]> Pileus Git - ~andy/linux/blob - mm/swapfile.c
ksm: reorganize ksm_check_stable_tree
[~andy/linux] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60
61 struct swap_list_t swap_list = {-1, -1};
62
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64
65 static DEFINE_MUTEX(swapon_mutex);
66
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
74 }
75
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80         swp_entry_t entry = swp_entry(si->type, offset);
81         struct page *page;
82         int ret = 0;
83
84         page = find_get_page(swap_address_space(entry), entry.val);
85         if (!page)
86                 return 0;
87         /*
88          * This function is called from scan_swap_map() and it's called
89          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90          * We have to use trylock for avoiding deadlock. This is a special
91          * case and you should use try_to_free_swap() with explicit lock_page()
92          * in usual operations.
93          */
94         if (trylock_page(page)) {
95                 ret = try_to_free_swap(page);
96                 unlock_page(page);
97         }
98         page_cache_release(page);
99         return ret;
100 }
101
102 /*
103  * swapon tell device that all the old swap contents can be discarded,
104  * to allow the swap device to optimize its wear-levelling.
105  */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108         struct swap_extent *se;
109         sector_t start_block;
110         sector_t nr_blocks;
111         int err = 0;
112
113         /* Do not discard the swap header page! */
114         se = &si->first_swap_extent;
115         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117         if (nr_blocks) {
118                 err = blkdev_issue_discard(si->bdev, start_block,
119                                 nr_blocks, GFP_KERNEL, 0);
120                 if (err)
121                         return err;
122                 cond_resched();
123         }
124
125         list_for_each_entry(se, &si->first_swap_extent.list, list) {
126                 start_block = se->start_block << (PAGE_SHIFT - 9);
127                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128
129                 err = blkdev_issue_discard(si->bdev, start_block,
130                                 nr_blocks, GFP_KERNEL, 0);
131                 if (err)
132                         break;
133
134                 cond_resched();
135         }
136         return err;             /* That will often be -EOPNOTSUPP */
137 }
138
139 /*
140  * swap allocation tell device that a cluster of swap can now be discarded,
141  * to allow the swap device to optimize its wear-levelling.
142  */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144                                  pgoff_t start_page, pgoff_t nr_pages)
145 {
146         struct swap_extent *se = si->curr_swap_extent;
147         int found_extent = 0;
148
149         while (nr_pages) {
150                 struct list_head *lh;
151
152                 if (se->start_page <= start_page &&
153                     start_page < se->start_page + se->nr_pages) {
154                         pgoff_t offset = start_page - se->start_page;
155                         sector_t start_block = se->start_block + offset;
156                         sector_t nr_blocks = se->nr_pages - offset;
157
158                         if (nr_blocks > nr_pages)
159                                 nr_blocks = nr_pages;
160                         start_page += nr_blocks;
161                         nr_pages -= nr_blocks;
162
163                         if (!found_extent++)
164                                 si->curr_swap_extent = se;
165
166                         start_block <<= PAGE_SHIFT - 9;
167                         nr_blocks <<= PAGE_SHIFT - 9;
168                         if (blkdev_issue_discard(si->bdev, start_block,
169                                     nr_blocks, GFP_NOIO, 0))
170                                 break;
171                 }
172
173                 lh = se->list.next;
174                 se = list_entry(lh, struct swap_extent, list);
175         }
176 }
177
178 static int wait_for_discard(void *word)
179 {
180         schedule();
181         return 0;
182 }
183
184 #define SWAPFILE_CLUSTER        256
185 #define LATENCY_LIMIT           256
186
187 static unsigned long scan_swap_map(struct swap_info_struct *si,
188                                    unsigned char usage)
189 {
190         unsigned long offset;
191         unsigned long scan_base;
192         unsigned long last_in_cluster = 0;
193         int latency_ration = LATENCY_LIMIT;
194         int found_free_cluster = 0;
195
196         /*
197          * We try to cluster swap pages by allocating them sequentially
198          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
199          * way, however, we resort to first-free allocation, starting
200          * a new cluster.  This prevents us from scattering swap pages
201          * all over the entire swap partition, so that we reduce
202          * overall disk seek times between swap pages.  -- sct
203          * But we do now try to find an empty cluster.  -Andrea
204          * And we let swap pages go all over an SSD partition.  Hugh
205          */
206
207         si->flags += SWP_SCANNING;
208         scan_base = offset = si->cluster_next;
209
210         if (unlikely(!si->cluster_nr--)) {
211                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
213                         goto checks;
214                 }
215                 if (si->flags & SWP_DISCARDABLE) {
216                         /*
217                          * Start range check on racing allocations, in case
218                          * they overlap the cluster we eventually decide on
219                          * (we scan without swap_lock to allow preemption).
220                          * It's hardly conceivable that cluster_nr could be
221                          * wrapped during our scan, but don't depend on it.
222                          */
223                         if (si->lowest_alloc)
224                                 goto checks;
225                         si->lowest_alloc = si->max;
226                         si->highest_alloc = 0;
227                 }
228                 spin_unlock(&si->lock);
229
230                 /*
231                  * If seek is expensive, start searching for new cluster from
232                  * start of partition, to minimize the span of allocated swap.
233                  * But if seek is cheap, search from our current position, so
234                  * that swap is allocated from all over the partition: if the
235                  * Flash Translation Layer only remaps within limited zones,
236                  * we don't want to wear out the first zone too quickly.
237                  */
238                 if (!(si->flags & SWP_SOLIDSTATE))
239                         scan_base = offset = si->lowest_bit;
240                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241
242                 /* Locate the first empty (unaligned) cluster */
243                 for (; last_in_cluster <= si->highest_bit; offset++) {
244                         if (si->swap_map[offset])
245                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
246                         else if (offset == last_in_cluster) {
247                                 spin_lock(&si->lock);
248                                 offset -= SWAPFILE_CLUSTER - 1;
249                                 si->cluster_next = offset;
250                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
251                                 found_free_cluster = 1;
252                                 goto checks;
253                         }
254                         if (unlikely(--latency_ration < 0)) {
255                                 cond_resched();
256                                 latency_ration = LATENCY_LIMIT;
257                         }
258                 }
259
260                 offset = si->lowest_bit;
261                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262
263                 /* Locate the first empty (unaligned) cluster */
264                 for (; last_in_cluster < scan_base; offset++) {
265                         if (si->swap_map[offset])
266                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
267                         else if (offset == last_in_cluster) {
268                                 spin_lock(&si->lock);
269                                 offset -= SWAPFILE_CLUSTER - 1;
270                                 si->cluster_next = offset;
271                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
272                                 found_free_cluster = 1;
273                                 goto checks;
274                         }
275                         if (unlikely(--latency_ration < 0)) {
276                                 cond_resched();
277                                 latency_ration = LATENCY_LIMIT;
278                         }
279                 }
280
281                 offset = scan_base;
282                 spin_lock(&si->lock);
283                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
284                 si->lowest_alloc = 0;
285         }
286
287 checks:
288         if (!(si->flags & SWP_WRITEOK))
289                 goto no_page;
290         if (!si->highest_bit)
291                 goto no_page;
292         if (offset > si->highest_bit)
293                 scan_base = offset = si->lowest_bit;
294
295         /* reuse swap entry of cache-only swap if not busy. */
296         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
297                 int swap_was_freed;
298                 spin_unlock(&si->lock);
299                 swap_was_freed = __try_to_reclaim_swap(si, offset);
300                 spin_lock(&si->lock);
301                 /* entry was freed successfully, try to use this again */
302                 if (swap_was_freed)
303                         goto checks;
304                 goto scan; /* check next one */
305         }
306
307         if (si->swap_map[offset])
308                 goto scan;
309
310         if (offset == si->lowest_bit)
311                 si->lowest_bit++;
312         if (offset == si->highest_bit)
313                 si->highest_bit--;
314         si->inuse_pages++;
315         if (si->inuse_pages == si->pages) {
316                 si->lowest_bit = si->max;
317                 si->highest_bit = 0;
318         }
319         si->swap_map[offset] = usage;
320         si->cluster_next = offset + 1;
321         si->flags -= SWP_SCANNING;
322
323         if (si->lowest_alloc) {
324                 /*
325                  * Only set when SWP_DISCARDABLE, and there's a scan
326                  * for a free cluster in progress or just completed.
327                  */
328                 if (found_free_cluster) {
329                         /*
330                          * To optimize wear-levelling, discard the
331                          * old data of the cluster, taking care not to
332                          * discard any of its pages that have already
333                          * been allocated by racing tasks (offset has
334                          * already stepped over any at the beginning).
335                          */
336                         if (offset < si->highest_alloc &&
337                             si->lowest_alloc <= last_in_cluster)
338                                 last_in_cluster = si->lowest_alloc - 1;
339                         si->flags |= SWP_DISCARDING;
340                         spin_unlock(&si->lock);
341
342                         if (offset < last_in_cluster)
343                                 discard_swap_cluster(si, offset,
344                                         last_in_cluster - offset + 1);
345
346                         spin_lock(&si->lock);
347                         si->lowest_alloc = 0;
348                         si->flags &= ~SWP_DISCARDING;
349
350                         smp_mb();       /* wake_up_bit advises this */
351                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352
353                 } else if (si->flags & SWP_DISCARDING) {
354                         /*
355                          * Delay using pages allocated by racing tasks
356                          * until the whole discard has been issued. We
357                          * could defer that delay until swap_writepage,
358                          * but it's easier to keep this self-contained.
359                          */
360                         spin_unlock(&si->lock);
361                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
363                         spin_lock(&si->lock);
364                 } else {
365                         /*
366                          * Note pages allocated by racing tasks while
367                          * scan for a free cluster is in progress, so
368                          * that its final discard can exclude them.
369                          */
370                         if (offset < si->lowest_alloc)
371                                 si->lowest_alloc = offset;
372                         if (offset > si->highest_alloc)
373                                 si->highest_alloc = offset;
374                 }
375         }
376         return offset;
377
378 scan:
379         spin_unlock(&si->lock);
380         while (++offset <= si->highest_bit) {
381                 if (!si->swap_map[offset]) {
382                         spin_lock(&si->lock);
383                         goto checks;
384                 }
385                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
386                         spin_lock(&si->lock);
387                         goto checks;
388                 }
389                 if (unlikely(--latency_ration < 0)) {
390                         cond_resched();
391                         latency_ration = LATENCY_LIMIT;
392                 }
393         }
394         offset = si->lowest_bit;
395         while (++offset < scan_base) {
396                 if (!si->swap_map[offset]) {
397                         spin_lock(&si->lock);
398                         goto checks;
399                 }
400                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
401                         spin_lock(&si->lock);
402                         goto checks;
403                 }
404                 if (unlikely(--latency_ration < 0)) {
405                         cond_resched();
406                         latency_ration = LATENCY_LIMIT;
407                 }
408         }
409         spin_lock(&si->lock);
410
411 no_page:
412         si->flags -= SWP_SCANNING;
413         return 0;
414 }
415
416 swp_entry_t get_swap_page(void)
417 {
418         struct swap_info_struct *si;
419         pgoff_t offset;
420         int type, next;
421         int wrapped = 0;
422         int hp_index;
423
424         spin_lock(&swap_lock);
425         if (atomic_long_read(&nr_swap_pages) <= 0)
426                 goto noswap;
427         atomic_long_dec(&nr_swap_pages);
428
429         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
430                 hp_index = atomic_xchg(&highest_priority_index, -1);
431                 /*
432                  * highest_priority_index records current highest priority swap
433                  * type which just frees swap entries. If its priority is
434                  * higher than that of swap_list.next swap type, we use it.  It
435                  * isn't protected by swap_lock, so it can be an invalid value
436                  * if the corresponding swap type is swapoff. We double check
437                  * the flags here. It's even possible the swap type is swapoff
438                  * and swapon again and its priority is changed. In such rare
439                  * case, low prority swap type might be used, but eventually
440                  * high priority swap will be used after several rounds of
441                  * swap.
442                  */
443                 if (hp_index != -1 && hp_index != type &&
444                     swap_info[type]->prio < swap_info[hp_index]->prio &&
445                     (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446                         type = hp_index;
447                         swap_list.next = type;
448                 }
449
450                 si = swap_info[type];
451                 next = si->next;
452                 if (next < 0 ||
453                     (!wrapped && si->prio != swap_info[next]->prio)) {
454                         next = swap_list.head;
455                         wrapped++;
456                 }
457
458                 spin_lock(&si->lock);
459                 if (!si->highest_bit) {
460                         spin_unlock(&si->lock);
461                         continue;
462                 }
463                 if (!(si->flags & SWP_WRITEOK)) {
464                         spin_unlock(&si->lock);
465                         continue;
466                 }
467
468                 swap_list.next = next;
469
470                 spin_unlock(&swap_lock);
471                 /* This is called for allocating swap entry for cache */
472                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
473                 spin_unlock(&si->lock);
474                 if (offset)
475                         return swp_entry(type, offset);
476                 spin_lock(&swap_lock);
477                 next = swap_list.next;
478         }
479
480         atomic_long_inc(&nr_swap_pages);
481 noswap:
482         spin_unlock(&swap_lock);
483         return (swp_entry_t) {0};
484 }
485
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489         struct swap_info_struct *si;
490         pgoff_t offset;
491
492         si = swap_info[type];
493         spin_lock(&si->lock);
494         if (si && (si->flags & SWP_WRITEOK)) {
495                 atomic_long_dec(&nr_swap_pages);
496                 /* This is called for allocating swap entry, not cache */
497                 offset = scan_swap_map(si, 1);
498                 if (offset) {
499                         spin_unlock(&si->lock);
500                         return swp_entry(type, offset);
501                 }
502                 atomic_long_inc(&nr_swap_pages);
503         }
504         spin_unlock(&si->lock);
505         return (swp_entry_t) {0};
506 }
507
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510         struct swap_info_struct *p;
511         unsigned long offset, type;
512
513         if (!entry.val)
514                 goto out;
515         type = swp_type(entry);
516         if (type >= nr_swapfiles)
517                 goto bad_nofile;
518         p = swap_info[type];
519         if (!(p->flags & SWP_USED))
520                 goto bad_device;
521         offset = swp_offset(entry);
522         if (offset >= p->max)
523                 goto bad_offset;
524         if (!p->swap_map[offset])
525                 goto bad_free;
526         spin_lock(&p->lock);
527         return p;
528
529 bad_free:
530         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531         goto out;
532 bad_offset:
533         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534         goto out;
535 bad_device:
536         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537         goto out;
538 bad_nofile:
539         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541         return NULL;
542 }
543
544 /*
545  * This swap type frees swap entry, check if it is the highest priority swap
546  * type which just frees swap entry. get_swap_page() uses
547  * highest_priority_index to search highest priority swap type. The
548  * swap_info_struct.lock can't protect us if there are multiple swap types
549  * active, so we use atomic_cmpxchg.
550  */
551 static void set_highest_priority_index(int type)
552 {
553         int old_hp_index, new_hp_index;
554
555         do {
556                 old_hp_index = atomic_read(&highest_priority_index);
557                 if (old_hp_index != -1 &&
558                         swap_info[old_hp_index]->prio >= swap_info[type]->prio)
559                         break;
560                 new_hp_index = type;
561         } while (atomic_cmpxchg(&highest_priority_index,
562                 old_hp_index, new_hp_index) != old_hp_index);
563 }
564
565 static unsigned char swap_entry_free(struct swap_info_struct *p,
566                                      swp_entry_t entry, unsigned char usage)
567 {
568         unsigned long offset = swp_offset(entry);
569         unsigned char count;
570         unsigned char has_cache;
571
572         count = p->swap_map[offset];
573         has_cache = count & SWAP_HAS_CACHE;
574         count &= ~SWAP_HAS_CACHE;
575
576         if (usage == SWAP_HAS_CACHE) {
577                 VM_BUG_ON(!has_cache);
578                 has_cache = 0;
579         } else if (count == SWAP_MAP_SHMEM) {
580                 /*
581                  * Or we could insist on shmem.c using a special
582                  * swap_shmem_free() and free_shmem_swap_and_cache()...
583                  */
584                 count = 0;
585         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
586                 if (count == COUNT_CONTINUED) {
587                         if (swap_count_continued(p, offset, count))
588                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
589                         else
590                                 count = SWAP_MAP_MAX;
591                 } else
592                         count--;
593         }
594
595         if (!count)
596                 mem_cgroup_uncharge_swap(entry);
597
598         usage = count | has_cache;
599         p->swap_map[offset] = usage;
600
601         /* free if no reference */
602         if (!usage) {
603                 if (offset < p->lowest_bit)
604                         p->lowest_bit = offset;
605                 if (offset > p->highest_bit)
606                         p->highest_bit = offset;
607                 set_highest_priority_index(p->type);
608                 atomic_long_inc(&nr_swap_pages);
609                 p->inuse_pages--;
610                 frontswap_invalidate_page(p->type, offset);
611                 if (p->flags & SWP_BLKDEV) {
612                         struct gendisk *disk = p->bdev->bd_disk;
613                         if (disk->fops->swap_slot_free_notify)
614                                 disk->fops->swap_slot_free_notify(p->bdev,
615                                                                   offset);
616                 }
617         }
618
619         return usage;
620 }
621
622 /*
623  * Caller has made sure that the swapdevice corresponding to entry
624  * is still around or has not been recycled.
625  */
626 void swap_free(swp_entry_t entry)
627 {
628         struct swap_info_struct *p;
629
630         p = swap_info_get(entry);
631         if (p) {
632                 swap_entry_free(p, entry, 1);
633                 spin_unlock(&p->lock);
634         }
635 }
636
637 /*
638  * Called after dropping swapcache to decrease refcnt to swap entries.
639  */
640 void swapcache_free(swp_entry_t entry, struct page *page)
641 {
642         struct swap_info_struct *p;
643         unsigned char count;
644
645         p = swap_info_get(entry);
646         if (p) {
647                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
648                 if (page)
649                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
650                 spin_unlock(&p->lock);
651         }
652 }
653
654 /*
655  * How many references to page are currently swapped out?
656  * This does not give an exact answer when swap count is continued,
657  * but does include the high COUNT_CONTINUED flag to allow for that.
658  */
659 int page_swapcount(struct page *page)
660 {
661         int count = 0;
662         struct swap_info_struct *p;
663         swp_entry_t entry;
664
665         entry.val = page_private(page);
666         p = swap_info_get(entry);
667         if (p) {
668                 count = swap_count(p->swap_map[swp_offset(entry)]);
669                 spin_unlock(&p->lock);
670         }
671         return count;
672 }
673
674 /*
675  * We can write to an anon page without COW if there are no other references
676  * to it.  And as a side-effect, free up its swap: because the old content
677  * on disk will never be read, and seeking back there to write new content
678  * later would only waste time away from clustering.
679  */
680 int reuse_swap_page(struct page *page)
681 {
682         int count;
683
684         VM_BUG_ON(!PageLocked(page));
685         if (unlikely(PageKsm(page)))
686                 return 0;
687         count = page_mapcount(page);
688         if (count <= 1 && PageSwapCache(page)) {
689                 count += page_swapcount(page);
690                 if (count == 1 && !PageWriteback(page)) {
691                         delete_from_swap_cache(page);
692                         SetPageDirty(page);
693                 }
694         }
695         return count <= 1;
696 }
697
698 /*
699  * If swap is getting full, or if there are no more mappings of this page,
700  * then try_to_free_swap is called to free its swap space.
701  */
702 int try_to_free_swap(struct page *page)
703 {
704         VM_BUG_ON(!PageLocked(page));
705
706         if (!PageSwapCache(page))
707                 return 0;
708         if (PageWriteback(page))
709                 return 0;
710         if (page_swapcount(page))
711                 return 0;
712
713         /*
714          * Once hibernation has begun to create its image of memory,
715          * there's a danger that one of the calls to try_to_free_swap()
716          * - most probably a call from __try_to_reclaim_swap() while
717          * hibernation is allocating its own swap pages for the image,
718          * but conceivably even a call from memory reclaim - will free
719          * the swap from a page which has already been recorded in the
720          * image as a clean swapcache page, and then reuse its swap for
721          * another page of the image.  On waking from hibernation, the
722          * original page might be freed under memory pressure, then
723          * later read back in from swap, now with the wrong data.
724          *
725          * Hibration suspends storage while it is writing the image
726          * to disk so check that here.
727          */
728         if (pm_suspended_storage())
729                 return 0;
730
731         delete_from_swap_cache(page);
732         SetPageDirty(page);
733         return 1;
734 }
735
736 /*
737  * Free the swap entry like above, but also try to
738  * free the page cache entry if it is the last user.
739  */
740 int free_swap_and_cache(swp_entry_t entry)
741 {
742         struct swap_info_struct *p;
743         struct page *page = NULL;
744
745         if (non_swap_entry(entry))
746                 return 1;
747
748         p = swap_info_get(entry);
749         if (p) {
750                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
751                         page = find_get_page(swap_address_space(entry),
752                                                 entry.val);
753                         if (page && !trylock_page(page)) {
754                                 page_cache_release(page);
755                                 page = NULL;
756                         }
757                 }
758                 spin_unlock(&p->lock);
759         }
760         if (page) {
761                 /*
762                  * Not mapped elsewhere, or swap space full? Free it!
763                  * Also recheck PageSwapCache now page is locked (above).
764                  */
765                 if (PageSwapCache(page) && !PageWriteback(page) &&
766                                 (!page_mapped(page) || vm_swap_full())) {
767                         delete_from_swap_cache(page);
768                         SetPageDirty(page);
769                 }
770                 unlock_page(page);
771                 page_cache_release(page);
772         }
773         return p != NULL;
774 }
775
776 #ifdef CONFIG_HIBERNATION
777 /*
778  * Find the swap type that corresponds to given device (if any).
779  *
780  * @offset - number of the PAGE_SIZE-sized block of the device, starting
781  * from 0, in which the swap header is expected to be located.
782  *
783  * This is needed for the suspend to disk (aka swsusp).
784  */
785 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
786 {
787         struct block_device *bdev = NULL;
788         int type;
789
790         if (device)
791                 bdev = bdget(device);
792
793         spin_lock(&swap_lock);
794         for (type = 0; type < nr_swapfiles; type++) {
795                 struct swap_info_struct *sis = swap_info[type];
796
797                 if (!(sis->flags & SWP_WRITEOK))
798                         continue;
799
800                 if (!bdev) {
801                         if (bdev_p)
802                                 *bdev_p = bdgrab(sis->bdev);
803
804                         spin_unlock(&swap_lock);
805                         return type;
806                 }
807                 if (bdev == sis->bdev) {
808                         struct swap_extent *se = &sis->first_swap_extent;
809
810                         if (se->start_block == offset) {
811                                 if (bdev_p)
812                                         *bdev_p = bdgrab(sis->bdev);
813
814                                 spin_unlock(&swap_lock);
815                                 bdput(bdev);
816                                 return type;
817                         }
818                 }
819         }
820         spin_unlock(&swap_lock);
821         if (bdev)
822                 bdput(bdev);
823
824         return -ENODEV;
825 }
826
827 /*
828  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829  * corresponding to given index in swap_info (swap type).
830  */
831 sector_t swapdev_block(int type, pgoff_t offset)
832 {
833         struct block_device *bdev;
834
835         if ((unsigned int)type >= nr_swapfiles)
836                 return 0;
837         if (!(swap_info[type]->flags & SWP_WRITEOK))
838                 return 0;
839         return map_swap_entry(swp_entry(type, offset), &bdev);
840 }
841
842 /*
843  * Return either the total number of swap pages of given type, or the number
844  * of free pages of that type (depending on @free)
845  *
846  * This is needed for software suspend
847  */
848 unsigned int count_swap_pages(int type, int free)
849 {
850         unsigned int n = 0;
851
852         spin_lock(&swap_lock);
853         if ((unsigned int)type < nr_swapfiles) {
854                 struct swap_info_struct *sis = swap_info[type];
855
856                 spin_lock(&sis->lock);
857                 if (sis->flags & SWP_WRITEOK) {
858                         n = sis->pages;
859                         if (free)
860                                 n -= sis->inuse_pages;
861                 }
862                 spin_unlock(&sis->lock);
863         }
864         spin_unlock(&swap_lock);
865         return n;
866 }
867 #endif /* CONFIG_HIBERNATION */
868
869 /*
870  * No need to decide whether this PTE shares the swap entry with others,
871  * just let do_wp_page work it out if a write is requested later - to
872  * force COW, vm_page_prot omits write permission from any private vma.
873  */
874 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
875                 unsigned long addr, swp_entry_t entry, struct page *page)
876 {
877         struct mem_cgroup *memcg;
878         spinlock_t *ptl;
879         pte_t *pte;
880         int ret = 1;
881
882         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
883                                          GFP_KERNEL, &memcg)) {
884                 ret = -ENOMEM;
885                 goto out_nolock;
886         }
887
888         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
889         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
890                 mem_cgroup_cancel_charge_swapin(memcg);
891                 ret = 0;
892                 goto out;
893         }
894
895         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
896         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
897         get_page(page);
898         set_pte_at(vma->vm_mm, addr, pte,
899                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
900         page_add_anon_rmap(page, vma, addr);
901         mem_cgroup_commit_charge_swapin(page, memcg);
902         swap_free(entry);
903         /*
904          * Move the page to the active list so it is not
905          * immediately swapped out again after swapon.
906          */
907         activate_page(page);
908 out:
909         pte_unmap_unlock(pte, ptl);
910 out_nolock:
911         return ret;
912 }
913
914 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
915                                 unsigned long addr, unsigned long end,
916                                 swp_entry_t entry, struct page *page)
917 {
918         pte_t swp_pte = swp_entry_to_pte(entry);
919         pte_t *pte;
920         int ret = 0;
921
922         /*
923          * We don't actually need pte lock while scanning for swp_pte: since
924          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
925          * page table while we're scanning; though it could get zapped, and on
926          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
927          * of unmatched parts which look like swp_pte, so unuse_pte must
928          * recheck under pte lock.  Scanning without pte lock lets it be
929          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
930          */
931         pte = pte_offset_map(pmd, addr);
932         do {
933                 /*
934                  * swapoff spends a _lot_ of time in this loop!
935                  * Test inline before going to call unuse_pte.
936                  */
937                 if (unlikely(pte_same(*pte, swp_pte))) {
938                         pte_unmap(pte);
939                         ret = unuse_pte(vma, pmd, addr, entry, page);
940                         if (ret)
941                                 goto out;
942                         pte = pte_offset_map(pmd, addr);
943                 }
944         } while (pte++, addr += PAGE_SIZE, addr != end);
945         pte_unmap(pte - 1);
946 out:
947         return ret;
948 }
949
950 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
951                                 unsigned long addr, unsigned long end,
952                                 swp_entry_t entry, struct page *page)
953 {
954         pmd_t *pmd;
955         unsigned long next;
956         int ret;
957
958         pmd = pmd_offset(pud, addr);
959         do {
960                 next = pmd_addr_end(addr, end);
961                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
962                         continue;
963                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
964                 if (ret)
965                         return ret;
966         } while (pmd++, addr = next, addr != end);
967         return 0;
968 }
969
970 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
971                                 unsigned long addr, unsigned long end,
972                                 swp_entry_t entry, struct page *page)
973 {
974         pud_t *pud;
975         unsigned long next;
976         int ret;
977
978         pud = pud_offset(pgd, addr);
979         do {
980                 next = pud_addr_end(addr, end);
981                 if (pud_none_or_clear_bad(pud))
982                         continue;
983                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
984                 if (ret)
985                         return ret;
986         } while (pud++, addr = next, addr != end);
987         return 0;
988 }
989
990 static int unuse_vma(struct vm_area_struct *vma,
991                                 swp_entry_t entry, struct page *page)
992 {
993         pgd_t *pgd;
994         unsigned long addr, end, next;
995         int ret;
996
997         if (page_anon_vma(page)) {
998                 addr = page_address_in_vma(page, vma);
999                 if (addr == -EFAULT)
1000                         return 0;
1001                 else
1002                         end = addr + PAGE_SIZE;
1003         } else {
1004                 addr = vma->vm_start;
1005                 end = vma->vm_end;
1006         }
1007
1008         pgd = pgd_offset(vma->vm_mm, addr);
1009         do {
1010                 next = pgd_addr_end(addr, end);
1011                 if (pgd_none_or_clear_bad(pgd))
1012                         continue;
1013                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1014                 if (ret)
1015                         return ret;
1016         } while (pgd++, addr = next, addr != end);
1017         return 0;
1018 }
1019
1020 static int unuse_mm(struct mm_struct *mm,
1021                                 swp_entry_t entry, struct page *page)
1022 {
1023         struct vm_area_struct *vma;
1024         int ret = 0;
1025
1026         if (!down_read_trylock(&mm->mmap_sem)) {
1027                 /*
1028                  * Activate page so shrink_inactive_list is unlikely to unmap
1029                  * its ptes while lock is dropped, so swapoff can make progress.
1030                  */
1031                 activate_page(page);
1032                 unlock_page(page);
1033                 down_read(&mm->mmap_sem);
1034                 lock_page(page);
1035         }
1036         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1037                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1038                         break;
1039         }
1040         up_read(&mm->mmap_sem);
1041         return (ret < 0)? ret: 0;
1042 }
1043
1044 /*
1045  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1046  * from current position to next entry still in use.
1047  * Recycle to start on reaching the end, returning 0 when empty.
1048  */
1049 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1050                                         unsigned int prev, bool frontswap)
1051 {
1052         unsigned int max = si->max;
1053         unsigned int i = prev;
1054         unsigned char count;
1055
1056         /*
1057          * No need for swap_lock here: we're just looking
1058          * for whether an entry is in use, not modifying it; false
1059          * hits are okay, and sys_swapoff() has already prevented new
1060          * allocations from this area (while holding swap_lock).
1061          */
1062         for (;;) {
1063                 if (++i >= max) {
1064                         if (!prev) {
1065                                 i = 0;
1066                                 break;
1067                         }
1068                         /*
1069                          * No entries in use at top of swap_map,
1070                          * loop back to start and recheck there.
1071                          */
1072                         max = prev + 1;
1073                         prev = 0;
1074                         i = 1;
1075                 }
1076                 if (frontswap) {
1077                         if (frontswap_test(si, i))
1078                                 break;
1079                         else
1080                                 continue;
1081                 }
1082                 count = si->swap_map[i];
1083                 if (count && swap_count(count) != SWAP_MAP_BAD)
1084                         break;
1085         }
1086         return i;
1087 }
1088
1089 /*
1090  * We completely avoid races by reading each swap page in advance,
1091  * and then search for the process using it.  All the necessary
1092  * page table adjustments can then be made atomically.
1093  *
1094  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1095  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1096  */
1097 int try_to_unuse(unsigned int type, bool frontswap,
1098                  unsigned long pages_to_unuse)
1099 {
1100         struct swap_info_struct *si = swap_info[type];
1101         struct mm_struct *start_mm;
1102         unsigned char *swap_map;
1103         unsigned char swcount;
1104         struct page *page;
1105         swp_entry_t entry;
1106         unsigned int i = 0;
1107         int retval = 0;
1108
1109         /*
1110          * When searching mms for an entry, a good strategy is to
1111          * start at the first mm we freed the previous entry from
1112          * (though actually we don't notice whether we or coincidence
1113          * freed the entry).  Initialize this start_mm with a hold.
1114          *
1115          * A simpler strategy would be to start at the last mm we
1116          * freed the previous entry from; but that would take less
1117          * advantage of mmlist ordering, which clusters forked mms
1118          * together, child after parent.  If we race with dup_mmap(), we
1119          * prefer to resolve parent before child, lest we miss entries
1120          * duplicated after we scanned child: using last mm would invert
1121          * that.
1122          */
1123         start_mm = &init_mm;
1124         atomic_inc(&init_mm.mm_users);
1125
1126         /*
1127          * Keep on scanning until all entries have gone.  Usually,
1128          * one pass through swap_map is enough, but not necessarily:
1129          * there are races when an instance of an entry might be missed.
1130          */
1131         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1132                 if (signal_pending(current)) {
1133                         retval = -EINTR;
1134                         break;
1135                 }
1136
1137                 /*
1138                  * Get a page for the entry, using the existing swap
1139                  * cache page if there is one.  Otherwise, get a clean
1140                  * page and read the swap into it.
1141                  */
1142                 swap_map = &si->swap_map[i];
1143                 entry = swp_entry(type, i);
1144                 page = read_swap_cache_async(entry,
1145                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1146                 if (!page) {
1147                         /*
1148                          * Either swap_duplicate() failed because entry
1149                          * has been freed independently, and will not be
1150                          * reused since sys_swapoff() already disabled
1151                          * allocation from here, or alloc_page() failed.
1152                          */
1153                         if (!*swap_map)
1154                                 continue;
1155                         retval = -ENOMEM;
1156                         break;
1157                 }
1158
1159                 /*
1160                  * Don't hold on to start_mm if it looks like exiting.
1161                  */
1162                 if (atomic_read(&start_mm->mm_users) == 1) {
1163                         mmput(start_mm);
1164                         start_mm = &init_mm;
1165                         atomic_inc(&init_mm.mm_users);
1166                 }
1167
1168                 /*
1169                  * Wait for and lock page.  When do_swap_page races with
1170                  * try_to_unuse, do_swap_page can handle the fault much
1171                  * faster than try_to_unuse can locate the entry.  This
1172                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1173                  * defer to do_swap_page in such a case - in some tests,
1174                  * do_swap_page and try_to_unuse repeatedly compete.
1175                  */
1176                 wait_on_page_locked(page);
1177                 wait_on_page_writeback(page);
1178                 lock_page(page);
1179                 wait_on_page_writeback(page);
1180
1181                 /*
1182                  * Remove all references to entry.
1183                  */
1184                 swcount = *swap_map;
1185                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1186                         retval = shmem_unuse(entry, page);
1187                         /* page has already been unlocked and released */
1188                         if (retval < 0)
1189                                 break;
1190                         continue;
1191                 }
1192                 if (swap_count(swcount) && start_mm != &init_mm)
1193                         retval = unuse_mm(start_mm, entry, page);
1194
1195                 if (swap_count(*swap_map)) {
1196                         int set_start_mm = (*swap_map >= swcount);
1197                         struct list_head *p = &start_mm->mmlist;
1198                         struct mm_struct *new_start_mm = start_mm;
1199                         struct mm_struct *prev_mm = start_mm;
1200                         struct mm_struct *mm;
1201
1202                         atomic_inc(&new_start_mm->mm_users);
1203                         atomic_inc(&prev_mm->mm_users);
1204                         spin_lock(&mmlist_lock);
1205                         while (swap_count(*swap_map) && !retval &&
1206                                         (p = p->next) != &start_mm->mmlist) {
1207                                 mm = list_entry(p, struct mm_struct, mmlist);
1208                                 if (!atomic_inc_not_zero(&mm->mm_users))
1209                                         continue;
1210                                 spin_unlock(&mmlist_lock);
1211                                 mmput(prev_mm);
1212                                 prev_mm = mm;
1213
1214                                 cond_resched();
1215
1216                                 swcount = *swap_map;
1217                                 if (!swap_count(swcount)) /* any usage ? */
1218                                         ;
1219                                 else if (mm == &init_mm)
1220                                         set_start_mm = 1;
1221                                 else
1222                                         retval = unuse_mm(mm, entry, page);
1223
1224                                 if (set_start_mm && *swap_map < swcount) {
1225                                         mmput(new_start_mm);
1226                                         atomic_inc(&mm->mm_users);
1227                                         new_start_mm = mm;
1228                                         set_start_mm = 0;
1229                                 }
1230                                 spin_lock(&mmlist_lock);
1231                         }
1232                         spin_unlock(&mmlist_lock);
1233                         mmput(prev_mm);
1234                         mmput(start_mm);
1235                         start_mm = new_start_mm;
1236                 }
1237                 if (retval) {
1238                         unlock_page(page);
1239                         page_cache_release(page);
1240                         break;
1241                 }
1242
1243                 /*
1244                  * If a reference remains (rare), we would like to leave
1245                  * the page in the swap cache; but try_to_unmap could
1246                  * then re-duplicate the entry once we drop page lock,
1247                  * so we might loop indefinitely; also, that page could
1248                  * not be swapped out to other storage meanwhile.  So:
1249                  * delete from cache even if there's another reference,
1250                  * after ensuring that the data has been saved to disk -
1251                  * since if the reference remains (rarer), it will be
1252                  * read from disk into another page.  Splitting into two
1253                  * pages would be incorrect if swap supported "shared
1254                  * private" pages, but they are handled by tmpfs files.
1255                  *
1256                  * Given how unuse_vma() targets one particular offset
1257                  * in an anon_vma, once the anon_vma has been determined,
1258                  * this splitting happens to be just what is needed to
1259                  * handle where KSM pages have been swapped out: re-reading
1260                  * is unnecessarily slow, but we can fix that later on.
1261                  */
1262                 if (swap_count(*swap_map) &&
1263                      PageDirty(page) && PageSwapCache(page)) {
1264                         struct writeback_control wbc = {
1265                                 .sync_mode = WB_SYNC_NONE,
1266                         };
1267
1268                         swap_writepage(page, &wbc);
1269                         lock_page(page);
1270                         wait_on_page_writeback(page);
1271                 }
1272
1273                 /*
1274                  * It is conceivable that a racing task removed this page from
1275                  * swap cache just before we acquired the page lock at the top,
1276                  * or while we dropped it in unuse_mm().  The page might even
1277                  * be back in swap cache on another swap area: that we must not
1278                  * delete, since it may not have been written out to swap yet.
1279                  */
1280                 if (PageSwapCache(page) &&
1281                     likely(page_private(page) == entry.val))
1282                         delete_from_swap_cache(page);
1283
1284                 /*
1285                  * So we could skip searching mms once swap count went
1286                  * to 1, we did not mark any present ptes as dirty: must
1287                  * mark page dirty so shrink_page_list will preserve it.
1288                  */
1289                 SetPageDirty(page);
1290                 unlock_page(page);
1291                 page_cache_release(page);
1292
1293                 /*
1294                  * Make sure that we aren't completely killing
1295                  * interactive performance.
1296                  */
1297                 cond_resched();
1298                 if (frontswap && pages_to_unuse > 0) {
1299                         if (!--pages_to_unuse)
1300                                 break;
1301                 }
1302         }
1303
1304         mmput(start_mm);
1305         return retval;
1306 }
1307
1308 /*
1309  * After a successful try_to_unuse, if no swap is now in use, we know
1310  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1311  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1312  * added to the mmlist just after page_duplicate - before would be racy.
1313  */
1314 static void drain_mmlist(void)
1315 {
1316         struct list_head *p, *next;
1317         unsigned int type;
1318
1319         for (type = 0; type < nr_swapfiles; type++)
1320                 if (swap_info[type]->inuse_pages)
1321                         return;
1322         spin_lock(&mmlist_lock);
1323         list_for_each_safe(p, next, &init_mm.mmlist)
1324                 list_del_init(p);
1325         spin_unlock(&mmlist_lock);
1326 }
1327
1328 /*
1329  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1330  * corresponds to page offset for the specified swap entry.
1331  * Note that the type of this function is sector_t, but it returns page offset
1332  * into the bdev, not sector offset.
1333  */
1334 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1335 {
1336         struct swap_info_struct *sis;
1337         struct swap_extent *start_se;
1338         struct swap_extent *se;
1339         pgoff_t offset;
1340
1341         sis = swap_info[swp_type(entry)];
1342         *bdev = sis->bdev;
1343
1344         offset = swp_offset(entry);
1345         start_se = sis->curr_swap_extent;
1346         se = start_se;
1347
1348         for ( ; ; ) {
1349                 struct list_head *lh;
1350
1351                 if (se->start_page <= offset &&
1352                                 offset < (se->start_page + se->nr_pages)) {
1353                         return se->start_block + (offset - se->start_page);
1354                 }
1355                 lh = se->list.next;
1356                 se = list_entry(lh, struct swap_extent, list);
1357                 sis->curr_swap_extent = se;
1358                 BUG_ON(se == start_se);         /* It *must* be present */
1359         }
1360 }
1361
1362 /*
1363  * Returns the page offset into bdev for the specified page's swap entry.
1364  */
1365 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1366 {
1367         swp_entry_t entry;
1368         entry.val = page_private(page);
1369         return map_swap_entry(entry, bdev);
1370 }
1371
1372 /*
1373  * Free all of a swapdev's extent information
1374  */
1375 static void destroy_swap_extents(struct swap_info_struct *sis)
1376 {
1377         while (!list_empty(&sis->first_swap_extent.list)) {
1378                 struct swap_extent *se;
1379
1380                 se = list_entry(sis->first_swap_extent.list.next,
1381                                 struct swap_extent, list);
1382                 list_del(&se->list);
1383                 kfree(se);
1384         }
1385
1386         if (sis->flags & SWP_FILE) {
1387                 struct file *swap_file = sis->swap_file;
1388                 struct address_space *mapping = swap_file->f_mapping;
1389
1390                 sis->flags &= ~SWP_FILE;
1391                 mapping->a_ops->swap_deactivate(swap_file);
1392         }
1393 }
1394
1395 /*
1396  * Add a block range (and the corresponding page range) into this swapdev's
1397  * extent list.  The extent list is kept sorted in page order.
1398  *
1399  * This function rather assumes that it is called in ascending page order.
1400  */
1401 int
1402 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1403                 unsigned long nr_pages, sector_t start_block)
1404 {
1405         struct swap_extent *se;
1406         struct swap_extent *new_se;
1407         struct list_head *lh;
1408
1409         if (start_page == 0) {
1410                 se = &sis->first_swap_extent;
1411                 sis->curr_swap_extent = se;
1412                 se->start_page = 0;
1413                 se->nr_pages = nr_pages;
1414                 se->start_block = start_block;
1415                 return 1;
1416         } else {
1417                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1418                 se = list_entry(lh, struct swap_extent, list);
1419                 BUG_ON(se->start_page + se->nr_pages != start_page);
1420                 if (se->start_block + se->nr_pages == start_block) {
1421                         /* Merge it */
1422                         se->nr_pages += nr_pages;
1423                         return 0;
1424                 }
1425         }
1426
1427         /*
1428          * No merge.  Insert a new extent, preserving ordering.
1429          */
1430         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1431         if (new_se == NULL)
1432                 return -ENOMEM;
1433         new_se->start_page = start_page;
1434         new_se->nr_pages = nr_pages;
1435         new_se->start_block = start_block;
1436
1437         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1438         return 1;
1439 }
1440
1441 /*
1442  * A `swap extent' is a simple thing which maps a contiguous range of pages
1443  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1444  * is built at swapon time and is then used at swap_writepage/swap_readpage
1445  * time for locating where on disk a page belongs.
1446  *
1447  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1448  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1449  * swap files identically.
1450  *
1451  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1452  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1453  * swapfiles are handled *identically* after swapon time.
1454  *
1455  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1456  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1457  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1458  * requirements, they are simply tossed out - we will never use those blocks
1459  * for swapping.
1460  *
1461  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1462  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1463  * which will scribble on the fs.
1464  *
1465  * The amount of disk space which a single swap extent represents varies.
1466  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1467  * extents in the list.  To avoid much list walking, we cache the previous
1468  * search location in `curr_swap_extent', and start new searches from there.
1469  * This is extremely effective.  The average number of iterations in
1470  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1471  */
1472 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1473 {
1474         struct file *swap_file = sis->swap_file;
1475         struct address_space *mapping = swap_file->f_mapping;
1476         struct inode *inode = mapping->host;
1477         int ret;
1478
1479         if (S_ISBLK(inode->i_mode)) {
1480                 ret = add_swap_extent(sis, 0, sis->max, 0);
1481                 *span = sis->pages;
1482                 return ret;
1483         }
1484
1485         if (mapping->a_ops->swap_activate) {
1486                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1487                 if (!ret) {
1488                         sis->flags |= SWP_FILE;
1489                         ret = add_swap_extent(sis, 0, sis->max, 0);
1490                         *span = sis->pages;
1491                 }
1492                 return ret;
1493         }
1494
1495         return generic_swapfile_activate(sis, swap_file, span);
1496 }
1497
1498 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1499                                 unsigned char *swap_map,
1500                                 unsigned long *frontswap_map)
1501 {
1502         int i, prev;
1503
1504         if (prio >= 0)
1505                 p->prio = prio;
1506         else
1507                 p->prio = --least_priority;
1508         p->swap_map = swap_map;
1509         frontswap_map_set(p, frontswap_map);
1510         p->flags |= SWP_WRITEOK;
1511         atomic_long_add(p->pages, &nr_swap_pages);
1512         total_swap_pages += p->pages;
1513
1514         /* insert swap space into swap_list: */
1515         prev = -1;
1516         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1517                 if (p->prio >= swap_info[i]->prio)
1518                         break;
1519                 prev = i;
1520         }
1521         p->next = i;
1522         if (prev < 0)
1523                 swap_list.head = swap_list.next = p->type;
1524         else
1525                 swap_info[prev]->next = p->type;
1526 }
1527
1528 static void enable_swap_info(struct swap_info_struct *p, int prio,
1529                                 unsigned char *swap_map,
1530                                 unsigned long *frontswap_map)
1531 {
1532         spin_lock(&swap_lock);
1533         spin_lock(&p->lock);
1534         _enable_swap_info(p, prio, swap_map, frontswap_map);
1535         frontswap_init(p->type);
1536         spin_unlock(&p->lock);
1537         spin_unlock(&swap_lock);
1538 }
1539
1540 static void reinsert_swap_info(struct swap_info_struct *p)
1541 {
1542         spin_lock(&swap_lock);
1543         spin_lock(&p->lock);
1544         _enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1545         spin_unlock(&p->lock);
1546         spin_unlock(&swap_lock);
1547 }
1548
1549 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1550 {
1551         struct swap_info_struct *p = NULL;
1552         unsigned char *swap_map;
1553         struct file *swap_file, *victim;
1554         struct address_space *mapping;
1555         struct inode *inode;
1556         struct filename *pathname;
1557         int i, type, prev;
1558         int err;
1559
1560         if (!capable(CAP_SYS_ADMIN))
1561                 return -EPERM;
1562
1563         BUG_ON(!current->mm);
1564
1565         pathname = getname(specialfile);
1566         if (IS_ERR(pathname))
1567                 return PTR_ERR(pathname);
1568
1569         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1570         err = PTR_ERR(victim);
1571         if (IS_ERR(victim))
1572                 goto out;
1573
1574         mapping = victim->f_mapping;
1575         prev = -1;
1576         spin_lock(&swap_lock);
1577         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1578                 p = swap_info[type];
1579                 if (p->flags & SWP_WRITEOK) {
1580                         if (p->swap_file->f_mapping == mapping)
1581                                 break;
1582                 }
1583                 prev = type;
1584         }
1585         if (type < 0) {
1586                 err = -EINVAL;
1587                 spin_unlock(&swap_lock);
1588                 goto out_dput;
1589         }
1590         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1591                 vm_unacct_memory(p->pages);
1592         else {
1593                 err = -ENOMEM;
1594                 spin_unlock(&swap_lock);
1595                 goto out_dput;
1596         }
1597         if (prev < 0)
1598                 swap_list.head = p->next;
1599         else
1600                 swap_info[prev]->next = p->next;
1601         if (type == swap_list.next) {
1602                 /* just pick something that's safe... */
1603                 swap_list.next = swap_list.head;
1604         }
1605         spin_lock(&p->lock);
1606         if (p->prio < 0) {
1607                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1608                         swap_info[i]->prio = p->prio--;
1609                 least_priority++;
1610         }
1611         atomic_long_sub(p->pages, &nr_swap_pages);
1612         total_swap_pages -= p->pages;
1613         p->flags &= ~SWP_WRITEOK;
1614         spin_unlock(&p->lock);
1615         spin_unlock(&swap_lock);
1616
1617         set_current_oom_origin();
1618         err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1619         clear_current_oom_origin();
1620
1621         if (err) {
1622                 /* re-insert swap space back into swap_list */
1623                 reinsert_swap_info(p);
1624                 goto out_dput;
1625         }
1626
1627         destroy_swap_extents(p);
1628         if (p->flags & SWP_CONTINUED)
1629                 free_swap_count_continuations(p);
1630
1631         mutex_lock(&swapon_mutex);
1632         spin_lock(&swap_lock);
1633         spin_lock(&p->lock);
1634         drain_mmlist();
1635
1636         /* wait for anyone still in scan_swap_map */
1637         p->highest_bit = 0;             /* cuts scans short */
1638         while (p->flags >= SWP_SCANNING) {
1639                 spin_unlock(&p->lock);
1640                 spin_unlock(&swap_lock);
1641                 schedule_timeout_uninterruptible(1);
1642                 spin_lock(&swap_lock);
1643                 spin_lock(&p->lock);
1644         }
1645
1646         swap_file = p->swap_file;
1647         p->swap_file = NULL;
1648         p->max = 0;
1649         swap_map = p->swap_map;
1650         p->swap_map = NULL;
1651         p->flags = 0;
1652         frontswap_invalidate_area(type);
1653         spin_unlock(&p->lock);
1654         spin_unlock(&swap_lock);
1655         mutex_unlock(&swapon_mutex);
1656         vfree(swap_map);
1657         vfree(frontswap_map_get(p));
1658         /* Destroy swap account informatin */
1659         swap_cgroup_swapoff(type);
1660
1661         inode = mapping->host;
1662         if (S_ISBLK(inode->i_mode)) {
1663                 struct block_device *bdev = I_BDEV(inode);
1664                 set_blocksize(bdev, p->old_block_size);
1665                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1666         } else {
1667                 mutex_lock(&inode->i_mutex);
1668                 inode->i_flags &= ~S_SWAPFILE;
1669                 mutex_unlock(&inode->i_mutex);
1670         }
1671         filp_close(swap_file, NULL);
1672         err = 0;
1673         atomic_inc(&proc_poll_event);
1674         wake_up_interruptible(&proc_poll_wait);
1675
1676 out_dput:
1677         filp_close(victim, NULL);
1678 out:
1679         putname(pathname);
1680         return err;
1681 }
1682
1683 #ifdef CONFIG_PROC_FS
1684 static unsigned swaps_poll(struct file *file, poll_table *wait)
1685 {
1686         struct seq_file *seq = file->private_data;
1687
1688         poll_wait(file, &proc_poll_wait, wait);
1689
1690         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691                 seq->poll_event = atomic_read(&proc_poll_event);
1692                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693         }
1694
1695         return POLLIN | POLLRDNORM;
1696 }
1697
1698 /* iterator */
1699 static void *swap_start(struct seq_file *swap, loff_t *pos)
1700 {
1701         struct swap_info_struct *si;
1702         int type;
1703         loff_t l = *pos;
1704
1705         mutex_lock(&swapon_mutex);
1706
1707         if (!l)
1708                 return SEQ_START_TOKEN;
1709
1710         for (type = 0; type < nr_swapfiles; type++) {
1711                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1712                 si = swap_info[type];
1713                 if (!(si->flags & SWP_USED) || !si->swap_map)
1714                         continue;
1715                 if (!--l)
1716                         return si;
1717         }
1718
1719         return NULL;
1720 }
1721
1722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723 {
1724         struct swap_info_struct *si = v;
1725         int type;
1726
1727         if (v == SEQ_START_TOKEN)
1728                 type = 0;
1729         else
1730                 type = si->type + 1;
1731
1732         for (; type < nr_swapfiles; type++) {
1733                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1734                 si = swap_info[type];
1735                 if (!(si->flags & SWP_USED) || !si->swap_map)
1736                         continue;
1737                 ++*pos;
1738                 return si;
1739         }
1740
1741         return NULL;
1742 }
1743
1744 static void swap_stop(struct seq_file *swap, void *v)
1745 {
1746         mutex_unlock(&swapon_mutex);
1747 }
1748
1749 static int swap_show(struct seq_file *swap, void *v)
1750 {
1751         struct swap_info_struct *si = v;
1752         struct file *file;
1753         int len;
1754
1755         if (si == SEQ_START_TOKEN) {
1756                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757                 return 0;
1758         }
1759
1760         file = si->swap_file;
1761         len = seq_path(swap, &file->f_path, " \t\n\\");
1762         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1763                         len < 40 ? 40 - len : 1, " ",
1764                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1765                                 "partition" : "file\t",
1766                         si->pages << (PAGE_SHIFT - 10),
1767                         si->inuse_pages << (PAGE_SHIFT - 10),
1768                         si->prio);
1769         return 0;
1770 }
1771
1772 static const struct seq_operations swaps_op = {
1773         .start =        swap_start,
1774         .next =         swap_next,
1775         .stop =         swap_stop,
1776         .show =         swap_show
1777 };
1778
1779 static int swaps_open(struct inode *inode, struct file *file)
1780 {
1781         struct seq_file *seq;
1782         int ret;
1783
1784         ret = seq_open(file, &swaps_op);
1785         if (ret)
1786                 return ret;
1787
1788         seq = file->private_data;
1789         seq->poll_event = atomic_read(&proc_poll_event);
1790         return 0;
1791 }
1792
1793 static const struct file_operations proc_swaps_operations = {
1794         .open           = swaps_open,
1795         .read           = seq_read,
1796         .llseek         = seq_lseek,
1797         .release        = seq_release,
1798         .poll           = swaps_poll,
1799 };
1800
1801 static int __init procswaps_init(void)
1802 {
1803         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1804         return 0;
1805 }
1806 __initcall(procswaps_init);
1807 #endif /* CONFIG_PROC_FS */
1808
1809 #ifdef MAX_SWAPFILES_CHECK
1810 static int __init max_swapfiles_check(void)
1811 {
1812         MAX_SWAPFILES_CHECK();
1813         return 0;
1814 }
1815 late_initcall(max_swapfiles_check);
1816 #endif
1817
1818 static struct swap_info_struct *alloc_swap_info(void)
1819 {
1820         struct swap_info_struct *p;
1821         unsigned int type;
1822
1823         p = kzalloc(sizeof(*p), GFP_KERNEL);
1824         if (!p)
1825                 return ERR_PTR(-ENOMEM);
1826
1827         spin_lock(&swap_lock);
1828         for (type = 0; type < nr_swapfiles; type++) {
1829                 if (!(swap_info[type]->flags & SWP_USED))
1830                         break;
1831         }
1832         if (type >= MAX_SWAPFILES) {
1833                 spin_unlock(&swap_lock);
1834                 kfree(p);
1835                 return ERR_PTR(-EPERM);
1836         }
1837         if (type >= nr_swapfiles) {
1838                 p->type = type;
1839                 swap_info[type] = p;
1840                 /*
1841                  * Write swap_info[type] before nr_swapfiles, in case a
1842                  * racing procfs swap_start() or swap_next() is reading them.
1843                  * (We never shrink nr_swapfiles, we never free this entry.)
1844                  */
1845                 smp_wmb();
1846                 nr_swapfiles++;
1847         } else {
1848                 kfree(p);
1849                 p = swap_info[type];
1850                 /*
1851                  * Do not memset this entry: a racing procfs swap_next()
1852                  * would be relying on p->type to remain valid.
1853                  */
1854         }
1855         INIT_LIST_HEAD(&p->first_swap_extent.list);
1856         p->flags = SWP_USED;
1857         p->next = -1;
1858         spin_unlock(&swap_lock);
1859         spin_lock_init(&p->lock);
1860
1861         return p;
1862 }
1863
1864 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1865 {
1866         int error;
1867
1868         if (S_ISBLK(inode->i_mode)) {
1869                 p->bdev = bdgrab(I_BDEV(inode));
1870                 error = blkdev_get(p->bdev,
1871                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1872                                    sys_swapon);
1873                 if (error < 0) {
1874                         p->bdev = NULL;
1875                         return -EINVAL;
1876                 }
1877                 p->old_block_size = block_size(p->bdev);
1878                 error = set_blocksize(p->bdev, PAGE_SIZE);
1879                 if (error < 0)
1880                         return error;
1881                 p->flags |= SWP_BLKDEV;
1882         } else if (S_ISREG(inode->i_mode)) {
1883                 p->bdev = inode->i_sb->s_bdev;
1884                 mutex_lock(&inode->i_mutex);
1885                 if (IS_SWAPFILE(inode))
1886                         return -EBUSY;
1887         } else
1888                 return -EINVAL;
1889
1890         return 0;
1891 }
1892
1893 static unsigned long read_swap_header(struct swap_info_struct *p,
1894                                         union swap_header *swap_header,
1895                                         struct inode *inode)
1896 {
1897         int i;
1898         unsigned long maxpages;
1899         unsigned long swapfilepages;
1900
1901         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1902                 printk(KERN_ERR "Unable to find swap-space signature\n");
1903                 return 0;
1904         }
1905
1906         /* swap partition endianess hack... */
1907         if (swab32(swap_header->info.version) == 1) {
1908                 swab32s(&swap_header->info.version);
1909                 swab32s(&swap_header->info.last_page);
1910                 swab32s(&swap_header->info.nr_badpages);
1911                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1912                         swab32s(&swap_header->info.badpages[i]);
1913         }
1914         /* Check the swap header's sub-version */
1915         if (swap_header->info.version != 1) {
1916                 printk(KERN_WARNING
1917                        "Unable to handle swap header version %d\n",
1918                        swap_header->info.version);
1919                 return 0;
1920         }
1921
1922         p->lowest_bit  = 1;
1923         p->cluster_next = 1;
1924         p->cluster_nr = 0;
1925
1926         /*
1927          * Find out how many pages are allowed for a single swap
1928          * device. There are two limiting factors: 1) the number
1929          * of bits for the swap offset in the swp_entry_t type, and
1930          * 2) the number of bits in the swap pte as defined by the
1931          * different architectures. In order to find the
1932          * largest possible bit mask, a swap entry with swap type 0
1933          * and swap offset ~0UL is created, encoded to a swap pte,
1934          * decoded to a swp_entry_t again, and finally the swap
1935          * offset is extracted. This will mask all the bits from
1936          * the initial ~0UL mask that can't be encoded in either
1937          * the swp_entry_t or the architecture definition of a
1938          * swap pte.
1939          */
1940         maxpages = swp_offset(pte_to_swp_entry(
1941                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1942         if (maxpages > swap_header->info.last_page) {
1943                 maxpages = swap_header->info.last_page + 1;
1944                 /* p->max is an unsigned int: don't overflow it */
1945                 if ((unsigned int)maxpages == 0)
1946                         maxpages = UINT_MAX;
1947         }
1948         p->highest_bit = maxpages - 1;
1949
1950         if (!maxpages)
1951                 return 0;
1952         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1953         if (swapfilepages && maxpages > swapfilepages) {
1954                 printk(KERN_WARNING
1955                        "Swap area shorter than signature indicates\n");
1956                 return 0;
1957         }
1958         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1959                 return 0;
1960         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1961                 return 0;
1962
1963         return maxpages;
1964 }
1965
1966 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1967                                         union swap_header *swap_header,
1968                                         unsigned char *swap_map,
1969                                         unsigned long maxpages,
1970                                         sector_t *span)
1971 {
1972         int i;
1973         unsigned int nr_good_pages;
1974         int nr_extents;
1975
1976         nr_good_pages = maxpages - 1;   /* omit header page */
1977
1978         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1979                 unsigned int page_nr = swap_header->info.badpages[i];
1980                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1981                         return -EINVAL;
1982                 if (page_nr < maxpages) {
1983                         swap_map[page_nr] = SWAP_MAP_BAD;
1984                         nr_good_pages--;
1985                 }
1986         }
1987
1988         if (nr_good_pages) {
1989                 swap_map[0] = SWAP_MAP_BAD;
1990                 p->max = maxpages;
1991                 p->pages = nr_good_pages;
1992                 nr_extents = setup_swap_extents(p, span);
1993                 if (nr_extents < 0)
1994                         return nr_extents;
1995                 nr_good_pages = p->pages;
1996         }
1997         if (!nr_good_pages) {
1998                 printk(KERN_WARNING "Empty swap-file\n");
1999                 return -EINVAL;
2000         }
2001
2002         return nr_extents;
2003 }
2004
2005 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2006 {
2007         struct swap_info_struct *p;
2008         struct filename *name;
2009         struct file *swap_file = NULL;
2010         struct address_space *mapping;
2011         int i;
2012         int prio;
2013         int error;
2014         union swap_header *swap_header;
2015         int nr_extents;
2016         sector_t span;
2017         unsigned long maxpages;
2018         unsigned char *swap_map = NULL;
2019         unsigned long *frontswap_map = NULL;
2020         struct page *page = NULL;
2021         struct inode *inode = NULL;
2022
2023         if (swap_flags & ~SWAP_FLAGS_VALID)
2024                 return -EINVAL;
2025
2026         if (!capable(CAP_SYS_ADMIN))
2027                 return -EPERM;
2028
2029         p = alloc_swap_info();
2030         if (IS_ERR(p))
2031                 return PTR_ERR(p);
2032
2033         name = getname(specialfile);
2034         if (IS_ERR(name)) {
2035                 error = PTR_ERR(name);
2036                 name = NULL;
2037                 goto bad_swap;
2038         }
2039         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2040         if (IS_ERR(swap_file)) {
2041                 error = PTR_ERR(swap_file);
2042                 swap_file = NULL;
2043                 goto bad_swap;
2044         }
2045
2046         p->swap_file = swap_file;
2047         mapping = swap_file->f_mapping;
2048
2049         for (i = 0; i < nr_swapfiles; i++) {
2050                 struct swap_info_struct *q = swap_info[i];
2051
2052                 if (q == p || !q->swap_file)
2053                         continue;
2054                 if (mapping == q->swap_file->f_mapping) {
2055                         error = -EBUSY;
2056                         goto bad_swap;
2057                 }
2058         }
2059
2060         inode = mapping->host;
2061         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2062         error = claim_swapfile(p, inode);
2063         if (unlikely(error))
2064                 goto bad_swap;
2065
2066         /*
2067          * Read the swap header.
2068          */
2069         if (!mapping->a_ops->readpage) {
2070                 error = -EINVAL;
2071                 goto bad_swap;
2072         }
2073         page = read_mapping_page(mapping, 0, swap_file);
2074         if (IS_ERR(page)) {
2075                 error = PTR_ERR(page);
2076                 goto bad_swap;
2077         }
2078         swap_header = kmap(page);
2079
2080         maxpages = read_swap_header(p, swap_header, inode);
2081         if (unlikely(!maxpages)) {
2082                 error = -EINVAL;
2083                 goto bad_swap;
2084         }
2085
2086         /* OK, set up the swap map and apply the bad block list */
2087         swap_map = vzalloc(maxpages);
2088         if (!swap_map) {
2089                 error = -ENOMEM;
2090                 goto bad_swap;
2091         }
2092
2093         error = swap_cgroup_swapon(p->type, maxpages);
2094         if (error)
2095                 goto bad_swap;
2096
2097         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2098                 maxpages, &span);
2099         if (unlikely(nr_extents < 0)) {
2100                 error = nr_extents;
2101                 goto bad_swap;
2102         }
2103         /* frontswap enabled? set up bit-per-page map for frontswap */
2104         if (frontswap_enabled)
2105                 frontswap_map = vzalloc(maxpages / sizeof(long));
2106
2107         if (p->bdev) {
2108                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2109                         p->flags |= SWP_SOLIDSTATE;
2110                         p->cluster_next = 1 + (random32() % p->highest_bit);
2111                 }
2112                 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2113                         p->flags |= SWP_DISCARDABLE;
2114         }
2115
2116         mutex_lock(&swapon_mutex);
2117         prio = -1;
2118         if (swap_flags & SWAP_FLAG_PREFER)
2119                 prio =
2120                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2121         enable_swap_info(p, prio, swap_map, frontswap_map);
2122
2123         printk(KERN_INFO "Adding %uk swap on %s.  "
2124                         "Priority:%d extents:%d across:%lluk %s%s%s\n",
2125                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2126                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2127                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2128                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2129                 (frontswap_map) ? "FS" : "");
2130
2131         mutex_unlock(&swapon_mutex);
2132         atomic_inc(&proc_poll_event);
2133         wake_up_interruptible(&proc_poll_wait);
2134
2135         if (S_ISREG(inode->i_mode))
2136                 inode->i_flags |= S_SWAPFILE;
2137         error = 0;
2138         goto out;
2139 bad_swap:
2140         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2141                 set_blocksize(p->bdev, p->old_block_size);
2142                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2143         }
2144         destroy_swap_extents(p);
2145         swap_cgroup_swapoff(p->type);
2146         spin_lock(&swap_lock);
2147         p->swap_file = NULL;
2148         p->flags = 0;
2149         spin_unlock(&swap_lock);
2150         vfree(swap_map);
2151         if (swap_file) {
2152                 if (inode && S_ISREG(inode->i_mode)) {
2153                         mutex_unlock(&inode->i_mutex);
2154                         inode = NULL;
2155                 }
2156                 filp_close(swap_file, NULL);
2157         }
2158 out:
2159         if (page && !IS_ERR(page)) {
2160                 kunmap(page);
2161                 page_cache_release(page);
2162         }
2163         if (name)
2164                 putname(name);
2165         if (inode && S_ISREG(inode->i_mode))
2166                 mutex_unlock(&inode->i_mutex);
2167         return error;
2168 }
2169
2170 void si_swapinfo(struct sysinfo *val)
2171 {
2172         unsigned int type;
2173         unsigned long nr_to_be_unused = 0;
2174
2175         spin_lock(&swap_lock);
2176         for (type = 0; type < nr_swapfiles; type++) {
2177                 struct swap_info_struct *si = swap_info[type];
2178
2179                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2180                         nr_to_be_unused += si->inuse_pages;
2181         }
2182         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2183         val->totalswap = total_swap_pages + nr_to_be_unused;
2184         spin_unlock(&swap_lock);
2185 }
2186
2187 /*
2188  * Verify that a swap entry is valid and increment its swap map count.
2189  *
2190  * Returns error code in following case.
2191  * - success -> 0
2192  * - swp_entry is invalid -> EINVAL
2193  * - swp_entry is migration entry -> EINVAL
2194  * - swap-cache reference is requested but there is already one. -> EEXIST
2195  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2196  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2197  */
2198 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2199 {
2200         struct swap_info_struct *p;
2201         unsigned long offset, type;
2202         unsigned char count;
2203         unsigned char has_cache;
2204         int err = -EINVAL;
2205
2206         if (non_swap_entry(entry))
2207                 goto out;
2208
2209         type = swp_type(entry);
2210         if (type >= nr_swapfiles)
2211                 goto bad_file;
2212         p = swap_info[type];
2213         offset = swp_offset(entry);
2214
2215         spin_lock(&p->lock);
2216         if (unlikely(offset >= p->max))
2217                 goto unlock_out;
2218
2219         count = p->swap_map[offset];
2220         has_cache = count & SWAP_HAS_CACHE;
2221         count &= ~SWAP_HAS_CACHE;
2222         err = 0;
2223
2224         if (usage == SWAP_HAS_CACHE) {
2225
2226                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2227                 if (!has_cache && count)
2228                         has_cache = SWAP_HAS_CACHE;
2229                 else if (has_cache)             /* someone else added cache */
2230                         err = -EEXIST;
2231                 else                            /* no users remaining */
2232                         err = -ENOENT;
2233
2234         } else if (count || has_cache) {
2235
2236                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2237                         count += usage;
2238                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2239                         err = -EINVAL;
2240                 else if (swap_count_continued(p, offset, count))
2241                         count = COUNT_CONTINUED;
2242                 else
2243                         err = -ENOMEM;
2244         } else
2245                 err = -ENOENT;                  /* unused swap entry */
2246
2247         p->swap_map[offset] = count | has_cache;
2248
2249 unlock_out:
2250         spin_unlock(&p->lock);
2251 out:
2252         return err;
2253
2254 bad_file:
2255         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2256         goto out;
2257 }
2258
2259 /*
2260  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2261  * (in which case its reference count is never incremented).
2262  */
2263 void swap_shmem_alloc(swp_entry_t entry)
2264 {
2265         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2266 }
2267
2268 /*
2269  * Increase reference count of swap entry by 1.
2270  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2271  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2272  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2273  * might occur if a page table entry has got corrupted.
2274  */
2275 int swap_duplicate(swp_entry_t entry)
2276 {
2277         int err = 0;
2278
2279         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2280                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2281         return err;
2282 }
2283
2284 /*
2285  * @entry: swap entry for which we allocate swap cache.
2286  *
2287  * Called when allocating swap cache for existing swap entry,
2288  * This can return error codes. Returns 0 at success.
2289  * -EBUSY means there is a swap cache.
2290  * Note: return code is different from swap_duplicate().
2291  */
2292 int swapcache_prepare(swp_entry_t entry)
2293 {
2294         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2295 }
2296
2297 struct swap_info_struct *page_swap_info(struct page *page)
2298 {
2299         swp_entry_t swap = { .val = page_private(page) };
2300         BUG_ON(!PageSwapCache(page));
2301         return swap_info[swp_type(swap)];
2302 }
2303
2304 /*
2305  * out-of-line __page_file_ methods to avoid include hell.
2306  */
2307 struct address_space *__page_file_mapping(struct page *page)
2308 {
2309         VM_BUG_ON(!PageSwapCache(page));
2310         return page_swap_info(page)->swap_file->f_mapping;
2311 }
2312 EXPORT_SYMBOL_GPL(__page_file_mapping);
2313
2314 pgoff_t __page_file_index(struct page *page)
2315 {
2316         swp_entry_t swap = { .val = page_private(page) };
2317         VM_BUG_ON(!PageSwapCache(page));
2318         return swp_offset(swap);
2319 }
2320 EXPORT_SYMBOL_GPL(__page_file_index);
2321
2322 /*
2323  * add_swap_count_continuation - called when a swap count is duplicated
2324  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2325  * page of the original vmalloc'ed swap_map, to hold the continuation count
2326  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2327  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2328  *
2329  * These continuation pages are seldom referenced: the common paths all work
2330  * on the original swap_map, only referring to a continuation page when the
2331  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2332  *
2333  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2334  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2335  * can be called after dropping locks.
2336  */
2337 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2338 {
2339         struct swap_info_struct *si;
2340         struct page *head;
2341         struct page *page;
2342         struct page *list_page;
2343         pgoff_t offset;
2344         unsigned char count;
2345
2346         /*
2347          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2348          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2349          */
2350         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2351
2352         si = swap_info_get(entry);
2353         if (!si) {
2354                 /*
2355                  * An acceptable race has occurred since the failing
2356                  * __swap_duplicate(): the swap entry has been freed,
2357                  * perhaps even the whole swap_map cleared for swapoff.
2358                  */
2359                 goto outer;
2360         }
2361
2362         offset = swp_offset(entry);
2363         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2364
2365         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2366                 /*
2367                  * The higher the swap count, the more likely it is that tasks
2368                  * will race to add swap count continuation: we need to avoid
2369                  * over-provisioning.
2370                  */
2371                 goto out;
2372         }
2373
2374         if (!page) {
2375                 spin_unlock(&si->lock);
2376                 return -ENOMEM;
2377         }
2378
2379         /*
2380          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2381          * no architecture is using highmem pages for kernel pagetables: so it
2382          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2383          */
2384         head = vmalloc_to_page(si->swap_map + offset);
2385         offset &= ~PAGE_MASK;
2386
2387         /*
2388          * Page allocation does not initialize the page's lru field,
2389          * but it does always reset its private field.
2390          */
2391         if (!page_private(head)) {
2392                 BUG_ON(count & COUNT_CONTINUED);
2393                 INIT_LIST_HEAD(&head->lru);
2394                 set_page_private(head, SWP_CONTINUED);
2395                 si->flags |= SWP_CONTINUED;
2396         }
2397
2398         list_for_each_entry(list_page, &head->lru, lru) {
2399                 unsigned char *map;
2400
2401                 /*
2402                  * If the previous map said no continuation, but we've found
2403                  * a continuation page, free our allocation and use this one.
2404                  */
2405                 if (!(count & COUNT_CONTINUED))
2406                         goto out;
2407
2408                 map = kmap_atomic(list_page) + offset;
2409                 count = *map;
2410                 kunmap_atomic(map);
2411
2412                 /*
2413                  * If this continuation count now has some space in it,
2414                  * free our allocation and use this one.
2415                  */
2416                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2417                         goto out;
2418         }
2419
2420         list_add_tail(&page->lru, &head->lru);
2421         page = NULL;                    /* now it's attached, don't free it */
2422 out:
2423         spin_unlock(&si->lock);
2424 outer:
2425         if (page)
2426                 __free_page(page);
2427         return 0;
2428 }
2429
2430 /*
2431  * swap_count_continued - when the original swap_map count is incremented
2432  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2433  * into, carry if so, or else fail until a new continuation page is allocated;
2434  * when the original swap_map count is decremented from 0 with continuation,
2435  * borrow from the continuation and report whether it still holds more.
2436  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2437  */
2438 static bool swap_count_continued(struct swap_info_struct *si,
2439                                  pgoff_t offset, unsigned char count)
2440 {
2441         struct page *head;
2442         struct page *page;
2443         unsigned char *map;
2444
2445         head = vmalloc_to_page(si->swap_map + offset);
2446         if (page_private(head) != SWP_CONTINUED) {
2447                 BUG_ON(count & COUNT_CONTINUED);
2448                 return false;           /* need to add count continuation */
2449         }
2450
2451         offset &= ~PAGE_MASK;
2452         page = list_entry(head->lru.next, struct page, lru);
2453         map = kmap_atomic(page) + offset;
2454
2455         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2456                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2457
2458         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2459                 /*
2460                  * Think of how you add 1 to 999
2461                  */
2462                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2463                         kunmap_atomic(map);
2464                         page = list_entry(page->lru.next, struct page, lru);
2465                         BUG_ON(page == head);
2466                         map = kmap_atomic(page) + offset;
2467                 }
2468                 if (*map == SWAP_CONT_MAX) {
2469                         kunmap_atomic(map);
2470                         page = list_entry(page->lru.next, struct page, lru);
2471                         if (page == head)
2472                                 return false;   /* add count continuation */
2473                         map = kmap_atomic(page) + offset;
2474 init_map:               *map = 0;               /* we didn't zero the page */
2475                 }
2476                 *map += 1;
2477                 kunmap_atomic(map);
2478                 page = list_entry(page->lru.prev, struct page, lru);
2479                 while (page != head) {
2480                         map = kmap_atomic(page) + offset;
2481                         *map = COUNT_CONTINUED;
2482                         kunmap_atomic(map);
2483                         page = list_entry(page->lru.prev, struct page, lru);
2484                 }
2485                 return true;                    /* incremented */
2486
2487         } else {                                /* decrementing */
2488                 /*
2489                  * Think of how you subtract 1 from 1000
2490                  */
2491                 BUG_ON(count != COUNT_CONTINUED);
2492                 while (*map == COUNT_CONTINUED) {
2493                         kunmap_atomic(map);
2494                         page = list_entry(page->lru.next, struct page, lru);
2495                         BUG_ON(page == head);
2496                         map = kmap_atomic(page) + offset;
2497                 }
2498                 BUG_ON(*map == 0);
2499                 *map -= 1;
2500                 if (*map == 0)
2501                         count = 0;
2502                 kunmap_atomic(map);
2503                 page = list_entry(page->lru.prev, struct page, lru);
2504                 while (page != head) {
2505                         map = kmap_atomic(page) + offset;
2506                         *map = SWAP_CONT_MAX | count;
2507                         count = COUNT_CONTINUED;
2508                         kunmap_atomic(map);
2509                         page = list_entry(page->lru.prev, struct page, lru);
2510                 }
2511                 return count == COUNT_CONTINUED;
2512         }
2513 }
2514
2515 /*
2516  * free_swap_count_continuations - swapoff free all the continuation pages
2517  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2518  */
2519 static void free_swap_count_continuations(struct swap_info_struct *si)
2520 {
2521         pgoff_t offset;
2522
2523         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2524                 struct page *head;
2525                 head = vmalloc_to_page(si->swap_map + offset);
2526                 if (page_private(head)) {
2527                         struct list_head *this, *next;
2528                         list_for_each_safe(this, next, &head->lru) {
2529                                 struct page *page;
2530                                 page = list_entry(this, struct page, lru);
2531                                 list_del(this);
2532                                 __free_page(page);
2533                         }
2534                 }
2535         }
2536 }