]> Pileus Git - ~andy/linux/blob - mm/swap.c
mm: fix slab->page flags corruption
[~andy/linux] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33
34 #include "internal.h"
35
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42
43 /*
44  * This path almost never happens for VM activity - pages are normally
45  * freed via pagevecs.  But it gets used by networking.
46  */
47 static void __page_cache_release(struct page *page)
48 {
49         if (PageLRU(page)) {
50                 unsigned long flags;
51                 struct zone *zone = page_zone(page);
52
53                 spin_lock_irqsave(&zone->lru_lock, flags);
54                 VM_BUG_ON(!PageLRU(page));
55                 __ClearPageLRU(page);
56                 del_page_from_lru_list(zone, page, page_off_lru(page));
57                 spin_unlock_irqrestore(&zone->lru_lock, flags);
58         }
59 }
60
61 static void __put_single_page(struct page *page)
62 {
63         __page_cache_release(page);
64         free_hot_cold_page(page, 0);
65 }
66
67 static void __put_compound_page(struct page *page)
68 {
69         compound_page_dtor *dtor;
70
71         __page_cache_release(page);
72         dtor = get_compound_page_dtor(page);
73         (*dtor)(page);
74 }
75
76 static void put_compound_page(struct page *page)
77 {
78         if (unlikely(PageTail(page))) {
79                 /* __split_huge_page_refcount can run under us */
80                 struct page *page_head = compound_trans_head(page);
81
82                 if (likely(page != page_head &&
83                            get_page_unless_zero(page_head))) {
84                         unsigned long flags;
85
86                         /*
87                          * THP can not break up slab pages so avoid taking
88                          * compound_lock().  Slab performs non-atomic bit ops
89                          * on page->flags for better performance.  In particular
90                          * slab_unlock() in slub used to be a hot path.  It is
91                          * still hot on arches that do not support
92                          * this_cpu_cmpxchg_double().
93                          */
94                         if (PageSlab(page_head)) {
95                                 if (PageTail(page)) {
96                                         if (put_page_testzero(page_head))
97                                                 VM_BUG_ON(1);
98
99                                         atomic_dec(&page->_mapcount);
100                                         goto skip_lock_tail;
101                                 } else
102                                         goto skip_lock;
103                         }
104                         /*
105                          * page_head wasn't a dangling pointer but it
106                          * may not be a head page anymore by the time
107                          * we obtain the lock. That is ok as long as it
108                          * can't be freed from under us.
109                          */
110                         flags = compound_lock_irqsave(page_head);
111                         if (unlikely(!PageTail(page))) {
112                                 /* __split_huge_page_refcount run before us */
113                                 compound_unlock_irqrestore(page_head, flags);
114 skip_lock:
115                                 if (put_page_testzero(page_head))
116                                         __put_single_page(page_head);
117 out_put_single:
118                                 if (put_page_testzero(page))
119                                         __put_single_page(page);
120                                 return;
121                         }
122                         VM_BUG_ON(page_head != page->first_page);
123                         /*
124                          * We can release the refcount taken by
125                          * get_page_unless_zero() now that
126                          * __split_huge_page_refcount() is blocked on
127                          * the compound_lock.
128                          */
129                         if (put_page_testzero(page_head))
130                                 VM_BUG_ON(1);
131                         /* __split_huge_page_refcount will wait now */
132                         VM_BUG_ON(page_mapcount(page) <= 0);
133                         atomic_dec(&page->_mapcount);
134                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
135                         VM_BUG_ON(atomic_read(&page->_count) != 0);
136                         compound_unlock_irqrestore(page_head, flags);
137
138 skip_lock_tail:
139                         if (put_page_testzero(page_head)) {
140                                 if (PageHead(page_head))
141                                         __put_compound_page(page_head);
142                                 else
143                                         __put_single_page(page_head);
144                         }
145                 } else {
146                         /* page_head is a dangling pointer */
147                         VM_BUG_ON(PageTail(page));
148                         goto out_put_single;
149                 }
150         } else if (put_page_testzero(page)) {
151                 if (PageHead(page))
152                         __put_compound_page(page);
153                 else
154                         __put_single_page(page);
155         }
156 }
157
158 void put_page(struct page *page)
159 {
160         if (unlikely(PageCompound(page)))
161                 put_compound_page(page);
162         else if (put_page_testzero(page))
163                 __put_single_page(page);
164 }
165 EXPORT_SYMBOL(put_page);
166
167 /*
168  * This function is exported but must not be called by anything other
169  * than get_page(). It implements the slow path of get_page().
170  */
171 bool __get_page_tail(struct page *page)
172 {
173         /*
174          * This takes care of get_page() if run on a tail page
175          * returned by one of the get_user_pages/follow_page variants.
176          * get_user_pages/follow_page itself doesn't need the compound
177          * lock because it runs __get_page_tail_foll() under the
178          * proper PT lock that already serializes against
179          * split_huge_page().
180          */
181         unsigned long flags;
182         bool got = false;
183         struct page *page_head = compound_trans_head(page);
184
185         if (likely(page != page_head && get_page_unless_zero(page_head))) {
186
187                 /* Ref to put_compound_page() comment. */
188                 if (PageSlab(page_head)) {
189                         if (likely(PageTail(page))) {
190                                 __get_page_tail_foll(page, false);
191                                 return true;
192                         } else {
193                                 put_page(page_head);
194                                 return false;
195                         }
196                 }
197
198                 /*
199                  * page_head wasn't a dangling pointer but it
200                  * may not be a head page anymore by the time
201                  * we obtain the lock. That is ok as long as it
202                  * can't be freed from under us.
203                  */
204                 flags = compound_lock_irqsave(page_head);
205                 /* here __split_huge_page_refcount won't run anymore */
206                 if (likely(PageTail(page))) {
207                         __get_page_tail_foll(page, false);
208                         got = true;
209                 }
210                 compound_unlock_irqrestore(page_head, flags);
211                 if (unlikely(!got))
212                         put_page(page_head);
213         }
214         return got;
215 }
216 EXPORT_SYMBOL(__get_page_tail);
217
218 /**
219  * put_pages_list() - release a list of pages
220  * @pages: list of pages threaded on page->lru
221  *
222  * Release a list of pages which are strung together on page.lru.  Currently
223  * used by read_cache_pages() and related error recovery code.
224  */
225 void put_pages_list(struct list_head *pages)
226 {
227         while (!list_empty(pages)) {
228                 struct page *victim;
229
230                 victim = list_entry(pages->prev, struct page, lru);
231                 list_del(&victim->lru);
232                 page_cache_release(victim);
233         }
234 }
235 EXPORT_SYMBOL(put_pages_list);
236
237 static void pagevec_lru_move_fn(struct pagevec *pvec,
238                                 void (*move_fn)(struct page *page, void *arg),
239                                 void *arg)
240 {
241         int i;
242         struct zone *zone = NULL;
243         unsigned long flags = 0;
244
245         for (i = 0; i < pagevec_count(pvec); i++) {
246                 struct page *page = pvec->pages[i];
247                 struct zone *pagezone = page_zone(page);
248
249                 if (pagezone != zone) {
250                         if (zone)
251                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
252                         zone = pagezone;
253                         spin_lock_irqsave(&zone->lru_lock, flags);
254                 }
255
256                 (*move_fn)(page, arg);
257         }
258         if (zone)
259                 spin_unlock_irqrestore(&zone->lru_lock, flags);
260         release_pages(pvec->pages, pvec->nr, pvec->cold);
261         pagevec_reinit(pvec);
262 }
263
264 static void pagevec_move_tail_fn(struct page *page, void *arg)
265 {
266         int *pgmoved = arg;
267
268         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
269                 enum lru_list lru = page_lru_base_type(page);
270                 struct lruvec *lruvec;
271
272                 lruvec = mem_cgroup_lru_move_lists(page_zone(page),
273                                                    page, lru, lru);
274                 list_move_tail(&page->lru, &lruvec->lists[lru]);
275                 (*pgmoved)++;
276         }
277 }
278
279 /*
280  * pagevec_move_tail() must be called with IRQ disabled.
281  * Otherwise this may cause nasty races.
282  */
283 static void pagevec_move_tail(struct pagevec *pvec)
284 {
285         int pgmoved = 0;
286
287         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
288         __count_vm_events(PGROTATED, pgmoved);
289 }
290
291 /*
292  * Writeback is about to end against a page which has been marked for immediate
293  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
294  * inactive list.
295  */
296 void rotate_reclaimable_page(struct page *page)
297 {
298         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
299             !PageUnevictable(page) && PageLRU(page)) {
300                 struct pagevec *pvec;
301                 unsigned long flags;
302
303                 page_cache_get(page);
304                 local_irq_save(flags);
305                 pvec = &__get_cpu_var(lru_rotate_pvecs);
306                 if (!pagevec_add(pvec, page))
307                         pagevec_move_tail(pvec);
308                 local_irq_restore(flags);
309         }
310 }
311
312 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
313                                      int file, int rotated)
314 {
315         struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
316         struct zone_reclaim_stat *memcg_reclaim_stat;
317
318         memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
319
320         reclaim_stat->recent_scanned[file]++;
321         if (rotated)
322                 reclaim_stat->recent_rotated[file]++;
323
324         if (!memcg_reclaim_stat)
325                 return;
326
327         memcg_reclaim_stat->recent_scanned[file]++;
328         if (rotated)
329                 memcg_reclaim_stat->recent_rotated[file]++;
330 }
331
332 static void __activate_page(struct page *page, void *arg)
333 {
334         struct zone *zone = page_zone(page);
335
336         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
337                 int file = page_is_file_cache(page);
338                 int lru = page_lru_base_type(page);
339                 del_page_from_lru_list(zone, page, lru);
340
341                 SetPageActive(page);
342                 lru += LRU_ACTIVE;
343                 add_page_to_lru_list(zone, page, lru);
344                 __count_vm_event(PGACTIVATE);
345
346                 update_page_reclaim_stat(zone, page, file, 1);
347         }
348 }
349
350 #ifdef CONFIG_SMP
351 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
352
353 static void activate_page_drain(int cpu)
354 {
355         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
356
357         if (pagevec_count(pvec))
358                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
359 }
360
361 void activate_page(struct page *page)
362 {
363         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
364                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
365
366                 page_cache_get(page);
367                 if (!pagevec_add(pvec, page))
368                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
369                 put_cpu_var(activate_page_pvecs);
370         }
371 }
372
373 #else
374 static inline void activate_page_drain(int cpu)
375 {
376 }
377
378 void activate_page(struct page *page)
379 {
380         struct zone *zone = page_zone(page);
381
382         spin_lock_irq(&zone->lru_lock);
383         __activate_page(page, NULL);
384         spin_unlock_irq(&zone->lru_lock);
385 }
386 #endif
387
388 /*
389  * Mark a page as having seen activity.
390  *
391  * inactive,unreferenced        ->      inactive,referenced
392  * inactive,referenced          ->      active,unreferenced
393  * active,unreferenced          ->      active,referenced
394  */
395 void mark_page_accessed(struct page *page)
396 {
397         if (!PageActive(page) && !PageUnevictable(page) &&
398                         PageReferenced(page) && PageLRU(page)) {
399                 activate_page(page);
400                 ClearPageReferenced(page);
401         } else if (!PageReferenced(page)) {
402                 SetPageReferenced(page);
403         }
404 }
405 EXPORT_SYMBOL(mark_page_accessed);
406
407 void __lru_cache_add(struct page *page, enum lru_list lru)
408 {
409         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
410
411         page_cache_get(page);
412         if (!pagevec_add(pvec, page))
413                 __pagevec_lru_add(pvec, lru);
414         put_cpu_var(lru_add_pvecs);
415 }
416 EXPORT_SYMBOL(__lru_cache_add);
417
418 /**
419  * lru_cache_add_lru - add a page to a page list
420  * @page: the page to be added to the LRU.
421  * @lru: the LRU list to which the page is added.
422  */
423 void lru_cache_add_lru(struct page *page, enum lru_list lru)
424 {
425         if (PageActive(page)) {
426                 VM_BUG_ON(PageUnevictable(page));
427                 ClearPageActive(page);
428         } else if (PageUnevictable(page)) {
429                 VM_BUG_ON(PageActive(page));
430                 ClearPageUnevictable(page);
431         }
432
433         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
434         __lru_cache_add(page, lru);
435 }
436
437 /**
438  * add_page_to_unevictable_list - add a page to the unevictable list
439  * @page:  the page to be added to the unevictable list
440  *
441  * Add page directly to its zone's unevictable list.  To avoid races with
442  * tasks that might be making the page evictable, through eg. munlock,
443  * munmap or exit, while it's not on the lru, we want to add the page
444  * while it's locked or otherwise "invisible" to other tasks.  This is
445  * difficult to do when using the pagevec cache, so bypass that.
446  */
447 void add_page_to_unevictable_list(struct page *page)
448 {
449         struct zone *zone = page_zone(page);
450
451         spin_lock_irq(&zone->lru_lock);
452         SetPageUnevictable(page);
453         SetPageLRU(page);
454         add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
455         spin_unlock_irq(&zone->lru_lock);
456 }
457
458 /*
459  * If the page can not be invalidated, it is moved to the
460  * inactive list to speed up its reclaim.  It is moved to the
461  * head of the list, rather than the tail, to give the flusher
462  * threads some time to write it out, as this is much more
463  * effective than the single-page writeout from reclaim.
464  *
465  * If the page isn't page_mapped and dirty/writeback, the page
466  * could reclaim asap using PG_reclaim.
467  *
468  * 1. active, mapped page -> none
469  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
470  * 3. inactive, mapped page -> none
471  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
472  * 5. inactive, clean -> inactive, tail
473  * 6. Others -> none
474  *
475  * In 4, why it moves inactive's head, the VM expects the page would
476  * be write it out by flusher threads as this is much more effective
477  * than the single-page writeout from reclaim.
478  */
479 static void lru_deactivate_fn(struct page *page, void *arg)
480 {
481         int lru, file;
482         bool active;
483         struct zone *zone = page_zone(page);
484
485         if (!PageLRU(page))
486                 return;
487
488         if (PageUnevictable(page))
489                 return;
490
491         /* Some processes are using the page */
492         if (page_mapped(page))
493                 return;
494
495         active = PageActive(page);
496
497         file = page_is_file_cache(page);
498         lru = page_lru_base_type(page);
499         del_page_from_lru_list(zone, page, lru + active);
500         ClearPageActive(page);
501         ClearPageReferenced(page);
502         add_page_to_lru_list(zone, page, lru);
503
504         if (PageWriteback(page) || PageDirty(page)) {
505                 /*
506                  * PG_reclaim could be raced with end_page_writeback
507                  * It can make readahead confusing.  But race window
508                  * is _really_ small and  it's non-critical problem.
509                  */
510                 SetPageReclaim(page);
511         } else {
512                 struct lruvec *lruvec;
513                 /*
514                  * The page's writeback ends up during pagevec
515                  * We moves tha page into tail of inactive.
516                  */
517                 lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
518                 list_move_tail(&page->lru, &lruvec->lists[lru]);
519                 __count_vm_event(PGROTATED);
520         }
521
522         if (active)
523                 __count_vm_event(PGDEACTIVATE);
524         update_page_reclaim_stat(zone, page, file, 0);
525 }
526
527 /*
528  * Drain pages out of the cpu's pagevecs.
529  * Either "cpu" is the current CPU, and preemption has already been
530  * disabled; or "cpu" is being hot-unplugged, and is already dead.
531  */
532 void lru_add_drain_cpu(int cpu)
533 {
534         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
535         struct pagevec *pvec;
536         int lru;
537
538         for_each_lru(lru) {
539                 pvec = &pvecs[lru - LRU_BASE];
540                 if (pagevec_count(pvec))
541                         __pagevec_lru_add(pvec, lru);
542         }
543
544         pvec = &per_cpu(lru_rotate_pvecs, cpu);
545         if (pagevec_count(pvec)) {
546                 unsigned long flags;
547
548                 /* No harm done if a racing interrupt already did this */
549                 local_irq_save(flags);
550                 pagevec_move_tail(pvec);
551                 local_irq_restore(flags);
552         }
553
554         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
555         if (pagevec_count(pvec))
556                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
557
558         activate_page_drain(cpu);
559 }
560
561 /**
562  * deactivate_page - forcefully deactivate a page
563  * @page: page to deactivate
564  *
565  * This function hints the VM that @page is a good reclaim candidate,
566  * for example if its invalidation fails due to the page being dirty
567  * or under writeback.
568  */
569 void deactivate_page(struct page *page)
570 {
571         /*
572          * In a workload with many unevictable page such as mprotect, unevictable
573          * page deactivation for accelerating reclaim is pointless.
574          */
575         if (PageUnevictable(page))
576                 return;
577
578         if (likely(get_page_unless_zero(page))) {
579                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
580
581                 if (!pagevec_add(pvec, page))
582                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
583                 put_cpu_var(lru_deactivate_pvecs);
584         }
585 }
586
587 void lru_add_drain(void)
588 {
589         lru_add_drain_cpu(get_cpu());
590         put_cpu();
591 }
592
593 static void lru_add_drain_per_cpu(struct work_struct *dummy)
594 {
595         lru_add_drain();
596 }
597
598 /*
599  * Returns 0 for success
600  */
601 int lru_add_drain_all(void)
602 {
603         return schedule_on_each_cpu(lru_add_drain_per_cpu);
604 }
605
606 /*
607  * Batched page_cache_release().  Decrement the reference count on all the
608  * passed pages.  If it fell to zero then remove the page from the LRU and
609  * free it.
610  *
611  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
612  * for the remainder of the operation.
613  *
614  * The locking in this function is against shrink_inactive_list(): we recheck
615  * the page count inside the lock to see whether shrink_inactive_list()
616  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
617  * will free it.
618  */
619 void release_pages(struct page **pages, int nr, int cold)
620 {
621         int i;
622         LIST_HEAD(pages_to_free);
623         struct zone *zone = NULL;
624         unsigned long uninitialized_var(flags);
625
626         for (i = 0; i < nr; i++) {
627                 struct page *page = pages[i];
628
629                 if (unlikely(PageCompound(page))) {
630                         if (zone) {
631                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
632                                 zone = NULL;
633                         }
634                         put_compound_page(page);
635                         continue;
636                 }
637
638                 if (!put_page_testzero(page))
639                         continue;
640
641                 if (PageLRU(page)) {
642                         struct zone *pagezone = page_zone(page);
643
644                         if (pagezone != zone) {
645                                 if (zone)
646                                         spin_unlock_irqrestore(&zone->lru_lock,
647                                                                         flags);
648                                 zone = pagezone;
649                                 spin_lock_irqsave(&zone->lru_lock, flags);
650                         }
651                         VM_BUG_ON(!PageLRU(page));
652                         __ClearPageLRU(page);
653                         del_page_from_lru_list(zone, page, page_off_lru(page));
654                 }
655
656                 list_add(&page->lru, &pages_to_free);
657         }
658         if (zone)
659                 spin_unlock_irqrestore(&zone->lru_lock, flags);
660
661         free_hot_cold_page_list(&pages_to_free, cold);
662 }
663 EXPORT_SYMBOL(release_pages);
664
665 /*
666  * The pages which we're about to release may be in the deferred lru-addition
667  * queues.  That would prevent them from really being freed right now.  That's
668  * OK from a correctness point of view but is inefficient - those pages may be
669  * cache-warm and we want to give them back to the page allocator ASAP.
670  *
671  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
672  * and __pagevec_lru_add_active() call release_pages() directly to avoid
673  * mutual recursion.
674  */
675 void __pagevec_release(struct pagevec *pvec)
676 {
677         lru_add_drain();
678         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
679         pagevec_reinit(pvec);
680 }
681 EXPORT_SYMBOL(__pagevec_release);
682
683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 /* used by __split_huge_page_refcount() */
685 void lru_add_page_tail(struct zone* zone,
686                        struct page *page, struct page *page_tail)
687 {
688         int uninitialized_var(active);
689         enum lru_list lru;
690         const int file = 0;
691
692         VM_BUG_ON(!PageHead(page));
693         VM_BUG_ON(PageCompound(page_tail));
694         VM_BUG_ON(PageLRU(page_tail));
695         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&zone->lru_lock));
696
697         SetPageLRU(page_tail);
698
699         if (page_evictable(page_tail, NULL)) {
700                 if (PageActive(page)) {
701                         SetPageActive(page_tail);
702                         active = 1;
703                         lru = LRU_ACTIVE_ANON;
704                 } else {
705                         active = 0;
706                         lru = LRU_INACTIVE_ANON;
707                 }
708         } else {
709                 SetPageUnevictable(page_tail);
710                 lru = LRU_UNEVICTABLE;
711         }
712
713         if (likely(PageLRU(page)))
714                 list_add_tail(&page_tail->lru, &page->lru);
715         else {
716                 struct list_head *list_head;
717                 /*
718                  * Head page has not yet been counted, as an hpage,
719                  * so we must account for each subpage individually.
720                  *
721                  * Use the standard add function to put page_tail on the list,
722                  * but then correct its position so they all end up in order.
723                  */
724                 add_page_to_lru_list(zone, page_tail, lru);
725                 list_head = page_tail->lru.prev;
726                 list_move_tail(&page_tail->lru, list_head);
727         }
728
729         if (!PageUnevictable(page))
730                 update_page_reclaim_stat(zone, page_tail, file, active);
731 }
732 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
733
734 static void __pagevec_lru_add_fn(struct page *page, void *arg)
735 {
736         enum lru_list lru = (enum lru_list)arg;
737         struct zone *zone = page_zone(page);
738         int file = is_file_lru(lru);
739         int active = is_active_lru(lru);
740
741         VM_BUG_ON(PageActive(page));
742         VM_BUG_ON(PageUnevictable(page));
743         VM_BUG_ON(PageLRU(page));
744
745         SetPageLRU(page);
746         if (active)
747                 SetPageActive(page);
748         add_page_to_lru_list(zone, page, lru);
749         update_page_reclaim_stat(zone, page, file, active);
750 }
751
752 /*
753  * Add the passed pages to the LRU, then drop the caller's refcount
754  * on them.  Reinitialises the caller's pagevec.
755  */
756 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
757 {
758         VM_BUG_ON(is_unevictable_lru(lru));
759
760         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
761 }
762 EXPORT_SYMBOL(__pagevec_lru_add);
763
764 /**
765  * pagevec_lookup - gang pagecache lookup
766  * @pvec:       Where the resulting pages are placed
767  * @mapping:    The address_space to search
768  * @start:      The starting page index
769  * @nr_pages:   The maximum number of pages
770  *
771  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
772  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
773  * reference against the pages in @pvec.
774  *
775  * The search returns a group of mapping-contiguous pages with ascending
776  * indexes.  There may be holes in the indices due to not-present pages.
777  *
778  * pagevec_lookup() returns the number of pages which were found.
779  */
780 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
781                 pgoff_t start, unsigned nr_pages)
782 {
783         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
784         return pagevec_count(pvec);
785 }
786 EXPORT_SYMBOL(pagevec_lookup);
787
788 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
789                 pgoff_t *index, int tag, unsigned nr_pages)
790 {
791         pvec->nr = find_get_pages_tag(mapping, index, tag,
792                                         nr_pages, pvec->pages);
793         return pagevec_count(pvec);
794 }
795 EXPORT_SYMBOL(pagevec_lookup_tag);
796
797 /*
798  * Perform any setup for the swap system
799  */
800 void __init swap_setup(void)
801 {
802         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
803
804 #ifdef CONFIG_SWAP
805         bdi_init(swapper_space.backing_dev_info);
806 #endif
807
808         /* Use a smaller cluster for small-memory machines */
809         if (megs < 16)
810                 page_cluster = 2;
811         else
812                 page_cluster = 3;
813         /*
814          * Right now other parts of the system means that we
815          * _really_ don't want to cluster much more
816          */
817 }