]> Pileus Git - ~andy/linux/blob - mm/vmscan.c
1109de0c35bf450605d9be2657706041d4a66cb7
[~andy/linux] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /*
673  * shrink_page_list() returns the number of reclaimed pages
674  */
675 static unsigned long shrink_page_list(struct list_head *page_list,
676                                       struct zone *zone,
677                                       struct scan_control *sc,
678                                       enum ttu_flags ttu_flags,
679                                       unsigned long *ret_nr_unqueued_dirty,
680                                       unsigned long *ret_nr_writeback,
681                                       bool force_reclaim)
682 {
683         LIST_HEAD(ret_pages);
684         LIST_HEAD(free_pages);
685         int pgactivate = 0;
686         unsigned long nr_unqueued_dirty = 0;
687         unsigned long nr_dirty = 0;
688         unsigned long nr_congested = 0;
689         unsigned long nr_reclaimed = 0;
690         unsigned long nr_writeback = 0;
691
692         cond_resched();
693
694         mem_cgroup_uncharge_start();
695         while (!list_empty(page_list)) {
696                 struct address_space *mapping;
697                 struct page *page;
698                 int may_enter_fs;
699                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
700
701                 cond_resched();
702
703                 page = lru_to_page(page_list);
704                 list_del(&page->lru);
705
706                 if (!trylock_page(page))
707                         goto keep;
708
709                 VM_BUG_ON(PageActive(page));
710                 VM_BUG_ON(page_zone(page) != zone);
711
712                 sc->nr_scanned++;
713
714                 if (unlikely(!page_evictable(page)))
715                         goto cull_mlocked;
716
717                 if (!sc->may_unmap && page_mapped(page))
718                         goto keep_locked;
719
720                 /* Double the slab pressure for mapped and swapcache pages */
721                 if (page_mapped(page) || PageSwapCache(page))
722                         sc->nr_scanned++;
723
724                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727                 /*
728                  * If a page at the tail of the LRU is under writeback, there
729                  * are three cases to consider.
730                  *
731                  * 1) If reclaim is encountering an excessive number of pages
732                  *    under writeback and this page is both under writeback and
733                  *    PageReclaim then it indicates that pages are being queued
734                  *    for IO but are being recycled through the LRU before the
735                  *    IO can complete. Waiting on the page itself risks an
736                  *    indefinite stall if it is impossible to writeback the
737                  *    page due to IO error or disconnected storage so instead
738                  *    block for HZ/10 or until some IO completes then clear the
739                  *    ZONE_WRITEBACK flag to recheck if the condition exists.
740                  *
741                  * 2) Global reclaim encounters a page, memcg encounters a
742                  *    page that is not marked for immediate reclaim or
743                  *    the caller does not have __GFP_IO. In this case mark
744                  *    the page for immediate reclaim and continue scanning.
745                  *
746                  *    __GFP_IO is checked  because a loop driver thread might
747                  *    enter reclaim, and deadlock if it waits on a page for
748                  *    which it is needed to do the write (loop masks off
749                  *    __GFP_IO|__GFP_FS for this reason); but more thought
750                  *    would probably show more reasons.
751                  *
752                  *    Don't require __GFP_FS, since we're not going into the
753                  *    FS, just waiting on its writeback completion. Worryingly,
754                  *    ext4 gfs2 and xfs allocate pages with
755                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
756                  *    may_enter_fs here is liable to OOM on them.
757                  *
758                  * 3) memcg encounters a page that is not already marked
759                  *    PageReclaim. memcg does not have any dirty pages
760                  *    throttling so we could easily OOM just because too many
761                  *    pages are in writeback and there is nothing else to
762                  *    reclaim. Wait for the writeback to complete.
763                  */
764                 if (PageWriteback(page)) {
765                         /* Case 1 above */
766                         if (current_is_kswapd() &&
767                             PageReclaim(page) &&
768                             zone_is_reclaim_writeback(zone)) {
769                                 unlock_page(page);
770                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
771                                 zone_clear_flag(zone, ZONE_WRITEBACK);
772                                 goto keep;
773
774                         /* Case 2 above */
775                         } else if (global_reclaim(sc) ||
776                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
777                                 /*
778                                  * This is slightly racy - end_page_writeback()
779                                  * might have just cleared PageReclaim, then
780                                  * setting PageReclaim here end up interpreted
781                                  * as PageReadahead - but that does not matter
782                                  * enough to care.  What we do want is for this
783                                  * page to have PageReclaim set next time memcg
784                                  * reclaim reaches the tests above, so it will
785                                  * then wait_on_page_writeback() to avoid OOM;
786                                  * and it's also appropriate in global reclaim.
787                                  */
788                                 SetPageReclaim(page);
789                                 nr_writeback++;
790
791                                 goto keep_locked;
792
793                         /* Case 3 above */
794                         } else {
795                                 wait_on_page_writeback(page);
796                         }
797                 }
798
799                 if (!force_reclaim)
800                         references = page_check_references(page, sc);
801
802                 switch (references) {
803                 case PAGEREF_ACTIVATE:
804                         goto activate_locked;
805                 case PAGEREF_KEEP:
806                         goto keep_locked;
807                 case PAGEREF_RECLAIM:
808                 case PAGEREF_RECLAIM_CLEAN:
809                         ; /* try to reclaim the page below */
810                 }
811
812                 /*
813                  * Anonymous process memory has backing store?
814                  * Try to allocate it some swap space here.
815                  */
816                 if (PageAnon(page) && !PageSwapCache(page)) {
817                         if (!(sc->gfp_mask & __GFP_IO))
818                                 goto keep_locked;
819                         if (!add_to_swap(page, page_list))
820                                 goto activate_locked;
821                         may_enter_fs = 1;
822                 }
823
824                 mapping = page_mapping(page);
825
826                 /*
827                  * The page is mapped into the page tables of one or more
828                  * processes. Try to unmap it here.
829                  */
830                 if (page_mapped(page) && mapping) {
831                         switch (try_to_unmap(page, ttu_flags)) {
832                         case SWAP_FAIL:
833                                 goto activate_locked;
834                         case SWAP_AGAIN:
835                                 goto keep_locked;
836                         case SWAP_MLOCK:
837                                 goto cull_mlocked;
838                         case SWAP_SUCCESS:
839                                 ; /* try to free the page below */
840                         }
841                 }
842
843                 if (PageDirty(page)) {
844                         nr_dirty++;
845
846                         if (!PageWriteback(page))
847                                 nr_unqueued_dirty++;
848
849                         /*
850                          * Only kswapd can writeback filesystem pages to
851                          * avoid risk of stack overflow but only writeback
852                          * if many dirty pages have been encountered.
853                          */
854                         if (page_is_file_cache(page) &&
855                                         (!current_is_kswapd() ||
856                                          !zone_is_reclaim_dirty(zone))) {
857                                 /*
858                                  * Immediately reclaim when written back.
859                                  * Similar in principal to deactivate_page()
860                                  * except we already have the page isolated
861                                  * and know it's dirty
862                                  */
863                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
864                                 SetPageReclaim(page);
865
866                                 goto keep_locked;
867                         }
868
869                         if (references == PAGEREF_RECLAIM_CLEAN)
870                                 goto keep_locked;
871                         if (!may_enter_fs)
872                                 goto keep_locked;
873                         if (!sc->may_writepage)
874                                 goto keep_locked;
875
876                         /* Page is dirty, try to write it out here */
877                         switch (pageout(page, mapping, sc)) {
878                         case PAGE_KEEP:
879                                 nr_congested++;
880                                 goto keep_locked;
881                         case PAGE_ACTIVATE:
882                                 goto activate_locked;
883                         case PAGE_SUCCESS:
884                                 if (PageWriteback(page))
885                                         goto keep;
886                                 if (PageDirty(page))
887                                         goto keep;
888
889                                 /*
890                                  * A synchronous write - probably a ramdisk.  Go
891                                  * ahead and try to reclaim the page.
892                                  */
893                                 if (!trylock_page(page))
894                                         goto keep;
895                                 if (PageDirty(page) || PageWriteback(page))
896                                         goto keep_locked;
897                                 mapping = page_mapping(page);
898                         case PAGE_CLEAN:
899                                 ; /* try to free the page below */
900                         }
901                 }
902
903                 /*
904                  * If the page has buffers, try to free the buffer mappings
905                  * associated with this page. If we succeed we try to free
906                  * the page as well.
907                  *
908                  * We do this even if the page is PageDirty().
909                  * try_to_release_page() does not perform I/O, but it is
910                  * possible for a page to have PageDirty set, but it is actually
911                  * clean (all its buffers are clean).  This happens if the
912                  * buffers were written out directly, with submit_bh(). ext3
913                  * will do this, as well as the blockdev mapping.
914                  * try_to_release_page() will discover that cleanness and will
915                  * drop the buffers and mark the page clean - it can be freed.
916                  *
917                  * Rarely, pages can have buffers and no ->mapping.  These are
918                  * the pages which were not successfully invalidated in
919                  * truncate_complete_page().  We try to drop those buffers here
920                  * and if that worked, and the page is no longer mapped into
921                  * process address space (page_count == 1) it can be freed.
922                  * Otherwise, leave the page on the LRU so it is swappable.
923                  */
924                 if (page_has_private(page)) {
925                         if (!try_to_release_page(page, sc->gfp_mask))
926                                 goto activate_locked;
927                         if (!mapping && page_count(page) == 1) {
928                                 unlock_page(page);
929                                 if (put_page_testzero(page))
930                                         goto free_it;
931                                 else {
932                                         /*
933                                          * rare race with speculative reference.
934                                          * the speculative reference will free
935                                          * this page shortly, so we may
936                                          * increment nr_reclaimed here (and
937                                          * leave it off the LRU).
938                                          */
939                                         nr_reclaimed++;
940                                         continue;
941                                 }
942                         }
943                 }
944
945                 if (!mapping || !__remove_mapping(mapping, page))
946                         goto keep_locked;
947
948                 /*
949                  * At this point, we have no other references and there is
950                  * no way to pick any more up (removed from LRU, removed
951                  * from pagecache). Can use non-atomic bitops now (and
952                  * we obviously don't have to worry about waking up a process
953                  * waiting on the page lock, because there are no references.
954                  */
955                 __clear_page_locked(page);
956 free_it:
957                 nr_reclaimed++;
958
959                 /*
960                  * Is there need to periodically free_page_list? It would
961                  * appear not as the counts should be low
962                  */
963                 list_add(&page->lru, &free_pages);
964                 continue;
965
966 cull_mlocked:
967                 if (PageSwapCache(page))
968                         try_to_free_swap(page);
969                 unlock_page(page);
970                 putback_lru_page(page);
971                 continue;
972
973 activate_locked:
974                 /* Not a candidate for swapping, so reclaim swap space. */
975                 if (PageSwapCache(page) && vm_swap_full())
976                         try_to_free_swap(page);
977                 VM_BUG_ON(PageActive(page));
978                 SetPageActive(page);
979                 pgactivate++;
980 keep_locked:
981                 unlock_page(page);
982 keep:
983                 list_add(&page->lru, &ret_pages);
984                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
985         }
986
987         /*
988          * Tag a zone as congested if all the dirty pages encountered were
989          * backed by a congested BDI. In this case, reclaimers should just
990          * back off and wait for congestion to clear because further reclaim
991          * will encounter the same problem
992          */
993         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
994                 zone_set_flag(zone, ZONE_CONGESTED);
995
996         free_hot_cold_page_list(&free_pages, 1);
997
998         list_splice(&ret_pages, page_list);
999         count_vm_events(PGACTIVATE, pgactivate);
1000         mem_cgroup_uncharge_end();
1001         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1002         *ret_nr_writeback += nr_writeback;
1003         return nr_reclaimed;
1004 }
1005
1006 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1007                                             struct list_head *page_list)
1008 {
1009         struct scan_control sc = {
1010                 .gfp_mask = GFP_KERNEL,
1011                 .priority = DEF_PRIORITY,
1012                 .may_unmap = 1,
1013         };
1014         unsigned long ret, dummy1, dummy2;
1015         struct page *page, *next;
1016         LIST_HEAD(clean_pages);
1017
1018         list_for_each_entry_safe(page, next, page_list, lru) {
1019                 if (page_is_file_cache(page) && !PageDirty(page)) {
1020                         ClearPageActive(page);
1021                         list_move(&page->lru, &clean_pages);
1022                 }
1023         }
1024
1025         ret = shrink_page_list(&clean_pages, zone, &sc,
1026                                 TTU_UNMAP|TTU_IGNORE_ACCESS,
1027                                 &dummy1, &dummy2, true);
1028         list_splice(&clean_pages, page_list);
1029         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1030         return ret;
1031 }
1032
1033 /*
1034  * Attempt to remove the specified page from its LRU.  Only take this page
1035  * if it is of the appropriate PageActive status.  Pages which are being
1036  * freed elsewhere are also ignored.
1037  *
1038  * page:        page to consider
1039  * mode:        one of the LRU isolation modes defined above
1040  *
1041  * returns 0 on success, -ve errno on failure.
1042  */
1043 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1044 {
1045         int ret = -EINVAL;
1046
1047         /* Only take pages on the LRU. */
1048         if (!PageLRU(page))
1049                 return ret;
1050
1051         /* Compaction should not handle unevictable pages but CMA can do so */
1052         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1053                 return ret;
1054
1055         ret = -EBUSY;
1056
1057         /*
1058          * To minimise LRU disruption, the caller can indicate that it only
1059          * wants to isolate pages it will be able to operate on without
1060          * blocking - clean pages for the most part.
1061          *
1062          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1063          * is used by reclaim when it is cannot write to backing storage
1064          *
1065          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1066          * that it is possible to migrate without blocking
1067          */
1068         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1069                 /* All the caller can do on PageWriteback is block */
1070                 if (PageWriteback(page))
1071                         return ret;
1072
1073                 if (PageDirty(page)) {
1074                         struct address_space *mapping;
1075
1076                         /* ISOLATE_CLEAN means only clean pages */
1077                         if (mode & ISOLATE_CLEAN)
1078                                 return ret;
1079
1080                         /*
1081                          * Only pages without mappings or that have a
1082                          * ->migratepage callback are possible to migrate
1083                          * without blocking
1084                          */
1085                         mapping = page_mapping(page);
1086                         if (mapping && !mapping->a_ops->migratepage)
1087                                 return ret;
1088                 }
1089         }
1090
1091         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1092                 return ret;
1093
1094         if (likely(get_page_unless_zero(page))) {
1095                 /*
1096                  * Be careful not to clear PageLRU until after we're
1097                  * sure the page is not being freed elsewhere -- the
1098                  * page release code relies on it.
1099                  */
1100                 ClearPageLRU(page);
1101                 ret = 0;
1102         }
1103
1104         return ret;
1105 }
1106
1107 /*
1108  * zone->lru_lock is heavily contended.  Some of the functions that
1109  * shrink the lists perform better by taking out a batch of pages
1110  * and working on them outside the LRU lock.
1111  *
1112  * For pagecache intensive workloads, this function is the hottest
1113  * spot in the kernel (apart from copy_*_user functions).
1114  *
1115  * Appropriate locks must be held before calling this function.
1116  *
1117  * @nr_to_scan: The number of pages to look through on the list.
1118  * @lruvec:     The LRU vector to pull pages from.
1119  * @dst:        The temp list to put pages on to.
1120  * @nr_scanned: The number of pages that were scanned.
1121  * @sc:         The scan_control struct for this reclaim session
1122  * @mode:       One of the LRU isolation modes
1123  * @lru:        LRU list id for isolating
1124  *
1125  * returns how many pages were moved onto *@dst.
1126  */
1127 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1128                 struct lruvec *lruvec, struct list_head *dst,
1129                 unsigned long *nr_scanned, struct scan_control *sc,
1130                 isolate_mode_t mode, enum lru_list lru)
1131 {
1132         struct list_head *src = &lruvec->lists[lru];
1133         unsigned long nr_taken = 0;
1134         unsigned long scan;
1135
1136         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1137                 struct page *page;
1138                 int nr_pages;
1139
1140                 page = lru_to_page(src);
1141                 prefetchw_prev_lru_page(page, src, flags);
1142
1143                 VM_BUG_ON(!PageLRU(page));
1144
1145                 switch (__isolate_lru_page(page, mode)) {
1146                 case 0:
1147                         nr_pages = hpage_nr_pages(page);
1148                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1149                         list_move(&page->lru, dst);
1150                         nr_taken += nr_pages;
1151                         break;
1152
1153                 case -EBUSY:
1154                         /* else it is being freed elsewhere */
1155                         list_move(&page->lru, src);
1156                         continue;
1157
1158                 default:
1159                         BUG();
1160                 }
1161         }
1162
1163         *nr_scanned = scan;
1164         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1165                                     nr_taken, mode, is_file_lru(lru));
1166         return nr_taken;
1167 }
1168
1169 /**
1170  * isolate_lru_page - tries to isolate a page from its LRU list
1171  * @page: page to isolate from its LRU list
1172  *
1173  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1174  * vmstat statistic corresponding to whatever LRU list the page was on.
1175  *
1176  * Returns 0 if the page was removed from an LRU list.
1177  * Returns -EBUSY if the page was not on an LRU list.
1178  *
1179  * The returned page will have PageLRU() cleared.  If it was found on
1180  * the active list, it will have PageActive set.  If it was found on
1181  * the unevictable list, it will have the PageUnevictable bit set. That flag
1182  * may need to be cleared by the caller before letting the page go.
1183  *
1184  * The vmstat statistic corresponding to the list on which the page was
1185  * found will be decremented.
1186  *
1187  * Restrictions:
1188  * (1) Must be called with an elevated refcount on the page. This is a
1189  *     fundamentnal difference from isolate_lru_pages (which is called
1190  *     without a stable reference).
1191  * (2) the lru_lock must not be held.
1192  * (3) interrupts must be enabled.
1193  */
1194 int isolate_lru_page(struct page *page)
1195 {
1196         int ret = -EBUSY;
1197
1198         VM_BUG_ON(!page_count(page));
1199
1200         if (PageLRU(page)) {
1201                 struct zone *zone = page_zone(page);
1202                 struct lruvec *lruvec;
1203
1204                 spin_lock_irq(&zone->lru_lock);
1205                 lruvec = mem_cgroup_page_lruvec(page, zone);
1206                 if (PageLRU(page)) {
1207                         int lru = page_lru(page);
1208                         get_page(page);
1209                         ClearPageLRU(page);
1210                         del_page_from_lru_list(page, lruvec, lru);
1211                         ret = 0;
1212                 }
1213                 spin_unlock_irq(&zone->lru_lock);
1214         }
1215         return ret;
1216 }
1217
1218 /*
1219  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1220  * then get resheduled. When there are massive number of tasks doing page
1221  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1222  * the LRU list will go small and be scanned faster than necessary, leading to
1223  * unnecessary swapping, thrashing and OOM.
1224  */
1225 static int too_many_isolated(struct zone *zone, int file,
1226                 struct scan_control *sc)
1227 {
1228         unsigned long inactive, isolated;
1229
1230         if (current_is_kswapd())
1231                 return 0;
1232
1233         if (!global_reclaim(sc))
1234                 return 0;
1235
1236         if (file) {
1237                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1238                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1239         } else {
1240                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1241                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1242         }
1243
1244         /*
1245          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1246          * won't get blocked by normal direct-reclaimers, forming a circular
1247          * deadlock.
1248          */
1249         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1250                 inactive >>= 3;
1251
1252         return isolated > inactive;
1253 }
1254
1255 static noinline_for_stack void
1256 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1257 {
1258         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1259         struct zone *zone = lruvec_zone(lruvec);
1260         LIST_HEAD(pages_to_free);
1261
1262         /*
1263          * Put back any unfreeable pages.
1264          */
1265         while (!list_empty(page_list)) {
1266                 struct page *page = lru_to_page(page_list);
1267                 int lru;
1268
1269                 VM_BUG_ON(PageLRU(page));
1270                 list_del(&page->lru);
1271                 if (unlikely(!page_evictable(page))) {
1272                         spin_unlock_irq(&zone->lru_lock);
1273                         putback_lru_page(page);
1274                         spin_lock_irq(&zone->lru_lock);
1275                         continue;
1276                 }
1277
1278                 lruvec = mem_cgroup_page_lruvec(page, zone);
1279
1280                 SetPageLRU(page);
1281                 lru = page_lru(page);
1282                 add_page_to_lru_list(page, lruvec, lru);
1283
1284                 if (is_active_lru(lru)) {
1285                         int file = is_file_lru(lru);
1286                         int numpages = hpage_nr_pages(page);
1287                         reclaim_stat->recent_rotated[file] += numpages;
1288                 }
1289                 if (put_page_testzero(page)) {
1290                         __ClearPageLRU(page);
1291                         __ClearPageActive(page);
1292                         del_page_from_lru_list(page, lruvec, lru);
1293
1294                         if (unlikely(PageCompound(page))) {
1295                                 spin_unlock_irq(&zone->lru_lock);
1296                                 (*get_compound_page_dtor(page))(page);
1297                                 spin_lock_irq(&zone->lru_lock);
1298                         } else
1299                                 list_add(&page->lru, &pages_to_free);
1300                 }
1301         }
1302
1303         /*
1304          * To save our caller's stack, now use input list for pages to free.
1305          */
1306         list_splice(&pages_to_free, page_list);
1307 }
1308
1309 /*
1310  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1311  * of reclaimed pages
1312  */
1313 static noinline_for_stack unsigned long
1314 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1315                      struct scan_control *sc, enum lru_list lru)
1316 {
1317         LIST_HEAD(page_list);
1318         unsigned long nr_scanned;
1319         unsigned long nr_reclaimed = 0;
1320         unsigned long nr_taken;
1321         unsigned long nr_dirty = 0;
1322         unsigned long nr_writeback = 0;
1323         isolate_mode_t isolate_mode = 0;
1324         int file = is_file_lru(lru);
1325         struct zone *zone = lruvec_zone(lruvec);
1326         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1327
1328         while (unlikely(too_many_isolated(zone, file, sc))) {
1329                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1330
1331                 /* We are about to die and free our memory. Return now. */
1332                 if (fatal_signal_pending(current))
1333                         return SWAP_CLUSTER_MAX;
1334         }
1335
1336         lru_add_drain();
1337
1338         if (!sc->may_unmap)
1339                 isolate_mode |= ISOLATE_UNMAPPED;
1340         if (!sc->may_writepage)
1341                 isolate_mode |= ISOLATE_CLEAN;
1342
1343         spin_lock_irq(&zone->lru_lock);
1344
1345         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1346                                      &nr_scanned, sc, isolate_mode, lru);
1347
1348         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1349         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1350
1351         if (global_reclaim(sc)) {
1352                 zone->pages_scanned += nr_scanned;
1353                 if (current_is_kswapd())
1354                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1355                 else
1356                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1357         }
1358         spin_unlock_irq(&zone->lru_lock);
1359
1360         if (nr_taken == 0)
1361                 return 0;
1362
1363         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1364                                         &nr_dirty, &nr_writeback, false);
1365
1366         spin_lock_irq(&zone->lru_lock);
1367
1368         reclaim_stat->recent_scanned[file] += nr_taken;
1369
1370         if (global_reclaim(sc)) {
1371                 if (current_is_kswapd())
1372                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1373                                                nr_reclaimed);
1374                 else
1375                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1376                                                nr_reclaimed);
1377         }
1378
1379         putback_inactive_pages(lruvec, &page_list);
1380
1381         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1382
1383         spin_unlock_irq(&zone->lru_lock);
1384
1385         free_hot_cold_page_list(&page_list, 1);
1386
1387         /*
1388          * If reclaim is isolating dirty pages under writeback, it implies
1389          * that the long-lived page allocation rate is exceeding the page
1390          * laundering rate. Either the global limits are not being effective
1391          * at throttling processes due to the page distribution throughout
1392          * zones or there is heavy usage of a slow backing device. The
1393          * only option is to throttle from reclaim context which is not ideal
1394          * as there is no guarantee the dirtying process is throttled in the
1395          * same way balance_dirty_pages() manages.
1396          *
1397          * This scales the number of dirty pages that must be under writeback
1398          * before throttling depending on priority. It is a simple backoff
1399          * function that has the most effect in the range DEF_PRIORITY to
1400          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1401          * in trouble and reclaim is considered to be in trouble.
1402          *
1403          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1404          * DEF_PRIORITY-1  50% must be PageWriteback
1405          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1406          * ...
1407          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1408          *                     isolated page is PageWriteback
1409          */
1410         if (nr_writeback && nr_writeback >=
1411                         (nr_taken >> (DEF_PRIORITY - sc->priority))) {
1412                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1413                 zone_set_flag(zone, ZONE_WRITEBACK);
1414         }
1415
1416         /*
1417          * Similarly, if many dirty pages are encountered that are not
1418          * currently being written then flag that kswapd should start
1419          * writing back pages.
1420          */
1421         if (global_reclaim(sc) && nr_dirty &&
1422                         nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
1423                 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1424
1425         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1426                 zone_idx(zone),
1427                 nr_scanned, nr_reclaimed,
1428                 sc->priority,
1429                 trace_shrink_flags(file));
1430         return nr_reclaimed;
1431 }
1432
1433 /*
1434  * This moves pages from the active list to the inactive list.
1435  *
1436  * We move them the other way if the page is referenced by one or more
1437  * processes, from rmap.
1438  *
1439  * If the pages are mostly unmapped, the processing is fast and it is
1440  * appropriate to hold zone->lru_lock across the whole operation.  But if
1441  * the pages are mapped, the processing is slow (page_referenced()) so we
1442  * should drop zone->lru_lock around each page.  It's impossible to balance
1443  * this, so instead we remove the pages from the LRU while processing them.
1444  * It is safe to rely on PG_active against the non-LRU pages in here because
1445  * nobody will play with that bit on a non-LRU page.
1446  *
1447  * The downside is that we have to touch page->_count against each page.
1448  * But we had to alter page->flags anyway.
1449  */
1450
1451 static void move_active_pages_to_lru(struct lruvec *lruvec,
1452                                      struct list_head *list,
1453                                      struct list_head *pages_to_free,
1454                                      enum lru_list lru)
1455 {
1456         struct zone *zone = lruvec_zone(lruvec);
1457         unsigned long pgmoved = 0;
1458         struct page *page;
1459         int nr_pages;
1460
1461         while (!list_empty(list)) {
1462                 page = lru_to_page(list);
1463                 lruvec = mem_cgroup_page_lruvec(page, zone);
1464
1465                 VM_BUG_ON(PageLRU(page));
1466                 SetPageLRU(page);
1467
1468                 nr_pages = hpage_nr_pages(page);
1469                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1470                 list_move(&page->lru, &lruvec->lists[lru]);
1471                 pgmoved += nr_pages;
1472
1473                 if (put_page_testzero(page)) {
1474                         __ClearPageLRU(page);
1475                         __ClearPageActive(page);
1476                         del_page_from_lru_list(page, lruvec, lru);
1477
1478                         if (unlikely(PageCompound(page))) {
1479                                 spin_unlock_irq(&zone->lru_lock);
1480                                 (*get_compound_page_dtor(page))(page);
1481                                 spin_lock_irq(&zone->lru_lock);
1482                         } else
1483                                 list_add(&page->lru, pages_to_free);
1484                 }
1485         }
1486         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1487         if (!is_active_lru(lru))
1488                 __count_vm_events(PGDEACTIVATE, pgmoved);
1489 }
1490
1491 static void shrink_active_list(unsigned long nr_to_scan,
1492                                struct lruvec *lruvec,
1493                                struct scan_control *sc,
1494                                enum lru_list lru)
1495 {
1496         unsigned long nr_taken;
1497         unsigned long nr_scanned;
1498         unsigned long vm_flags;
1499         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1500         LIST_HEAD(l_active);
1501         LIST_HEAD(l_inactive);
1502         struct page *page;
1503         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1504         unsigned long nr_rotated = 0;
1505         isolate_mode_t isolate_mode = 0;
1506         int file = is_file_lru(lru);
1507         struct zone *zone = lruvec_zone(lruvec);
1508
1509         lru_add_drain();
1510
1511         if (!sc->may_unmap)
1512                 isolate_mode |= ISOLATE_UNMAPPED;
1513         if (!sc->may_writepage)
1514                 isolate_mode |= ISOLATE_CLEAN;
1515
1516         spin_lock_irq(&zone->lru_lock);
1517
1518         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1519                                      &nr_scanned, sc, isolate_mode, lru);
1520         if (global_reclaim(sc))
1521                 zone->pages_scanned += nr_scanned;
1522
1523         reclaim_stat->recent_scanned[file] += nr_taken;
1524
1525         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1526         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1527         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1528         spin_unlock_irq(&zone->lru_lock);
1529
1530         while (!list_empty(&l_hold)) {
1531                 cond_resched();
1532                 page = lru_to_page(&l_hold);
1533                 list_del(&page->lru);
1534
1535                 if (unlikely(!page_evictable(page))) {
1536                         putback_lru_page(page);
1537                         continue;
1538                 }
1539
1540                 if (unlikely(buffer_heads_over_limit)) {
1541                         if (page_has_private(page) && trylock_page(page)) {
1542                                 if (page_has_private(page))
1543                                         try_to_release_page(page, 0);
1544                                 unlock_page(page);
1545                         }
1546                 }
1547
1548                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1549                                     &vm_flags)) {
1550                         nr_rotated += hpage_nr_pages(page);
1551                         /*
1552                          * Identify referenced, file-backed active pages and
1553                          * give them one more trip around the active list. So
1554                          * that executable code get better chances to stay in
1555                          * memory under moderate memory pressure.  Anon pages
1556                          * are not likely to be evicted by use-once streaming
1557                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1558                          * so we ignore them here.
1559                          */
1560                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1561                                 list_add(&page->lru, &l_active);
1562                                 continue;
1563                         }
1564                 }
1565
1566                 ClearPageActive(page);  /* we are de-activating */
1567                 list_add(&page->lru, &l_inactive);
1568         }
1569
1570         /*
1571          * Move pages back to the lru list.
1572          */
1573         spin_lock_irq(&zone->lru_lock);
1574         /*
1575          * Count referenced pages from currently used mappings as rotated,
1576          * even though only some of them are actually re-activated.  This
1577          * helps balance scan pressure between file and anonymous pages in
1578          * get_scan_ratio.
1579          */
1580         reclaim_stat->recent_rotated[file] += nr_rotated;
1581
1582         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1583         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1584         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1585         spin_unlock_irq(&zone->lru_lock);
1586
1587         free_hot_cold_page_list(&l_hold, 1);
1588 }
1589
1590 #ifdef CONFIG_SWAP
1591 static int inactive_anon_is_low_global(struct zone *zone)
1592 {
1593         unsigned long active, inactive;
1594
1595         active = zone_page_state(zone, NR_ACTIVE_ANON);
1596         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1597
1598         if (inactive * zone->inactive_ratio < active)
1599                 return 1;
1600
1601         return 0;
1602 }
1603
1604 /**
1605  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1606  * @lruvec: LRU vector to check
1607  *
1608  * Returns true if the zone does not have enough inactive anon pages,
1609  * meaning some active anon pages need to be deactivated.
1610  */
1611 static int inactive_anon_is_low(struct lruvec *lruvec)
1612 {
1613         /*
1614          * If we don't have swap space, anonymous page deactivation
1615          * is pointless.
1616          */
1617         if (!total_swap_pages)
1618                 return 0;
1619
1620         if (!mem_cgroup_disabled())
1621                 return mem_cgroup_inactive_anon_is_low(lruvec);
1622
1623         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1624 }
1625 #else
1626 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1627 {
1628         return 0;
1629 }
1630 #endif
1631
1632 /**
1633  * inactive_file_is_low - check if file pages need to be deactivated
1634  * @lruvec: LRU vector to check
1635  *
1636  * When the system is doing streaming IO, memory pressure here
1637  * ensures that active file pages get deactivated, until more
1638  * than half of the file pages are on the inactive list.
1639  *
1640  * Once we get to that situation, protect the system's working
1641  * set from being evicted by disabling active file page aging.
1642  *
1643  * This uses a different ratio than the anonymous pages, because
1644  * the page cache uses a use-once replacement algorithm.
1645  */
1646 static int inactive_file_is_low(struct lruvec *lruvec)
1647 {
1648         unsigned long inactive;
1649         unsigned long active;
1650
1651         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1652         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1653
1654         return active > inactive;
1655 }
1656
1657 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1658 {
1659         if (is_file_lru(lru))
1660                 return inactive_file_is_low(lruvec);
1661         else
1662                 return inactive_anon_is_low(lruvec);
1663 }
1664
1665 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1666                                  struct lruvec *lruvec, struct scan_control *sc)
1667 {
1668         if (is_active_lru(lru)) {
1669                 if (inactive_list_is_low(lruvec, lru))
1670                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1671                 return 0;
1672         }
1673
1674         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1675 }
1676
1677 static int vmscan_swappiness(struct scan_control *sc)
1678 {
1679         if (global_reclaim(sc))
1680                 return vm_swappiness;
1681         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1682 }
1683
1684 enum scan_balance {
1685         SCAN_EQUAL,
1686         SCAN_FRACT,
1687         SCAN_ANON,
1688         SCAN_FILE,
1689 };
1690
1691 /*
1692  * Determine how aggressively the anon and file LRU lists should be
1693  * scanned.  The relative value of each set of LRU lists is determined
1694  * by looking at the fraction of the pages scanned we did rotate back
1695  * onto the active list instead of evict.
1696  *
1697  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1698  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1699  */
1700 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1701                            unsigned long *nr)
1702 {
1703         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1704         u64 fraction[2];
1705         u64 denominator = 0;    /* gcc */
1706         struct zone *zone = lruvec_zone(lruvec);
1707         unsigned long anon_prio, file_prio;
1708         enum scan_balance scan_balance;
1709         unsigned long anon, file, free;
1710         bool force_scan = false;
1711         unsigned long ap, fp;
1712         enum lru_list lru;
1713
1714         /*
1715          * If the zone or memcg is small, nr[l] can be 0.  This
1716          * results in no scanning on this priority and a potential
1717          * priority drop.  Global direct reclaim can go to the next
1718          * zone and tends to have no problems. Global kswapd is for
1719          * zone balancing and it needs to scan a minimum amount. When
1720          * reclaiming for a memcg, a priority drop can cause high
1721          * latencies, so it's better to scan a minimum amount there as
1722          * well.
1723          */
1724         if (current_is_kswapd() && zone->all_unreclaimable)
1725                 force_scan = true;
1726         if (!global_reclaim(sc))
1727                 force_scan = true;
1728
1729         /* If we have no swap space, do not bother scanning anon pages. */
1730         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1731                 scan_balance = SCAN_FILE;
1732                 goto out;
1733         }
1734
1735         /*
1736          * Global reclaim will swap to prevent OOM even with no
1737          * swappiness, but memcg users want to use this knob to
1738          * disable swapping for individual groups completely when
1739          * using the memory controller's swap limit feature would be
1740          * too expensive.
1741          */
1742         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1743                 scan_balance = SCAN_FILE;
1744                 goto out;
1745         }
1746
1747         /*
1748          * Do not apply any pressure balancing cleverness when the
1749          * system is close to OOM, scan both anon and file equally
1750          * (unless the swappiness setting disagrees with swapping).
1751          */
1752         if (!sc->priority && vmscan_swappiness(sc)) {
1753                 scan_balance = SCAN_EQUAL;
1754                 goto out;
1755         }
1756
1757         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1758                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1759         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1760                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1761
1762         /*
1763          * If it's foreseeable that reclaiming the file cache won't be
1764          * enough to get the zone back into a desirable shape, we have
1765          * to swap.  Better start now and leave the - probably heavily
1766          * thrashing - remaining file pages alone.
1767          */
1768         if (global_reclaim(sc)) {
1769                 free = zone_page_state(zone, NR_FREE_PAGES);
1770                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1771                         scan_balance = SCAN_ANON;
1772                         goto out;
1773                 }
1774         }
1775
1776         /*
1777          * There is enough inactive page cache, do not reclaim
1778          * anything from the anonymous working set right now.
1779          */
1780         if (!inactive_file_is_low(lruvec)) {
1781                 scan_balance = SCAN_FILE;
1782                 goto out;
1783         }
1784
1785         scan_balance = SCAN_FRACT;
1786
1787         /*
1788          * With swappiness at 100, anonymous and file have the same priority.
1789          * This scanning priority is essentially the inverse of IO cost.
1790          */
1791         anon_prio = vmscan_swappiness(sc);
1792         file_prio = 200 - anon_prio;
1793
1794         /*
1795          * OK, so we have swap space and a fair amount of page cache
1796          * pages.  We use the recently rotated / recently scanned
1797          * ratios to determine how valuable each cache is.
1798          *
1799          * Because workloads change over time (and to avoid overflow)
1800          * we keep these statistics as a floating average, which ends
1801          * up weighing recent references more than old ones.
1802          *
1803          * anon in [0], file in [1]
1804          */
1805         spin_lock_irq(&zone->lru_lock);
1806         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1807                 reclaim_stat->recent_scanned[0] /= 2;
1808                 reclaim_stat->recent_rotated[0] /= 2;
1809         }
1810
1811         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1812                 reclaim_stat->recent_scanned[1] /= 2;
1813                 reclaim_stat->recent_rotated[1] /= 2;
1814         }
1815
1816         /*
1817          * The amount of pressure on anon vs file pages is inversely
1818          * proportional to the fraction of recently scanned pages on
1819          * each list that were recently referenced and in active use.
1820          */
1821         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1822         ap /= reclaim_stat->recent_rotated[0] + 1;
1823
1824         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1825         fp /= reclaim_stat->recent_rotated[1] + 1;
1826         spin_unlock_irq(&zone->lru_lock);
1827
1828         fraction[0] = ap;
1829         fraction[1] = fp;
1830         denominator = ap + fp + 1;
1831 out:
1832         for_each_evictable_lru(lru) {
1833                 int file = is_file_lru(lru);
1834                 unsigned long size;
1835                 unsigned long scan;
1836
1837                 size = get_lru_size(lruvec, lru);
1838                 scan = size >> sc->priority;
1839
1840                 if (!scan && force_scan)
1841                         scan = min(size, SWAP_CLUSTER_MAX);
1842
1843                 switch (scan_balance) {
1844                 case SCAN_EQUAL:
1845                         /* Scan lists relative to size */
1846                         break;
1847                 case SCAN_FRACT:
1848                         /*
1849                          * Scan types proportional to swappiness and
1850                          * their relative recent reclaim efficiency.
1851                          */
1852                         scan = div64_u64(scan * fraction[file], denominator);
1853                         break;
1854                 case SCAN_FILE:
1855                 case SCAN_ANON:
1856                         /* Scan one type exclusively */
1857                         if ((scan_balance == SCAN_FILE) != file)
1858                                 scan = 0;
1859                         break;
1860                 default:
1861                         /* Look ma, no brain */
1862                         BUG();
1863                 }
1864                 nr[lru] = scan;
1865         }
1866 }
1867
1868 /*
1869  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1870  */
1871 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1872 {
1873         unsigned long nr[NR_LRU_LISTS];
1874         unsigned long targets[NR_LRU_LISTS];
1875         unsigned long nr_to_scan;
1876         enum lru_list lru;
1877         unsigned long nr_reclaimed = 0;
1878         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1879         struct blk_plug plug;
1880         bool scan_adjusted = false;
1881
1882         get_scan_count(lruvec, sc, nr);
1883
1884         /* Record the original scan target for proportional adjustments later */
1885         memcpy(targets, nr, sizeof(nr));
1886
1887         blk_start_plug(&plug);
1888         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1889                                         nr[LRU_INACTIVE_FILE]) {
1890                 unsigned long nr_anon, nr_file, percentage;
1891                 unsigned long nr_scanned;
1892
1893                 for_each_evictable_lru(lru) {
1894                         if (nr[lru]) {
1895                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1896                                 nr[lru] -= nr_to_scan;
1897
1898                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1899                                                             lruvec, sc);
1900                         }
1901                 }
1902
1903                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1904                         continue;
1905
1906                 /*
1907                  * For global direct reclaim, reclaim only the number of pages
1908                  * requested. Less care is taken to scan proportionally as it
1909                  * is more important to minimise direct reclaim stall latency
1910                  * than it is to properly age the LRU lists.
1911                  */
1912                 if (global_reclaim(sc) && !current_is_kswapd())
1913                         break;
1914
1915                 /*
1916                  * For kswapd and memcg, reclaim at least the number of pages
1917                  * requested. Ensure that the anon and file LRUs shrink
1918                  * proportionally what was requested by get_scan_count(). We
1919                  * stop reclaiming one LRU and reduce the amount scanning
1920                  * proportional to the original scan target.
1921                  */
1922                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1923                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1924
1925                 if (nr_file > nr_anon) {
1926                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1927                                                 targets[LRU_ACTIVE_ANON] + 1;
1928                         lru = LRU_BASE;
1929                         percentage = nr_anon * 100 / scan_target;
1930                 } else {
1931                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1932                                                 targets[LRU_ACTIVE_FILE] + 1;
1933                         lru = LRU_FILE;
1934                         percentage = nr_file * 100 / scan_target;
1935                 }
1936
1937                 /* Stop scanning the smaller of the LRU */
1938                 nr[lru] = 0;
1939                 nr[lru + LRU_ACTIVE] = 0;
1940
1941                 /*
1942                  * Recalculate the other LRU scan count based on its original
1943                  * scan target and the percentage scanning already complete
1944                  */
1945                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1946                 nr_scanned = targets[lru] - nr[lru];
1947                 nr[lru] = targets[lru] * (100 - percentage) / 100;
1948                 nr[lru] -= min(nr[lru], nr_scanned);
1949
1950                 lru += LRU_ACTIVE;
1951                 nr_scanned = targets[lru] - nr[lru];
1952                 nr[lru] = targets[lru] * (100 - percentage) / 100;
1953                 nr[lru] -= min(nr[lru], nr_scanned);
1954
1955                 scan_adjusted = true;
1956         }
1957         blk_finish_plug(&plug);
1958         sc->nr_reclaimed += nr_reclaimed;
1959
1960         /*
1961          * Even if we did not try to evict anon pages at all, we want to
1962          * rebalance the anon lru active/inactive ratio.
1963          */
1964         if (inactive_anon_is_low(lruvec))
1965                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1966                                    sc, LRU_ACTIVE_ANON);
1967
1968         throttle_vm_writeout(sc->gfp_mask);
1969 }
1970
1971 /* Use reclaim/compaction for costly allocs or under memory pressure */
1972 static bool in_reclaim_compaction(struct scan_control *sc)
1973 {
1974         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1975                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1976                          sc->priority < DEF_PRIORITY - 2))
1977                 return true;
1978
1979         return false;
1980 }
1981
1982 /*
1983  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1984  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1985  * true if more pages should be reclaimed such that when the page allocator
1986  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1987  * It will give up earlier than that if there is difficulty reclaiming pages.
1988  */
1989 static inline bool should_continue_reclaim(struct zone *zone,
1990                                         unsigned long nr_reclaimed,
1991                                         unsigned long nr_scanned,
1992                                         struct scan_control *sc)
1993 {
1994         unsigned long pages_for_compaction;
1995         unsigned long inactive_lru_pages;
1996
1997         /* If not in reclaim/compaction mode, stop */
1998         if (!in_reclaim_compaction(sc))
1999                 return false;
2000
2001         /* Consider stopping depending on scan and reclaim activity */
2002         if (sc->gfp_mask & __GFP_REPEAT) {
2003                 /*
2004                  * For __GFP_REPEAT allocations, stop reclaiming if the
2005                  * full LRU list has been scanned and we are still failing
2006                  * to reclaim pages. This full LRU scan is potentially
2007                  * expensive but a __GFP_REPEAT caller really wants to succeed
2008                  */
2009                 if (!nr_reclaimed && !nr_scanned)
2010                         return false;
2011         } else {
2012                 /*
2013                  * For non-__GFP_REPEAT allocations which can presumably
2014                  * fail without consequence, stop if we failed to reclaim
2015                  * any pages from the last SWAP_CLUSTER_MAX number of
2016                  * pages that were scanned. This will return to the
2017                  * caller faster at the risk reclaim/compaction and
2018                  * the resulting allocation attempt fails
2019                  */
2020                 if (!nr_reclaimed)
2021                         return false;
2022         }
2023
2024         /*
2025          * If we have not reclaimed enough pages for compaction and the
2026          * inactive lists are large enough, continue reclaiming
2027          */
2028         pages_for_compaction = (2UL << sc->order);
2029         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2030         if (get_nr_swap_pages() > 0)
2031                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2032         if (sc->nr_reclaimed < pages_for_compaction &&
2033                         inactive_lru_pages > pages_for_compaction)
2034                 return true;
2035
2036         /* If compaction would go ahead or the allocation would succeed, stop */
2037         switch (compaction_suitable(zone, sc->order)) {
2038         case COMPACT_PARTIAL:
2039         case COMPACT_CONTINUE:
2040                 return false;
2041         default:
2042                 return true;
2043         }
2044 }
2045
2046 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2047 {
2048         unsigned long nr_reclaimed, nr_scanned;
2049
2050         do {
2051                 struct mem_cgroup *root = sc->target_mem_cgroup;
2052                 struct mem_cgroup_reclaim_cookie reclaim = {
2053                         .zone = zone,
2054                         .priority = sc->priority,
2055                 };
2056                 struct mem_cgroup *memcg;
2057
2058                 nr_reclaimed = sc->nr_reclaimed;
2059                 nr_scanned = sc->nr_scanned;
2060
2061                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2062                 do {
2063                         struct lruvec *lruvec;
2064
2065                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2066
2067                         shrink_lruvec(lruvec, sc);
2068
2069                         /*
2070                          * Direct reclaim and kswapd have to scan all memory
2071                          * cgroups to fulfill the overall scan target for the
2072                          * zone.
2073                          *
2074                          * Limit reclaim, on the other hand, only cares about
2075                          * nr_to_reclaim pages to be reclaimed and it will
2076                          * retry with decreasing priority if one round over the
2077                          * whole hierarchy is not sufficient.
2078                          */
2079                         if (!global_reclaim(sc) &&
2080                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2081                                 mem_cgroup_iter_break(root, memcg);
2082                                 break;
2083                         }
2084                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2085                 } while (memcg);
2086
2087                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2088                            sc->nr_scanned - nr_scanned,
2089                            sc->nr_reclaimed - nr_reclaimed);
2090
2091         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2092                                          sc->nr_scanned - nr_scanned, sc));
2093 }
2094
2095 /* Returns true if compaction should go ahead for a high-order request */
2096 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2097 {
2098         unsigned long balance_gap, watermark;
2099         bool watermark_ok;
2100
2101         /* Do not consider compaction for orders reclaim is meant to satisfy */
2102         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2103                 return false;
2104
2105         /*
2106          * Compaction takes time to run and there are potentially other
2107          * callers using the pages just freed. Continue reclaiming until
2108          * there is a buffer of free pages available to give compaction
2109          * a reasonable chance of completing and allocating the page
2110          */
2111         balance_gap = min(low_wmark_pages(zone),
2112                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2113                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2114         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2115         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2116
2117         /*
2118          * If compaction is deferred, reclaim up to a point where
2119          * compaction will have a chance of success when re-enabled
2120          */
2121         if (compaction_deferred(zone, sc->order))
2122                 return watermark_ok;
2123
2124         /* If compaction is not ready to start, keep reclaiming */
2125         if (!compaction_suitable(zone, sc->order))
2126                 return false;
2127
2128         return watermark_ok;
2129 }
2130
2131 /*
2132  * This is the direct reclaim path, for page-allocating processes.  We only
2133  * try to reclaim pages from zones which will satisfy the caller's allocation
2134  * request.
2135  *
2136  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2137  * Because:
2138  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2139  *    allocation or
2140  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2141  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2142  *    zone defense algorithm.
2143  *
2144  * If a zone is deemed to be full of pinned pages then just give it a light
2145  * scan then give up on it.
2146  *
2147  * This function returns true if a zone is being reclaimed for a costly
2148  * high-order allocation and compaction is ready to begin. This indicates to
2149  * the caller that it should consider retrying the allocation instead of
2150  * further reclaim.
2151  */
2152 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2153 {
2154         struct zoneref *z;
2155         struct zone *zone;
2156         unsigned long nr_soft_reclaimed;
2157         unsigned long nr_soft_scanned;
2158         bool aborted_reclaim = false;
2159
2160         /*
2161          * If the number of buffer_heads in the machine exceeds the maximum
2162          * allowed level, force direct reclaim to scan the highmem zone as
2163          * highmem pages could be pinning lowmem pages storing buffer_heads
2164          */
2165         if (buffer_heads_over_limit)
2166                 sc->gfp_mask |= __GFP_HIGHMEM;
2167
2168         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2169                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2170                 if (!populated_zone(zone))
2171                         continue;
2172                 /*
2173                  * Take care memory controller reclaiming has small influence
2174                  * to global LRU.
2175                  */
2176                 if (global_reclaim(sc)) {
2177                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2178                                 continue;
2179                         if (zone->all_unreclaimable &&
2180                                         sc->priority != DEF_PRIORITY)
2181                                 continue;       /* Let kswapd poll it */
2182                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2183                                 /*
2184                                  * If we already have plenty of memory free for
2185                                  * compaction in this zone, don't free any more.
2186                                  * Even though compaction is invoked for any
2187                                  * non-zero order, only frequent costly order
2188                                  * reclamation is disruptive enough to become a
2189                                  * noticeable problem, like transparent huge
2190                                  * page allocations.
2191                                  */
2192                                 if (compaction_ready(zone, sc)) {
2193                                         aborted_reclaim = true;
2194                                         continue;
2195                                 }
2196                         }
2197                         /*
2198                          * This steals pages from memory cgroups over softlimit
2199                          * and returns the number of reclaimed pages and
2200                          * scanned pages. This works for global memory pressure
2201                          * and balancing, not for a memcg's limit.
2202                          */
2203                         nr_soft_scanned = 0;
2204                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2205                                                 sc->order, sc->gfp_mask,
2206                                                 &nr_soft_scanned);
2207                         sc->nr_reclaimed += nr_soft_reclaimed;
2208                         sc->nr_scanned += nr_soft_scanned;
2209                         /* need some check for avoid more shrink_zone() */
2210                 }
2211
2212                 shrink_zone(zone, sc);
2213         }
2214
2215         return aborted_reclaim;
2216 }
2217
2218 static bool zone_reclaimable(struct zone *zone)
2219 {
2220         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2221 }
2222
2223 /* All zones in zonelist are unreclaimable? */
2224 static bool all_unreclaimable(struct zonelist *zonelist,
2225                 struct scan_control *sc)
2226 {
2227         struct zoneref *z;
2228         struct zone *zone;
2229
2230         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2231                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2232                 if (!populated_zone(zone))
2233                         continue;
2234                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2235                         continue;
2236                 if (!zone->all_unreclaimable)
2237                         return false;
2238         }
2239
2240         return true;
2241 }
2242
2243 /*
2244  * This is the main entry point to direct page reclaim.
2245  *
2246  * If a full scan of the inactive list fails to free enough memory then we
2247  * are "out of memory" and something needs to be killed.
2248  *
2249  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2250  * high - the zone may be full of dirty or under-writeback pages, which this
2251  * caller can't do much about.  We kick the writeback threads and take explicit
2252  * naps in the hope that some of these pages can be written.  But if the
2253  * allocating task holds filesystem locks which prevent writeout this might not
2254  * work, and the allocation attempt will fail.
2255  *
2256  * returns:     0, if no pages reclaimed
2257  *              else, the number of pages reclaimed
2258  */
2259 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2260                                         struct scan_control *sc,
2261                                         struct shrink_control *shrink)
2262 {
2263         unsigned long total_scanned = 0;
2264         struct reclaim_state *reclaim_state = current->reclaim_state;
2265         struct zoneref *z;
2266         struct zone *zone;
2267         unsigned long writeback_threshold;
2268         bool aborted_reclaim;
2269
2270         delayacct_freepages_start();
2271
2272         if (global_reclaim(sc))
2273                 count_vm_event(ALLOCSTALL);
2274
2275         do {
2276                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2277                                 sc->priority);
2278                 sc->nr_scanned = 0;
2279                 aborted_reclaim = shrink_zones(zonelist, sc);
2280
2281                 /*
2282                  * Don't shrink slabs when reclaiming memory from
2283                  * over limit cgroups
2284                  */
2285                 if (global_reclaim(sc)) {
2286                         unsigned long lru_pages = 0;
2287                         for_each_zone_zonelist(zone, z, zonelist,
2288                                         gfp_zone(sc->gfp_mask)) {
2289                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2290                                         continue;
2291
2292                                 lru_pages += zone_reclaimable_pages(zone);
2293                         }
2294
2295                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2296                         if (reclaim_state) {
2297                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2298                                 reclaim_state->reclaimed_slab = 0;
2299                         }
2300                 }
2301                 total_scanned += sc->nr_scanned;
2302                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2303                         goto out;
2304
2305                 /*
2306                  * If we're getting trouble reclaiming, start doing
2307                  * writepage even in laptop mode.
2308                  */
2309                 if (sc->priority < DEF_PRIORITY - 2)
2310                         sc->may_writepage = 1;
2311
2312                 /*
2313                  * Try to write back as many pages as we just scanned.  This
2314                  * tends to cause slow streaming writers to write data to the
2315                  * disk smoothly, at the dirtying rate, which is nice.   But
2316                  * that's undesirable in laptop mode, where we *want* lumpy
2317                  * writeout.  So in laptop mode, write out the whole world.
2318                  */
2319                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2320                 if (total_scanned > writeback_threshold) {
2321                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2322                                                 WB_REASON_TRY_TO_FREE_PAGES);
2323                         sc->may_writepage = 1;
2324                 }
2325
2326                 /* Take a nap, wait for some writeback to complete */
2327                 if (!sc->hibernation_mode && sc->nr_scanned &&
2328                     sc->priority < DEF_PRIORITY - 2) {
2329                         struct zone *preferred_zone;
2330
2331                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2332                                                 &cpuset_current_mems_allowed,
2333                                                 &preferred_zone);
2334                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2335                 }
2336         } while (--sc->priority >= 0);
2337
2338 out:
2339         delayacct_freepages_end();
2340
2341         if (sc->nr_reclaimed)
2342                 return sc->nr_reclaimed;
2343
2344         /*
2345          * As hibernation is going on, kswapd is freezed so that it can't mark
2346          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2347          * check.
2348          */
2349         if (oom_killer_disabled)
2350                 return 0;
2351
2352         /* Aborted reclaim to try compaction? don't OOM, then */
2353         if (aborted_reclaim)
2354                 return 1;
2355
2356         /* top priority shrink_zones still had more to do? don't OOM, then */
2357         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2358                 return 1;
2359
2360         return 0;
2361 }
2362
2363 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2364 {
2365         struct zone *zone;
2366         unsigned long pfmemalloc_reserve = 0;
2367         unsigned long free_pages = 0;
2368         int i;
2369         bool wmark_ok;
2370
2371         for (i = 0; i <= ZONE_NORMAL; i++) {
2372                 zone = &pgdat->node_zones[i];
2373                 pfmemalloc_reserve += min_wmark_pages(zone);
2374                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2375         }
2376
2377         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2378
2379         /* kswapd must be awake if processes are being throttled */
2380         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2381                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2382                                                 (enum zone_type)ZONE_NORMAL);
2383                 wake_up_interruptible(&pgdat->kswapd_wait);
2384         }
2385
2386         return wmark_ok;
2387 }
2388
2389 /*
2390  * Throttle direct reclaimers if backing storage is backed by the network
2391  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2392  * depleted. kswapd will continue to make progress and wake the processes
2393  * when the low watermark is reached.
2394  *
2395  * Returns true if a fatal signal was delivered during throttling. If this
2396  * happens, the page allocator should not consider triggering the OOM killer.
2397  */
2398 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2399                                         nodemask_t *nodemask)
2400 {
2401         struct zone *zone;
2402         int high_zoneidx = gfp_zone(gfp_mask);
2403         pg_data_t *pgdat;
2404
2405         /*
2406          * Kernel threads should not be throttled as they may be indirectly
2407          * responsible for cleaning pages necessary for reclaim to make forward
2408          * progress. kjournald for example may enter direct reclaim while
2409          * committing a transaction where throttling it could forcing other
2410          * processes to block on log_wait_commit().
2411          */
2412         if (current->flags & PF_KTHREAD)
2413                 goto out;
2414
2415         /*
2416          * If a fatal signal is pending, this process should not throttle.
2417          * It should return quickly so it can exit and free its memory
2418          */
2419         if (fatal_signal_pending(current))
2420                 goto out;
2421
2422         /* Check if the pfmemalloc reserves are ok */
2423         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2424         pgdat = zone->zone_pgdat;
2425         if (pfmemalloc_watermark_ok(pgdat))
2426                 goto out;
2427
2428         /* Account for the throttling */
2429         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2430
2431         /*
2432          * If the caller cannot enter the filesystem, it's possible that it
2433          * is due to the caller holding an FS lock or performing a journal
2434          * transaction in the case of a filesystem like ext[3|4]. In this case,
2435          * it is not safe to block on pfmemalloc_wait as kswapd could be
2436          * blocked waiting on the same lock. Instead, throttle for up to a
2437          * second before continuing.
2438          */
2439         if (!(gfp_mask & __GFP_FS)) {
2440                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2441                         pfmemalloc_watermark_ok(pgdat), HZ);
2442
2443                 goto check_pending;
2444         }
2445
2446         /* Throttle until kswapd wakes the process */
2447         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2448                 pfmemalloc_watermark_ok(pgdat));
2449
2450 check_pending:
2451         if (fatal_signal_pending(current))
2452                 return true;
2453
2454 out:
2455         return false;
2456 }
2457
2458 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2459                                 gfp_t gfp_mask, nodemask_t *nodemask)
2460 {
2461         unsigned long nr_reclaimed;
2462         struct scan_control sc = {
2463                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2464                 .may_writepage = !laptop_mode,
2465                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2466                 .may_unmap = 1,
2467                 .may_swap = 1,
2468                 .order = order,
2469                 .priority = DEF_PRIORITY,
2470                 .target_mem_cgroup = NULL,
2471                 .nodemask = nodemask,
2472         };
2473         struct shrink_control shrink = {
2474                 .gfp_mask = sc.gfp_mask,
2475         };
2476
2477         /*
2478          * Do not enter reclaim if fatal signal was delivered while throttled.
2479          * 1 is returned so that the page allocator does not OOM kill at this
2480          * point.
2481          */
2482         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2483                 return 1;
2484
2485         trace_mm_vmscan_direct_reclaim_begin(order,
2486                                 sc.may_writepage,
2487                                 gfp_mask);
2488
2489         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2490
2491         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2492
2493         return nr_reclaimed;
2494 }
2495
2496 #ifdef CONFIG_MEMCG
2497
2498 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2499                                                 gfp_t gfp_mask, bool noswap,
2500                                                 struct zone *zone,
2501                                                 unsigned long *nr_scanned)
2502 {
2503         struct scan_control sc = {
2504                 .nr_scanned = 0,
2505                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2506                 .may_writepage = !laptop_mode,
2507                 .may_unmap = 1,
2508                 .may_swap = !noswap,
2509                 .order = 0,
2510                 .priority = 0,
2511                 .target_mem_cgroup = memcg,
2512         };
2513         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2514
2515         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2516                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2517
2518         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2519                                                       sc.may_writepage,
2520                                                       sc.gfp_mask);
2521
2522         /*
2523          * NOTE: Although we can get the priority field, using it
2524          * here is not a good idea, since it limits the pages we can scan.
2525          * if we don't reclaim here, the shrink_zone from balance_pgdat
2526          * will pick up pages from other mem cgroup's as well. We hack
2527          * the priority and make it zero.
2528          */
2529         shrink_lruvec(lruvec, &sc);
2530
2531         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2532
2533         *nr_scanned = sc.nr_scanned;
2534         return sc.nr_reclaimed;
2535 }
2536
2537 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2538                                            gfp_t gfp_mask,
2539                                            bool noswap)
2540 {
2541         struct zonelist *zonelist;
2542         unsigned long nr_reclaimed;
2543         int nid;
2544         struct scan_control sc = {
2545                 .may_writepage = !laptop_mode,
2546                 .may_unmap = 1,
2547                 .may_swap = !noswap,
2548                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2549                 .order = 0,
2550                 .priority = DEF_PRIORITY,
2551                 .target_mem_cgroup = memcg,
2552                 .nodemask = NULL, /* we don't care the placement */
2553                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2554                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2555         };
2556         struct shrink_control shrink = {
2557                 .gfp_mask = sc.gfp_mask,
2558         };
2559
2560         /*
2561          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2562          * take care of from where we get pages. So the node where we start the
2563          * scan does not need to be the current node.
2564          */
2565         nid = mem_cgroup_select_victim_node(memcg);
2566
2567         zonelist = NODE_DATA(nid)->node_zonelists;
2568
2569         trace_mm_vmscan_memcg_reclaim_begin(0,
2570                                             sc.may_writepage,
2571                                             sc.gfp_mask);
2572
2573         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2574
2575         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2576
2577         return nr_reclaimed;
2578 }
2579 #endif
2580
2581 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2582 {
2583         struct mem_cgroup *memcg;
2584
2585         if (!total_swap_pages)
2586                 return;
2587
2588         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2589         do {
2590                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2591
2592                 if (inactive_anon_is_low(lruvec))
2593                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2594                                            sc, LRU_ACTIVE_ANON);
2595
2596                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2597         } while (memcg);
2598 }
2599
2600 static bool zone_balanced(struct zone *zone, int order,
2601                           unsigned long balance_gap, int classzone_idx)
2602 {
2603         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2604                                     balance_gap, classzone_idx, 0))
2605                 return false;
2606
2607         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2608             !compaction_suitable(zone, order))
2609                 return false;
2610
2611         return true;
2612 }
2613
2614 /*
2615  * pgdat_balanced() is used when checking if a node is balanced.
2616  *
2617  * For order-0, all zones must be balanced!
2618  *
2619  * For high-order allocations only zones that meet watermarks and are in a
2620  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2621  * total of balanced pages must be at least 25% of the zones allowed by
2622  * classzone_idx for the node to be considered balanced. Forcing all zones to
2623  * be balanced for high orders can cause excessive reclaim when there are
2624  * imbalanced zones.
2625  * The choice of 25% is due to
2626  *   o a 16M DMA zone that is balanced will not balance a zone on any
2627  *     reasonable sized machine
2628  *   o On all other machines, the top zone must be at least a reasonable
2629  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2630  *     would need to be at least 256M for it to be balance a whole node.
2631  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2632  *     to balance a node on its own. These seemed like reasonable ratios.
2633  */
2634 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2635 {
2636         unsigned long managed_pages = 0;
2637         unsigned long balanced_pages = 0;
2638         int i;
2639
2640         /* Check the watermark levels */
2641         for (i = 0; i <= classzone_idx; i++) {
2642                 struct zone *zone = pgdat->node_zones + i;
2643
2644                 if (!populated_zone(zone))
2645                         continue;
2646
2647                 managed_pages += zone->managed_pages;
2648
2649                 /*
2650                  * A special case here:
2651                  *
2652                  * balance_pgdat() skips over all_unreclaimable after
2653                  * DEF_PRIORITY. Effectively, it considers them balanced so
2654                  * they must be considered balanced here as well!
2655                  */
2656                 if (zone->all_unreclaimable) {
2657                         balanced_pages += zone->managed_pages;
2658                         continue;
2659                 }
2660
2661                 if (zone_balanced(zone, order, 0, i))
2662                         balanced_pages += zone->managed_pages;
2663                 else if (!order)
2664                         return false;
2665         }
2666
2667         if (order)
2668                 return balanced_pages >= (managed_pages >> 2);
2669         else
2670                 return true;
2671 }
2672
2673 /*
2674  * Prepare kswapd for sleeping. This verifies that there are no processes
2675  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2676  *
2677  * Returns true if kswapd is ready to sleep
2678  */
2679 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2680                                         int classzone_idx)
2681 {
2682         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2683         if (remaining)
2684                 return false;
2685
2686         /*
2687          * There is a potential race between when kswapd checks its watermarks
2688          * and a process gets throttled. There is also a potential race if
2689          * processes get throttled, kswapd wakes, a large process exits therby
2690          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2691          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2692          * so wake them now if necessary. If necessary, processes will wake
2693          * kswapd and get throttled again
2694          */
2695         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2696                 wake_up(&pgdat->pfmemalloc_wait);
2697                 return false;
2698         }
2699
2700         return pgdat_balanced(pgdat, order, classzone_idx);
2701 }
2702
2703 /*
2704  * kswapd shrinks the zone by the number of pages required to reach
2705  * the high watermark.
2706  *
2707  * Returns true if kswapd scanned at least the requested number of pages to
2708  * reclaim or if the lack of progress was due to pages under writeback.
2709  * This is used to determine if the scanning priority needs to be raised.
2710  */
2711 static bool kswapd_shrink_zone(struct zone *zone,
2712                                struct scan_control *sc,
2713                                unsigned long lru_pages,
2714                                unsigned long *nr_attempted)
2715 {
2716         unsigned long nr_slab;
2717         struct reclaim_state *reclaim_state = current->reclaim_state;
2718         struct shrink_control shrink = {
2719                 .gfp_mask = sc->gfp_mask,
2720         };
2721
2722         /* Reclaim above the high watermark. */
2723         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2724         shrink_zone(zone, sc);
2725
2726         reclaim_state->reclaimed_slab = 0;
2727         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2728         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2729
2730         /* Account for the number of pages attempted to reclaim */
2731         *nr_attempted += sc->nr_to_reclaim;
2732
2733         if (nr_slab == 0 && !zone_reclaimable(zone))
2734                 zone->all_unreclaimable = 1;
2735
2736         zone_clear_flag(zone, ZONE_WRITEBACK);
2737
2738         return sc->nr_scanned >= sc->nr_to_reclaim;
2739 }
2740
2741 /*
2742  * For kswapd, balance_pgdat() will work across all this node's zones until
2743  * they are all at high_wmark_pages(zone).
2744  *
2745  * Returns the final order kswapd was reclaiming at
2746  *
2747  * There is special handling here for zones which are full of pinned pages.
2748  * This can happen if the pages are all mlocked, or if they are all used by
2749  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2750  * What we do is to detect the case where all pages in the zone have been
2751  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2752  * dead and from now on, only perform a short scan.  Basically we're polling
2753  * the zone for when the problem goes away.
2754  *
2755  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2756  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2757  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2758  * lower zones regardless of the number of free pages in the lower zones. This
2759  * interoperates with the page allocator fallback scheme to ensure that aging
2760  * of pages is balanced across the zones.
2761  */
2762 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2763                                                         int *classzone_idx)
2764 {
2765         int i;
2766         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2767         unsigned long nr_soft_reclaimed;
2768         unsigned long nr_soft_scanned;
2769         struct scan_control sc = {
2770                 .gfp_mask = GFP_KERNEL,
2771                 .priority = DEF_PRIORITY,
2772                 .may_unmap = 1,
2773                 .may_swap = 1,
2774                 .may_writepage = !laptop_mode,
2775                 .order = order,
2776                 .target_mem_cgroup = NULL,
2777         };
2778         count_vm_event(PAGEOUTRUN);
2779
2780         do {
2781                 unsigned long lru_pages = 0;
2782                 unsigned long nr_attempted = 0;
2783                 bool raise_priority = true;
2784                 bool pgdat_needs_compaction = (order > 0);
2785
2786                 sc.nr_reclaimed = 0;
2787
2788                 /*
2789                  * Scan in the highmem->dma direction for the highest
2790                  * zone which needs scanning
2791                  */
2792                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2793                         struct zone *zone = pgdat->node_zones + i;
2794
2795                         if (!populated_zone(zone))
2796                                 continue;
2797
2798                         if (zone->all_unreclaimable &&
2799                             sc.priority != DEF_PRIORITY)
2800                                 continue;
2801
2802                         /*
2803                          * Do some background aging of the anon list, to give
2804                          * pages a chance to be referenced before reclaiming.
2805                          */
2806                         age_active_anon(zone, &sc);
2807
2808                         /*
2809                          * If the number of buffer_heads in the machine
2810                          * exceeds the maximum allowed level and this node
2811                          * has a highmem zone, force kswapd to reclaim from
2812                          * it to relieve lowmem pressure.
2813                          */
2814                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2815                                 end_zone = i;
2816                                 break;
2817                         }
2818
2819                         if (!zone_balanced(zone, order, 0, 0)) {
2820                                 end_zone = i;
2821                                 break;
2822                         } else {
2823                                 /*
2824                                  * If balanced, clear the dirty and congested
2825                                  * flags
2826                                  */
2827                                 zone_clear_flag(zone, ZONE_CONGESTED);
2828                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2829                         }
2830                 }
2831
2832                 if (i < 0)
2833                         goto out;
2834
2835                 for (i = 0; i <= end_zone; i++) {
2836                         struct zone *zone = pgdat->node_zones + i;
2837
2838                         if (!populated_zone(zone))
2839                                 continue;
2840
2841                         lru_pages += zone_reclaimable_pages(zone);
2842
2843                         /*
2844                          * If any zone is currently balanced then kswapd will
2845                          * not call compaction as it is expected that the
2846                          * necessary pages are already available.
2847                          */
2848                         if (pgdat_needs_compaction &&
2849                                         zone_watermark_ok(zone, order,
2850                                                 low_wmark_pages(zone),
2851                                                 *classzone_idx, 0))
2852                                 pgdat_needs_compaction = false;
2853                 }
2854
2855                 /*
2856                  * Now scan the zone in the dma->highmem direction, stopping
2857                  * at the last zone which needs scanning.
2858                  *
2859                  * We do this because the page allocator works in the opposite
2860                  * direction.  This prevents the page allocator from allocating
2861                  * pages behind kswapd's direction of progress, which would
2862                  * cause too much scanning of the lower zones.
2863                  */
2864                 for (i = 0; i <= end_zone; i++) {
2865                         struct zone *zone = pgdat->node_zones + i;
2866                         int testorder;
2867                         unsigned long balance_gap;
2868
2869                         if (!populated_zone(zone))
2870                                 continue;
2871
2872                         if (zone->all_unreclaimable &&
2873                             sc.priority != DEF_PRIORITY)
2874                                 continue;
2875
2876                         sc.nr_scanned = 0;
2877
2878                         nr_soft_scanned = 0;
2879                         /*
2880                          * Call soft limit reclaim before calling shrink_zone.
2881                          */
2882                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2883                                                         order, sc.gfp_mask,
2884                                                         &nr_soft_scanned);
2885                         sc.nr_reclaimed += nr_soft_reclaimed;
2886
2887                         /*
2888                          * We put equal pressure on every zone, unless
2889                          * one zone has way too many pages free
2890                          * already. The "too many pages" is defined
2891                          * as the high wmark plus a "gap" where the
2892                          * gap is either the low watermark or 1%
2893                          * of the zone, whichever is smaller.
2894                          */
2895                         balance_gap = min(low_wmark_pages(zone),
2896                                 (zone->managed_pages +
2897                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2898                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2899                         /*
2900                          * Kswapd reclaims only single pages with compaction
2901                          * enabled. Trying too hard to reclaim until contiguous
2902                          * free pages have become available can hurt performance
2903                          * by evicting too much useful data from memory.
2904                          * Do not reclaim more than needed for compaction.
2905                          */
2906                         testorder = order;
2907                         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2908                                         compaction_suitable(zone, order) !=
2909                                                 COMPACT_SKIPPED)
2910                                 testorder = 0;
2911
2912                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2913                             !zone_balanced(zone, testorder,
2914                                            balance_gap, end_zone)) {
2915                                 /*
2916                                  * There should be no need to raise the
2917                                  * scanning priority if enough pages are
2918                                  * already being scanned that high
2919                                  * watermark would be met at 100% efficiency.
2920                                  */
2921                                 if (kswapd_shrink_zone(zone, &sc, lru_pages,
2922                                                        &nr_attempted))
2923                                         raise_priority = false;
2924                         }
2925
2926                         /*
2927                          * If we're getting trouble reclaiming, start doing
2928                          * writepage even in laptop mode.
2929                          */
2930                         if (sc.priority < DEF_PRIORITY - 2)
2931                                 sc.may_writepage = 1;
2932
2933                         if (zone->all_unreclaimable) {
2934                                 if (end_zone && end_zone == i)
2935                                         end_zone--;
2936                                 continue;
2937                         }
2938
2939                         if (zone_balanced(zone, testorder, 0, end_zone))
2940                                 /*
2941                                  * If a zone reaches its high watermark,
2942                                  * consider it to be no longer congested. It's
2943                                  * possible there are dirty pages backed by
2944                                  * congested BDIs but as pressure is relieved,
2945                                  * speculatively avoid congestion waits
2946                                  * or writing pages from kswapd context.
2947                                  */
2948                                 zone_clear_flag(zone, ZONE_CONGESTED);
2949                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2950                 }
2951
2952                 /*
2953                  * If the low watermark is met there is no need for processes
2954                  * to be throttled on pfmemalloc_wait as they should not be
2955                  * able to safely make forward progress. Wake them
2956                  */
2957                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2958                                 pfmemalloc_watermark_ok(pgdat))
2959                         wake_up(&pgdat->pfmemalloc_wait);
2960
2961                 /*
2962                  * Fragmentation may mean that the system cannot be rebalanced
2963                  * for high-order allocations in all zones. If twice the
2964                  * allocation size has been reclaimed and the zones are still
2965                  * not balanced then recheck the watermarks at order-0 to
2966                  * prevent kswapd reclaiming excessively. Assume that a
2967                  * process requested a high-order can direct reclaim/compact.
2968                  */
2969                 if (order && sc.nr_reclaimed >= 2UL << order)
2970                         order = sc.order = 0;
2971
2972                 /* Check if kswapd should be suspending */
2973                 if (try_to_freeze() || kthread_should_stop())
2974                         break;
2975
2976                 /*
2977                  * Compact if necessary and kswapd is reclaiming at least the
2978                  * high watermark number of pages as requsted
2979                  */
2980                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
2981                         compact_pgdat(pgdat, order);
2982
2983                 /*
2984                  * Raise priority if scanning rate is too low or there was no
2985                  * progress in reclaiming pages
2986                  */
2987                 if (raise_priority || !sc.nr_reclaimed)
2988                         sc.priority--;
2989         } while (sc.priority >= 1 &&
2990                  !pgdat_balanced(pgdat, order, *classzone_idx));
2991
2992 out:
2993         /*
2994          * Return the order we were reclaiming at so prepare_kswapd_sleep()
2995          * makes a decision on the order we were last reclaiming at. However,
2996          * if another caller entered the allocator slow path while kswapd
2997          * was awake, order will remain at the higher level
2998          */
2999         *classzone_idx = end_zone;
3000         return order;
3001 }
3002
3003 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3004 {
3005         long remaining = 0;
3006         DEFINE_WAIT(wait);
3007
3008         if (freezing(current) || kthread_should_stop())
3009                 return;
3010
3011         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3012
3013         /* Try to sleep for a short interval */
3014         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3015                 remaining = schedule_timeout(HZ/10);
3016                 finish_wait(&pgdat->kswapd_wait, &wait);
3017                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3018         }
3019
3020         /*
3021          * After a short sleep, check if it was a premature sleep. If not, then
3022          * go fully to sleep until explicitly woken up.
3023          */
3024         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3025                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3026
3027                 /*
3028                  * vmstat counters are not perfectly accurate and the estimated
3029                  * value for counters such as NR_FREE_PAGES can deviate from the
3030                  * true value by nr_online_cpus * threshold. To avoid the zone
3031                  * watermarks being breached while under pressure, we reduce the
3032                  * per-cpu vmstat threshold while kswapd is awake and restore
3033                  * them before going back to sleep.
3034                  */
3035                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3036
3037                 /*
3038                  * Compaction records what page blocks it recently failed to
3039                  * isolate pages from and skips them in the future scanning.
3040                  * When kswapd is going to sleep, it is reasonable to assume
3041                  * that pages and compaction may succeed so reset the cache.
3042                  */
3043                 reset_isolation_suitable(pgdat);
3044
3045                 if (!kthread_should_stop())
3046                         schedule();
3047
3048                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3049         } else {
3050                 if (remaining)
3051                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3052                 else
3053                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3054         }
3055         finish_wait(&pgdat->kswapd_wait, &wait);
3056 }
3057
3058 /*
3059  * The background pageout daemon, started as a kernel thread
3060  * from the init process.
3061  *
3062  * This basically trickles out pages so that we have _some_
3063  * free memory available even if there is no other activity
3064  * that frees anything up. This is needed for things like routing
3065  * etc, where we otherwise might have all activity going on in
3066  * asynchronous contexts that cannot page things out.
3067  *
3068  * If there are applications that are active memory-allocators
3069  * (most normal use), this basically shouldn't matter.
3070  */
3071 static int kswapd(void *p)
3072 {
3073         unsigned long order, new_order;
3074         unsigned balanced_order;
3075         int classzone_idx, new_classzone_idx;
3076         int balanced_classzone_idx;
3077         pg_data_t *pgdat = (pg_data_t*)p;
3078         struct task_struct *tsk = current;
3079
3080         struct reclaim_state reclaim_state = {
3081                 .reclaimed_slab = 0,
3082         };
3083         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3084
3085         lockdep_set_current_reclaim_state(GFP_KERNEL);
3086
3087         if (!cpumask_empty(cpumask))
3088                 set_cpus_allowed_ptr(tsk, cpumask);
3089         current->reclaim_state = &reclaim_state;
3090
3091         /*
3092          * Tell the memory management that we're a "memory allocator",
3093          * and that if we need more memory we should get access to it
3094          * regardless (see "__alloc_pages()"). "kswapd" should
3095          * never get caught in the normal page freeing logic.
3096          *
3097          * (Kswapd normally doesn't need memory anyway, but sometimes
3098          * you need a small amount of memory in order to be able to
3099          * page out something else, and this flag essentially protects
3100          * us from recursively trying to free more memory as we're
3101          * trying to free the first piece of memory in the first place).
3102          */
3103         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3104         set_freezable();
3105
3106         order = new_order = 0;
3107         balanced_order = 0;
3108         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3109         balanced_classzone_idx = classzone_idx;
3110         for ( ; ; ) {
3111                 bool ret;
3112
3113                 /*
3114                  * If the last balance_pgdat was unsuccessful it's unlikely a
3115                  * new request of a similar or harder type will succeed soon
3116                  * so consider going to sleep on the basis we reclaimed at
3117                  */
3118                 if (balanced_classzone_idx >= new_classzone_idx &&
3119                                         balanced_order == new_order) {
3120                         new_order = pgdat->kswapd_max_order;
3121                         new_classzone_idx = pgdat->classzone_idx;
3122                         pgdat->kswapd_max_order =  0;
3123                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3124                 }
3125
3126                 if (order < new_order || classzone_idx > new_classzone_idx) {
3127                         /*
3128                          * Don't sleep if someone wants a larger 'order'
3129                          * allocation or has tigher zone constraints
3130                          */
3131                         order = new_order;
3132                         classzone_idx = new_classzone_idx;
3133                 } else {
3134                         kswapd_try_to_sleep(pgdat, balanced_order,
3135                                                 balanced_classzone_idx);
3136                         order = pgdat->kswapd_max_order;
3137                         classzone_idx = pgdat->classzone_idx;
3138                         new_order = order;
3139                         new_classzone_idx = classzone_idx;
3140                         pgdat->kswapd_max_order = 0;
3141                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3142                 }
3143
3144                 ret = try_to_freeze();
3145                 if (kthread_should_stop())
3146                         break;
3147
3148                 /*
3149                  * We can speed up thawing tasks if we don't call balance_pgdat
3150                  * after returning from the refrigerator
3151                  */
3152                 if (!ret) {
3153                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3154                         balanced_classzone_idx = classzone_idx;
3155                         balanced_order = balance_pgdat(pgdat, order,
3156                                                 &balanced_classzone_idx);
3157                 }
3158         }
3159
3160         current->reclaim_state = NULL;
3161         return 0;
3162 }
3163
3164 /*
3165  * A zone is low on free memory, so wake its kswapd task to service it.
3166  */
3167 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3168 {
3169         pg_data_t *pgdat;
3170
3171         if (!populated_zone(zone))
3172                 return;
3173
3174         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3175                 return;
3176         pgdat = zone->zone_pgdat;
3177         if (pgdat->kswapd_max_order < order) {
3178                 pgdat->kswapd_max_order = order;
3179                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3180         }
3181         if (!waitqueue_active(&pgdat->kswapd_wait))
3182                 return;
3183         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3184                 return;
3185
3186         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3187         wake_up_interruptible(&pgdat->kswapd_wait);
3188 }
3189
3190 /*
3191  * The reclaimable count would be mostly accurate.
3192  * The less reclaimable pages may be
3193  * - mlocked pages, which will be moved to unevictable list when encountered
3194  * - mapped pages, which may require several travels to be reclaimed
3195  * - dirty pages, which is not "instantly" reclaimable
3196  */
3197 unsigned long global_reclaimable_pages(void)
3198 {
3199         int nr;
3200
3201         nr = global_page_state(NR_ACTIVE_FILE) +
3202              global_page_state(NR_INACTIVE_FILE);
3203
3204         if (get_nr_swap_pages() > 0)
3205                 nr += global_page_state(NR_ACTIVE_ANON) +
3206                       global_page_state(NR_INACTIVE_ANON);
3207
3208         return nr;
3209 }
3210
3211 unsigned long zone_reclaimable_pages(struct zone *zone)
3212 {
3213         int nr;
3214
3215         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3216              zone_page_state(zone, NR_INACTIVE_FILE);
3217
3218         if (get_nr_swap_pages() > 0)
3219                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3220                       zone_page_state(zone, NR_INACTIVE_ANON);
3221
3222         return nr;
3223 }
3224
3225 #ifdef CONFIG_HIBERNATION
3226 /*
3227  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3228  * freed pages.
3229  *
3230  * Rather than trying to age LRUs the aim is to preserve the overall
3231  * LRU order by reclaiming preferentially
3232  * inactive > active > active referenced > active mapped
3233  */
3234 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3235 {
3236         struct reclaim_state reclaim_state;
3237         struct scan_control sc = {
3238                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3239                 .may_swap = 1,
3240                 .may_unmap = 1,
3241                 .may_writepage = 1,
3242                 .nr_to_reclaim = nr_to_reclaim,
3243                 .hibernation_mode = 1,
3244                 .order = 0,
3245                 .priority = DEF_PRIORITY,
3246         };
3247         struct shrink_control shrink = {
3248                 .gfp_mask = sc.gfp_mask,
3249         };
3250         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3251         struct task_struct *p = current;
3252         unsigned long nr_reclaimed;
3253
3254         p->flags |= PF_MEMALLOC;
3255         lockdep_set_current_reclaim_state(sc.gfp_mask);
3256         reclaim_state.reclaimed_slab = 0;
3257         p->reclaim_state = &reclaim_state;
3258
3259         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3260
3261         p->reclaim_state = NULL;
3262         lockdep_clear_current_reclaim_state();
3263         p->flags &= ~PF_MEMALLOC;
3264
3265         return nr_reclaimed;
3266 }
3267 #endif /* CONFIG_HIBERNATION */
3268
3269 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3270    not required for correctness.  So if the last cpu in a node goes
3271    away, we get changed to run anywhere: as the first one comes back,
3272    restore their cpu bindings. */
3273 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3274                         void *hcpu)
3275 {
3276         int nid;
3277
3278         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3279                 for_each_node_state(nid, N_MEMORY) {
3280                         pg_data_t *pgdat = NODE_DATA(nid);
3281                         const struct cpumask *mask;
3282
3283                         mask = cpumask_of_node(pgdat->node_id);
3284
3285                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3286                                 /* One of our CPUs online: restore mask */
3287                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3288                 }
3289         }
3290         return NOTIFY_OK;
3291 }
3292
3293 /*
3294  * This kswapd start function will be called by init and node-hot-add.
3295  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3296  */
3297 int kswapd_run(int nid)
3298 {
3299         pg_data_t *pgdat = NODE_DATA(nid);
3300         int ret = 0;
3301
3302         if (pgdat->kswapd)
3303                 return 0;
3304
3305         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3306         if (IS_ERR(pgdat->kswapd)) {
3307                 /* failure at boot is fatal */
3308                 BUG_ON(system_state == SYSTEM_BOOTING);
3309                 pr_err("Failed to start kswapd on node %d\n", nid);
3310                 ret = PTR_ERR(pgdat->kswapd);
3311                 pgdat->kswapd = NULL;
3312         }
3313         return ret;
3314 }
3315
3316 /*
3317  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3318  * hold lock_memory_hotplug().
3319  */
3320 void kswapd_stop(int nid)
3321 {
3322         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3323
3324         if (kswapd) {
3325                 kthread_stop(kswapd);
3326                 NODE_DATA(nid)->kswapd = NULL;
3327         }
3328 }
3329
3330 static int __init kswapd_init(void)
3331 {
3332         int nid;
3333
3334         swap_setup();
3335         for_each_node_state(nid, N_MEMORY)
3336                 kswapd_run(nid);
3337         hotcpu_notifier(cpu_callback, 0);
3338         return 0;
3339 }
3340
3341 module_init(kswapd_init)
3342
3343 #ifdef CONFIG_NUMA
3344 /*
3345  * Zone reclaim mode
3346  *
3347  * If non-zero call zone_reclaim when the number of free pages falls below
3348  * the watermarks.
3349  */
3350 int zone_reclaim_mode __read_mostly;
3351
3352 #define RECLAIM_OFF 0
3353 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3354 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3355 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3356
3357 /*
3358  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3359  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3360  * a zone.
3361  */
3362 #define ZONE_RECLAIM_PRIORITY 4
3363
3364 /*
3365  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3366  * occur.
3367  */
3368 int sysctl_min_unmapped_ratio = 1;
3369
3370 /*
3371  * If the number of slab pages in a zone grows beyond this percentage then
3372  * slab reclaim needs to occur.
3373  */
3374 int sysctl_min_slab_ratio = 5;
3375
3376 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3377 {
3378         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3379         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3380                 zone_page_state(zone, NR_ACTIVE_FILE);
3381
3382         /*
3383          * It's possible for there to be more file mapped pages than
3384          * accounted for by the pages on the file LRU lists because
3385          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3386          */
3387         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3388 }
3389
3390 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3391 static long zone_pagecache_reclaimable(struct zone *zone)
3392 {
3393         long nr_pagecache_reclaimable;
3394         long delta = 0;
3395
3396         /*
3397          * If RECLAIM_SWAP is set, then all file pages are considered
3398          * potentially reclaimable. Otherwise, we have to worry about
3399          * pages like swapcache and zone_unmapped_file_pages() provides
3400          * a better estimate
3401          */
3402         if (zone_reclaim_mode & RECLAIM_SWAP)
3403                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3404         else
3405                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3406
3407         /* If we can't clean pages, remove dirty pages from consideration */
3408         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3409                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3410
3411         /* Watch for any possible underflows due to delta */
3412         if (unlikely(delta > nr_pagecache_reclaimable))
3413                 delta = nr_pagecache_reclaimable;
3414
3415         return nr_pagecache_reclaimable - delta;
3416 }
3417
3418 /*
3419  * Try to free up some pages from this zone through reclaim.
3420  */
3421 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3422 {
3423         /* Minimum pages needed in order to stay on node */
3424         const unsigned long nr_pages = 1 << order;
3425         struct task_struct *p = current;
3426         struct reclaim_state reclaim_state;
3427         struct scan_control sc = {
3428                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3429                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3430                 .may_swap = 1,
3431                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3432                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3433                 .order = order,
3434                 .priority = ZONE_RECLAIM_PRIORITY,
3435         };
3436         struct shrink_control shrink = {
3437                 .gfp_mask = sc.gfp_mask,
3438         };
3439         unsigned long nr_slab_pages0, nr_slab_pages1;
3440
3441         cond_resched();
3442         /*
3443          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3444          * and we also need to be able to write out pages for RECLAIM_WRITE
3445          * and RECLAIM_SWAP.
3446          */
3447         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3448         lockdep_set_current_reclaim_state(gfp_mask);
3449         reclaim_state.reclaimed_slab = 0;
3450         p->reclaim_state = &reclaim_state;
3451
3452         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3453                 /*
3454                  * Free memory by calling shrink zone with increasing
3455                  * priorities until we have enough memory freed.
3456                  */
3457                 do {
3458                         shrink_zone(zone, &sc);
3459                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3460         }
3461
3462         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3463         if (nr_slab_pages0 > zone->min_slab_pages) {
3464                 /*
3465                  * shrink_slab() does not currently allow us to determine how
3466                  * many pages were freed in this zone. So we take the current
3467                  * number of slab pages and shake the slab until it is reduced
3468                  * by the same nr_pages that we used for reclaiming unmapped
3469                  * pages.
3470                  *
3471                  * Note that shrink_slab will free memory on all zones and may
3472                  * take a long time.
3473                  */
3474                 for (;;) {
3475                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3476
3477                         /* No reclaimable slab or very low memory pressure */
3478                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3479                                 break;
3480
3481                         /* Freed enough memory */
3482                         nr_slab_pages1 = zone_page_state(zone,
3483                                                         NR_SLAB_RECLAIMABLE);
3484                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3485                                 break;
3486                 }
3487
3488                 /*
3489                  * Update nr_reclaimed by the number of slab pages we
3490                  * reclaimed from this zone.
3491                  */
3492                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3493                 if (nr_slab_pages1 < nr_slab_pages0)
3494                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3495         }
3496
3497         p->reclaim_state = NULL;
3498         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3499         lockdep_clear_current_reclaim_state();
3500         return sc.nr_reclaimed >= nr_pages;
3501 }
3502
3503 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3504 {
3505         int node_id;
3506         int ret;
3507
3508         /*
3509          * Zone reclaim reclaims unmapped file backed pages and
3510          * slab pages if we are over the defined limits.
3511          *
3512          * A small portion of unmapped file backed pages is needed for
3513          * file I/O otherwise pages read by file I/O will be immediately
3514          * thrown out if the zone is overallocated. So we do not reclaim
3515          * if less than a specified percentage of the zone is used by
3516          * unmapped file backed pages.
3517          */
3518         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3519             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3520                 return ZONE_RECLAIM_FULL;
3521
3522         if (zone->all_unreclaimable)
3523                 return ZONE_RECLAIM_FULL;
3524
3525         /*
3526          * Do not scan if the allocation should not be delayed.
3527          */
3528         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3529                 return ZONE_RECLAIM_NOSCAN;
3530
3531         /*
3532          * Only run zone reclaim on the local zone or on zones that do not
3533          * have associated processors. This will favor the local processor
3534          * over remote processors and spread off node memory allocations
3535          * as wide as possible.
3536          */
3537         node_id = zone_to_nid(zone);
3538         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3539                 return ZONE_RECLAIM_NOSCAN;
3540
3541         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3542                 return ZONE_RECLAIM_NOSCAN;
3543
3544         ret = __zone_reclaim(zone, gfp_mask, order);
3545         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3546
3547         if (!ret)
3548                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3549
3550         return ret;
3551 }
3552 #endif
3553
3554 /*
3555  * page_evictable - test whether a page is evictable
3556  * @page: the page to test
3557  *
3558  * Test whether page is evictable--i.e., should be placed on active/inactive
3559  * lists vs unevictable list.
3560  *
3561  * Reasons page might not be evictable:
3562  * (1) page's mapping marked unevictable
3563  * (2) page is part of an mlocked VMA
3564  *
3565  */
3566 int page_evictable(struct page *page)
3567 {
3568         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3569 }
3570
3571 #ifdef CONFIG_SHMEM
3572 /**
3573  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3574  * @pages:      array of pages to check
3575  * @nr_pages:   number of pages to check
3576  *
3577  * Checks pages for evictability and moves them to the appropriate lru list.
3578  *
3579  * This function is only used for SysV IPC SHM_UNLOCK.
3580  */
3581 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3582 {
3583         struct lruvec *lruvec;
3584         struct zone *zone = NULL;
3585         int pgscanned = 0;
3586         int pgrescued = 0;
3587         int i;
3588
3589         for (i = 0; i < nr_pages; i++) {
3590                 struct page *page = pages[i];
3591                 struct zone *pagezone;
3592
3593                 pgscanned++;
3594                 pagezone = page_zone(page);
3595                 if (pagezone != zone) {
3596                         if (zone)
3597                                 spin_unlock_irq(&zone->lru_lock);
3598                         zone = pagezone;
3599                         spin_lock_irq(&zone->lru_lock);
3600                 }
3601                 lruvec = mem_cgroup_page_lruvec(page, zone);
3602
3603                 if (!PageLRU(page) || !PageUnevictable(page))
3604                         continue;
3605
3606                 if (page_evictable(page)) {
3607                         enum lru_list lru = page_lru_base_type(page);
3608
3609                         VM_BUG_ON(PageActive(page));
3610                         ClearPageUnevictable(page);
3611                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3612                         add_page_to_lru_list(page, lruvec, lru);
3613                         pgrescued++;
3614                 }
3615         }
3616
3617         if (zone) {
3618                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3619                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3620                 spin_unlock_irq(&zone->lru_lock);
3621         }
3622 }
3623 #endif /* CONFIG_SHMEM */
3624
3625 static void warn_scan_unevictable_pages(void)
3626 {
3627         printk_once(KERN_WARNING
3628                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3629                     "disabled for lack of a legitimate use case.  If you have "
3630                     "one, please send an email to linux-mm@kvack.org.\n",
3631                     current->comm);
3632 }
3633
3634 /*
3635  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3636  * all nodes' unevictable lists for evictable pages
3637  */
3638 unsigned long scan_unevictable_pages;
3639
3640 int scan_unevictable_handler(struct ctl_table *table, int write,
3641                            void __user *buffer,
3642                            size_t *length, loff_t *ppos)
3643 {
3644         warn_scan_unevictable_pages();
3645         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3646         scan_unevictable_pages = 0;
3647         return 0;
3648 }
3649
3650 #ifdef CONFIG_NUMA
3651 /*
3652  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3653  * a specified node's per zone unevictable lists for evictable pages.
3654  */
3655
3656 static ssize_t read_scan_unevictable_node(struct device *dev,
3657                                           struct device_attribute *attr,
3658                                           char *buf)
3659 {
3660         warn_scan_unevictable_pages();
3661         return sprintf(buf, "0\n");     /* always zero; should fit... */
3662 }
3663
3664 static ssize_t write_scan_unevictable_node(struct device *dev,
3665                                            struct device_attribute *attr,
3666                                         const char *buf, size_t count)
3667 {
3668         warn_scan_unevictable_pages();
3669         return 1;
3670 }
3671
3672
3673 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3674                         read_scan_unevictable_node,
3675                         write_scan_unevictable_node);
3676
3677 int scan_unevictable_register_node(struct node *node)
3678 {
3679         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3680 }
3681
3682 void scan_unevictable_unregister_node(struct node *node)
3683 {
3684         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3685 }
3686 #endif