441                 /* We are about to die and free our memory. Return now. */
1442                 if (fatal_signal_pending(current))
1443                         return SWAP_CLUSTER_MAX;
1444         }
1445
1446         lru_add_drain();
1447
1448         if (!sc->may_unmap)
1449                 isolate_mode |= ISOLATE_UNMAPPED;
1450         if (!sc->may_writepage)
1451                 isolate_mode |= ISOLATE_CLEAN;
1452
1453         spin_lock_irq(&zone->lru_lock);
1454
1455         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1456                                      &nr_scanned, sc, isolate_mode, lru);
1457
1458         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1459         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1460
1461         if (global_reclaim(sc)) {
1462                 zone->pages_scanned += nr_scanned;
1463                 if (current_is_kswapd())
1464                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1465                 else
1466                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1467         }
1468         spin_unlock_irq(&zone->lru_lock);
1469
1470         if (nr_taken == 0)
1471                 return 0;
1472
1473         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1474                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1475                                 &nr_writeback, &nr_immediate,
1476                                 false);
1477
1478         spin_lock_irq(&zone->lru_lock);
1479
1480         reclaim_stat->recent_scanned[file] += nr_taken;
1481
1482         if (global_reclaim(sc)) {
1483                 if (current_is_kswapd())
1484                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1485                                                nr_reclaimed);
1486                 else
1487                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1488                                                nr_reclaimed);
1489         }
1490
1491         putback_inactive_pages(lruvec, &page_list);
1492
1493         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1494
1495         spin_unlock_irq(&zone->lru_lock);
1496
1497         free_hot_cold_page_list(&page_list, 1);
1498
1499         /*
1500          * If reclaim is isolating dirty pages under writeback, it implies
1501          * that the long-lived page allocation rate is exceeding the page
1502          * laundering rate. Either the global limits are not being effective
1503          * at throttling processes due to the page distribution throughout
1504          * zones or there is heavy usage of a slow backing device. The
1505          * only option is to throttle from reclaim context which is not ideal
1506          * as there is no guarantee the dirtying process is throttled in the
1507          * same way balance_dirty_pages() manages.
1508          *
1509          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1510          * of pages under pages flagged for immediate reclaim and stall if any
1511          * are encountered in the nr_immediate check below.
1512          */
1513         if (nr_writeback && nr_writeback == nr_taken)
1514                 zone_set_flag(zone, ZONE_WRITEBACK);
1515
1516         /*
1517          * memcg will stall in page writeback so only consider forcibly
1518          * stalling for global reclaim
1519          */
1520         if (global_reclaim(sc)) {
1521                 /*
1522                  * Tag a zone as congested if all the dirty pages scanned were
1523                  * backed by a congested BDI and wait_iff_congested will stall.
1524                  */
1525                 if (nr_dirty && nr_dirty == nr_congested)
1526                         zone_set_flag(zone, ZONE_CONGESTED);
1527
1528                 /*
1529                  * If dirty pages are scanned that are not queued for IO, it
1530                  * implies that flushers are not keeping up. In this case, flag
1531                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1532                  * pages from reclaim context. It will forcibly stall in the
1533                  * next check.
1534                  */
1535                 if (nr_unqueued_dirty == nr_taken)
1536                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1537
1538                 /*
1539                  * In addition, if kswapd scans pages marked marked for
1540                  * immediate reclaim and under writeback (nr_immediate), it
1541                  * implies that pages are cycling through the LRU faster than
1542                  * they are written so also forcibly stall.
1543                  */
1544                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1545                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1546         }
1547
1548         /*
1549          * Stall direct reclaim for IO completions if underlying BDIs or zone
1550          * is congested. Allow kswapd to continue until it starts encountering
1551          * unqueued dirty pages or cycling through the LRU too quickly.
1552          */
1553         if (!sc->hibernation_mode && !current_is_kswapd())
1554                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1555
1556         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1557                 zone_idx(zone),
1558                 nr_scanned, nr_reclaimed,
1559                 sc->priority,
1560                 trace_shrink_flags(file));
1561         return nr_reclaimed;
1562 }
1563
1564 /*
1565  * This moves pages from the active list to the inactive list.
1566  *
1567  * We move them the other way if the page is referenced by one or more
1568  * processes, from rmap.
1569  *
1570  * If the pages are mostly unmapped, the processing is fast and it is
1571  * appropriate to hold zone->lru_lock across the whole operation.  But if
1572  * the pages are mapped, the processing is slow (page_referenced()) so we
1573  * should drop zone->lru_lock around each page.  It's impossible to balance
1574  * this, so instead we remove the pages from the LRU while processing them.
1575  * It is safe to rely on PG_active against the non-LRU pages in here because
1576  * nobody will play with that bit on a non-LRU page.
1577  *
1578  * The downside is that we have to touch page->_count against each page.
1579  * But we had to alter page->flags anyway.
1580  */
1581
1582 static void move_active_pages_to_lru(struct lruvec *lruvec,
1583                                      struct list_head *list,
1584                                      struct list_head *pages_to_free,
1585                                      enum lru_list lru)
1586 {
1587         struct zone *zone = lruvec_zone(lruvec);
1588         unsigned long pgmoved = 0;
1589         struct page *page;
1590         int nr_pages;
1591
1592         while (!list_empty(list)) {
1593                 page = lru_to_page(list);
1594                 lruvec = mem_cgroup_page_lruvec(page, zone);
1595
1596                 VM_BUG_ON(PageLRU(page));
1597                 SetPageLRU(page);
1598
1599                 nr_pages = hpage_nr_pages(page);
1600                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1601                 list_move(&page->lru, &lruvec->lists[lru]);
1602                 pgmoved += nr_pages;
1603
1604                 if (put_page_testzero(page)) {
1605                         __ClearPageLRU(page);
1606                         __ClearPageActive(page);
1607                         del_page_from_lru_list(page, lruvec, lru);
1608
1609                         if (unlikely(PageCompound(page))) {
1610                                 spin_unlock_irq(&zone->lru_lock);
1611                                 (*get_compound_page_dtor(page))(page);
1612                                 spin_lock_irq(&zone->lru_lock);
1613                         } else
1614                                 list_add(&page->lru, pages_to_free);
1615                 }
1616         }
1617         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1618         if (!is_active_lru(lru))
1619                 __count_vm_events(PGDEACTIVATE, pgmoved);
1620 }
1621
1622 static void shrink_active_list(unsigned long nr_to_scan,
1623                                struct lruvec *lruvec,
1624                                struct scan_control *sc,
1625                                enum lru_list lru)
1626 {
1627         unsigned long nr_taken;
1628         unsigned long nr_scanned;
1629         unsigned long vm_flags;
1630         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1631         LIST_HEAD(l_active);
1632         LIST_HEAD(l_inactive);
1633         struct page *page;
1634         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1635         unsigned long nr_rotated = 0;
1636         isolate_mode_t isolate_mode = 0;
1637         int file = is_file_lru(lru);
1638         struct zone *zone = lruvec_zone(lruvec);
1639
1640         lru_add_drain();
1641
1642         if (!sc->may_unmap)
1643                 isolate_mode |= ISOLATE_UNMAPPED;
1644         if (!sc->may_writepage)
1645                 isolate_mode |= ISOLATE_CLEAN;
1646
1647         spin_lock_irq(&zone->lru_lock);
1648
1649         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1650                                      &nr_scanned, sc, isolate_mode, lru);
1651         if (global_reclaim(sc))
1652                 zone->pages_scanned += nr_scanned;
1653
1654         reclaim_stat->recent_scanned[file] += nr_taken;
1655
1656         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1657         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1658         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1659         spin_unlock_irq(&zone->lru_lock);
1660
1661         while (!list_empty(&l_hold)) {
1662                 cond_resched();
1663                 page = lru_to_page(&l_hold);
1664                 list_del(&page->lru);
1665
1666                 if (unlikely(!page_evictable(page))) {
1667                         putback_lru_page(page);
1668                         continue;
1669                 }
1670
1671                 if (unlikely(buffer_heads_over_limit)) {
1672                         if (page_has_private(page) && trylock_page(page)) {
1673                                 if (page_has_private(page))
1674                                         try_to_release_page(page, 0);
1675                                 unlock_page(page);
1676                         }
1677                 }
1678
1679                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1680                                     &vm_flags)) {
1681                         nr_rotated += hpage_nr_pages(page);
1682                         /*
1683                          * Identify referenced, file-backed active pages and
1684                          * give them one more trip around the active list. So
1685                          * that executable code get better chances to stay in
1686                          * memory under moderate memory pressure.  Anon pages
1687                          * are not likely to be evicted by use-once streaming
1688                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1689                          * so we ignore them here.
1690                          */
1691                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1692                                 list_add(&page->lru, &l_active);
1693                                 continue;
1694                         }
1695                 }
1696
1697                 ClearPageActive(page);  /* we are de-activating */
1698                 list_add(&page->lru, &l_inactive);
1699         }
1700
1701         /*
1702          * Move pages back to the lru list.
1703          */
1704         spin_lock_irq(&zone->lru_lock);
1705         /*
1706          * Count referenced pages from currently used mappings as rotated,
1707          * even though only some of them are actually re-activated.  This
1708          * helps balance scan pressure between file and anonymous pages in
1709          * get_scan_ratio.
1710          */
1711         reclaim_stat->recent_rotated[file] += nr_rotated;
1712
1713         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1714         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1715         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1716         spin_unlock_irq(&zone->lru_lock);
1717
1718         free_hot_cold_page_list(&l_hold, 1);
1719 }
1720
1721 #ifdef CONFIG_SWAP
1722 static int inactive_anon_is_low_global(struct zone *zone)
1723 {
1724         unsigned long active, inactive;
1725
1726         active = zone_page_state(zone, NR_ACTIVE_ANON);
1727         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1728
1729         if (inactive * zone->inactive_ratio < active)
1730                 return 1;
1731
1732         return 0;
1733 }
1734
1735 /**
1736  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1737  * @lruvec: LRU vector to check
1738  *
1739  * Returns true if the zone does not have enough inactive anon pages,
1740  * meaning some active anon pages need to be deactivated.
1741  */
1742 static int inactive_anon_is_low(struct lruvec *lruvec)
1743 {
1744         /*
1745          * If we don't have swap space, anonymous page deactivation
1746          * is pointless.
1747          */
1748         if (!total_swap_pages)
1749                 return 0;
1750
1751         if (!mem_cgroup_disabled())
1752                 return mem_cgroup_inactive_anon_is_low(lruvec);
1753
1754         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1755 }
1756 #else
1757 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1758 {
1759         return 0;
1760 }
1761 #endif
1762
1763 /**
1764  * inactive_file_is_low - check if file pages need to be deactivated
1765  * @lruvec: LRU vector to check
1766  *
1767  * When the system is doing streaming IO, memory pressure here
1768  * ensures that active file pages get deactivated, until more
1769  * than half of the file pages are on the inactive list.
1770  *
1771  * Once we get to that situation, protect the system's working
1772  * set from being evicted by disabling active file page aging.
1773  *
1774  * This uses a different ratio than the anonymous pages, because
1775  * the page cache uses a use-once replacement algorithm.
1776  */
1777 static int inactive_file_is_low(struct lruvec *lruvec)
1778 {
1779         unsigned long inactive;
1780         unsigned long active;
1781
1782         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1783         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1784
1785         return active > inactive;
1786 }
1787
1788 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1789 {
1790         if (is_file_lru(lru))
1791                 return inactive_file_is_low(lruvec);
1792         else
1793                 return inactive_anon_is_low(lruvec);
1794 }
1795
1796 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1797                                  struct lruvec *lruvec, struct scan_control *sc)
1798 {
1799         if (is_active_lru(lru)) {
1800                 if (inactive_list_is_low(lruvec, lru))
1801                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1802                 return 0;
1803         }
1804
1805         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1806 }
1807
1808 static int vmscan_swappiness(struct scan_control *sc)
1809 {
1810         if (global_reclaim(sc))
1811                 return vm_swappiness;
1812         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1813 }
1814
1815 enum scan_balance {
1816         SCAN_EQUAL,
1817         SCAN_FRACT,
1818         SCAN_ANON,
1819         SCAN_FILE,
1820 };
1821
1822 /*
1823  * Determine how aggressively the anon and file LRU lists should be
1824  * scanned.  The relative value of each set of LRU lists is determined
1825  * by looking at the fraction of the pages scanned we did rotate back
1826  * onto the active list instead of evict.
1827  *
1828  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1829  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1830  */
1831 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1832                            unsigned long *nr)
1833 {
1834         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1835         u64 fraction[2];
1836         u64 denominator = 0;    /* gcc */
1837         struct zone *zone = lruvec_zone(lruvec);
1838         unsigned long anon_prio, file_prio;
1839         enum scan_balance scan_balance;
1840         unsigned long anon, file, free;
1841         bool force_scan = false;
1842         unsigned long ap, fp;
1843         enum lru_list lru;
1844
1845         /*
1846          * If the zone or memcg is small, nr[l] can be 0.  This
1847          * results in no scanning on this priority and a potential
1848          * priority drop.  Global direct reclaim can go to the next
1849          * zone and tends to have no problems. Global kswapd is for
1850          * zone balancing and it needs to scan a minimum amount. When
1851          * reclaiming for a memcg, a priority drop can cause high
1852          * latencies, so it's better to scan a minimum amount there as
1853          * well.
1854          */
1855         if (current_is_kswapd() && !zone_reclaimable(zone))
1856                 force_scan = true;
1857         if (!global_reclaim(sc))
1858                 force_scan = true;
1859
1860         /* If we have no swap space, do not bother scanning anon pages. */
1861         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1862                 scan_balance = SCAN_FILE;
1863                 goto out;
1864         }
1865
1866         /*
1867          * Global reclaim will swap to prevent OOM even with no
1868          * swappiness, but memcg users want to use this knob to
1869          * disable swapping for individual groups completely when
1870          * using the memory controller's swap limit feature would be
1871          * too expensive.
1872          */
1873         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1874                 scan_balance = SCAN_FILE;
1875                 goto out;
1876         }
1877
1878         /*
1879          * Do not apply any pressure balancing cleverness when the
1880          * system is close to OOM, scan both anon and file equally
1881          * (unless the swappiness setting disagrees with swapping).
1882          */
1883         if (!sc->priority && vmscan_swappiness(sc)) {
1884                 scan_balance = SCAN_EQUAL;
1885                 goto out;
1886         }
1887
1888         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1889                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1890         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1891                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1892
1893         /*
1894          * If it's foreseeable that reclaiming the file cache won't be
1895          * enough to get the zone back into a desirable shape, we have
1896          * to swap.  Better start now and leave the - probably heavily
1897          * thrashing - remaining file pages alone.
1898          */
1899         if (global_reclaim(sc)) {
1900                 free = zone_page_state(zone, NR_FREE_PAGES);
1901                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1902                         scan_balance = SCAN_ANON;
1903                         goto out;
1904                 }
1905         }
1906
1907         /*
1908          * There is enough inactive page cache, do not reclaim
1909          * anything from the anonymous working set right now.
1910          */
1911         if (!inactive_file_is_low(lruvec)) {
1912                 scan_balance = SCAN_FILE;
1913                 goto out;
1914         }
1915
1916         scan_balance = SCAN_FRACT;
1917
1918         /*
1919          * With swappiness at 100, anonymous and file have the same priority.
1920          * This scanning priority is essentially the inverse of IO cost.
1921          */
1922         anon_prio = vmscan_swappiness(sc);
1923         file_prio = 200 - anon_prio;
1924
1925         /*
1926          * OK, so we have swap space and a fair amount of page cache
1927          * pages.  We use the recently rotated / recently scanned
1928          * ratios to determine how valuable each cache is.
1929          *
1930          * Because workloads change over time (and to avoid overflow)
1931          * we keep these statistics as a floating average, which ends
1932          * up weighing recent references more than old ones.
1933          *
1934          * anon in [0], file in [1]
1935          */
1936         spin_lock_irq(&zone->lru_lock);
1937         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1938                 reclaim_stat->recent_scanned[0] /= 2;
1939                 reclaim_stat->recent_rotated[0] /= 2;
1940         }
1941
1942         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1943                 reclaim_stat->recent_scanned[1] /= 2;
1944                 reclaim_stat->recent_rotated[1] /= 2;
1945         }
1946
1947         /*
1948          * The amount of pressure on anon vs file pages is inversely
1949          * proportional to the fraction of recently scanned pages on
1950          * each list that were recently referenced and in active use.
1951          */
1952         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1953         ap /= reclaim_stat->recent_rotated[0] + 1;
1954
1955         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1956         fp /= reclaim_stat->recent_rotated[1] + 1;
1957         spin_unlock_irq(&zone->lru_lock);
1958
1959         fraction[0] = ap;
1960         fraction[1] = fp;
1961         denominator = ap + fp + 1;
1962 out:
1963         for_each_evictable_lru(lru) {
1964                 int file = is_file_lru(lru);
1965                 unsigned long size;
1966                 unsigned long scan;
1967
1968                 size = get_lru_size(lruvec, lru);
1969                 scan = size >> sc->priority;
1970
1971                 if (!scan && force_scan)
1972                         scan = min(size, SWAP_CLUSTER_MAX);
1973
1974                 switch (scan_balance) {
1975                 case SCAN_EQUAL:
1976                         /* Scan lists relative to size */
1977                         break;
1978                 case SCAN_FRACT:
1979                         /*
1980                          * Scan types proportional to swappiness and
1981                          * their relative recent reclaim efficiency.
1982                          */
1983                         scan = div64_u64(scan * fraction[file], denominator);
1984                         break;
1985                 case SCAN_FILE:
1986                 case SCAN_ANON:
1987                         /* Scan one type exclusively */
1988                         if ((scan_balance == SCAN_FILE) != file)
1989                                 scan = 0;
1990                         break;
1991                 default:
1992                         /* Look ma, no brain */
1993                         BUG();
1994                 }
1995                 nr[lru] = scan;
1996         }
1997 }
1998
1999 /*
2000  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2001  */
2002 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2003 {
2004         unsigned long nr[NR_LRU_LISTS];
2005         unsigned long targets[NR_LRU_LISTS];
2006         unsigned long nr_to_scan;
2007         enum lru_list lru;
2008         unsigned long nr_reclaimed = 0;
2009         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2010         struct blk_plug plug;
2011         bool scan_adjusted = false;
2012
2013         get_scan_count(lruvec, sc, nr);
2014
2015         /* Record the original scan target for proportional adjustments later */
2016         memcpy(targets, nr, sizeof(nr));
2017
2018         blk_start_plug(&plug);
2019         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2020                                         nr[LRU_INACTIVE_FILE]) {
2021                 unsigned long nr_anon, nr_file, percentage;
2022                 unsigned long nr_scanned;
2023
2024                 for_each_evictable_lru(lru) {
2025                         if (nr[lru]) {
2026                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2027                                 nr[lru] -= nr_to_scan;
2028
2029                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2030                                                             lruvec, sc);
2031                         }
2032                 }
2033
2034                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2035                         continue;
2036
2037                 /*
2038                  * For global direct reclaim, reclaim only the number of pages
2039                  * requested. Less care is taken to scan proportionally as it
2040                  * is more important to minimise direct reclaim stall latency
2041                  * than it is to properly age the LRU lists.
2042                  */
2043                 if (global_reclaim(sc) && !current_is_kswapd())
2044                         break;
2045
2046                 /*
2047                  * For kswapd and memcg, reclaim at least the number of pages
2048                  * requested. Ensure that the anon and file LRUs shrink
2049                  * proportionally what was requested by get_scan_count(). We
2050                  * stop reclaiming one LRU and reduce the amount scanning
2051                  * proportional to the original scan target.
2052                  */
2053                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2054                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2055
2056                 if (nr_file > nr_anon) {
2057                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2058                                                 targets[LRU_ACTIVE_ANON] + 1;
2059                         lru = LRU_BASE;
2060                         percentage = nr_anon * 100 / scan_target;
2061                 } else {
2062                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2063                                                 targets[LRU_ACTIVE_FILE] + 1;
2064                         lru = LRU_FILE;
2065                         percentage = nr_file * 100 / scan_target;
2066                 }
2067
2068                 /* Stop scanning the smaller of the LRU */
2069                 nr[lru] = 0;
2070                 nr[lru + LRU_ACTIVE] = 0;
2071
2072                 /*
2073                  * Recalculate the other LRU scan count based on its original
2074                  * scan target and the percentage scanning already complete
2075                  */
2076                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2077                 nr_scanned = targets[lru] - nr[lru];
2078                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2079                 nr[lru] -= min(nr[lru], nr_scanned);
2080
2081                 lru += LRU_ACTIVE;
2082                 nr_scanned = targets[lru] - nr[lru];
2083                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2084                 nr[lru] -= min(nr[lru], nr_scanned);
2085
2086                 scan_adjusted = true;
2087         }
2088         blk_finish_plug(&plug);
2089         sc->nr_reclaimed += nr_reclaimed;
2090
2091         /*
2092          * Even if we did not try to evict anon pages at all, we want to
2093          * rebalance the anon lru active/inactive ratio.
2094          */
2095         if (inactive_anon_is_low(lruvec))
2096                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2097                                    sc, LRU_ACTIVE_ANON);
2098
2099         throttle_vm_writeout(sc->gfp_mask);
2100 }
2101
2102 /* Use reclaim/compaction for costly allocs or under memory pressure */
2103 static bool in_reclaim_compaction(struct scan_control *sc)
2104 {
2105         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2106                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2107                          sc->priority < DEF_PRIORITY - 2))
2108                 return true;
2109
2110         return false;
2111 }
2112
2113 /*
2114  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2115  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2116  * true if more pages should be reclaimed such that when the page allocator
2117  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2118  * It will give up earlier than that if there is difficulty reclaiming pages.
2119  */
2120 static inline bool should_continue_reclaim(struct zone *zone,
2121                                         unsigned long nr_reclaimed,
2122                                         unsigned long nr_scanned,
2123                                         struct scan_control *sc)
2124 {
2125         unsigned long pages_for_compaction;
2126         unsigned long inactive_lru_pages;
2127
2128         /* If not in reclaim/compaction mode, stop */
2129         if (!in_reclaim_compaction(sc))
2130                 return false;
2131
2132         /* Consider stopping depending on scan and reclaim activity */
2133         if (sc->gfp_mask & __GFP_REPEAT) {
2134                 /*
2135                  * For __GFP_REPEAT allocations, stop reclaiming if the
2136                  * full LRU list has been scanned and we are still failing
2137                  * to reclaim pages. This full LRU scan is potentially
2138                  * expensive but a __GFP_REPEAT caller really wants to succeed
2139                  */
2140                 if (!nr_reclaimed && !nr_scanned)
2141                         return false;
2142         } else {
2143                 /*
2144                  * For non-__GFP_REPEAT allocations which can presumably
2145                  * fail without consequence, stop if we failed to reclaim
2146                  * any pages from the last SWAP_CLUSTER_MAX number of
2147                  * pages that were scanned. This will return to the
2148                  * caller faster at the risk reclaim/compaction and
2149                  * the resulting allocation attempt fails
2150                  */
2151                 if (!nr_reclaimed)
2152                         return false;
2153         }
2154
2155         /*
2156          * If we have not reclaimed enough pages for compaction and the
2157          * inactive lists are large enough, continue reclaiming
2158          */
2159         pages_for_compaction = (2UL << sc->order);
2160         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2161         if (get_nr_swap_pages() > 0)
2162                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2163         if (sc->nr_reclaimed < pages_for_compaction &&
2164                         inactive_lru_pages > pages_for_compaction)
2165                 return true;
2166
2167         /* If compaction would go ahead or the allocation would succeed, stop */
2168         switch (compaction_suitable(zone, sc->order)) {
2169         case COMPACT_PARTIAL:
2170         case COMPACT_CONTINUE:
2171                 return false;
2172         default:
2173                 return true;
2174         }
2175 }
2176
2177 static void
2178 __shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
2179 {
2180         unsigned long nr_reclaimed, nr_scanned;
2181
2182         do {
2183                 struct mem_cgroup *root = sc->target_mem_cgroup;
2184                 struct mem_cgroup_reclaim_cookie reclaim = {
2185                         .zone = zone,
2186                         .priority = sc->priority,
2187                 };
2188                 struct mem_cgroup *memcg;
2189
2190                 nr_reclaimed = sc->nr_reclaimed;
2191                 nr_scanned = sc->nr_scanned;
2192
2193                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2194                 do {
2195                         struct lruvec *lruvec;
2196
2197                         if (soft_reclaim &&
2198                             !mem_cgroup_soft_reclaim_eligible(memcg, root)) {
2199                                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2200                                 continue;
2201                         }
2202
2203                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2204
2205                         shrink_lruvec(lruvec, sc);
2206
2207                         /*
2208                          * Direct reclaim and kswapd have to scan all memory
2209                          * cgroups to fulfill the overall scan target for the
2210                          * zone.
2211                          *
2212                          * Limit reclaim, on the other hand, only cares about
2213                          * nr_to_reclaim pages to be reclaimed and it will
2214                          * retry with decreasing priority if one round over the
2215                          * whole hierarchy is not sufficient.
2216                          */
2217                         if (!global_reclaim(sc) &&
2218                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2219                                 mem_cgroup_iter_break(root, memcg);
2220                                 break;
2221                         }
2222                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2223                 } while (memcg);
2224
2225                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2226                            sc->nr_scanned - nr_scanned,
2227                            sc->nr_reclaimed - nr_reclaimed);
2228
2229         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2230                                          sc->nr_scanned - nr_scanned, sc));
2231 }
2232
2233
2234 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2235 {
2236         bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2237         unsigned long nr_scanned = sc->nr_scanned;
2238
2239         __shrink_zone(zone, sc, do_soft_reclaim);
2240
2241         /*
2242          * No group is over the soft limit or those that are do not have
2243          * pages in the zone we are reclaiming so we have to reclaim everybody
2244          */
2245         if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2246                 __shrink_zone(zone, sc, false);
2247                 return;
2248         }
2249 }
2250
2251 /* Returns true if compaction should go ahead for a high-order request */
2252 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2253 {
2254         unsigned long balance_gap, watermark;
2255         bool watermark_ok;
2256
2257         /* Do not consider compaction for orders reclaim is meant to satisfy */
2258         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2259                 return false;
2260
2261         /*
2262          * Compaction takes time to run and there are potentially other
2263          * callers using the pages just freed. Continue reclaiming until
2264          * there is a buffer of free pages available to give compaction
2265          * a reasonable chance of completing and allocating the page
2266          */
2267         balance_gap = min(low_wmark_pages(zone),
2268                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2269                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2270         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2271         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2272
2273         /*
2274          * If compaction is deferred, reclaim up to a point where
2275          * compaction will have a chance of success when re-enabled
2276          */
2277         if (compaction_deferred(zone, sc->order))
2278                 return watermark_ok;
2279
2280         /* If compaction is not ready to start, keep reclaiming */
2281         if (!compaction_suitable(zone, sc->order))
2282                 return false;
2283
2284         return watermark_ok;
2285 }
2286
2287 /*
2288  * This is the direct reclaim path, for page-allocating processes.  We only
2289  * try to reclaim pages from zones which will satisfy the caller's allocation
2290  * request.
2291  *
2292  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2293  * Because:
2294  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2295  *    allocation or
2296  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2297  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2298  *    zone defense algorithm.
2299  *
2300  * If a zone is deemed to be full of pinned pages then just give it a light
2301  * scan then give up on it.
2302  *
2303  * This function returns true if a zone is being reclaimed for a costly
2304  * high-order allocation and compaction is ready to begin. This indicates to
2305  * the caller that it should consider retrying the allocation instead of
2306  * further reclaim.
2307  */
2308 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2309 {
2310         struct zoneref *z;
2311         struct zone *zone;
2312         bool aborted_reclaim = false;
2313
2314         /*
2315          * If the number of buffer_heads in the machine exceeds the maximum
2316          * allowed level, force direct reclaim to scan the highmem zone as
2317          * highmem pages could be pinning lowmem pages storing buffer_heads
2318          */
2319         if (buffer_heads_over_limit)
2320                 sc->gfp_mask |= __GFP_HIGHMEM;
2321
2322         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2323                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2324                 if (!populated_zone(zone))
2325                         continue;
2326                 /*
2327                  * Take care memory controller reclaiming has small influence
2328                  * to global LRU.
2329                  */
2330                 if (global_reclaim(sc)) {
2331                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2332                                 continue;
2333                         if (sc->priority != DEF_PRIORITY &&
2334                             !zone_reclaimable(zone))
2335                                 continue;       /* Let kswapd poll it */
2336                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2337                                 /*
2338                                  * If we already have plenty of memory free for
2339                                  * compaction in this zone, don't free any more.
2340                                  * Even though compaction is invoked for any
2341                                  * non-zero order, only frequent costly order
2342                                  * reclamation is disruptive enough to become a
2343                                  * noticeable problem, like transparent huge
2344                                  * page allocations.
2345                                  */
2346                                 if (compaction_ready(zone, sc)) {
2347                                         aborted_reclaim = true;
2348                                         continue;
2349                                 }
2350                         }
2351                         /* need some check for avoid more shrink_zone() */
2352                 }
2353
2354                 shrink_zone(zone, sc);
2355         }
2356
2357         return aborted_reclaim;
2358 }
2359
2360 /* All zones in zonelist are unreclaimable? */
2361 static bool all_unreclaimable(struct zonelist *zonelist,
2362                 struct scan_control *sc)
2363 {
2364         struct zoneref *z;
2365         struct zone *zone;
2366
2367         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2368                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2369                 if (!populated_zone(zone))
2370                         continue;
2371                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2372                         continue;
2373                 if (zone_reclaimable(zone))
2374                         return false;
2375         }
2376
2377         return true;
2378 }
2379
2380 /*
2381  * This is the main entry point to direct page reclaim.
2382  *
2383  * If a full scan of the inactive list fails to free enough memory then we
2384  * are "out of memory" and something needs to be killed.
2385  *
2386  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2387  * high - the zone may be full of dirty or under-writeback pages, which this
2388  * caller can't do much about.  We kick the writeback threads and take explicit
2389  * naps in the hope that some of these pages can be written.  But if the
2390  * allocating task holds filesystem locks which prevent writeout this might not
2391  * work, and the allocation attempt will fail.
2392  *
2393  * returns:     0, if no pages reclaimed
2394  *              else, the number of pages reclaimed
2395  */
2396 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2397                                         struct scan_control *sc,
2398                                         struct shrink_control *shrink)
2399 {
2400         unsigned long total_scanned = 0;
2401         struct reclaim_state *reclaim_state = current->reclaim_state;
2402         struct zoneref *z;
2403         struct zone *zone;
2404         unsigned long writeback_threshold;
2405         bool aborted_reclaim;
2406
2407         delayacct_freepages_start();
2408
2409         if (global_reclaim(sc))
2410                 count_vm_event(ALLOCSTALL);
2411
2412         do {
2413                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2414                                 sc->priority);
2415                 sc->nr_scanned = 0;
2416                 aborted_reclaim = shrink_zones(zonelist, sc);
2417
2418                 /*
2419                  * Don't shrink slabs when reclaiming memory from over limit
2420                  * cgroups but do shrink slab at least once when aborting
2421                  * reclaim for compaction to avoid unevenly scanning file/anon
2422                  * LRU pages over slab pages.
2423                  */
2424                 if (global_reclaim(sc)) {
2425                         unsigned long lru_pages = 0;
2426
2427                         nodes_clear(shrink->nodes_to_scan);
2428                         for_each_zone_zonelist(zone, z, zonelist,
2429                                         gfp_zone(sc->gfp_mask)) {
2430                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2431                                         continue;
2432
2433                                 lru_pages += zone_reclaimable_pages(zone);
2434                                 node_set(zone_to_nid(zone),
2435                                          shrink->nodes_to_scan);
2436                         }
2437
2438                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2439                         if (reclaim_state) {
2440                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2441                                 reclaim_state->reclaimed_slab = 0;
2442                         }
2443                 }
2444                 total_scanned += sc->nr_scanned;
2445                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2446                         goto out;
2447
2448                 /*
2449                  * If we're getting trouble reclaiming, start doing
2450                  * writepage even in laptop mode.
2451                  */
2452                 if (sc->priority < DEF_PRIORITY - 2)
2453                         sc->may_writepage = 1;
2454
2455                 /*
2456                  * Try to write back as many pages as we just scanned.  This
2457                  * tends to cause slow streaming writers to write data to the
2458                  * disk smoothly, at the dirtying rate, which is nice.   But
2459                  * that's undesirable in laptop mode, where we *want* lumpy
2460                  * writeout.  So in laptop mode, write out the whole world.
2461                  */
2462                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2463                 if (total_scanned > writeback_threshold) {
2464                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2465                                                 WB_REASON_TRY_TO_FREE_PAGES);
2466                         sc->may_writepage = 1;
2467                 }
2468         } while (--sc->priority >= 0 && !aborted_reclaim);
2469
2470 out:
2471         delayacct_freepages_end();
2472
2473         if (sc->nr_reclaimed)
2474                 return sc->nr_reclaimed;
2475
2476         /*
2477          * As hibernation is going on, kswapd is freezed so that it can't mark
2478          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2479          * check.
2480          */
2481         if (oom_killer_disabled)
2482                 return 0;
2483
2484         /* Aborted reclaim to try compaction? don't OOM, then */
2485         if (aborted_reclaim)
2486                 return 1;
2487
2488         /* top priority shrink_zones still had more to do? don't OOM, then */
2489         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2490                 return 1;
2491
2492         return 0;
2493 }
2494
2495 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2496 {
2497         struct zone *zone;
2498         unsigned long pfmemalloc_reserve = 0;
2499         unsigned long free_pages = 0;
2500         int i;
2501         bool wmark_ok;
2502
2503         for (i = 0; i <= ZONE_NORMAL; i++) {
2504                 zone = &pgdat->node_zones[i];
2505                 pfmemalloc_reserve += min_wmark_pages(zone);
2506                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2507         }
2508
2509         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2510
2511         /* kswapd must be awake if processes are being throttled */
2512         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2513                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2514                                                 (enum zone_type)ZONE_NORMAL);
2515                 wake_up_interruptible(&pgdat->kswapd_wait);
2516         }
2517
2518         return wmark_ok;
2519 }
2520
2521 /*
2522  * Throttle direct reclaimers if backing storage is backed by the network
2523  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2524  * depleted. kswapd will continue to make progress and wake the processes
2525  * when the low watermark is reached.
2526  *
2527  * Returns true if a fatal signal was delivered during throttling. If this
2528  * happens, the page allocator should not consider triggering the OOM killer.
2529  */
2530 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2531                                         nodemask_t *nodemask)
2532 {
2533         struct zone *zone;
2534         int high_zoneidx = gfp_zone(gfp_mask);
2535         pg_data_t *pgdat;
2536
2537         /*
2538          * Kernel threads should not be throttled as they may be indirectly
2539          * responsible for cleaning pages necessary for reclaim to make forward
2540          * progress. kjournald for example may enter direct reclaim while
2541          * committing a transaction where throttling it could forcing other
2542          * processes to block on log_wait_commit().
2543          */
2544         if (current->flags & PF_KTHREAD)
2545                 goto out;
2546
2547         /*
2548          * If a fatal signal is pending, this process should not throttle.
2549          * It should return quickly so it can exit and free its memory
2550          */
2551         if (fatal_signal_pending(current))
2552                 goto out;
2553
2554         /* Check if the pfmemalloc reserves are ok */
2555         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2556         pgdat = zone->zone_pgdat;
2557         if (pfmemalloc_watermark_ok(pgdat))
2558                 goto out;
2559
2560         /* Account for the throttling */
2561         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2562
2563         /*
2564          * If the caller cannot enter the filesystem, it's possible that it
2565          * is due to the caller holding an FS lock or performing a journal
2566          * transaction in the case of a filesystem like ext[3|4]. In this case,
2567          * it is not safe to block on pfmemalloc_wait as kswapd could be
2568          * blocked waiting on the same lock. Instead, throttle for up to a
2569          * second before continuing.
2570          */
2571         if (!(gfp_mask & __GFP_FS)) {
2572                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2573                         pfmemalloc_watermark_ok(pgdat), HZ);
2574
2575                 goto check_pending;
2576         }
2577
2578         /* Throttle until kswapd wakes the process */
2579         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2580                 pfmemalloc_watermark_ok(pgdat));
2581
2582 check_pending:
2583         if (fatal_signal_pending(current))
2584                 return true;
2585
2586 out:
2587         return false;
2588 }
2589
2590 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2591                                 gfp_t gfp_mask, nodemask_t *nodemask)
2592 {
2593         unsigned long nr_reclaimed;
2594         struct scan_control sc = {
2595                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2596                 .may_writepage = !laptop_mode,
2597                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2598                 .may_unmap = 1,
2599                 .may_swap = 1,
2600                 .order = order,
2601                 .priority = DEF_PRIORITY,
2602                 .target_mem_cgroup = NULL,
2603                 .nodemask = nodemask,
2604         };
2605         struct shrink_control shrink = {
2606                 .gfp_mask = sc.gfp_mask,
2607         };
2608
2609         /*
2610          * Do not enter reclaim if fatal signal was delivered while throttled.
2611          * 1 is returned so that the page allocator does not OOM kill at this
2612          * point.
2613          */
2614         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2615                 return 1;
2616
2617         trace_mm_vmscan_direct_reclaim_begin(order,
2618                                 sc.may_writepage,
2619                                 gfp_mask);
2620
2621         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2622
2623         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2624
2625         return nr_reclaimed;
2626 }
2627
2628 #ifdef CONFIG_MEMCG
2629
2630 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2631                                                 gfp_t gfp_mask, bool noswap,
2632                                                 struct zone *zone,
2633                                                 unsigned long *nr_scanned)
2634 {
2635         struct scan_control sc = {
2636                 .nr_scanned = 0,
2637                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2638                 .may_writepage = !laptop_mode,
2639                 .may_unmap = 1,
2640                 .may_swap = !noswap,
2641                 .order = 0,
2642                 .priority = 0,
2643                 .target_mem_cgroup = memcg,
2644         };
2645         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2646
2647         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2648                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2649
2650         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2651                                                       sc.may_writepage,
2652                                                       sc.gfp_mask);
2653
2654         /*
2655          * NOTE: Although we can get the priority field, using it
2656          * here is not a good idea, since it limits the pages we can scan.
2657          * if we don't reclaim here, the shrink_zone from balance_pgdat
2658          * will pick up pages from other mem cgroup's as well. We hack
2659          * the priority and make it zero.
2660          */
2661         shrink_lruvec(lruvec, &sc);
2662
2663         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2664
2665         *nr_scanned = sc.nr_scanned;
2666         return sc.nr_reclaimed;
2667 }
2668
2669 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2670                                            gfp_t gfp_mask,
2671                                            bool noswap)
2672 {
2673         struct zonelist *zonelist;
2674         unsigned long nr_reclaimed;
2675         int nid;
2676         struct scan_control sc = {
2677                 .may_writepage = !laptop_mode,
2678                 .may_unmap = 1,
2679                 .may_swap = !noswap,
2680                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2681                 .order = 0,
2682                 .priority = DEF_PRIORITY,
2683                 .target_mem_cgroup = memcg,
2684                 .nodemask = NULL, /* we don't care the placement */
2685                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2686                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2687         };
2688         struct shrink_control shrink = {
2689                 .gfp_mask = sc.gfp_mask,
2690         };
2691
2692         /*
2693          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2694          * take care of from where we get pages. So the node where we start the
2695          * scan does not need to be the current node.
2696          */
2697         nid = mem_cgroup_select_victim_node(memcg);
2698
2699         zonelist = NODE_DATA(nid)->node_zonelists;
2700
2701         trace_mm_vmscan_memcg_reclaim_begin(0,
2702                                             sc.may_writepage,
2703                                             sc.gfp_mask);
2704
2705         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2706
2707         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2708
2709         return nr_reclaimed;
2710 }
2711 #endif
2712
2713 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2714 {
2715         struct mem_cgroup *memcg;
2716
2717         if (!total_swap_pages)
2718                 return;
2719
2720         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2721         do {
2722                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2723
2724                 if (inactive_anon_is_low(lruvec))
2725                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2726                                            sc, LRU_ACTIVE_ANON);
2727
2728                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2729         } while (memcg);
2730 }
2731
2732 static bool zone_balanced(struct zone *zone, int order,
2733                           unsigned long balance_gap, int classzone_idx)
2734 {
2735         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2736                                     balance_gap, classzone_idx, 0))
2737                 return false;
2738
2739         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2740             !compaction_suitable(zone, order))
2741                 return false;
2742
2743         return true;
2744 }
2745
2746 /*
2747  * pgdat_balanced() is used when checking if a node is balanced.
2748  *
2749  * For order-0, all zones must be balanced!
2750  *
2751  * For high-order allocations only zones that meet watermarks and are in a
2752  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2753  * total of balanced pages must be at least 25% of the zones allowed by
2754  * classzone_idx for the node to be considered balanced. Forcing all zones to
2755  * be balanced for high orders can cause excessive reclaim when there are
2756  * imbalanced zones.
2757  * The choice of 25% is due to
2758  *   o a 16M DMA zone that is balanced will not balance a zone on any
2759  *     reasonable sized machine
2760  *   o On all other machines, the top zone must be at least a reasonable
2761  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2762  *     would need to be at least 256M for it to be balance a whole node.
2763  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2764  *     to balance a node on its own. These seemed like reasonable ratios.
2765  */
2766 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2767 {
2768         unsigned long managed_pages = 0;
2769         unsigned long balanced_pages = 0;
2770         int i;
2771
2772         /* Check the watermark levels */
2773         for (i = 0; i <= classzone_idx; i++) {
2774                 struct zone *zone = pgdat->node_zones + i;
2775
2776                 if (!populated_zone(zone))
2777                         continue;
2778
2779                 managed_pages += zone->managed_pages;
2780
2781                 /*
2782                  * A special case here:
2783                  *
2784                  * balance_pgdat() skips over all_unreclaimable after
2785                  * DEF_PRIORITY. Effectively, it considers them balanced so
2786                  * they must be considered balanced here as well!
2787                  */
2788                 if (!zone_reclaimable(zone)) {
2789                         balanced_pages += zone->managed_pages;
2790                         continue;
2791                 }
2792
2793                 if (zone_balanced(zone, order, 0, i))
2794                         balanced_pages += zone->managed_pages;
2795                 else if (!order)
2796                         return false;
2797         }
2798
2799         if (order)
2800                 return balanced_pages >= (managed_pages >> 2);
2801         else
2802                 return true;
2803 }
2804
2805 /*
2806  * Prepare kswapd for sleeping. This verifies that there are no processes
2807  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2808  *
2809  * Returns true if kswapd is ready to sleep
2810  */
2811 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2812                                         int classzone_idx)
2813 {
2814         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2815         if (remaining)
2816                 return false;
2817
2818         /*
2819          * There is a potential race between when kswapd checks its watermarks
2820          * and a process gets throttled. There is also a potential race if
2821          * processes get throttled, kswapd wakes, a large process exits therby
2822          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2823          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2824          * so wake them now if necessary. If necessary, processes will wake
2825          * kswapd and get throttled again
2826          */
2827         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2828                 wake_up(&pgdat->pfmemalloc_wait);
2829                 return false;
2830         }
2831
2832         return pgdat_balanced(pgdat, order, classzone_idx);
2833 }
2834
2835 /*
2836  * kswapd shrinks the zone by the number of pages required to reach
2837  * the high watermark.
2838  *
2839  * Returns true if kswapd scanned at least the requested number of pages to
2840  * reclaim or if the lack of progress was due to pages under writeback.
2841  * This is used to determine if the scanning priority needs to be raised.
2842  */
2843 static bool kswapd_shrink_zone(struct zone *zone,
2844                                int classzone_idx,
2845                                struct scan_control *sc,
2846                                unsigned long lru_pages,
2847                                unsigned long *nr_attempted)
2848 {
2849         int testorder = sc->order;
2850         unsigned long balance_gap;
2851         struct reclaim_state *reclaim_state = current->reclaim_state;
2852         struct shrink_control shrink = {
2853                 .gfp_mask = sc->gfp_mask,
2854         };
2855         bool lowmem_pressure;
2856
2857         /* Reclaim above the high watermark. */
2858         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2859
2860         /*
2861          * Kswapd reclaims only single pages with compaction enabled. Trying
2862          * too hard to reclaim until contiguous free pages have become
2863          * available can hurt performance by evicting too much useful data
2864          * from memory. Do not reclaim more than needed for compaction.
2865          */
2866         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2867                         compaction_suitable(zone, sc->order) !=
2868                                 COMPACT_SKIPPED)
2869                 testorder = 0;
2870
2871         /*
2872          * We put equal pressure on every zone, unless one zone has way too
2873          * many pages free already. The "too many pages" is defined as the
2874          * high wmark plus a "gap" where the gap is either the low
2875          * watermark or 1% of the zone, whichever is smaller.
2876          */
2877         balance_gap = min(low_wmark_pages(zone),
2878                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2879                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2880
2881         /*
2882          * If there is no low memory pressure or the zone is balanced then no
2883          * reclaim is necessary
2884          */
2885         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2886         if (!lowmem_pressure && zone_balanced(zone, testorder,
2887                                                 balance_gap, classzone_idx))
2888                 return true;
2889
2890         shrink_zone(zone, sc);
2891         nodes_clear(shrink.nodes_to_scan);
2892         node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2893
2894         reclaim_state->reclaimed_slab = 0;
2895         shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2896         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2897
2898         /* Account for the number of pages attempted to reclaim */
2899         *nr_attempted += sc->nr_to_reclaim;
2900
2901         zone_clear_flag(zone, ZONE_WRITEBACK);
2902
2903         /*
2904          * If a zone reaches its high watermark, consider it to be no longer
2905          * congested. It's possible there are dirty pages backed by congested
2906          * BDIs but as pressure is relieved, speculatively avoid congestion
2907          * waits.
2908          */
2909         if (zone_reclaimable(zone) &&
2910             zone_balanced(zone, testorder, 0, classzone_idx)) {
2911                 zone_clear_flag(zone, ZONE_CONGESTED);
2912                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2913         }
2914
2915         return sc->nr_scanned >= sc->nr_to_reclaim;
2916 }
2917
2918 /*
2919  * For kswapd, balance_pgdat() will work across all this node's zones until
2920  * they are all at high_wmark_pages(zone).
2921  *
2922  * Returns the final order kswapd was reclaiming at
2923  *
2924  * There is special handling here for zones which are full of pinned pages.
2925  * This can happen if the pages are all mlocked, or if they are all used by
2926  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2927  * What we do is to detect the case where all pages in the zone have been
2928  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2929  * dead and from now on, only perform a short scan.  Basically we're polling
2930  * the zone for when the problem goes away.
2931  *
2932  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2933  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2934  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2935  * lower zones regardless of the number of free pages in the lower zones. This
2936  * interoperates with the page allocator fallback scheme to ensure that aging
2937  * of pages is balanced across the zones.
2938  */
2939 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2940                                                         int *classzone_idx)
2941 {
2942         int i;
2943         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2944         struct scan_control sc = {
2945                 .gfp_mask = GFP_KERNEL,
2946                 .priority = DEF_PRIORITY,
2947                 .may_unmap = 1,
2948                 .may_swap = 1,
2949                 .may_writepage = !laptop_mode,
2950                 .order = order,
2951                 .target_mem_cgroup = NULL,
2952         };
2953         count_vm_event(PAGEOUTRUN);
2954
2955         do {
2956                 unsigned long lru_pages = 0;
2957                 unsigned long nr_attempted = 0;
2958                 bool raise_priority = true;
2959                 bool pgdat_needs_compaction = (order > 0);
2960
2961                 sc.nr_reclaimed = 0;
2962
2963                 /*
2964                  * Scan in the highmem->dma direction for the highest
2965                  * zone which needs scanning
2966                  */
2967                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2968                         struct zone *zone = pgdat->node_zones + i;
2969
2970                         if (!populated_zone(zone))
2971                                 continue;
2972
2973                         if (sc.priority != DEF_PRIORITY &&
2974                             !zone_reclaimable(zone))
2975                                 continue;
2976
2977                         /*
2978                          * Do some background aging of the anon list, to give
2979                          * pages a chance to be referenced before reclaiming.
2980                          */
2981                         age_active_anon(zone, &sc);
2982
2983                         /*
2984                          * If the number of buffer_heads in the machine
2985                          * exceeds the maximum allowed level and this node
2986                          * has a highmem zone, force kswapd to reclaim from
2987                          * it to relieve lowmem pressure.
2988                          */
2989                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2990                                 end_zone = i;
2991                                 break;
2992                         }
2993
2994                         if (!zone_balanced(zone, order, 0, 0)) {
2995                                 end_zone = i;
2996                                 break;
2997                         } else {
2998                                 /*
2999                                  * If balanced, clear the dirty and congested
3000                                  * flags
3001                                  */
3002                                 zone_clear_flag(zone, ZONE_CONGESTED);
3003                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3004                         }
3005                 }
3006
3007                 if (i < 0)
3008                         goto out;
3009
3010                 for (i = 0; i <= end_zone; i++) {
3011                         struct zone *zone = pgdat->node_zones + i;
3012
3013                         if (!populated_zone(zone))
3014                                 continue;
3015
3016                         lru_pages += zone_reclaimable_pages(zone);
3017
3018                         /*
3019                          * If any zone is currently balanced then kswapd will
3020                          * not call compaction as it is expected that the
3021                          * necessary pages are already available.
3022                          */
3023                         if (pgdat_needs_compaction &&
3024                                         zone_watermark_ok(zone, order,
3025                                                 low_wmark_pages(zone),
3026                                                 *classzone_idx, 0))
3027                                 pgdat_needs_compaction = false;
3028                 }
3029
3030                 /*
3031                  * If we're getting trouble reclaiming, start doing writepage
3032                  * even in laptop mode.
3033                  */
3034                 if (sc.priority < DEF_PRIORITY - 2)
3035                         sc.may_writepage = 1;
3036
3037                 /*
3038                  * Now scan the zone in the dma->highmem direction, stopping
3039                  * at the last zone which needs scanning.
3040                  *
3041                  * We do this because the page allocator works in the opposite
3042                  * direction.  This prevents the page allocator from allocating
3043                  * pages behind kswapd's direction of progress, which would
3044                  * cause too much scanning of the lower zones.
3045                  */
3046                 for (i = 0; i <= end_zone; i++) {
3047                         struct zone *zone = pgdat->node_zones + i;
3048
3049                         if (!populated_zone(zone))
3050                                 continue;
3051
3052                         if (sc.priority != DEF_PRIORITY &&
3053                             !zone_reclaimable(zone))
3054                                 continue;
3055
3056                         sc.nr_scanned = 0;
3057
3058                         /*
3059                          * There should be no need to raise the scanning
3060                          * priority if enough pages are already being scanned
3061                          * that that high watermark would be met at 100%
3062                          * efficiency.
3063                          */
3064                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3065                                         lru_pages, &nr_attempted))
3066                                 raise_priority = false;
3067                 }
3068
3069                 /*
3070                  * If the low watermark is met there is no need for processes
3071                  * to be throttled on pfmemalloc_wait as they should not be
3072                  * able to safely make forward progress. Wake them
3073                  */
3074                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3075                                 pfmemalloc_watermark_ok(pgdat))
3076                         wake_up(&pgdat->pfmemalloc_wait);
3077
3078                 /*
3079                  * Fragmentation may mean that the system cannot be rebalanced
3080                  * for high-order allocations in all zones. If twice the
3081                  * allocation size has been reclaimed and the zones are still
3082                  * not balanced then recheck the watermarks at order-0 to
3083                  * prevent kswapd reclaiming excessively. Assume that a
3084                  * process requested a high-order can direct reclaim/compact.
3085                  */
3086                 if (order && sc.nr_reclaimed >= 2UL << order)
3087                         order = sc.order = 0;
3088
3089                 /* Check if kswapd should be suspending */
3090                 if (try_to_freeze() || kthread_should_stop())
3091                         break;
3092
3093                 /*
3094                  * Compact if necessary and kswapd is reclaiming at least the
3095                  * high watermark number of pages as requsted
3096                  */
3097                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3098                         compact_pgdat(pgdat, order);
3099
3100                 /*
3101                  * Raise priority if scanning rate is too low or there was no
3102                  * progress in reclaiming pages
3103                  */
3104                 if (raise_priority || !sc.nr_reclaimed)
3105                         sc.priority--;
3106         } while (sc.priority >= 1 &&
3107                  !pgdat_balanced(pgdat, order, *classzone_idx));
3108
3109 out:
3110         /*
3111          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3112          * makes a decision on the order we were last reclaiming at. However,
3113          * if another caller entered the allocator slow path while kswapd
3114          * was awake, order will remain at the higher level
3115          */
3116         *classzone_idx = end_zone;
3117         return order;
3118 }
3119
3120 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3121 {
3122         long remaining = 0;
3123         DEFINE_WAIT(wait);
3124
3125         if (freezing(current) || kthread_should_stop())
3126                 return;
3127
3128         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3129
3130         /* Try to sleep for a short interval */
3131         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3132                 remaining = schedule_timeout(HZ/10);
3133                 finish_wait(&pgdat->kswapd_wait, &wait);
3134                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3135         }
3136
3137         /*
3138          * After a short sleep, check if it was a premature sleep. If not, then
3139          * go fully to sleep until explicitly woken up.
3140          */
3141         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3142                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3143
3144                 /*
3145                  * vmstat counters are not perfectly accurate and the estimated
3146                  * value for counters such as NR_FREE_PAGES can deviate from the
3147                  * true value by nr_online_cpus * threshold. To avoid the zone
3148                  * watermarks being breached while under pressure, we reduce the
3149                  * per-cpu vmstat threshold while kswapd is awake and restore
3150                  * them before going back to sleep.
3151                  */
3152                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3153
3154                 /*
3155                  * Compaction records what page blocks it recently failed to
3156                  * isolate pages from and skips them in the future scanning.
3157                  * When kswapd is going to sleep, it is reasonable to assume
3158                  * that pages and compaction may succeed so reset the cache.
3159                  */
3160                 reset_isolation_suitable(pgdat);
3161
3162                 if (!kthread_should_stop())
3163                         schedule();
3164
3165                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3166         } else {
3167                 if (remaining)
3168                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3169                 else
3170                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3171         }
3172         finish_wait(&pgdat->kswapd_wait, &wait);
3173 }
3174
3175 /*
3176  * The background pageout daemon, started as a kernel thread
3177  * from the init process.
3178  *
3179  * This basically trickles out pages so that we have _some_
3180  * free memory available even if there is no other activity
3181  * that frees anything up. This is needed for things like routing
3182  * etc, where we otherwise might have all activity going on in
3183  * asynchronous contexts that cannot page things out.
3184  *
3185  * If there are applications that are active memory-allocators
3186  * (most normal use), this basically shouldn't matter.
3187  */
3188 static int kswapd(void *p)
3189 {
3190         unsigned long order, new_order;
3191         unsigned balanced_order;
3192         int classzone_idx, new_classzone_idx;
3193         int balanced_classzone_idx;
3194         pg_data_t *pgdat = (pg_data_t*)p;
3195         struct task_struct *tsk = current;
3196
3197         struct reclaim_state reclaim_state = {
3198                 .reclaimed_slab = 0,
3199         };
3200         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3201
3202         lockdep_set_current_reclaim_state(GFP_KERNEL);
3203
3204         if (!cpumask_empty(cpumask))
3205                 set_cpus_allowed_ptr(tsk, cpumask);
3206         current->reclaim_state = &reclaim_state;
3207
3208         /*
3209          * Tell the memory management that we're a "memory allocator",
3210          * and that if we need more memory we should get access to it
3211          * regardless (see "__alloc_pages()"). "kswapd" should
3212          * never get caught in the normal page freeing logic.
3213          *
3214          * (Kswapd normally doesn't need memory anyway, but sometimes
3215          * you need a small amount of memory in order to be able to
3216          * page out something else, and this flag essentially protects
3217          * us from recursively trying to free more memory as we're
3218          * trying to free the first piece of memory in the first place).
3219          */
3220         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3221         set_freezable();
3222
3223         order = new_order = 0;
3224         balanced_order = 0;
3225         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3226         balanced_classzone_idx = classzone_idx;
3227         for ( ; ; ) {
3228                 bool ret;
3229
3230                 /*
3231                  * If the last balance_pgdat was unsuccessful it's unlikely a
3232                  * new request of a similar or harder type will succeed soon
3233                  * so consider going to sleep on the basis we reclaimed at
3234                  */
3235                 if (balanced_classzone_idx >= new_classzone_idx &&
3236                                         balanced_order == new_order) {
3237                         new_order = pgdat->kswapd_max_order;
3238                         new_classzone_idx = pgdat->classzone_idx;
3239                         pgdat->kswapd_max_order =  0;
3240                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3241                 }
3242
3243                 if (order < new_order || classzone_idx > new_classzone_idx) {
3244                         /*
3245                          * Don't sleep if someone wants a larger 'order'
3246                          * allocation or has tigher zone constraints
3247                          */
3248                         order = new_order;
3249                         classzone_idx = new_classzone_idx;
3250                 } else {
3251                         kswapd_try_to_sleep(pgdat, balanced_order,
3252                                                 balanced_classzone_idx);
3253                         order = pgdat->kswapd_max_order;
3254                         classzone_idx = pgdat->classzone_idx;
3255                         new_order = order;
3256                         new_classzone_idx = classzone_idx;
3257                         pgdat->kswapd_max_order = 0;
3258                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3259                 }
3260
3261                 ret = try_to_freeze();
3262                 if (kthread_should_stop())
3263                         break;
3264
3265                 /*
3266                  * We can speed up thawing tasks if we don't call balance_pgdat
3267                  * after returning from the refrigerator
3268                  */
3269                 if (!ret) {
3270                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3271                         balanced_classzone_idx = classzone_idx;
3272                         balanced_order = balance_pgdat(pgdat, order,
3273                                                 &balanced_classzone_idx);
3274                 }
3275         }
3276
3277         current->reclaim_state = NULL;
3278         return 0;
3279 }
3280
3281 /*
3282  * A zone is low on free memory, so wake its kswapd task to service it.
3283  */
3284 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3285 {
3286         pg_data_t *pgdat;
3287
3288         if (!populated_zone(zone))
3289                 return;
3290
3291         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3292                 return;
3293         pgdat = zone->zone_pgdat;
3294         if (pgdat->kswapd_max_order < order) {
3295                 pgdat->kswapd_max_order = order;
3296                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3297         }
3298         if (!waitqueue_active(&pgdat->kswapd_wait))
3299                 return;
3300         if (zone_balanced(zone, order, 0, 0))
3301                 return;
3302
3303         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3304         wake_up_interruptible(&pgdat->kswapd_wait);
3305 }
3306
3307 /*
3308  * The reclaimable count would be mostly accurate.
3309  * The less reclaimable pages may be
3310  * - mlocked pages, which will be moved to unevictable list when encountered
3311  * - mapped pages, which may require several travels to be reclaimed
3312  * - dirty pages, which is not "instantly" reclaimable
3313  */
3314 unsigned long global_reclaimable_pages(void)
3315 {
3316         int nr;
3317
3318         nr = global_page_state(NR_ACTIVE_FILE) +
3319              global_page_state(NR_INACTIVE_FILE);
3320
3321         if (get_nr_swap_pages() > 0)
3322                 nr += global_page_state(NR_ACTIVE_ANON) +
3323                       global_page_state(NR_INACTIVE_ANON);
3324
3325         return nr;
3326 }
3327
3328 #ifdef CONFIG_HIBERNATION
3329 /*
3330  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3331  * freed pages.
3332  *
3333  * Rather than trying to age LRUs the aim is to preserve the overall
3334  * LRU order by reclaiming preferentially
3335  * inactive > active > active referenced > active mapped
3336  */
3337 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3338 {
3339         struct reclaim_state reclaim_state;
3340         struct scan_control sc = {
3341                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3342                 .may_swap = 1,
3343                 .may_unmap = 1,
3344                 .may_writepage = 1,
3345                 .nr_to_reclaim = nr_to_reclaim,
3346                 .hibernation_mode = 1,
3347                 .order = 0,
3348                 .priority = DEF_PRIORITY,
3349         };
3350         struct shrink_control shrink = {
3351                 .gfp_mask = sc.gfp_mask,
3352         };
3353         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3354         struct task_struct *p = current;
3355         unsigned long nr_reclaimed;
3356
3357         p->flags |= PF_MEMALLOC;
3358         lockdep_set_current_reclaim_state(sc.gfp_mask);
3359         reclaim_state.reclaimed_slab = 0;
3360         p->reclaim_state = &reclaim_state;
3361
3362         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3363
3364         p->reclaim_state = NULL;
3365         lockdep_clear_current_reclaim_state();
3366         p->flags &= ~PF_MEMALLOC;
3367
3368         return nr_reclaimed;
3369 }
3370 #endif /* CONFIG_HIBERNATION */
3371
3372 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3373    not required for correctness.  So if the last cpu in a node goes
3374    away, we get changed to run anywhere: as the first one comes back,
3375    restore their cpu bindings. */
3376 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3377                         void *hcpu)
3378 {
3379         int nid;
3380
3381         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3382                 for_each_node_state(nid, N_MEMORY) {
3383                         pg_data_t *pgdat = NODE_DATA(nid);
3384                         const struct cpumask *mask;
3385
3386                         mask = cpumask_of_node(pgdat->node_id);
3387
3388                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3389                                 /* One of our CPUs online: restore mask */
3390                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3391                 }
3392         }
3393         return NOTIFY_OK;
3394 }
3395
3396 /*
3397  * This kswapd start function will be called by init and node-hot-add.
3398  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3399  */
3400 int kswapd_run(int nid)
3401 {
3402         pg_data_t *pgdat = NODE_DATA(nid);
3403         int ret = 0;
3404
3405         if (pgdat->kswapd)
3406                 return 0;
3407
3408         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3409         if (IS_ERR(pgdat->kswapd)) {
3410                 /* failure at boot is fatal */
3411                 BUG_ON(system_state == SYSTEM_BOOTING);
3412                 pr_err("Failed to start kswapd on node %d\n", nid);
3413                 ret = PTR_ERR(pgdat->kswapd);
3414                 pgdat->kswapd = NULL;
3415         }
3416         return ret;
3417 }
3418
3419 /*
3420  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3421  * hold lock_memory_hotplug().
3422  */
3423 void kswapd_stop(int nid)
3424 {
3425         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3426
3427         if (kswapd) {
3428                 kthread_stop(kswapd);
3429                 NODE_DATA(nid)->kswapd = NULL;
3430         }
3431 }
3432
3433 static int __init kswapd_init(void)
3434 {
3435         int nid;
3436
3437         swap_setup();
3438         for_each_node_state(nid, N_MEMORY)
3439                 kswapd_run(nid);
3440         hotcpu_notifier(cpu_callback, 0);
3441         return 0;
3442 }
3443
3444 module_init(kswapd_init)
3445
3446 #ifdef CONFIG_NUMA
3447 /*
3448  * Zone reclaim mode
3449  *
3450  * If non-zero call zone_reclaim when the number of free pages falls below
3451  * the watermarks.
3452  */
3453 int zone_reclaim_mode __read_mostly;
3454
3455 #define RECLAIM_OFF 0
3456 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3457 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3458 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3459
3460 /*
3461  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3462  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3463  * a zone.
3464  */
3465 #define ZONE_RECLAIM_PRIORITY 4
3466
3467 /*
3468  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3469  * occur.
3470  */
3471 int sysctl_min_unmapped_ratio = 1;
3472
3473 /*
3474  * If the number of slab pages in a zone grows beyond this percentage then
3475  * slab reclaim needs to occur.
3476  */
3477 int sysctl_min_slab_ratio = 5;
3478
3479 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3480 {
3481         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3482         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3483                 zone_page_state(zone, NR_ACTIVE_FILE);
3484
3485         /*
3486          * It's possible for there to be more file mapped pages than
3487          * accounted for by the pages on the file LRU lists because
3488          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3489          */
3490         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3491 }
3492
3493 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3494 static long zone_pagecache_reclaimable(struct zone *zone)
3495 {
3496         long nr_pagecache_reclaimable;
3497         long delta = 0;
3498
3499         /*
3500          * If RECLAIM_SWAP is set, then all file pages are considered
3501          * potentially reclaimable. Otherwise, we have to worry about
3502          * pages like swapcache and zone_unmapped_file_pages() provides
3503          * a better estimate
3504          */
3505         if (zone_reclaim_mode & RECLAIM_SWAP)
3506                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3507         else
3508                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3509
3510         /* If we can't clean pages, remove dirty pages from consideration */
3511         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3512                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3513
3514         /* Watch for any possible underflows due to delta */
3515         if (unlikely(delta > nr_pagecache_reclaimable))
3516                 delta = nr_pagecache_reclaimable;
3517
3518         return nr_pagecache_reclaimable - delta;
3519 }
3520
3521 /*
3522  * Try to free up some pages from this zone through reclaim.
3523  */
3524 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3525 {
3526         /* Minimum pages needed in order to stay on node */
3527         const unsigned long nr_pages = 1 << order;
3528         struct task_struct *p = current;
3529         struct reclaim_state reclaim_state;
3530         struct scan_control sc = {
3531                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3532                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3533                 .may_swap = 1,
3534                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3535                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3536                 .order = order,
3537                 .priority = ZONE_RECLAIM_PRIORITY,
3538         };
3539         struct shrink_control shrink = {
3540                 .gfp_mask = sc.gfp_mask,
3541         };
3542         unsigned long nr_slab_pages0, nr_slab_pages1;
3543
3544         cond_resched();
3545         /*
3546          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3547          * and we also need to be able to write out pages for RECLAIM_WRITE
3548          * and RECLAIM_SWAP.
3549          */
3550         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3551         lockdep_set_current_reclaim_state(gfp_mask);
3552         reclaim_state.reclaimed_slab = 0;
3553         p->reclaim_state = &reclaim_state;
3554
3555         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3556                 /*
3557                  * Free memory by calling shrink zone with increasing
3558                  * priorities until we have enough memory freed.
3559                  */
3560                 do {
3561                         shrink_zone(zone, &sc);
3562                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3563         }
3564
3565         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3566         if (nr_slab_pages0 > zone->min_slab_pages) {
3567                 /*
3568                  * shrink_slab() does not currently allow us to determine how
3569                  * many pages were freed in this zone. So we take the current
3570                  * number of slab pages and shake the slab until it is reduced
3571                  * by the same nr_pages that we used for reclaiming unmapped
3572                  * pages.
3573                  */
3574                 nodes_clear(shrink.nodes_to_scan);
3575                 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3576                 for (;;) {
3577                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3578
3579                         /* No reclaimable slab or very low memory pressure */
3580                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3581                                 break;
3582
3583                         /* Freed enough memory */
3584                         nr_slab_pages1 = zone_page_state(zone,
3585                                                         NR_SLAB_RECLAIMABLE);
3586                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3587                                 break;
3588                 }
3589
3590                 /*
3591                  * Update nr_reclaimed by the number of slab pages we
3592                  * reclaimed from this zone.
3593                  */
3594                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3595                 if (nr_slab_pages1 < nr_slab_pages0)
3596                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3597         }
3598
3599         p->reclaim_state = NULL;
3600         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3601         lockdep_clear_current_reclaim_state();
3602         return sc.nr_reclaimed >= nr_pages;
3603 }
3604
3605 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3606 {
3607         int node_id;
3608         int ret;
3609
3610         /*
3611          * Zone reclaim reclaims unmapped file backed pages and
3612          * slab pages if we are over the defined limits.
3613          *
3614          * A small portion of unmapped file backed pages is needed for
3615          * file I/O otherwise pages read by file I/O will be immediately
3616          * thrown out if the zone is overallocated. So we do not reclaim
3617          * if less than a specified percentage of the zone is used by
3618          * unmapped file backed pages.
3619          */
3620         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3621             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3622                 return ZONE_RECLAIM_FULL;
3623
3624         if (!zone_reclaimable(zone))
3625                 return ZONE_RECLAIM_FULL;
3626
3627         /*
3628          * Do not scan if the allocation should not be delayed.
3629          */
3630         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3631                 return ZONE_RECLAIM_NOSCAN;
3632
3633         /*
3634          * Only run zone reclaim on the local zone or on zones that do not
3635          * have associated processors. This will favor the local processor
3636          * over remote processors and spread off node memory allocations
3637          * as wide as possible.
3638          */
3639         node_id = zone_to_nid(zone);
3640         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3641                 return ZONE_RECLAIM_NOSCAN;
3642
3643         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3644                 return ZONE_RECLAIM_NOSCAN;
3645
3646         ret = __zone_reclaim(zone, gfp_mask, order);
3647         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3648
3649         if (!ret)
3650                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3651
3652         return ret;
3653 }
3654 #endif
3655
3656 /*
3657  * page_evictable - test whether a page is evictable
3658  * @page: the page to test
3659  *
3660  * Test whether page is evictable--i.e., should be placed on active/inactive
3661  * lists vs unevictable list.
3662  *
3663  * Reasons page might not be evictable:
3664  * (1) page's mapping marked unevictable
3665  * (2) page is part of an mlocked VMA
3666  *
3667  */
3668 int page_evictable(struct page *page)
3669 {
3670         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3671 }
3672
3673 #ifdef CONFIG_SHMEM
3674 /**
3675  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3676  * @pages:      array of pages to check
3677  * @nr_pages:   number of pages to check
3678  *
3679  * Checks pages for evictability and moves them to the appropriate lru list.
3680  *
3681  * This function is only used for SysV IPC SHM_UNLOCK.
3682  */
3683 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3684 {
3685         struct lruvec *lruvec;
3686         struct zone *zone = NULL;
3687         int pgscanned = 0;
3688         int pgrescued = 0;
3689         int i;
3690
3691         for (i = 0; i < nr_pages; i++) {
3692                 struct page *page = pages[i];
3693                 struct zone *pagezone;
3694
3695                 pgscanned++;
3696                 pagezone = page_zone(page);
3697                 if (pagezone != zone) {
3698                         if (zone)
3699                                 spin_unlock_irq(&zone->lru_lock);
3700                         zone = pagezone;
3701                         spin_lock_irq(&zone->lru_lock);
3702                 }
3703                 lruvec = mem_cgroup_page_lruvec(page, zone);
3704
3705                 if (!PageLRU(page) || !PageUnevictable(page))
3706                         continue;
3707
3708                 if (page_evictable(page)) {
3709                         enum lru_list lru = page_lru_base_type(page);
3710
3711                         VM_BUG_ON(PageActive(page));
3712                         ClearPageUnevictable(page);
3713                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3714                         add_page_to_lru_list(page, lruvec, lru);
3715                         pgrescued++;
3716                 }
3717         }
3718
3719         if (zone) {
3720                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3721                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3722                 spin_unlock_irq(&zone->lru_lock);
3723         }
3724 }
3725 #endif /* CONFIG_SHMEM */
3726
3727 static void warn_scan_unevictable_pages(void)
3728 {
3729         printk_once(KERN_WARNING
3730                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3731                     "disabled for lack of a legitimate use case.  If you have "
3732                     "one, please send an email to linux-mm@kvack.org.\n",
3733                     current->comm);
3734 }
3735
3736 /*
3737  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3738  * all nodes' unevictable lists for evictable pages
3739  */
3740 unsigned long scan_unevictable_pages;
3741
3742 int scan_unevictable_handler(struct ctl_table *table, int write,
3743                            void __user *buffer,
3744                            size_t *length, loff_t *ppos)
3745 {
3746         warn_scan_unevictable_pages();
3747         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3748         scan_unevictable_pages = 0;
3749         return 0;
3750 }
3751
3752 #ifdef CONFIG_NUMA
3753 /*
3754  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3755  * a specified node's per zone unevictable lists for evictable pages.
3756  */
3757
3758 static ssize_t read_scan_unevictable_node(struct device *dev,
3759                                           struct device_attribute *attr,
3760                                           char *buf)
3761 {
3762         warn_scan_unevictable_pages();
3763         return sprintf(buf, "0\n");     /* always zero; should fit... */
3764 }
3765
3766 static ssize_t write_scan_unevictable_node(struct device *dev,
3767                                            struct device_attribute *attr,
3768                                         const char *buf, size_t count)
3769 {
3770         warn_scan_unevictable_pages();
3771         return 1;
3772 }
3773
3774
3775 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3776                         read_scan_unevictable_node,
3777                         write_scan_unevictable_node);
3778
3779 int scan_unevictable_register_node(struct node *node)
3780 {
3781         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3782 }
3783
3784 void scan_unevictable_unregister_node(struct node *node)
3785 {
3786         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3787 }
3788 #endif