]> Pileus Git - ~andy/linux/blob - mm/mlock.c
ksm: reorganize ksm_check_stable_tree
[~andy/linux] / mm / mlock.c
1 /*
2  *      linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/export.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21
22 #include "internal.h"
23
24 int can_do_mlock(void)
25 {
26         if (capable(CAP_IPC_LOCK))
27                 return 1;
28         if (rlimit(RLIMIT_MEMLOCK) != 0)
29                 return 1;
30         return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void clear_page_mlock(struct page *page)
55 {
56         if (!TestClearPageMlocked(page))
57                 return;
58
59         mod_zone_page_state(page_zone(page), NR_MLOCK,
60                             -hpage_nr_pages(page));
61         count_vm_event(UNEVICTABLE_PGCLEARED);
62         if (!isolate_lru_page(page)) {
63                 putback_lru_page(page);
64         } else {
65                 /*
66                  * We lost the race. the page already moved to evictable list.
67                  */
68                 if (PageUnevictable(page))
69                         count_vm_event(UNEVICTABLE_PGSTRANDED);
70         }
71 }
72
73 /*
74  * Mark page as mlocked if not already.
75  * If page on LRU, isolate and putback to move to unevictable list.
76  */
77 void mlock_vma_page(struct page *page)
78 {
79         BUG_ON(!PageLocked(page));
80
81         if (!TestSetPageMlocked(page)) {
82                 mod_zone_page_state(page_zone(page), NR_MLOCK,
83                                     hpage_nr_pages(page));
84                 count_vm_event(UNEVICTABLE_PGMLOCKED);
85                 if (!isolate_lru_page(page))
86                         putback_lru_page(page);
87         }
88 }
89
90 /**
91  * munlock_vma_page - munlock a vma page
92  * @page - page to be unlocked
93  *
94  * called from munlock()/munmap() path with page supposedly on the LRU.
95  * When we munlock a page, because the vma where we found the page is being
96  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
97  * page locked so that we can leave it on the unevictable lru list and not
98  * bother vmscan with it.  However, to walk the page's rmap list in
99  * try_to_munlock() we must isolate the page from the LRU.  If some other
100  * task has removed the page from the LRU, we won't be able to do that.
101  * So we clear the PageMlocked as we might not get another chance.  If we
102  * can't isolate the page, we leave it for putback_lru_page() and vmscan
103  * [page_referenced()/try_to_unmap()] to deal with.
104  */
105 void munlock_vma_page(struct page *page)
106 {
107         BUG_ON(!PageLocked(page));
108
109         if (TestClearPageMlocked(page)) {
110                 mod_zone_page_state(page_zone(page), NR_MLOCK,
111                                     -hpage_nr_pages(page));
112                 if (!isolate_lru_page(page)) {
113                         int ret = SWAP_AGAIN;
114
115                         /*
116                          * Optimization: if the page was mapped just once,
117                          * that's our mapping and we don't need to check all the
118                          * other vmas.
119                          */
120                         if (page_mapcount(page) > 1)
121                                 ret = try_to_munlock(page);
122                         /*
123                          * did try_to_unlock() succeed or punt?
124                          */
125                         if (ret != SWAP_MLOCK)
126                                 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
127
128                         putback_lru_page(page);
129                 } else {
130                         /*
131                          * Some other task has removed the page from the LRU.
132                          * putback_lru_page() will take care of removing the
133                          * page from the unevictable list, if necessary.
134                          * vmscan [page_referenced()] will move the page back
135                          * to the unevictable list if some other vma has it
136                          * mlocked.
137                          */
138                         if (PageUnevictable(page))
139                                 count_vm_event(UNEVICTABLE_PGSTRANDED);
140                         else
141                                 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142                 }
143         }
144 }
145
146 /**
147  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
148  * @vma:   target vma
149  * @start: start address
150  * @end:   end address
151  *
152  * This takes care of making the pages present too.
153  *
154  * return 0 on success, negative error code on error.
155  *
156  * vma->vm_mm->mmap_sem must be held for at least read.
157  */
158 long __mlock_vma_pages_range(struct vm_area_struct *vma,
159                 unsigned long start, unsigned long end, int *nonblocking)
160 {
161         struct mm_struct *mm = vma->vm_mm;
162         unsigned long addr = start;
163         int nr_pages = (end - start) / PAGE_SIZE;
164         int gup_flags;
165
166         VM_BUG_ON(start & ~PAGE_MASK);
167         VM_BUG_ON(end   & ~PAGE_MASK);
168         VM_BUG_ON(start < vma->vm_start);
169         VM_BUG_ON(end   > vma->vm_end);
170         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
171
172         gup_flags = FOLL_TOUCH | FOLL_MLOCK;
173         /*
174          * We want to touch writable mappings with a write fault in order
175          * to break COW, except for shared mappings because these don't COW
176          * and we would not want to dirty them for nothing.
177          */
178         if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
179                 gup_flags |= FOLL_WRITE;
180
181         /*
182          * We want mlock to succeed for regions that have any permissions
183          * other than PROT_NONE.
184          */
185         if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
186                 gup_flags |= FOLL_FORCE;
187
188         return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
189                                 NULL, NULL, nonblocking);
190 }
191
192 /*
193  * convert get_user_pages() return value to posix mlock() error
194  */
195 static int __mlock_posix_error_return(long retval)
196 {
197         if (retval == -EFAULT)
198                 retval = -ENOMEM;
199         else if (retval == -ENOMEM)
200                 retval = -EAGAIN;
201         return retval;
202 }
203
204 /*
205  * munlock_vma_pages_range() - munlock all pages in the vma range.'
206  * @vma - vma containing range to be munlock()ed.
207  * @start - start address in @vma of the range
208  * @end - end of range in @vma.
209  *
210  *  For mremap(), munmap() and exit().
211  *
212  * Called with @vma VM_LOCKED.
213  *
214  * Returns with VM_LOCKED cleared.  Callers must be prepared to
215  * deal with this.
216  *
217  * We don't save and restore VM_LOCKED here because pages are
218  * still on lru.  In unmap path, pages might be scanned by reclaim
219  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
220  * free them.  This will result in freeing mlocked pages.
221  */
222 void munlock_vma_pages_range(struct vm_area_struct *vma,
223                              unsigned long start, unsigned long end)
224 {
225         unsigned long addr;
226
227         lru_add_drain();
228         vma->vm_flags &= ~VM_LOCKED;
229
230         for (addr = start; addr < end; addr += PAGE_SIZE) {
231                 struct page *page;
232                 /*
233                  * Although FOLL_DUMP is intended for get_dump_page(),
234                  * it just so happens that its special treatment of the
235                  * ZERO_PAGE (returning an error instead of doing get_page)
236                  * suits munlock very well (and if somehow an abnormal page
237                  * has sneaked into the range, we won't oops here: great).
238                  */
239                 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
240                 if (page && !IS_ERR(page)) {
241                         lock_page(page);
242                         munlock_vma_page(page);
243                         unlock_page(page);
244                         put_page(page);
245                 }
246                 cond_resched();
247         }
248 }
249
250 /*
251  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
252  *
253  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
254  * munlock is a no-op.  However, for some special vmas, we go ahead and
255  * populate the ptes.
256  *
257  * For vmas that pass the filters, merge/split as appropriate.
258  */
259 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
260         unsigned long start, unsigned long end, vm_flags_t newflags)
261 {
262         struct mm_struct *mm = vma->vm_mm;
263         pgoff_t pgoff;
264         int nr_pages;
265         int ret = 0;
266         int lock = !!(newflags & VM_LOCKED);
267
268         if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
269             is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
270                 goto out;       /* don't set VM_LOCKED,  don't count */
271
272         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
273         *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
274                           vma->vm_file, pgoff, vma_policy(vma));
275         if (*prev) {
276                 vma = *prev;
277                 goto success;
278         }
279
280         if (start != vma->vm_start) {
281                 ret = split_vma(mm, vma, start, 1);
282                 if (ret)
283                         goto out;
284         }
285
286         if (end != vma->vm_end) {
287                 ret = split_vma(mm, vma, end, 0);
288                 if (ret)
289                         goto out;
290         }
291
292 success:
293         /*
294          * Keep track of amount of locked VM.
295          */
296         nr_pages = (end - start) >> PAGE_SHIFT;
297         if (!lock)
298                 nr_pages = -nr_pages;
299         mm->locked_vm += nr_pages;
300
301         /*
302          * vm_flags is protected by the mmap_sem held in write mode.
303          * It's okay if try_to_unmap_one unmaps a page just after we
304          * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
305          */
306
307         if (lock)
308                 vma->vm_flags = newflags;
309         else
310                 munlock_vma_pages_range(vma, start, end);
311
312 out:
313         *prev = vma;
314         return ret;
315 }
316
317 static int do_mlock(unsigned long start, size_t len, int on)
318 {
319         unsigned long nstart, end, tmp;
320         struct vm_area_struct * vma, * prev;
321         int error;
322
323         VM_BUG_ON(start & ~PAGE_MASK);
324         VM_BUG_ON(len != PAGE_ALIGN(len));
325         end = start + len;
326         if (end < start)
327                 return -EINVAL;
328         if (end == start)
329                 return 0;
330         vma = find_vma(current->mm, start);
331         if (!vma || vma->vm_start > start)
332                 return -ENOMEM;
333
334         prev = vma->vm_prev;
335         if (start > vma->vm_start)
336                 prev = vma;
337
338         for (nstart = start ; ; ) {
339                 vm_flags_t newflags;
340
341                 /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
342
343                 newflags = vma->vm_flags & ~VM_LOCKED;
344                 if (on)
345                         newflags |= VM_LOCKED | VM_POPULATE;
346
347                 tmp = vma->vm_end;
348                 if (tmp > end)
349                         tmp = end;
350                 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
351                 if (error)
352                         break;
353                 nstart = tmp;
354                 if (nstart < prev->vm_end)
355                         nstart = prev->vm_end;
356                 if (nstart >= end)
357                         break;
358
359                 vma = prev->vm_next;
360                 if (!vma || vma->vm_start != nstart) {
361                         error = -ENOMEM;
362                         break;
363                 }
364         }
365         return error;
366 }
367
368 /*
369  * __mm_populate - populate and/or mlock pages within a range of address space.
370  *
371  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
372  * flags. VMAs must be already marked with the desired vm_flags, and
373  * mmap_sem must not be held.
374  */
375 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
376 {
377         struct mm_struct *mm = current->mm;
378         unsigned long end, nstart, nend;
379         struct vm_area_struct *vma = NULL;
380         int locked = 0;
381         int ret = 0;
382
383         VM_BUG_ON(start & ~PAGE_MASK);
384         VM_BUG_ON(len != PAGE_ALIGN(len));
385         end = start + len;
386
387         for (nstart = start; nstart < end; nstart = nend) {
388                 /*
389                  * We want to fault in pages for [nstart; end) address range.
390                  * Find first corresponding VMA.
391                  */
392                 if (!locked) {
393                         locked = 1;
394                         down_read(&mm->mmap_sem);
395                         vma = find_vma(mm, nstart);
396                 } else if (nstart >= vma->vm_end)
397                         vma = vma->vm_next;
398                 if (!vma || vma->vm_start >= end)
399                         break;
400                 /*
401                  * Set [nstart; nend) to intersection of desired address
402                  * range with the first VMA. Also, skip undesirable VMA types.
403                  */
404                 nend = min(end, vma->vm_end);
405                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP | VM_POPULATE)) !=
406                     VM_POPULATE)
407                         continue;
408                 if (nstart < vma->vm_start)
409                         nstart = vma->vm_start;
410                 /*
411                  * Now fault in a range of pages. __mlock_vma_pages_range()
412                  * double checks the vma flags, so that it won't mlock pages
413                  * if the vma was already munlocked.
414                  */
415                 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
416                 if (ret < 0) {
417                         if (ignore_errors) {
418                                 ret = 0;
419                                 continue;       /* continue at next VMA */
420                         }
421                         ret = __mlock_posix_error_return(ret);
422                         break;
423                 }
424                 nend = nstart + ret * PAGE_SIZE;
425                 ret = 0;
426         }
427         if (locked)
428                 up_read(&mm->mmap_sem);
429         return ret;     /* 0 or negative error code */
430 }
431
432 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
433 {
434         unsigned long locked;
435         unsigned long lock_limit;
436         int error = -ENOMEM;
437
438         if (!can_do_mlock())
439                 return -EPERM;
440
441         lru_add_drain_all();    /* flush pagevec */
442
443         down_write(&current->mm->mmap_sem);
444         len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
445         start &= PAGE_MASK;
446
447         locked = len >> PAGE_SHIFT;
448         locked += current->mm->locked_vm;
449
450         lock_limit = rlimit(RLIMIT_MEMLOCK);
451         lock_limit >>= PAGE_SHIFT;
452
453         /* check against resource limits */
454         if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
455                 error = do_mlock(start, len, 1);
456         up_write(&current->mm->mmap_sem);
457         if (!error)
458                 error = __mm_populate(start, len, 0);
459         return error;
460 }
461
462 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
463 {
464         int ret;
465
466         down_write(&current->mm->mmap_sem);
467         len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
468         start &= PAGE_MASK;
469         ret = do_mlock(start, len, 0);
470         up_write(&current->mm->mmap_sem);
471         return ret;
472 }
473
474 static int do_mlockall(int flags)
475 {
476         struct vm_area_struct * vma, * prev = NULL;
477
478         if (flags & MCL_FUTURE)
479                 current->mm->def_flags |= VM_LOCKED | VM_POPULATE;
480         else
481                 current->mm->def_flags &= ~(VM_LOCKED | VM_POPULATE);
482         if (flags == MCL_FUTURE)
483                 goto out;
484
485         for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
486                 vm_flags_t newflags;
487
488                 newflags = vma->vm_flags & ~VM_LOCKED;
489                 if (flags & MCL_CURRENT)
490                         newflags |= VM_LOCKED | VM_POPULATE;
491
492                 /* Ignore errors */
493                 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
494         }
495 out:
496         return 0;
497 }
498
499 SYSCALL_DEFINE1(mlockall, int, flags)
500 {
501         unsigned long lock_limit;
502         int ret = -EINVAL;
503
504         if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
505                 goto out;
506
507         ret = -EPERM;
508         if (!can_do_mlock())
509                 goto out;
510
511         if (flags & MCL_CURRENT)
512                 lru_add_drain_all();    /* flush pagevec */
513
514         down_write(&current->mm->mmap_sem);
515
516         lock_limit = rlimit(RLIMIT_MEMLOCK);
517         lock_limit >>= PAGE_SHIFT;
518
519         ret = -ENOMEM;
520         if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
521             capable(CAP_IPC_LOCK))
522                 ret = do_mlockall(flags);
523         up_write(&current->mm->mmap_sem);
524         if (!ret && (flags & MCL_CURRENT))
525                 mm_populate(0, TASK_SIZE);
526 out:
527         return ret;
528 }
529
530 SYSCALL_DEFINE0(munlockall)
531 {
532         int ret;
533
534         down_write(&current->mm->mmap_sem);
535         ret = do_mlockall(0);
536         up_write(&current->mm->mmap_sem);
537         return ret;
538 }
539
540 /*
541  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
542  * shm segments) get accounted against the user_struct instead.
543  */
544 static DEFINE_SPINLOCK(shmlock_user_lock);
545
546 int user_shm_lock(size_t size, struct user_struct *user)
547 {
548         unsigned long lock_limit, locked;
549         int allowed = 0;
550
551         locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
552         lock_limit = rlimit(RLIMIT_MEMLOCK);
553         if (lock_limit == RLIM_INFINITY)
554                 allowed = 1;
555         lock_limit >>= PAGE_SHIFT;
556         spin_lock(&shmlock_user_lock);
557         if (!allowed &&
558             locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
559                 goto out;
560         get_uid(user);
561         user->locked_shm += locked;
562         allowed = 1;
563 out:
564         spin_unlock(&shmlock_user_lock);
565         return allowed;
566 }
567
568 void user_shm_unlock(size_t size, struct user_struct *user)
569 {
570         spin_lock(&shmlock_user_lock);
571         user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
572         spin_unlock(&shmlock_user_lock);
573         free_uid(user);
574 }