]> Pileus Git - ~andy/linux/blob - mm/mmap.c
Merge branch 'for-linus' into next
[~andy/linux] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /* description of effects of mapping type and prot in current implementation.
55  * this is due to the limited x86 page protection hardware.  The expected
56  * behavior is in parens:
57  *
58  * map_type     prot
59  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
60  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
61  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
62  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
63  *              
64  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
65  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
66  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
67  *
68  */
69 pgprot_t protection_map[16] = {
70         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
71         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
72 };
73
74 pgprot_t vm_get_page_prot(unsigned long vm_flags)
75 {
76         return __pgprot(pgprot_val(protection_map[vm_flags &
77                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
78                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
79 }
80 EXPORT_SYMBOL(vm_get_page_prot);
81
82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
83 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
84 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
85 /*
86  * Make sure vm_committed_as in one cacheline and not cacheline shared with
87  * other variables. It can be updated by several CPUs frequently.
88  */
89 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
90
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109         unsigned long free, allowed;
110
111         vm_acct_memory(pages);
112
113         /*
114          * Sometimes we want to use more memory than we have
115          */
116         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117                 return 0;
118
119         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120                 free = global_page_state(NR_FREE_PAGES);
121                 free += global_page_state(NR_FILE_PAGES);
122
123                 /*
124                  * shmem pages shouldn't be counted as free in this
125                  * case, they can't be purged, only swapped out, and
126                  * that won't affect the overall amount of available
127                  * memory in the system.
128                  */
129                 free -= global_page_state(NR_SHMEM);
130
131                 free += nr_swap_pages;
132
133                 /*
134                  * Any slabs which are created with the
135                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
136                  * which are reclaimable, under pressure.  The dentry
137                  * cache and most inode caches should fall into this
138                  */
139                 free += global_page_state(NR_SLAB_RECLAIMABLE);
140
141                 /*
142                  * Leave reserved pages. The pages are not for anonymous pages.
143                  */
144                 if (free <= totalreserve_pages)
145                         goto error;
146                 else
147                         free -= totalreserve_pages;
148
149                 /*
150                  * Leave the last 3% for root
151                  */
152                 if (!cap_sys_admin)
153                         free -= free / 32;
154
155                 if (free > pages)
156                         return 0;
157
158                 goto error;
159         }
160
161         allowed = (totalram_pages - hugetlb_total_pages())
162                 * sysctl_overcommit_ratio / 100;
163         /*
164          * Leave the last 3% for root
165          */
166         if (!cap_sys_admin)
167                 allowed -= allowed / 32;
168         allowed += total_swap_pages;
169
170         /* Don't let a single process grow too big:
171            leave 3% of the size of this process for other processes */
172         if (mm)
173                 allowed -= mm->total_vm / 32;
174
175         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
176                 return 0;
177 error:
178         vm_unacct_memory(pages);
179
180         return -ENOMEM;
181 }
182
183 /*
184  * Requires inode->i_mapping->i_mmap_mutex
185  */
186 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
187                 struct file *file, struct address_space *mapping)
188 {
189         if (vma->vm_flags & VM_DENYWRITE)
190                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
191         if (vma->vm_flags & VM_SHARED)
192                 mapping->i_mmap_writable--;
193
194         flush_dcache_mmap_lock(mapping);
195         if (unlikely(vma->vm_flags & VM_NONLINEAR))
196                 list_del_init(&vma->shared.nonlinear);
197         else
198                 vma_interval_tree_remove(vma, &mapping->i_mmap);
199         flush_dcache_mmap_unlock(mapping);
200 }
201
202 /*
203  * Unlink a file-based vm structure from its interval tree, to hide
204  * vma from rmap and vmtruncate before freeing its page tables.
205  */
206 void unlink_file_vma(struct vm_area_struct *vma)
207 {
208         struct file *file = vma->vm_file;
209
210         if (file) {
211                 struct address_space *mapping = file->f_mapping;
212                 mutex_lock(&mapping->i_mmap_mutex);
213                 __remove_shared_vm_struct(vma, file, mapping);
214                 mutex_unlock(&mapping->i_mmap_mutex);
215         }
216 }
217
218 /*
219  * Close a vm structure and free it, returning the next.
220  */
221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
222 {
223         struct vm_area_struct *next = vma->vm_next;
224
225         might_sleep();
226         if (vma->vm_ops && vma->vm_ops->close)
227                 vma->vm_ops->close(vma);
228         if (vma->vm_file)
229                 fput(vma->vm_file);
230         mpol_put(vma_policy(vma));
231         kmem_cache_free(vm_area_cachep, vma);
232         return next;
233 }
234
235 static unsigned long do_brk(unsigned long addr, unsigned long len);
236
237 SYSCALL_DEFINE1(brk, unsigned long, brk)
238 {
239         unsigned long rlim, retval;
240         unsigned long newbrk, oldbrk;
241         struct mm_struct *mm = current->mm;
242         unsigned long min_brk;
243
244         down_write(&mm->mmap_sem);
245
246 #ifdef CONFIG_COMPAT_BRK
247         /*
248          * CONFIG_COMPAT_BRK can still be overridden by setting
249          * randomize_va_space to 2, which will still cause mm->start_brk
250          * to be arbitrarily shifted
251          */
252         if (current->brk_randomized)
253                 min_brk = mm->start_brk;
254         else
255                 min_brk = mm->end_data;
256 #else
257         min_brk = mm->start_brk;
258 #endif
259         if (brk < min_brk)
260                 goto out;
261
262         /*
263          * Check against rlimit here. If this check is done later after the test
264          * of oldbrk with newbrk then it can escape the test and let the data
265          * segment grow beyond its set limit the in case where the limit is
266          * not page aligned -Ram Gupta
267          */
268         rlim = rlimit(RLIMIT_DATA);
269         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270                         (mm->end_data - mm->start_data) > rlim)
271                 goto out;
272
273         newbrk = PAGE_ALIGN(brk);
274         oldbrk = PAGE_ALIGN(mm->brk);
275         if (oldbrk == newbrk)
276                 goto set_brk;
277
278         /* Always allow shrinking brk. */
279         if (brk <= mm->brk) {
280                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281                         goto set_brk;
282                 goto out;
283         }
284
285         /* Check against existing mmap mappings. */
286         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287                 goto out;
288
289         /* Ok, looks good - let it rip. */
290         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291                 goto out;
292 set_brk:
293         mm->brk = brk;
294 out:
295         retval = mm->brk;
296         up_write(&mm->mmap_sem);
297         return retval;
298 }
299
300 #ifdef CONFIG_DEBUG_VM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303         int i = 0, j;
304         struct rb_node *nd, *pn = NULL;
305         unsigned long prev = 0, pend = 0;
306
307         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308                 struct vm_area_struct *vma;
309                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310                 if (vma->vm_start < prev)
311                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312                 if (vma->vm_start < pend)
313                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314                 if (vma->vm_start > vma->vm_end)
315                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316                 i++;
317                 pn = nd;
318                 prev = vma->vm_start;
319                 pend = vma->vm_end;
320         }
321         j = 0;
322         for (nd = pn; nd; nd = rb_prev(nd)) {
323                 j++;
324         }
325         if (i != j)
326                 printk("backwards %d, forwards %d\n", j, i), i = 0;
327         return i;
328 }
329
330 void validate_mm(struct mm_struct *mm)
331 {
332         int bug = 0;
333         int i = 0;
334         struct vm_area_struct *vma = mm->mmap;
335         while (vma) {
336                 struct anon_vma_chain *avc;
337                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
338                         anon_vma_interval_tree_verify(avc);
339                 vma = vma->vm_next;
340                 i++;
341         }
342         if (i != mm->map_count)
343                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
344         i = browse_rb(&mm->mm_rb);
345         if (i != mm->map_count)
346                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
347         BUG_ON(bug);
348 }
349 #else
350 #define validate_mm(mm) do { } while (0)
351 #endif
352
353 /*
354  * vma has some anon_vma assigned, and is already inserted on that
355  * anon_vma's interval trees.
356  *
357  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
358  * vma must be removed from the anon_vma's interval trees using
359  * anon_vma_interval_tree_pre_update_vma().
360  *
361  * After the update, the vma will be reinserted using
362  * anon_vma_interval_tree_post_update_vma().
363  *
364  * The entire update must be protected by exclusive mmap_sem and by
365  * the root anon_vma's mutex.
366  */
367 static inline void
368 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
369 {
370         struct anon_vma_chain *avc;
371
372         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
373                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
374 }
375
376 static inline void
377 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
378 {
379         struct anon_vma_chain *avc;
380
381         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
382                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
383 }
384
385 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
386                 unsigned long end, struct vm_area_struct **pprev,
387                 struct rb_node ***rb_link, struct rb_node **rb_parent)
388 {
389         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
390
391         __rb_link = &mm->mm_rb.rb_node;
392         rb_prev = __rb_parent = NULL;
393
394         while (*__rb_link) {
395                 struct vm_area_struct *vma_tmp;
396
397                 __rb_parent = *__rb_link;
398                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
399
400                 if (vma_tmp->vm_end > addr) {
401                         /* Fail if an existing vma overlaps the area */
402                         if (vma_tmp->vm_start < end)
403                                 return -ENOMEM;
404                         __rb_link = &__rb_parent->rb_left;
405                 } else {
406                         rb_prev = __rb_parent;
407                         __rb_link = &__rb_parent->rb_right;
408                 }
409         }
410
411         *pprev = NULL;
412         if (rb_prev)
413                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
414         *rb_link = __rb_link;
415         *rb_parent = __rb_parent;
416         return 0;
417 }
418
419 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
420                 struct rb_node **rb_link, struct rb_node *rb_parent)
421 {
422         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
423         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
424 }
425
426 static void __vma_link_file(struct vm_area_struct *vma)
427 {
428         struct file *file;
429
430         file = vma->vm_file;
431         if (file) {
432                 struct address_space *mapping = file->f_mapping;
433
434                 if (vma->vm_flags & VM_DENYWRITE)
435                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
436                 if (vma->vm_flags & VM_SHARED)
437                         mapping->i_mmap_writable++;
438
439                 flush_dcache_mmap_lock(mapping);
440                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
441                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
442                 else
443                         vma_interval_tree_insert(vma, &mapping->i_mmap);
444                 flush_dcache_mmap_unlock(mapping);
445         }
446 }
447
448 static void
449 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
450         struct vm_area_struct *prev, struct rb_node **rb_link,
451         struct rb_node *rb_parent)
452 {
453         __vma_link_list(mm, vma, prev, rb_parent);
454         __vma_link_rb(mm, vma, rb_link, rb_parent);
455 }
456
457 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
458                         struct vm_area_struct *prev, struct rb_node **rb_link,
459                         struct rb_node *rb_parent)
460 {
461         struct address_space *mapping = NULL;
462
463         if (vma->vm_file)
464                 mapping = vma->vm_file->f_mapping;
465
466         if (mapping)
467                 mutex_lock(&mapping->i_mmap_mutex);
468
469         __vma_link(mm, vma, prev, rb_link, rb_parent);
470         __vma_link_file(vma);
471
472         if (mapping)
473                 mutex_unlock(&mapping->i_mmap_mutex);
474
475         mm->map_count++;
476         validate_mm(mm);
477 }
478
479 /*
480  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
481  * mm's list and rbtree.  It has already been inserted into the interval tree.
482  */
483 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
484 {
485         struct vm_area_struct *prev;
486         struct rb_node **rb_link, *rb_parent;
487
488         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
489                            &prev, &rb_link, &rb_parent))
490                 BUG();
491         __vma_link(mm, vma, prev, rb_link, rb_parent);
492         mm->map_count++;
493 }
494
495 static inline void
496 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
497                 struct vm_area_struct *prev)
498 {
499         struct vm_area_struct *next = vma->vm_next;
500
501         prev->vm_next = next;
502         if (next)
503                 next->vm_prev = prev;
504         rb_erase(&vma->vm_rb, &mm->mm_rb);
505         if (mm->mmap_cache == vma)
506                 mm->mmap_cache = prev;
507 }
508
509 /*
510  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
511  * is already present in an i_mmap tree without adjusting the tree.
512  * The following helper function should be used when such adjustments
513  * are necessary.  The "insert" vma (if any) is to be inserted
514  * before we drop the necessary locks.
515  */
516 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
517         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
518 {
519         struct mm_struct *mm = vma->vm_mm;
520         struct vm_area_struct *next = vma->vm_next;
521         struct vm_area_struct *importer = NULL;
522         struct address_space *mapping = NULL;
523         struct rb_root *root = NULL;
524         struct anon_vma *anon_vma = NULL;
525         struct file *file = vma->vm_file;
526         long adjust_next = 0;
527         int remove_next = 0;
528
529         if (next && !insert) {
530                 struct vm_area_struct *exporter = NULL;
531
532                 if (end >= next->vm_end) {
533                         /*
534                          * vma expands, overlapping all the next, and
535                          * perhaps the one after too (mprotect case 6).
536                          */
537 again:                  remove_next = 1 + (end > next->vm_end);
538                         end = next->vm_end;
539                         exporter = next;
540                         importer = vma;
541                 } else if (end > next->vm_start) {
542                         /*
543                          * vma expands, overlapping part of the next:
544                          * mprotect case 5 shifting the boundary up.
545                          */
546                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
547                         exporter = next;
548                         importer = vma;
549                 } else if (end < vma->vm_end) {
550                         /*
551                          * vma shrinks, and !insert tells it's not
552                          * split_vma inserting another: so it must be
553                          * mprotect case 4 shifting the boundary down.
554                          */
555                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
556                         exporter = vma;
557                         importer = next;
558                 }
559
560                 /*
561                  * Easily overlooked: when mprotect shifts the boundary,
562                  * make sure the expanding vma has anon_vma set if the
563                  * shrinking vma had, to cover any anon pages imported.
564                  */
565                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
566                         if (anon_vma_clone(importer, exporter))
567                                 return -ENOMEM;
568                         importer->anon_vma = exporter->anon_vma;
569                 }
570         }
571
572         if (file) {
573                 mapping = file->f_mapping;
574                 if (!(vma->vm_flags & VM_NONLINEAR)) {
575                         root = &mapping->i_mmap;
576                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
577
578                         if (adjust_next)
579                                 uprobe_munmap(next, next->vm_start,
580                                                         next->vm_end);
581                 }
582
583                 mutex_lock(&mapping->i_mmap_mutex);
584                 if (insert) {
585                         /*
586                          * Put into interval tree now, so instantiated pages
587                          * are visible to arm/parisc __flush_dcache_page
588                          * throughout; but we cannot insert into address
589                          * space until vma start or end is updated.
590                          */
591                         __vma_link_file(insert);
592                 }
593         }
594
595         vma_adjust_trans_huge(vma, start, end, adjust_next);
596
597         anon_vma = vma->anon_vma;
598         if (!anon_vma && adjust_next)
599                 anon_vma = next->anon_vma;
600         if (anon_vma) {
601                 VM_BUG_ON(adjust_next && next->anon_vma &&
602                           anon_vma != next->anon_vma);
603                 anon_vma_lock(anon_vma);
604                 anon_vma_interval_tree_pre_update_vma(vma);
605                 if (adjust_next)
606                         anon_vma_interval_tree_pre_update_vma(next);
607         }
608
609         if (root) {
610                 flush_dcache_mmap_lock(mapping);
611                 vma_interval_tree_remove(vma, root);
612                 if (adjust_next)
613                         vma_interval_tree_remove(next, root);
614         }
615
616         vma->vm_start = start;
617         vma->vm_end = end;
618         vma->vm_pgoff = pgoff;
619         if (adjust_next) {
620                 next->vm_start += adjust_next << PAGE_SHIFT;
621                 next->vm_pgoff += adjust_next;
622         }
623
624         if (root) {
625                 if (adjust_next)
626                         vma_interval_tree_insert(next, root);
627                 vma_interval_tree_insert(vma, root);
628                 flush_dcache_mmap_unlock(mapping);
629         }
630
631         if (remove_next) {
632                 /*
633                  * vma_merge has merged next into vma, and needs
634                  * us to remove next before dropping the locks.
635                  */
636                 __vma_unlink(mm, next, vma);
637                 if (file)
638                         __remove_shared_vm_struct(next, file, mapping);
639         } else if (insert) {
640                 /*
641                  * split_vma has split insert from vma, and needs
642                  * us to insert it before dropping the locks
643                  * (it may either follow vma or precede it).
644                  */
645                 __insert_vm_struct(mm, insert);
646         }
647
648         if (anon_vma) {
649                 anon_vma_interval_tree_post_update_vma(vma);
650                 if (adjust_next)
651                         anon_vma_interval_tree_post_update_vma(next);
652                 anon_vma_unlock(anon_vma);
653         }
654         if (mapping)
655                 mutex_unlock(&mapping->i_mmap_mutex);
656
657         if (root) {
658                 uprobe_mmap(vma);
659
660                 if (adjust_next)
661                         uprobe_mmap(next);
662         }
663
664         if (remove_next) {
665                 if (file) {
666                         uprobe_munmap(next, next->vm_start, next->vm_end);
667                         fput(file);
668                 }
669                 if (next->anon_vma)
670                         anon_vma_merge(vma, next);
671                 mm->map_count--;
672                 mpol_put(vma_policy(next));
673                 kmem_cache_free(vm_area_cachep, next);
674                 /*
675                  * In mprotect's case 6 (see comments on vma_merge),
676                  * we must remove another next too. It would clutter
677                  * up the code too much to do both in one go.
678                  */
679                 if (remove_next == 2) {
680                         next = vma->vm_next;
681                         goto again;
682                 }
683         }
684         if (insert && file)
685                 uprobe_mmap(insert);
686
687         validate_mm(mm);
688
689         return 0;
690 }
691
692 /*
693  * If the vma has a ->close operation then the driver probably needs to release
694  * per-vma resources, so we don't attempt to merge those.
695  */
696 static inline int is_mergeable_vma(struct vm_area_struct *vma,
697                         struct file *file, unsigned long vm_flags)
698 {
699         if (vma->vm_flags ^ vm_flags)
700                 return 0;
701         if (vma->vm_file != file)
702                 return 0;
703         if (vma->vm_ops && vma->vm_ops->close)
704                 return 0;
705         return 1;
706 }
707
708 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
709                                         struct anon_vma *anon_vma2,
710                                         struct vm_area_struct *vma)
711 {
712         /*
713          * The list_is_singular() test is to avoid merging VMA cloned from
714          * parents. This can improve scalability caused by anon_vma lock.
715          */
716         if ((!anon_vma1 || !anon_vma2) && (!vma ||
717                 list_is_singular(&vma->anon_vma_chain)))
718                 return 1;
719         return anon_vma1 == anon_vma2;
720 }
721
722 /*
723  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
724  * in front of (at a lower virtual address and file offset than) the vma.
725  *
726  * We cannot merge two vmas if they have differently assigned (non-NULL)
727  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
728  *
729  * We don't check here for the merged mmap wrapping around the end of pagecache
730  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
731  * wrap, nor mmaps which cover the final page at index -1UL.
732  */
733 static int
734 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
735         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
736 {
737         if (is_mergeable_vma(vma, file, vm_flags) &&
738             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
739                 if (vma->vm_pgoff == vm_pgoff)
740                         return 1;
741         }
742         return 0;
743 }
744
745 /*
746  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
747  * beyond (at a higher virtual address and file offset than) the vma.
748  *
749  * We cannot merge two vmas if they have differently assigned (non-NULL)
750  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
751  */
752 static int
753 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
754         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
755 {
756         if (is_mergeable_vma(vma, file, vm_flags) &&
757             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
758                 pgoff_t vm_pglen;
759                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
760                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
761                         return 1;
762         }
763         return 0;
764 }
765
766 /*
767  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
768  * whether that can be merged with its predecessor or its successor.
769  * Or both (it neatly fills a hole).
770  *
771  * In most cases - when called for mmap, brk or mremap - [addr,end) is
772  * certain not to be mapped by the time vma_merge is called; but when
773  * called for mprotect, it is certain to be already mapped (either at
774  * an offset within prev, or at the start of next), and the flags of
775  * this area are about to be changed to vm_flags - and the no-change
776  * case has already been eliminated.
777  *
778  * The following mprotect cases have to be considered, where AAAA is
779  * the area passed down from mprotect_fixup, never extending beyond one
780  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
781  *
782  *     AAAA             AAAA                AAAA          AAAA
783  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
784  *    cannot merge    might become    might become    might become
785  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
786  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
787  *    mremap move:                                    PPPPNNNNNNNN 8
788  *        AAAA
789  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
790  *    might become    case 1 below    case 2 below    case 3 below
791  *
792  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
793  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
794  */
795 struct vm_area_struct *vma_merge(struct mm_struct *mm,
796                         struct vm_area_struct *prev, unsigned long addr,
797                         unsigned long end, unsigned long vm_flags,
798                         struct anon_vma *anon_vma, struct file *file,
799                         pgoff_t pgoff, struct mempolicy *policy)
800 {
801         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
802         struct vm_area_struct *area, *next;
803         int err;
804
805         /*
806          * We later require that vma->vm_flags == vm_flags,
807          * so this tests vma->vm_flags & VM_SPECIAL, too.
808          */
809         if (vm_flags & VM_SPECIAL)
810                 return NULL;
811
812         if (prev)
813                 next = prev->vm_next;
814         else
815                 next = mm->mmap;
816         area = next;
817         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
818                 next = next->vm_next;
819
820         /*
821          * Can it merge with the predecessor?
822          */
823         if (prev && prev->vm_end == addr &&
824                         mpol_equal(vma_policy(prev), policy) &&
825                         can_vma_merge_after(prev, vm_flags,
826                                                 anon_vma, file, pgoff)) {
827                 /*
828                  * OK, it can.  Can we now merge in the successor as well?
829                  */
830                 if (next && end == next->vm_start &&
831                                 mpol_equal(policy, vma_policy(next)) &&
832                                 can_vma_merge_before(next, vm_flags,
833                                         anon_vma, file, pgoff+pglen) &&
834                                 is_mergeable_anon_vma(prev->anon_vma,
835                                                       next->anon_vma, NULL)) {
836                                                         /* cases 1, 6 */
837                         err = vma_adjust(prev, prev->vm_start,
838                                 next->vm_end, prev->vm_pgoff, NULL);
839                 } else                                  /* cases 2, 5, 7 */
840                         err = vma_adjust(prev, prev->vm_start,
841                                 end, prev->vm_pgoff, NULL);
842                 if (err)
843                         return NULL;
844                 khugepaged_enter_vma_merge(prev);
845                 return prev;
846         }
847
848         /*
849          * Can this new request be merged in front of next?
850          */
851         if (next && end == next->vm_start &&
852                         mpol_equal(policy, vma_policy(next)) &&
853                         can_vma_merge_before(next, vm_flags,
854                                         anon_vma, file, pgoff+pglen)) {
855                 if (prev && addr < prev->vm_end)        /* case 4 */
856                         err = vma_adjust(prev, prev->vm_start,
857                                 addr, prev->vm_pgoff, NULL);
858                 else                                    /* cases 3, 8 */
859                         err = vma_adjust(area, addr, next->vm_end,
860                                 next->vm_pgoff - pglen, NULL);
861                 if (err)
862                         return NULL;
863                 khugepaged_enter_vma_merge(area);
864                 return area;
865         }
866
867         return NULL;
868 }
869
870 /*
871  * Rough compatbility check to quickly see if it's even worth looking
872  * at sharing an anon_vma.
873  *
874  * They need to have the same vm_file, and the flags can only differ
875  * in things that mprotect may change.
876  *
877  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
878  * we can merge the two vma's. For example, we refuse to merge a vma if
879  * there is a vm_ops->close() function, because that indicates that the
880  * driver is doing some kind of reference counting. But that doesn't
881  * really matter for the anon_vma sharing case.
882  */
883 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
884 {
885         return a->vm_end == b->vm_start &&
886                 mpol_equal(vma_policy(a), vma_policy(b)) &&
887                 a->vm_file == b->vm_file &&
888                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
889                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
890 }
891
892 /*
893  * Do some basic sanity checking to see if we can re-use the anon_vma
894  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
895  * the same as 'old', the other will be the new one that is trying
896  * to share the anon_vma.
897  *
898  * NOTE! This runs with mm_sem held for reading, so it is possible that
899  * the anon_vma of 'old' is concurrently in the process of being set up
900  * by another page fault trying to merge _that_. But that's ok: if it
901  * is being set up, that automatically means that it will be a singleton
902  * acceptable for merging, so we can do all of this optimistically. But
903  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
904  *
905  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
906  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
907  * is to return an anon_vma that is "complex" due to having gone through
908  * a fork).
909  *
910  * We also make sure that the two vma's are compatible (adjacent,
911  * and with the same memory policies). That's all stable, even with just
912  * a read lock on the mm_sem.
913  */
914 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
915 {
916         if (anon_vma_compatible(a, b)) {
917                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
918
919                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
920                         return anon_vma;
921         }
922         return NULL;
923 }
924
925 /*
926  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
927  * neighbouring vmas for a suitable anon_vma, before it goes off
928  * to allocate a new anon_vma.  It checks because a repetitive
929  * sequence of mprotects and faults may otherwise lead to distinct
930  * anon_vmas being allocated, preventing vma merge in subsequent
931  * mprotect.
932  */
933 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
934 {
935         struct anon_vma *anon_vma;
936         struct vm_area_struct *near;
937
938         near = vma->vm_next;
939         if (!near)
940                 goto try_prev;
941
942         anon_vma = reusable_anon_vma(near, vma, near);
943         if (anon_vma)
944                 return anon_vma;
945 try_prev:
946         near = vma->vm_prev;
947         if (!near)
948                 goto none;
949
950         anon_vma = reusable_anon_vma(near, near, vma);
951         if (anon_vma)
952                 return anon_vma;
953 none:
954         /*
955          * There's no absolute need to look only at touching neighbours:
956          * we could search further afield for "compatible" anon_vmas.
957          * But it would probably just be a waste of time searching,
958          * or lead to too many vmas hanging off the same anon_vma.
959          * We're trying to allow mprotect remerging later on,
960          * not trying to minimize memory used for anon_vmas.
961          */
962         return NULL;
963 }
964
965 #ifdef CONFIG_PROC_FS
966 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
967                                                 struct file *file, long pages)
968 {
969         const unsigned long stack_flags
970                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
971
972         mm->total_vm += pages;
973
974         if (file) {
975                 mm->shared_vm += pages;
976                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
977                         mm->exec_vm += pages;
978         } else if (flags & stack_flags)
979                 mm->stack_vm += pages;
980 }
981 #endif /* CONFIG_PROC_FS */
982
983 /*
984  * If a hint addr is less than mmap_min_addr change hint to be as
985  * low as possible but still greater than mmap_min_addr
986  */
987 static inline unsigned long round_hint_to_min(unsigned long hint)
988 {
989         hint &= PAGE_MASK;
990         if (((void *)hint != NULL) &&
991             (hint < mmap_min_addr))
992                 return PAGE_ALIGN(mmap_min_addr);
993         return hint;
994 }
995
996 /*
997  * The caller must hold down_write(&current->mm->mmap_sem).
998  */
999
1000 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1001                         unsigned long len, unsigned long prot,
1002                         unsigned long flags, unsigned long pgoff)
1003 {
1004         struct mm_struct * mm = current->mm;
1005         struct inode *inode;
1006         vm_flags_t vm_flags;
1007
1008         /*
1009          * Does the application expect PROT_READ to imply PROT_EXEC?
1010          *
1011          * (the exception is when the underlying filesystem is noexec
1012          *  mounted, in which case we dont add PROT_EXEC.)
1013          */
1014         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1015                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1016                         prot |= PROT_EXEC;
1017
1018         if (!len)
1019                 return -EINVAL;
1020
1021         if (!(flags & MAP_FIXED))
1022                 addr = round_hint_to_min(addr);
1023
1024         /* Careful about overflows.. */
1025         len = PAGE_ALIGN(len);
1026         if (!len)
1027                 return -ENOMEM;
1028
1029         /* offset overflow? */
1030         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1031                return -EOVERFLOW;
1032
1033         /* Too many mappings? */
1034         if (mm->map_count > sysctl_max_map_count)
1035                 return -ENOMEM;
1036
1037         /* Obtain the address to map to. we verify (or select) it and ensure
1038          * that it represents a valid section of the address space.
1039          */
1040         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1041         if (addr & ~PAGE_MASK)
1042                 return addr;
1043
1044         /* Do simple checking here so the lower-level routines won't have
1045          * to. we assume access permissions have been handled by the open
1046          * of the memory object, so we don't do any here.
1047          */
1048         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1049                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1050
1051         if (flags & MAP_LOCKED)
1052                 if (!can_do_mlock())
1053                         return -EPERM;
1054
1055         /* mlock MCL_FUTURE? */
1056         if (vm_flags & VM_LOCKED) {
1057                 unsigned long locked, lock_limit;
1058                 locked = len >> PAGE_SHIFT;
1059                 locked += mm->locked_vm;
1060                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1061                 lock_limit >>= PAGE_SHIFT;
1062                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1063                         return -EAGAIN;
1064         }
1065
1066         inode = file ? file->f_path.dentry->d_inode : NULL;
1067
1068         if (file) {
1069                 switch (flags & MAP_TYPE) {
1070                 case MAP_SHARED:
1071                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1072                                 return -EACCES;
1073
1074                         /*
1075                          * Make sure we don't allow writing to an append-only
1076                          * file..
1077                          */
1078                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1079                                 return -EACCES;
1080
1081                         /*
1082                          * Make sure there are no mandatory locks on the file.
1083                          */
1084                         if (locks_verify_locked(inode))
1085                                 return -EAGAIN;
1086
1087                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1088                         if (!(file->f_mode & FMODE_WRITE))
1089                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1090
1091                         /* fall through */
1092                 case MAP_PRIVATE:
1093                         if (!(file->f_mode & FMODE_READ))
1094                                 return -EACCES;
1095                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1096                                 if (vm_flags & VM_EXEC)
1097                                         return -EPERM;
1098                                 vm_flags &= ~VM_MAYEXEC;
1099                         }
1100
1101                         if (!file->f_op || !file->f_op->mmap)
1102                                 return -ENODEV;
1103                         break;
1104
1105                 default:
1106                         return -EINVAL;
1107                 }
1108         } else {
1109                 switch (flags & MAP_TYPE) {
1110                 case MAP_SHARED:
1111                         /*
1112                          * Ignore pgoff.
1113                          */
1114                         pgoff = 0;
1115                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1116                         break;
1117                 case MAP_PRIVATE:
1118                         /*
1119                          * Set pgoff according to addr for anon_vma.
1120                          */
1121                         pgoff = addr >> PAGE_SHIFT;
1122                         break;
1123                 default:
1124                         return -EINVAL;
1125                 }
1126         }
1127
1128         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1129 }
1130
1131 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1132                 unsigned long, prot, unsigned long, flags,
1133                 unsigned long, fd, unsigned long, pgoff)
1134 {
1135         struct file *file = NULL;
1136         unsigned long retval = -EBADF;
1137
1138         if (!(flags & MAP_ANONYMOUS)) {
1139                 audit_mmap_fd(fd, flags);
1140                 if (unlikely(flags & MAP_HUGETLB))
1141                         return -EINVAL;
1142                 file = fget(fd);
1143                 if (!file)
1144                         goto out;
1145         } else if (flags & MAP_HUGETLB) {
1146                 struct user_struct *user = NULL;
1147                 /*
1148                  * VM_NORESERVE is used because the reservations will be
1149                  * taken when vm_ops->mmap() is called
1150                  * A dummy user value is used because we are not locking
1151                  * memory so no accounting is necessary
1152                  */
1153                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1154                                                 VM_NORESERVE, &user,
1155                                                 HUGETLB_ANONHUGE_INODE);
1156                 if (IS_ERR(file))
1157                         return PTR_ERR(file);
1158         }
1159
1160         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1161
1162         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1163         if (file)
1164                 fput(file);
1165 out:
1166         return retval;
1167 }
1168
1169 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1170 struct mmap_arg_struct {
1171         unsigned long addr;
1172         unsigned long len;
1173         unsigned long prot;
1174         unsigned long flags;
1175         unsigned long fd;
1176         unsigned long offset;
1177 };
1178
1179 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1180 {
1181         struct mmap_arg_struct a;
1182
1183         if (copy_from_user(&a, arg, sizeof(a)))
1184                 return -EFAULT;
1185         if (a.offset & ~PAGE_MASK)
1186                 return -EINVAL;
1187
1188         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1189                               a.offset >> PAGE_SHIFT);
1190 }
1191 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1192
1193 /*
1194  * Some shared mappigns will want the pages marked read-only
1195  * to track write events. If so, we'll downgrade vm_page_prot
1196  * to the private version (using protection_map[] without the
1197  * VM_SHARED bit).
1198  */
1199 int vma_wants_writenotify(struct vm_area_struct *vma)
1200 {
1201         vm_flags_t vm_flags = vma->vm_flags;
1202
1203         /* If it was private or non-writable, the write bit is already clear */
1204         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1205                 return 0;
1206
1207         /* The backer wishes to know when pages are first written to? */
1208         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1209                 return 1;
1210
1211         /* The open routine did something to the protections already? */
1212         if (pgprot_val(vma->vm_page_prot) !=
1213             pgprot_val(vm_get_page_prot(vm_flags)))
1214                 return 0;
1215
1216         /* Specialty mapping? */
1217         if (vm_flags & VM_PFNMAP)
1218                 return 0;
1219
1220         /* Can the mapping track the dirty pages? */
1221         return vma->vm_file && vma->vm_file->f_mapping &&
1222                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1223 }
1224
1225 /*
1226  * We account for memory if it's a private writeable mapping,
1227  * not hugepages and VM_NORESERVE wasn't set.
1228  */
1229 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1230 {
1231         /*
1232          * hugetlb has its own accounting separate from the core VM
1233          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1234          */
1235         if (file && is_file_hugepages(file))
1236                 return 0;
1237
1238         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1239 }
1240
1241 unsigned long mmap_region(struct file *file, unsigned long addr,
1242                           unsigned long len, unsigned long flags,
1243                           vm_flags_t vm_flags, unsigned long pgoff)
1244 {
1245         struct mm_struct *mm = current->mm;
1246         struct vm_area_struct *vma, *prev;
1247         int correct_wcount = 0;
1248         int error;
1249         struct rb_node **rb_link, *rb_parent;
1250         unsigned long charged = 0;
1251         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1252
1253         /* Clear old maps */
1254         error = -ENOMEM;
1255 munmap_back:
1256         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1257                 if (do_munmap(mm, addr, len))
1258                         return -ENOMEM;
1259                 goto munmap_back;
1260         }
1261
1262         /* Check against address space limit. */
1263         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1264                 return -ENOMEM;
1265
1266         /*
1267          * Set 'VM_NORESERVE' if we should not account for the
1268          * memory use of this mapping.
1269          */
1270         if ((flags & MAP_NORESERVE)) {
1271                 /* We honor MAP_NORESERVE if allowed to overcommit */
1272                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1273                         vm_flags |= VM_NORESERVE;
1274
1275                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1276                 if (file && is_file_hugepages(file))
1277                         vm_flags |= VM_NORESERVE;
1278         }
1279
1280         /*
1281          * Private writable mapping: check memory availability
1282          */
1283         if (accountable_mapping(file, vm_flags)) {
1284                 charged = len >> PAGE_SHIFT;
1285                 if (security_vm_enough_memory_mm(mm, charged))
1286                         return -ENOMEM;
1287                 vm_flags |= VM_ACCOUNT;
1288         }
1289
1290         /*
1291          * Can we just expand an old mapping?
1292          */
1293         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1294         if (vma)
1295                 goto out;
1296
1297         /*
1298          * Determine the object being mapped and call the appropriate
1299          * specific mapper. the address has already been validated, but
1300          * not unmapped, but the maps are removed from the list.
1301          */
1302         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1303         if (!vma) {
1304                 error = -ENOMEM;
1305                 goto unacct_error;
1306         }
1307
1308         vma->vm_mm = mm;
1309         vma->vm_start = addr;
1310         vma->vm_end = addr + len;
1311         vma->vm_flags = vm_flags;
1312         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1313         vma->vm_pgoff = pgoff;
1314         INIT_LIST_HEAD(&vma->anon_vma_chain);
1315
1316         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1317
1318         if (file) {
1319                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1320                         goto free_vma;
1321                 if (vm_flags & VM_DENYWRITE) {
1322                         error = deny_write_access(file);
1323                         if (error)
1324                                 goto free_vma;
1325                         correct_wcount = 1;
1326                 }
1327                 vma->vm_file = get_file(file);
1328                 error = file->f_op->mmap(file, vma);
1329                 if (error)
1330                         goto unmap_and_free_vma;
1331
1332                 /* Can addr have changed??
1333                  *
1334                  * Answer: Yes, several device drivers can do it in their
1335                  *         f_op->mmap method. -DaveM
1336                  */
1337                 addr = vma->vm_start;
1338                 pgoff = vma->vm_pgoff;
1339                 vm_flags = vma->vm_flags;
1340         } else if (vm_flags & VM_SHARED) {
1341                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1342                         goto free_vma;
1343                 error = shmem_zero_setup(vma);
1344                 if (error)
1345                         goto free_vma;
1346         }
1347
1348         if (vma_wants_writenotify(vma)) {
1349                 pgprot_t pprot = vma->vm_page_prot;
1350
1351                 /* Can vma->vm_page_prot have changed??
1352                  *
1353                  * Answer: Yes, drivers may have changed it in their
1354                  *         f_op->mmap method.
1355                  *
1356                  * Ensures that vmas marked as uncached stay that way.
1357                  */
1358                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1359                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1360                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1361         }
1362
1363         vma_link(mm, vma, prev, rb_link, rb_parent);
1364         file = vma->vm_file;
1365
1366         /* Once vma denies write, undo our temporary denial count */
1367         if (correct_wcount)
1368                 atomic_inc(&inode->i_writecount);
1369 out:
1370         perf_event_mmap(vma);
1371
1372         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1373         if (vm_flags & VM_LOCKED) {
1374                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1375                         mm->locked_vm += (len >> PAGE_SHIFT);
1376         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1377                 make_pages_present(addr, addr + len);
1378
1379         if (file)
1380                 uprobe_mmap(vma);
1381
1382         return addr;
1383
1384 unmap_and_free_vma:
1385         if (correct_wcount)
1386                 atomic_inc(&inode->i_writecount);
1387         vma->vm_file = NULL;
1388         fput(file);
1389
1390         /* Undo any partial mapping done by a device driver. */
1391         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1392         charged = 0;
1393 free_vma:
1394         kmem_cache_free(vm_area_cachep, vma);
1395 unacct_error:
1396         if (charged)
1397                 vm_unacct_memory(charged);
1398         return error;
1399 }
1400
1401 /* Get an address range which is currently unmapped.
1402  * For shmat() with addr=0.
1403  *
1404  * Ugly calling convention alert:
1405  * Return value with the low bits set means error value,
1406  * ie
1407  *      if (ret & ~PAGE_MASK)
1408  *              error = ret;
1409  *
1410  * This function "knows" that -ENOMEM has the bits set.
1411  */
1412 #ifndef HAVE_ARCH_UNMAPPED_AREA
1413 unsigned long
1414 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1415                 unsigned long len, unsigned long pgoff, unsigned long flags)
1416 {
1417         struct mm_struct *mm = current->mm;
1418         struct vm_area_struct *vma;
1419         unsigned long start_addr;
1420
1421         if (len > TASK_SIZE)
1422                 return -ENOMEM;
1423
1424         if (flags & MAP_FIXED)
1425                 return addr;
1426
1427         if (addr) {
1428                 addr = PAGE_ALIGN(addr);
1429                 vma = find_vma(mm, addr);
1430                 if (TASK_SIZE - len >= addr &&
1431                     (!vma || addr + len <= vma->vm_start))
1432                         return addr;
1433         }
1434         if (len > mm->cached_hole_size) {
1435                 start_addr = addr = mm->free_area_cache;
1436         } else {
1437                 start_addr = addr = TASK_UNMAPPED_BASE;
1438                 mm->cached_hole_size = 0;
1439         }
1440
1441 full_search:
1442         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1443                 /* At this point:  (!vma || addr < vma->vm_end). */
1444                 if (TASK_SIZE - len < addr) {
1445                         /*
1446                          * Start a new search - just in case we missed
1447                          * some holes.
1448                          */
1449                         if (start_addr != TASK_UNMAPPED_BASE) {
1450                                 addr = TASK_UNMAPPED_BASE;
1451                                 start_addr = addr;
1452                                 mm->cached_hole_size = 0;
1453                                 goto full_search;
1454                         }
1455                         return -ENOMEM;
1456                 }
1457                 if (!vma || addr + len <= vma->vm_start) {
1458                         /*
1459                          * Remember the place where we stopped the search:
1460                          */
1461                         mm->free_area_cache = addr + len;
1462                         return addr;
1463                 }
1464                 if (addr + mm->cached_hole_size < vma->vm_start)
1465                         mm->cached_hole_size = vma->vm_start - addr;
1466                 addr = vma->vm_end;
1467         }
1468 }
1469 #endif  
1470
1471 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1472 {
1473         /*
1474          * Is this a new hole at the lowest possible address?
1475          */
1476         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1477                 mm->free_area_cache = addr;
1478 }
1479
1480 /*
1481  * This mmap-allocator allocates new areas top-down from below the
1482  * stack's low limit (the base):
1483  */
1484 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1485 unsigned long
1486 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1487                           const unsigned long len, const unsigned long pgoff,
1488                           const unsigned long flags)
1489 {
1490         struct vm_area_struct *vma;
1491         struct mm_struct *mm = current->mm;
1492         unsigned long addr = addr0, start_addr;
1493
1494         /* requested length too big for entire address space */
1495         if (len > TASK_SIZE)
1496                 return -ENOMEM;
1497
1498         if (flags & MAP_FIXED)
1499                 return addr;
1500
1501         /* requesting a specific address */
1502         if (addr) {
1503                 addr = PAGE_ALIGN(addr);
1504                 vma = find_vma(mm, addr);
1505                 if (TASK_SIZE - len >= addr &&
1506                                 (!vma || addr + len <= vma->vm_start))
1507                         return addr;
1508         }
1509
1510         /* check if free_area_cache is useful for us */
1511         if (len <= mm->cached_hole_size) {
1512                 mm->cached_hole_size = 0;
1513                 mm->free_area_cache = mm->mmap_base;
1514         }
1515
1516 try_again:
1517         /* either no address requested or can't fit in requested address hole */
1518         start_addr = addr = mm->free_area_cache;
1519
1520         if (addr < len)
1521                 goto fail;
1522
1523         addr -= len;
1524         do {
1525                 /*
1526                  * Lookup failure means no vma is above this address,
1527                  * else if new region fits below vma->vm_start,
1528                  * return with success:
1529                  */
1530                 vma = find_vma(mm, addr);
1531                 if (!vma || addr+len <= vma->vm_start)
1532                         /* remember the address as a hint for next time */
1533                         return (mm->free_area_cache = addr);
1534
1535                 /* remember the largest hole we saw so far */
1536                 if (addr + mm->cached_hole_size < vma->vm_start)
1537                         mm->cached_hole_size = vma->vm_start - addr;
1538
1539                 /* try just below the current vma->vm_start */
1540                 addr = vma->vm_start-len;
1541         } while (len < vma->vm_start);
1542
1543 fail:
1544         /*
1545          * if hint left us with no space for the requested
1546          * mapping then try again:
1547          *
1548          * Note: this is different with the case of bottomup
1549          * which does the fully line-search, but we use find_vma
1550          * here that causes some holes skipped.
1551          */
1552         if (start_addr != mm->mmap_base) {
1553                 mm->free_area_cache = mm->mmap_base;
1554                 mm->cached_hole_size = 0;
1555                 goto try_again;
1556         }
1557
1558         /*
1559          * A failed mmap() very likely causes application failure,
1560          * so fall back to the bottom-up function here. This scenario
1561          * can happen with large stack limits and large mmap()
1562          * allocations.
1563          */
1564         mm->cached_hole_size = ~0UL;
1565         mm->free_area_cache = TASK_UNMAPPED_BASE;
1566         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1567         /*
1568          * Restore the topdown base:
1569          */
1570         mm->free_area_cache = mm->mmap_base;
1571         mm->cached_hole_size = ~0UL;
1572
1573         return addr;
1574 }
1575 #endif
1576
1577 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1578 {
1579         /*
1580          * Is this a new hole at the highest possible address?
1581          */
1582         if (addr > mm->free_area_cache)
1583                 mm->free_area_cache = addr;
1584
1585         /* dont allow allocations above current base */
1586         if (mm->free_area_cache > mm->mmap_base)
1587                 mm->free_area_cache = mm->mmap_base;
1588 }
1589
1590 unsigned long
1591 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1592                 unsigned long pgoff, unsigned long flags)
1593 {
1594         unsigned long (*get_area)(struct file *, unsigned long,
1595                                   unsigned long, unsigned long, unsigned long);
1596
1597         unsigned long error = arch_mmap_check(addr, len, flags);
1598         if (error)
1599                 return error;
1600
1601         /* Careful about overflows.. */
1602         if (len > TASK_SIZE)
1603                 return -ENOMEM;
1604
1605         get_area = current->mm->get_unmapped_area;
1606         if (file && file->f_op && file->f_op->get_unmapped_area)
1607                 get_area = file->f_op->get_unmapped_area;
1608         addr = get_area(file, addr, len, pgoff, flags);
1609         if (IS_ERR_VALUE(addr))
1610                 return addr;
1611
1612         if (addr > TASK_SIZE - len)
1613                 return -ENOMEM;
1614         if (addr & ~PAGE_MASK)
1615                 return -EINVAL;
1616
1617         addr = arch_rebalance_pgtables(addr, len);
1618         error = security_mmap_addr(addr);
1619         return error ? error : addr;
1620 }
1621
1622 EXPORT_SYMBOL(get_unmapped_area);
1623
1624 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1626 {
1627         struct vm_area_struct *vma = NULL;
1628
1629         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
1630                 return NULL;
1631
1632         /* Check the cache first. */
1633         /* (Cache hit rate is typically around 35%.) */
1634         vma = mm->mmap_cache;
1635         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1636                 struct rb_node *rb_node;
1637
1638                 rb_node = mm->mm_rb.rb_node;
1639                 vma = NULL;
1640
1641                 while (rb_node) {
1642                         struct vm_area_struct *vma_tmp;
1643
1644                         vma_tmp = rb_entry(rb_node,
1645                                            struct vm_area_struct, vm_rb);
1646
1647                         if (vma_tmp->vm_end > addr) {
1648                                 vma = vma_tmp;
1649                                 if (vma_tmp->vm_start <= addr)
1650                                         break;
1651                                 rb_node = rb_node->rb_left;
1652                         } else
1653                                 rb_node = rb_node->rb_right;
1654                 }
1655                 if (vma)
1656                         mm->mmap_cache = vma;
1657         }
1658         return vma;
1659 }
1660
1661 EXPORT_SYMBOL(find_vma);
1662
1663 /*
1664  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1665  */
1666 struct vm_area_struct *
1667 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1668                         struct vm_area_struct **pprev)
1669 {
1670         struct vm_area_struct *vma;
1671
1672         vma = find_vma(mm, addr);
1673         if (vma) {
1674                 *pprev = vma->vm_prev;
1675         } else {
1676                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1677                 *pprev = NULL;
1678                 while (rb_node) {
1679                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1680                         rb_node = rb_node->rb_right;
1681                 }
1682         }
1683         return vma;
1684 }
1685
1686 /*
1687  * Verify that the stack growth is acceptable and
1688  * update accounting. This is shared with both the
1689  * grow-up and grow-down cases.
1690  */
1691 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1692 {
1693         struct mm_struct *mm = vma->vm_mm;
1694         struct rlimit *rlim = current->signal->rlim;
1695         unsigned long new_start;
1696
1697         /* address space limit tests */
1698         if (!may_expand_vm(mm, grow))
1699                 return -ENOMEM;
1700
1701         /* Stack limit test */
1702         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1703                 return -ENOMEM;
1704
1705         /* mlock limit tests */
1706         if (vma->vm_flags & VM_LOCKED) {
1707                 unsigned long locked;
1708                 unsigned long limit;
1709                 locked = mm->locked_vm + grow;
1710                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1711                 limit >>= PAGE_SHIFT;
1712                 if (locked > limit && !capable(CAP_IPC_LOCK))
1713                         return -ENOMEM;
1714         }
1715
1716         /* Check to ensure the stack will not grow into a hugetlb-only region */
1717         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1718                         vma->vm_end - size;
1719         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1720                 return -EFAULT;
1721
1722         /*
1723          * Overcommit..  This must be the final test, as it will
1724          * update security statistics.
1725          */
1726         if (security_vm_enough_memory_mm(mm, grow))
1727                 return -ENOMEM;
1728
1729         /* Ok, everything looks good - let it rip */
1730         if (vma->vm_flags & VM_LOCKED)
1731                 mm->locked_vm += grow;
1732         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1733         return 0;
1734 }
1735
1736 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1737 /*
1738  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1739  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1740  */
1741 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1742 {
1743         int error;
1744
1745         if (!(vma->vm_flags & VM_GROWSUP))
1746                 return -EFAULT;
1747
1748         /*
1749          * We must make sure the anon_vma is allocated
1750          * so that the anon_vma locking is not a noop.
1751          */
1752         if (unlikely(anon_vma_prepare(vma)))
1753                 return -ENOMEM;
1754         vma_lock_anon_vma(vma);
1755
1756         /*
1757          * vma->vm_start/vm_end cannot change under us because the caller
1758          * is required to hold the mmap_sem in read mode.  We need the
1759          * anon_vma lock to serialize against concurrent expand_stacks.
1760          * Also guard against wrapping around to address 0.
1761          */
1762         if (address < PAGE_ALIGN(address+4))
1763                 address = PAGE_ALIGN(address+4);
1764         else {
1765                 vma_unlock_anon_vma(vma);
1766                 return -ENOMEM;
1767         }
1768         error = 0;
1769
1770         /* Somebody else might have raced and expanded it already */
1771         if (address > vma->vm_end) {
1772                 unsigned long size, grow;
1773
1774                 size = address - vma->vm_start;
1775                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1776
1777                 error = -ENOMEM;
1778                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1779                         error = acct_stack_growth(vma, size, grow);
1780                         if (!error) {
1781                                 anon_vma_interval_tree_pre_update_vma(vma);
1782                                 vma->vm_end = address;
1783                                 anon_vma_interval_tree_post_update_vma(vma);
1784                                 perf_event_mmap(vma);
1785                         }
1786                 }
1787         }
1788         vma_unlock_anon_vma(vma);
1789         khugepaged_enter_vma_merge(vma);
1790         validate_mm(vma->vm_mm);
1791         return error;
1792 }
1793 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1794
1795 /*
1796  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1797  */
1798 int expand_downwards(struct vm_area_struct *vma,
1799                                    unsigned long address)
1800 {
1801         int error;
1802
1803         /*
1804          * We must make sure the anon_vma is allocated
1805          * so that the anon_vma locking is not a noop.
1806          */
1807         if (unlikely(anon_vma_prepare(vma)))
1808                 return -ENOMEM;
1809
1810         address &= PAGE_MASK;
1811         error = security_mmap_addr(address);
1812         if (error)
1813                 return error;
1814
1815         vma_lock_anon_vma(vma);
1816
1817         /*
1818          * vma->vm_start/vm_end cannot change under us because the caller
1819          * is required to hold the mmap_sem in read mode.  We need the
1820          * anon_vma lock to serialize against concurrent expand_stacks.
1821          */
1822
1823         /* Somebody else might have raced and expanded it already */
1824         if (address < vma->vm_start) {
1825                 unsigned long size, grow;
1826
1827                 size = vma->vm_end - address;
1828                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1829
1830                 error = -ENOMEM;
1831                 if (grow <= vma->vm_pgoff) {
1832                         error = acct_stack_growth(vma, size, grow);
1833                         if (!error) {
1834                                 anon_vma_interval_tree_pre_update_vma(vma);
1835                                 vma->vm_start = address;
1836                                 vma->vm_pgoff -= grow;
1837                                 anon_vma_interval_tree_post_update_vma(vma);
1838                                 perf_event_mmap(vma);
1839                         }
1840                 }
1841         }
1842         vma_unlock_anon_vma(vma);
1843         khugepaged_enter_vma_merge(vma);
1844         validate_mm(vma->vm_mm);
1845         return error;
1846 }
1847
1848 #ifdef CONFIG_STACK_GROWSUP
1849 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1850 {
1851         return expand_upwards(vma, address);
1852 }
1853
1854 struct vm_area_struct *
1855 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1856 {
1857         struct vm_area_struct *vma, *prev;
1858
1859         addr &= PAGE_MASK;
1860         vma = find_vma_prev(mm, addr, &prev);
1861         if (vma && (vma->vm_start <= addr))
1862                 return vma;
1863         if (!prev || expand_stack(prev, addr))
1864                 return NULL;
1865         if (prev->vm_flags & VM_LOCKED) {
1866                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1867         }
1868         return prev;
1869 }
1870 #else
1871 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1872 {
1873         return expand_downwards(vma, address);
1874 }
1875
1876 struct vm_area_struct *
1877 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1878 {
1879         struct vm_area_struct * vma;
1880         unsigned long start;
1881
1882         addr &= PAGE_MASK;
1883         vma = find_vma(mm,addr);
1884         if (!vma)
1885                 return NULL;
1886         if (vma->vm_start <= addr)
1887                 return vma;
1888         if (!(vma->vm_flags & VM_GROWSDOWN))
1889                 return NULL;
1890         start = vma->vm_start;
1891         if (expand_stack(vma, addr))
1892                 return NULL;
1893         if (vma->vm_flags & VM_LOCKED) {
1894                 mlock_vma_pages_range(vma, addr, start);
1895         }
1896         return vma;
1897 }
1898 #endif
1899
1900 /*
1901  * Ok - we have the memory areas we should free on the vma list,
1902  * so release them, and do the vma updates.
1903  *
1904  * Called with the mm semaphore held.
1905  */
1906 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1907 {
1908         unsigned long nr_accounted = 0;
1909
1910         /* Update high watermark before we lower total_vm */
1911         update_hiwater_vm(mm);
1912         do {
1913                 long nrpages = vma_pages(vma);
1914
1915                 if (vma->vm_flags & VM_ACCOUNT)
1916                         nr_accounted += nrpages;
1917                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1918                 vma = remove_vma(vma);
1919         } while (vma);
1920         vm_unacct_memory(nr_accounted);
1921         validate_mm(mm);
1922 }
1923
1924 /*
1925  * Get rid of page table information in the indicated region.
1926  *
1927  * Called with the mm semaphore held.
1928  */
1929 static void unmap_region(struct mm_struct *mm,
1930                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1931                 unsigned long start, unsigned long end)
1932 {
1933         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1934         struct mmu_gather tlb;
1935
1936         lru_add_drain();
1937         tlb_gather_mmu(&tlb, mm, 0);
1938         update_hiwater_rss(mm);
1939         unmap_vmas(&tlb, vma, start, end);
1940         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1941                                  next ? next->vm_start : 0);
1942         tlb_finish_mmu(&tlb, start, end);
1943 }
1944
1945 /*
1946  * Create a list of vma's touched by the unmap, removing them from the mm's
1947  * vma list as we go..
1948  */
1949 static void
1950 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1951         struct vm_area_struct *prev, unsigned long end)
1952 {
1953         struct vm_area_struct **insertion_point;
1954         struct vm_area_struct *tail_vma = NULL;
1955         unsigned long addr;
1956
1957         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1958         vma->vm_prev = NULL;
1959         do {
1960                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1961                 mm->map_count--;
1962                 tail_vma = vma;
1963                 vma = vma->vm_next;
1964         } while (vma && vma->vm_start < end);
1965         *insertion_point = vma;
1966         if (vma)
1967                 vma->vm_prev = prev;
1968         tail_vma->vm_next = NULL;
1969         if (mm->unmap_area == arch_unmap_area)
1970                 addr = prev ? prev->vm_end : mm->mmap_base;
1971         else
1972                 addr = vma ?  vma->vm_start : mm->mmap_base;
1973         mm->unmap_area(mm, addr);
1974         mm->mmap_cache = NULL;          /* Kill the cache. */
1975 }
1976
1977 /*
1978  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1979  * munmap path where it doesn't make sense to fail.
1980  */
1981 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1982               unsigned long addr, int new_below)
1983 {
1984         struct mempolicy *pol;
1985         struct vm_area_struct *new;
1986         int err = -ENOMEM;
1987
1988         if (is_vm_hugetlb_page(vma) && (addr &
1989                                         ~(huge_page_mask(hstate_vma(vma)))))
1990                 return -EINVAL;
1991
1992         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1993         if (!new)
1994                 goto out_err;
1995
1996         /* most fields are the same, copy all, and then fixup */
1997         *new = *vma;
1998
1999         INIT_LIST_HEAD(&new->anon_vma_chain);
2000
2001         if (new_below)
2002                 new->vm_end = addr;
2003         else {
2004                 new->vm_start = addr;
2005                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2006         }
2007
2008         pol = mpol_dup(vma_policy(vma));
2009         if (IS_ERR(pol)) {
2010                 err = PTR_ERR(pol);
2011                 goto out_free_vma;
2012         }
2013         vma_set_policy(new, pol);
2014
2015         if (anon_vma_clone(new, vma))
2016                 goto out_free_mpol;
2017
2018         if (new->vm_file)
2019                 get_file(new->vm_file);
2020
2021         if (new->vm_ops && new->vm_ops->open)
2022                 new->vm_ops->open(new);
2023
2024         if (new_below)
2025                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2026                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2027         else
2028                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2029
2030         /* Success. */
2031         if (!err)
2032                 return 0;
2033
2034         /* Clean everything up if vma_adjust failed. */
2035         if (new->vm_ops && new->vm_ops->close)
2036                 new->vm_ops->close(new);
2037         if (new->vm_file)
2038                 fput(new->vm_file);
2039         unlink_anon_vmas(new);
2040  out_free_mpol:
2041         mpol_put(pol);
2042  out_free_vma:
2043         kmem_cache_free(vm_area_cachep, new);
2044  out_err:
2045         return err;
2046 }
2047
2048 /*
2049  * Split a vma into two pieces at address 'addr', a new vma is allocated
2050  * either for the first part or the tail.
2051  */
2052 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2053               unsigned long addr, int new_below)
2054 {
2055         if (mm->map_count >= sysctl_max_map_count)
2056                 return -ENOMEM;
2057
2058         return __split_vma(mm, vma, addr, new_below);
2059 }
2060
2061 /* Munmap is split into 2 main parts -- this part which finds
2062  * what needs doing, and the areas themselves, which do the
2063  * work.  This now handles partial unmappings.
2064  * Jeremy Fitzhardinge <jeremy@goop.org>
2065  */
2066 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2067 {
2068         unsigned long end;
2069         struct vm_area_struct *vma, *prev, *last;
2070
2071         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2072                 return -EINVAL;
2073
2074         if ((len = PAGE_ALIGN(len)) == 0)
2075                 return -EINVAL;
2076
2077         /* Find the first overlapping VMA */
2078         vma = find_vma(mm, start);
2079         if (!vma)
2080                 return 0;
2081         prev = vma->vm_prev;
2082         /* we have  start < vma->vm_end  */
2083
2084         /* if it doesn't overlap, we have nothing.. */
2085         end = start + len;
2086         if (vma->vm_start >= end)
2087                 return 0;
2088
2089         /*
2090          * If we need to split any vma, do it now to save pain later.
2091          *
2092          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2093          * unmapped vm_area_struct will remain in use: so lower split_vma
2094          * places tmp vma above, and higher split_vma places tmp vma below.
2095          */
2096         if (start > vma->vm_start) {
2097                 int error;
2098
2099                 /*
2100                  * Make sure that map_count on return from munmap() will
2101                  * not exceed its limit; but let map_count go just above
2102                  * its limit temporarily, to help free resources as expected.
2103                  */
2104                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2105                         return -ENOMEM;
2106
2107                 error = __split_vma(mm, vma, start, 0);
2108                 if (error)
2109                         return error;
2110                 prev = vma;
2111         }
2112
2113         /* Does it split the last one? */
2114         last = find_vma(mm, end);
2115         if (last && end > last->vm_start) {
2116                 int error = __split_vma(mm, last, end, 1);
2117                 if (error)
2118                         return error;
2119         }
2120         vma = prev? prev->vm_next: mm->mmap;
2121
2122         /*
2123          * unlock any mlock()ed ranges before detaching vmas
2124          */
2125         if (mm->locked_vm) {
2126                 struct vm_area_struct *tmp = vma;
2127                 while (tmp && tmp->vm_start < end) {
2128                         if (tmp->vm_flags & VM_LOCKED) {
2129                                 mm->locked_vm -= vma_pages(tmp);
2130                                 munlock_vma_pages_all(tmp);
2131                         }
2132                         tmp = tmp->vm_next;
2133                 }
2134         }
2135
2136         /*
2137          * Remove the vma's, and unmap the actual pages
2138          */
2139         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2140         unmap_region(mm, vma, prev, start, end);
2141
2142         /* Fix up all other VM information */
2143         remove_vma_list(mm, vma);
2144
2145         return 0;
2146 }
2147
2148 int vm_munmap(unsigned long start, size_t len)
2149 {
2150         int ret;
2151         struct mm_struct *mm = current->mm;
2152
2153         down_write(&mm->mmap_sem);
2154         ret = do_munmap(mm, start, len);
2155         up_write(&mm->mmap_sem);
2156         return ret;
2157 }
2158 EXPORT_SYMBOL(vm_munmap);
2159
2160 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2161 {
2162         profile_munmap(addr);
2163         return vm_munmap(addr, len);
2164 }
2165
2166 static inline void verify_mm_writelocked(struct mm_struct *mm)
2167 {
2168 #ifdef CONFIG_DEBUG_VM
2169         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2170                 WARN_ON(1);
2171                 up_read(&mm->mmap_sem);
2172         }
2173 #endif
2174 }
2175
2176 /*
2177  *  this is really a simplified "do_mmap".  it only handles
2178  *  anonymous maps.  eventually we may be able to do some
2179  *  brk-specific accounting here.
2180  */
2181 static unsigned long do_brk(unsigned long addr, unsigned long len)
2182 {
2183         struct mm_struct * mm = current->mm;
2184         struct vm_area_struct * vma, * prev;
2185         unsigned long flags;
2186         struct rb_node ** rb_link, * rb_parent;
2187         pgoff_t pgoff = addr >> PAGE_SHIFT;
2188         int error;
2189
2190         len = PAGE_ALIGN(len);
2191         if (!len)
2192                 return addr;
2193
2194         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2195
2196         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2197         if (error & ~PAGE_MASK)
2198                 return error;
2199
2200         /*
2201          * mlock MCL_FUTURE?
2202          */
2203         if (mm->def_flags & VM_LOCKED) {
2204                 unsigned long locked, lock_limit;
2205                 locked = len >> PAGE_SHIFT;
2206                 locked += mm->locked_vm;
2207                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2208                 lock_limit >>= PAGE_SHIFT;
2209                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2210                         return -EAGAIN;
2211         }
2212
2213         /*
2214          * mm->mmap_sem is required to protect against another thread
2215          * changing the mappings in case we sleep.
2216          */
2217         verify_mm_writelocked(mm);
2218
2219         /*
2220          * Clear old maps.  this also does some error checking for us
2221          */
2222  munmap_back:
2223         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2224                 if (do_munmap(mm, addr, len))
2225                         return -ENOMEM;
2226                 goto munmap_back;
2227         }
2228
2229         /* Check against address space limits *after* clearing old maps... */
2230         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2231                 return -ENOMEM;
2232
2233         if (mm->map_count > sysctl_max_map_count)
2234                 return -ENOMEM;
2235
2236         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2237                 return -ENOMEM;
2238
2239         /* Can we just expand an old private anonymous mapping? */
2240         vma = vma_merge(mm, prev, addr, addr + len, flags,
2241                                         NULL, NULL, pgoff, NULL);
2242         if (vma)
2243                 goto out;
2244
2245         /*
2246          * create a vma struct for an anonymous mapping
2247          */
2248         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2249         if (!vma) {
2250                 vm_unacct_memory(len >> PAGE_SHIFT);
2251                 return -ENOMEM;
2252         }
2253
2254         INIT_LIST_HEAD(&vma->anon_vma_chain);
2255         vma->vm_mm = mm;
2256         vma->vm_start = addr;
2257         vma->vm_end = addr + len;
2258         vma->vm_pgoff = pgoff;
2259         vma->vm_flags = flags;
2260         vma->vm_page_prot = vm_get_page_prot(flags);
2261         vma_link(mm, vma, prev, rb_link, rb_parent);
2262 out:
2263         perf_event_mmap(vma);
2264         mm->total_vm += len >> PAGE_SHIFT;
2265         if (flags & VM_LOCKED) {
2266                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2267                         mm->locked_vm += (len >> PAGE_SHIFT);
2268         }
2269         return addr;
2270 }
2271
2272 unsigned long vm_brk(unsigned long addr, unsigned long len)
2273 {
2274         struct mm_struct *mm = current->mm;
2275         unsigned long ret;
2276
2277         down_write(&mm->mmap_sem);
2278         ret = do_brk(addr, len);
2279         up_write(&mm->mmap_sem);
2280         return ret;
2281 }
2282 EXPORT_SYMBOL(vm_brk);
2283
2284 /* Release all mmaps. */
2285 void exit_mmap(struct mm_struct *mm)
2286 {
2287         struct mmu_gather tlb;
2288         struct vm_area_struct *vma;
2289         unsigned long nr_accounted = 0;
2290
2291         /* mm's last user has gone, and its about to be pulled down */
2292         mmu_notifier_release(mm);
2293
2294         if (mm->locked_vm) {
2295                 vma = mm->mmap;
2296                 while (vma) {
2297                         if (vma->vm_flags & VM_LOCKED)
2298                                 munlock_vma_pages_all(vma);
2299                         vma = vma->vm_next;
2300                 }
2301         }
2302
2303         arch_exit_mmap(mm);
2304
2305         vma = mm->mmap;
2306         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2307                 return;
2308
2309         lru_add_drain();
2310         flush_cache_mm(mm);
2311         tlb_gather_mmu(&tlb, mm, 1);
2312         /* update_hiwater_rss(mm) here? but nobody should be looking */
2313         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2314         unmap_vmas(&tlb, vma, 0, -1);
2315
2316         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2317         tlb_finish_mmu(&tlb, 0, -1);
2318
2319         /*
2320          * Walk the list again, actually closing and freeing it,
2321          * with preemption enabled, without holding any MM locks.
2322          */
2323         while (vma) {
2324                 if (vma->vm_flags & VM_ACCOUNT)
2325                         nr_accounted += vma_pages(vma);
2326                 vma = remove_vma(vma);
2327         }
2328         vm_unacct_memory(nr_accounted);
2329
2330         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2331 }
2332
2333 /* Insert vm structure into process list sorted by address
2334  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2335  * then i_mmap_mutex is taken here.
2336  */
2337 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2338 {
2339         struct vm_area_struct *prev;
2340         struct rb_node **rb_link, *rb_parent;
2341
2342         /*
2343          * The vm_pgoff of a purely anonymous vma should be irrelevant
2344          * until its first write fault, when page's anon_vma and index
2345          * are set.  But now set the vm_pgoff it will almost certainly
2346          * end up with (unless mremap moves it elsewhere before that
2347          * first wfault), so /proc/pid/maps tells a consistent story.
2348          *
2349          * By setting it to reflect the virtual start address of the
2350          * vma, merges and splits can happen in a seamless way, just
2351          * using the existing file pgoff checks and manipulations.
2352          * Similarly in do_mmap_pgoff and in do_brk.
2353          */
2354         if (!vma->vm_file) {
2355                 BUG_ON(vma->anon_vma);
2356                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2357         }
2358         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2359                            &prev, &rb_link, &rb_parent))
2360                 return -ENOMEM;
2361         if ((vma->vm_flags & VM_ACCOUNT) &&
2362              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2363                 return -ENOMEM;
2364
2365         vma_link(mm, vma, prev, rb_link, rb_parent);
2366         return 0;
2367 }
2368
2369 /*
2370  * Copy the vma structure to a new location in the same mm,
2371  * prior to moving page table entries, to effect an mremap move.
2372  */
2373 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2374         unsigned long addr, unsigned long len, pgoff_t pgoff,
2375         bool *need_rmap_locks)
2376 {
2377         struct vm_area_struct *vma = *vmap;
2378         unsigned long vma_start = vma->vm_start;
2379         struct mm_struct *mm = vma->vm_mm;
2380         struct vm_area_struct *new_vma, *prev;
2381         struct rb_node **rb_link, *rb_parent;
2382         struct mempolicy *pol;
2383         bool faulted_in_anon_vma = true;
2384
2385         /*
2386          * If anonymous vma has not yet been faulted, update new pgoff
2387          * to match new location, to increase its chance of merging.
2388          */
2389         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2390                 pgoff = addr >> PAGE_SHIFT;
2391                 faulted_in_anon_vma = false;
2392         }
2393
2394         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2395                 return NULL;    /* should never get here */
2396         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2397                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2398         if (new_vma) {
2399                 /*
2400                  * Source vma may have been merged into new_vma
2401                  */
2402                 if (unlikely(vma_start >= new_vma->vm_start &&
2403                              vma_start < new_vma->vm_end)) {
2404                         /*
2405                          * The only way we can get a vma_merge with
2406                          * self during an mremap is if the vma hasn't
2407                          * been faulted in yet and we were allowed to
2408                          * reset the dst vma->vm_pgoff to the
2409                          * destination address of the mremap to allow
2410                          * the merge to happen. mremap must change the
2411                          * vm_pgoff linearity between src and dst vmas
2412                          * (in turn preventing a vma_merge) to be
2413                          * safe. It is only safe to keep the vm_pgoff
2414                          * linear if there are no pages mapped yet.
2415                          */
2416                         VM_BUG_ON(faulted_in_anon_vma);
2417                         *vmap = vma = new_vma;
2418                 }
2419                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2420         } else {
2421                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2422                 if (new_vma) {
2423                         *new_vma = *vma;
2424                         new_vma->vm_start = addr;
2425                         new_vma->vm_end = addr + len;
2426                         new_vma->vm_pgoff = pgoff;
2427                         pol = mpol_dup(vma_policy(vma));
2428                         if (IS_ERR(pol))
2429                                 goto out_free_vma;
2430                         vma_set_policy(new_vma, pol);
2431                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2432                         if (anon_vma_clone(new_vma, vma))
2433                                 goto out_free_mempol;
2434                         if (new_vma->vm_file)
2435                                 get_file(new_vma->vm_file);
2436                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2437                                 new_vma->vm_ops->open(new_vma);
2438                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2439                         *need_rmap_locks = false;
2440                 }
2441         }
2442         return new_vma;
2443
2444  out_free_mempol:
2445         mpol_put(pol);
2446  out_free_vma:
2447         kmem_cache_free(vm_area_cachep, new_vma);
2448         return NULL;
2449 }
2450
2451 /*
2452  * Return true if the calling process may expand its vm space by the passed
2453  * number of pages
2454  */
2455 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2456 {
2457         unsigned long cur = mm->total_vm;       /* pages */
2458         unsigned long lim;
2459
2460         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2461
2462         if (cur + npages > lim)
2463                 return 0;
2464         return 1;
2465 }
2466
2467
2468 static int special_mapping_fault(struct vm_area_struct *vma,
2469                                 struct vm_fault *vmf)
2470 {
2471         pgoff_t pgoff;
2472         struct page **pages;
2473
2474         /*
2475          * special mappings have no vm_file, and in that case, the mm
2476          * uses vm_pgoff internally. So we have to subtract it from here.
2477          * We are allowed to do this because we are the mm; do not copy
2478          * this code into drivers!
2479          */
2480         pgoff = vmf->pgoff - vma->vm_pgoff;
2481
2482         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2483                 pgoff--;
2484
2485         if (*pages) {
2486                 struct page *page = *pages;
2487                 get_page(page);
2488                 vmf->page = page;
2489                 return 0;
2490         }
2491
2492         return VM_FAULT_SIGBUS;
2493 }
2494
2495 /*
2496  * Having a close hook prevents vma merging regardless of flags.
2497  */
2498 static void special_mapping_close(struct vm_area_struct *vma)
2499 {
2500 }
2501
2502 static const struct vm_operations_struct special_mapping_vmops = {
2503         .close = special_mapping_close,
2504         .fault = special_mapping_fault,
2505 };
2506
2507 /*
2508  * Called with mm->mmap_sem held for writing.
2509  * Insert a new vma covering the given region, with the given flags.
2510  * Its pages are supplied by the given array of struct page *.
2511  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2512  * The region past the last page supplied will always produce SIGBUS.
2513  * The array pointer and the pages it points to are assumed to stay alive
2514  * for as long as this mapping might exist.
2515  */
2516 int install_special_mapping(struct mm_struct *mm,
2517                             unsigned long addr, unsigned long len,
2518                             unsigned long vm_flags, struct page **pages)
2519 {
2520         int ret;
2521         struct vm_area_struct *vma;
2522
2523         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2524         if (unlikely(vma == NULL))
2525                 return -ENOMEM;
2526
2527         INIT_LIST_HEAD(&vma->anon_vma_chain);
2528         vma->vm_mm = mm;
2529         vma->vm_start = addr;
2530         vma->vm_end = addr + len;
2531
2532         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2533         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2534
2535         vma->vm_ops = &special_mapping_vmops;
2536         vma->vm_private_data = pages;
2537
2538         ret = insert_vm_struct(mm, vma);
2539         if (ret)
2540                 goto out;
2541
2542         mm->total_vm += len >> PAGE_SHIFT;
2543
2544         perf_event_mmap(vma);
2545
2546         return 0;
2547
2548 out:
2549         kmem_cache_free(vm_area_cachep, vma);
2550         return ret;
2551 }
2552
2553 static DEFINE_MUTEX(mm_all_locks_mutex);
2554
2555 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2556 {
2557         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2558                 /*
2559                  * The LSB of head.next can't change from under us
2560                  * because we hold the mm_all_locks_mutex.
2561                  */
2562                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2563                 /*
2564                  * We can safely modify head.next after taking the
2565                  * anon_vma->root->mutex. If some other vma in this mm shares
2566                  * the same anon_vma we won't take it again.
2567                  *
2568                  * No need of atomic instructions here, head.next
2569                  * can't change from under us thanks to the
2570                  * anon_vma->root->mutex.
2571                  */
2572                 if (__test_and_set_bit(0, (unsigned long *)
2573                                        &anon_vma->root->rb_root.rb_node))
2574                         BUG();
2575         }
2576 }
2577
2578 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2579 {
2580         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2581                 /*
2582                  * AS_MM_ALL_LOCKS can't change from under us because
2583                  * we hold the mm_all_locks_mutex.
2584                  *
2585                  * Operations on ->flags have to be atomic because
2586                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2587                  * mm_all_locks_mutex, there may be other cpus
2588                  * changing other bitflags in parallel to us.
2589                  */
2590                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2591                         BUG();
2592                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2593         }
2594 }
2595
2596 /*
2597  * This operation locks against the VM for all pte/vma/mm related
2598  * operations that could ever happen on a certain mm. This includes
2599  * vmtruncate, try_to_unmap, and all page faults.
2600  *
2601  * The caller must take the mmap_sem in write mode before calling
2602  * mm_take_all_locks(). The caller isn't allowed to release the
2603  * mmap_sem until mm_drop_all_locks() returns.
2604  *
2605  * mmap_sem in write mode is required in order to block all operations
2606  * that could modify pagetables and free pages without need of
2607  * altering the vma layout (for example populate_range() with
2608  * nonlinear vmas). It's also needed in write mode to avoid new
2609  * anon_vmas to be associated with existing vmas.
2610  *
2611  * A single task can't take more than one mm_take_all_locks() in a row
2612  * or it would deadlock.
2613  *
2614  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2615  * mapping->flags avoid to take the same lock twice, if more than one
2616  * vma in this mm is backed by the same anon_vma or address_space.
2617  *
2618  * We can take all the locks in random order because the VM code
2619  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2620  * takes more than one of them in a row. Secondly we're protected
2621  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2622  *
2623  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2624  * that may have to take thousand of locks.
2625  *
2626  * mm_take_all_locks() can fail if it's interrupted by signals.
2627  */
2628 int mm_take_all_locks(struct mm_struct *mm)
2629 {
2630         struct vm_area_struct *vma;
2631         struct anon_vma_chain *avc;
2632
2633         BUG_ON(down_read_trylock(&mm->mmap_sem));
2634
2635         mutex_lock(&mm_all_locks_mutex);
2636
2637         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2638                 if (signal_pending(current))
2639                         goto out_unlock;
2640                 if (vma->vm_file && vma->vm_file->f_mapping)
2641                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2642         }
2643
2644         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2645                 if (signal_pending(current))
2646                         goto out_unlock;
2647                 if (vma->anon_vma)
2648                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2649                                 vm_lock_anon_vma(mm, avc->anon_vma);
2650         }
2651
2652         return 0;
2653
2654 out_unlock:
2655         mm_drop_all_locks(mm);
2656         return -EINTR;
2657 }
2658
2659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2660 {
2661         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2662                 /*
2663                  * The LSB of head.next can't change to 0 from under
2664                  * us because we hold the mm_all_locks_mutex.
2665                  *
2666                  * We must however clear the bitflag before unlocking
2667                  * the vma so the users using the anon_vma->rb_root will
2668                  * never see our bitflag.
2669                  *
2670                  * No need of atomic instructions here, head.next
2671                  * can't change from under us until we release the
2672                  * anon_vma->root->mutex.
2673                  */
2674                 if (!__test_and_clear_bit(0, (unsigned long *)
2675                                           &anon_vma->root->rb_root.rb_node))
2676                         BUG();
2677                 anon_vma_unlock(anon_vma);
2678         }
2679 }
2680
2681 static void vm_unlock_mapping(struct address_space *mapping)
2682 {
2683         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2684                 /*
2685                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2686                  * because we hold the mm_all_locks_mutex.
2687                  */
2688                 mutex_unlock(&mapping->i_mmap_mutex);
2689                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2690                                         &mapping->flags))
2691                         BUG();
2692         }
2693 }
2694
2695 /*
2696  * The mmap_sem cannot be released by the caller until
2697  * mm_drop_all_locks() returns.
2698  */
2699 void mm_drop_all_locks(struct mm_struct *mm)
2700 {
2701         struct vm_area_struct *vma;
2702         struct anon_vma_chain *avc;
2703
2704         BUG_ON(down_read_trylock(&mm->mmap_sem));
2705         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2706
2707         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2708                 if (vma->anon_vma)
2709                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2710                                 vm_unlock_anon_vma(avc->anon_vma);
2711                 if (vma->vm_file && vma->vm_file->f_mapping)
2712                         vm_unlock_mapping(vma->vm_file->f_mapping);
2713         }
2714
2715         mutex_unlock(&mm_all_locks_mutex);
2716 }
2717
2718 /*
2719  * initialise the VMA slab
2720  */
2721 void __init mmap_init(void)
2722 {
2723         int ret;
2724
2725         ret = percpu_counter_init(&vm_committed_as, 0);
2726         VM_BUG_ON(ret);
2727 }