]> Pileus Git - ~andy/linux/blob - mm/memory.c
mm: save soft-dirty bits on file pages
[~andy/linux] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93
94 EXPORT_SYMBOL(high_memory);
95
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104                                         1;
105 #else
106                                         2;
107 #endif
108
109 static int __init disable_randmaps(char *s)
110 {
111         randomize_va_space = 0;
112         return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124         zero_pfn = page_to_pfn(ZERO_PAGE(0));
125         return 0;
126 }
127 core_initcall(init_zero_pfn);
128
129
130 #if defined(SPLIT_RSS_COUNTING)
131
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134         int i;
135
136         for (i = 0; i < NR_MM_COUNTERS; i++) {
137                 if (current->rss_stat.count[i]) {
138                         add_mm_counter(mm, i, current->rss_stat.count[i]);
139                         current->rss_stat.count[i] = 0;
140                 }
141         }
142         current->rss_stat.events = 0;
143 }
144
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147         struct task_struct *task = current;
148
149         if (likely(task->mm == mm))
150                 task->rss_stat.count[member] += val;
151         else
152                 add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH  (64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161         if (unlikely(task != current))
162                 return;
163         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164                 sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174
175 #endif /* SPLIT_RSS_COUNTING */
176
177 #ifdef HAVE_GENERIC_MMU_GATHER
178
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181         struct mmu_gather_batch *batch;
182
183         batch = tlb->active;
184         if (batch->next) {
185                 tlb->active = batch->next;
186                 return 1;
187         }
188
189         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190                 return 0;
191
192         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193         if (!batch)
194                 return 0;
195
196         tlb->batch_count++;
197         batch->next = NULL;
198         batch->nr   = 0;
199         batch->max  = MAX_GATHER_BATCH;
200
201         tlb->active->next = batch;
202         tlb->active = batch;
203
204         return 1;
205 }
206
207 /* tlb_gather_mmu
208  *      Called to initialize an (on-stack) mmu_gather structure for page-table
209  *      tear-down from @mm. The @fullmm argument is used when @mm is without
210  *      users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
213 {
214         tlb->mm = mm;
215
216         tlb->fullmm     = fullmm;
217         tlb->need_flush_all = 0;
218         tlb->start      = -1UL;
219         tlb->end        = 0;
220         tlb->need_flush = 0;
221         tlb->local.next = NULL;
222         tlb->local.nr   = 0;
223         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
224         tlb->active     = &tlb->local;
225         tlb->batch_count = 0;
226
227 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
228         tlb->batch = NULL;
229 #endif
230 }
231
232 void tlb_flush_mmu(struct mmu_gather *tlb)
233 {
234         struct mmu_gather_batch *batch;
235
236         if (!tlb->need_flush)
237                 return;
238         tlb->need_flush = 0;
239         tlb_flush(tlb);
240 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
241         tlb_table_flush(tlb);
242 #endif
243
244         for (batch = &tlb->local; batch; batch = batch->next) {
245                 free_pages_and_swap_cache(batch->pages, batch->nr);
246                 batch->nr = 0;
247         }
248         tlb->active = &tlb->local;
249 }
250
251 /* tlb_finish_mmu
252  *      Called at the end of the shootdown operation to free up any resources
253  *      that were required.
254  */
255 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
256 {
257         struct mmu_gather_batch *batch, *next;
258
259         tlb->start = start;
260         tlb->end   = end;
261         tlb_flush_mmu(tlb);
262
263         /* keep the page table cache within bounds */
264         check_pgt_cache();
265
266         for (batch = tlb->local.next; batch; batch = next) {
267                 next = batch->next;
268                 free_pages((unsigned long)batch, 0);
269         }
270         tlb->local.next = NULL;
271 }
272
273 /* __tlb_remove_page
274  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
275  *      handling the additional races in SMP caused by other CPUs caching valid
276  *      mappings in their TLBs. Returns the number of free page slots left.
277  *      When out of page slots we must call tlb_flush_mmu().
278  */
279 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280 {
281         struct mmu_gather_batch *batch;
282
283         VM_BUG_ON(!tlb->need_flush);
284
285         batch = tlb->active;
286         batch->pages[batch->nr++] = page;
287         if (batch->nr == batch->max) {
288                 if (!tlb_next_batch(tlb))
289                         return 0;
290                 batch = tlb->active;
291         }
292         VM_BUG_ON(batch->nr > batch->max);
293
294         return batch->max - batch->nr;
295 }
296
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301 /*
302  * See the comment near struct mmu_table_batch.
303  */
304
305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307         /* Simply deliver the interrupt */
308 }
309
310 static void tlb_remove_table_one(void *table)
311 {
312         /*
313          * This isn't an RCU grace period and hence the page-tables cannot be
314          * assumed to be actually RCU-freed.
315          *
316          * It is however sufficient for software page-table walkers that rely on
317          * IRQ disabling. See the comment near struct mmu_table_batch.
318          */
319         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320         __tlb_remove_table(table);
321 }
322
323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325         struct mmu_table_batch *batch;
326         int i;
327
328         batch = container_of(head, struct mmu_table_batch, rcu);
329
330         for (i = 0; i < batch->nr; i++)
331                 __tlb_remove_table(batch->tables[i]);
332
333         free_page((unsigned long)batch);
334 }
335
336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338         struct mmu_table_batch **batch = &tlb->batch;
339
340         if (*batch) {
341                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342                 *batch = NULL;
343         }
344 }
345
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348         struct mmu_table_batch **batch = &tlb->batch;
349
350         tlb->need_flush = 1;
351
352         /*
353          * When there's less then two users of this mm there cannot be a
354          * concurrent page-table walk.
355          */
356         if (atomic_read(&tlb->mm->mm_users) < 2) {
357                 __tlb_remove_table(table);
358                 return;
359         }
360
361         if (*batch == NULL) {
362                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363                 if (*batch == NULL) {
364                         tlb_remove_table_one(table);
365                         return;
366                 }
367                 (*batch)->nr = 0;
368         }
369         (*batch)->tables[(*batch)->nr++] = table;
370         if ((*batch)->nr == MAX_TABLE_BATCH)
371                 tlb_table_flush(tlb);
372 }
373
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375
376 /*
377  * If a p?d_bad entry is found while walking page tables, report
378  * the error, before resetting entry to p?d_none.  Usually (but
379  * very seldom) called out from the p?d_none_or_clear_bad macros.
380  */
381
382 void pgd_clear_bad(pgd_t *pgd)
383 {
384         pgd_ERROR(*pgd);
385         pgd_clear(pgd);
386 }
387
388 void pud_clear_bad(pud_t *pud)
389 {
390         pud_ERROR(*pud);
391         pud_clear(pud);
392 }
393
394 void pmd_clear_bad(pmd_t *pmd)
395 {
396         pmd_ERROR(*pmd);
397         pmd_clear(pmd);
398 }
399
400 /*
401  * Note: this doesn't free the actual pages themselves. That
402  * has been handled earlier when unmapping all the memory regions.
403  */
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405                            unsigned long addr)
406 {
407         pgtable_t token = pmd_pgtable(*pmd);
408         pmd_clear(pmd);
409         pte_free_tlb(tlb, token, addr);
410         tlb->mm->nr_ptes--;
411 }
412
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414                                 unsigned long addr, unsigned long end,
415                                 unsigned long floor, unsigned long ceiling)
416 {
417         pmd_t *pmd;
418         unsigned long next;
419         unsigned long start;
420
421         start = addr;
422         pmd = pmd_offset(pud, addr);
423         do {
424                 next = pmd_addr_end(addr, end);
425                 if (pmd_none_or_clear_bad(pmd))
426                         continue;
427                 free_pte_range(tlb, pmd, addr);
428         } while (pmd++, addr = next, addr != end);
429
430         start &= PUD_MASK;
431         if (start < floor)
432                 return;
433         if (ceiling) {
434                 ceiling &= PUD_MASK;
435                 if (!ceiling)
436                         return;
437         }
438         if (end - 1 > ceiling - 1)
439                 return;
440
441         pmd = pmd_offset(pud, start);
442         pud_clear(pud);
443         pmd_free_tlb(tlb, pmd, start);
444 }
445
446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447                                 unsigned long addr, unsigned long end,
448                                 unsigned long floor, unsigned long ceiling)
449 {
450         pud_t *pud;
451         unsigned long next;
452         unsigned long start;
453
454         start = addr;
455         pud = pud_offset(pgd, addr);
456         do {
457                 next = pud_addr_end(addr, end);
458                 if (pud_none_or_clear_bad(pud))
459                         continue;
460                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461         } while (pud++, addr = next, addr != end);
462
463         start &= PGDIR_MASK;
464         if (start < floor)
465                 return;
466         if (ceiling) {
467                 ceiling &= PGDIR_MASK;
468                 if (!ceiling)
469                         return;
470         }
471         if (end - 1 > ceiling - 1)
472                 return;
473
474         pud = pud_offset(pgd, start);
475         pgd_clear(pgd);
476         pud_free_tlb(tlb, pud, start);
477 }
478
479 /*
480  * This function frees user-level page tables of a process.
481  *
482  * Must be called with pagetable lock held.
483  */
484 void free_pgd_range(struct mmu_gather *tlb,
485                         unsigned long addr, unsigned long end,
486                         unsigned long floor, unsigned long ceiling)
487 {
488         pgd_t *pgd;
489         unsigned long next;
490
491         /*
492          * The next few lines have given us lots of grief...
493          *
494          * Why are we testing PMD* at this top level?  Because often
495          * there will be no work to do at all, and we'd prefer not to
496          * go all the way down to the bottom just to discover that.
497          *
498          * Why all these "- 1"s?  Because 0 represents both the bottom
499          * of the address space and the top of it (using -1 for the
500          * top wouldn't help much: the masks would do the wrong thing).
501          * The rule is that addr 0 and floor 0 refer to the bottom of
502          * the address space, but end 0 and ceiling 0 refer to the top
503          * Comparisons need to use "end - 1" and "ceiling - 1" (though
504          * that end 0 case should be mythical).
505          *
506          * Wherever addr is brought up or ceiling brought down, we must
507          * be careful to reject "the opposite 0" before it confuses the
508          * subsequent tests.  But what about where end is brought down
509          * by PMD_SIZE below? no, end can't go down to 0 there.
510          *
511          * Whereas we round start (addr) and ceiling down, by different
512          * masks at different levels, in order to test whether a table
513          * now has no other vmas using it, so can be freed, we don't
514          * bother to round floor or end up - the tests don't need that.
515          */
516
517         addr &= PMD_MASK;
518         if (addr < floor) {
519                 addr += PMD_SIZE;
520                 if (!addr)
521                         return;
522         }
523         if (ceiling) {
524                 ceiling &= PMD_MASK;
525                 if (!ceiling)
526                         return;
527         }
528         if (end - 1 > ceiling - 1)
529                 end -= PMD_SIZE;
530         if (addr > end - 1)
531                 return;
532
533         pgd = pgd_offset(tlb->mm, addr);
534         do {
535                 next = pgd_addr_end(addr, end);
536                 if (pgd_none_or_clear_bad(pgd))
537                         continue;
538                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539         } while (pgd++, addr = next, addr != end);
540 }
541
542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543                 unsigned long floor, unsigned long ceiling)
544 {
545         while (vma) {
546                 struct vm_area_struct *next = vma->vm_next;
547                 unsigned long addr = vma->vm_start;
548
549                 /*
550                  * Hide vma from rmap and truncate_pagecache before freeing
551                  * pgtables
552                  */
553                 unlink_anon_vmas(vma);
554                 unlink_file_vma(vma);
555
556                 if (is_vm_hugetlb_page(vma)) {
557                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next? next->vm_start: ceiling);
559                 } else {
560                         /*
561                          * Optimization: gather nearby vmas into one call down
562                          */
563                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564                                && !is_vm_hugetlb_page(next)) {
565                                 vma = next;
566                                 next = vma->vm_next;
567                                 unlink_anon_vmas(vma);
568                                 unlink_file_vma(vma);
569                         }
570                         free_pgd_range(tlb, addr, vma->vm_end,
571                                 floor, next? next->vm_start: ceiling);
572                 }
573                 vma = next;
574         }
575 }
576
577 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578                 pmd_t *pmd, unsigned long address)
579 {
580         pgtable_t new = pte_alloc_one(mm, address);
581         int wait_split_huge_page;
582         if (!new)
583                 return -ENOMEM;
584
585         /*
586          * Ensure all pte setup (eg. pte page lock and page clearing) are
587          * visible before the pte is made visible to other CPUs by being
588          * put into page tables.
589          *
590          * The other side of the story is the pointer chasing in the page
591          * table walking code (when walking the page table without locking;
592          * ie. most of the time). Fortunately, these data accesses consist
593          * of a chain of data-dependent loads, meaning most CPUs (alpha
594          * being the notable exception) will already guarantee loads are
595          * seen in-order. See the alpha page table accessors for the
596          * smp_read_barrier_depends() barriers in page table walking code.
597          */
598         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
600         spin_lock(&mm->page_table_lock);
601         wait_split_huge_page = 0;
602         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
603                 mm->nr_ptes++;
604                 pmd_populate(mm, pmd, new);
605                 new = NULL;
606         } else if (unlikely(pmd_trans_splitting(*pmd)))
607                 wait_split_huge_page = 1;
608         spin_unlock(&mm->page_table_lock);
609         if (new)
610                 pte_free(mm, new);
611         if (wait_split_huge_page)
612                 wait_split_huge_page(vma->anon_vma, pmd);
613         return 0;
614 }
615
616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 {
618         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619         if (!new)
620                 return -ENOMEM;
621
622         smp_wmb(); /* See comment in __pte_alloc */
623
624         spin_lock(&init_mm.page_table_lock);
625         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
626                 pmd_populate_kernel(&init_mm, pmd, new);
627                 new = NULL;
628         } else
629                 VM_BUG_ON(pmd_trans_splitting(*pmd));
630         spin_unlock(&init_mm.page_table_lock);
631         if (new)
632                 pte_free_kernel(&init_mm, new);
633         return 0;
634 }
635
636 static inline void init_rss_vec(int *rss)
637 {
638         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639 }
640
641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 {
643         int i;
644
645         if (current->mm == mm)
646                 sync_mm_rss(mm);
647         for (i = 0; i < NR_MM_COUNTERS; i++)
648                 if (rss[i])
649                         add_mm_counter(mm, i, rss[i]);
650 }
651
652 /*
653  * This function is called to print an error when a bad pte
654  * is found. For example, we might have a PFN-mapped pte in
655  * a region that doesn't allow it.
656  *
657  * The calling function must still handle the error.
658  */
659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660                           pte_t pte, struct page *page)
661 {
662         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663         pud_t *pud = pud_offset(pgd, addr);
664         pmd_t *pmd = pmd_offset(pud, addr);
665         struct address_space *mapping;
666         pgoff_t index;
667         static unsigned long resume;
668         static unsigned long nr_shown;
669         static unsigned long nr_unshown;
670
671         /*
672          * Allow a burst of 60 reports, then keep quiet for that minute;
673          * or allow a steady drip of one report per second.
674          */
675         if (nr_shown == 60) {
676                 if (time_before(jiffies, resume)) {
677                         nr_unshown++;
678                         return;
679                 }
680                 if (nr_unshown) {
681                         printk(KERN_ALERT
682                                 "BUG: Bad page map: %lu messages suppressed\n",
683                                 nr_unshown);
684                         nr_unshown = 0;
685                 }
686                 nr_shown = 0;
687         }
688         if (nr_shown++ == 0)
689                 resume = jiffies + 60 * HZ;
690
691         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692         index = linear_page_index(vma, addr);
693
694         printk(KERN_ALERT
695                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
696                 current->comm,
697                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
698         if (page)
699                 dump_page(page);
700         printk(KERN_ALERT
701                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703         /*
704          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705          */
706         if (vma->vm_ops)
707                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
708                        vma->vm_ops->fault);
709         if (vma->vm_file && vma->vm_file->f_op)
710                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
711                        vma->vm_file->f_op->mmap);
712         dump_stack();
713         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
714 }
715
716 static inline bool is_cow_mapping(vm_flags_t flags)
717 {
718         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719 }
720
721 /*
722  * vm_normal_page -- This function gets the "struct page" associated with a pte.
723  *
724  * "Special" mappings do not wish to be associated with a "struct page" (either
725  * it doesn't exist, or it exists but they don't want to touch it). In this
726  * case, NULL is returned here. "Normal" mappings do have a struct page.
727  *
728  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
729  * pte bit, in which case this function is trivial. Secondly, an architecture
730  * may not have a spare pte bit, which requires a more complicated scheme,
731  * described below.
732  *
733  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
734  * special mapping (even if there are underlying and valid "struct pages").
735  * COWed pages of a VM_PFNMAP are always normal.
736  *
737  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
738  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
739  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
740  * mapping will always honor the rule
741  *
742  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
743  *
744  * And for normal mappings this is false.
745  *
746  * This restricts such mappings to be a linear translation from virtual address
747  * to pfn. To get around this restriction, we allow arbitrary mappings so long
748  * as the vma is not a COW mapping; in that case, we know that all ptes are
749  * special (because none can have been COWed).
750  *
751  *
752  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
753  *
754  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
755  * page" backing, however the difference is that _all_ pages with a struct
756  * page (that is, those where pfn_valid is true) are refcounted and considered
757  * normal pages by the VM. The disadvantage is that pages are refcounted
758  * (which can be slower and simply not an option for some PFNMAP users). The
759  * advantage is that we don't have to follow the strict linearity rule of
760  * PFNMAP mappings in order to support COWable mappings.
761  *
762  */
763 #ifdef __HAVE_ARCH_PTE_SPECIAL
764 # define HAVE_PTE_SPECIAL 1
765 #else
766 # define HAVE_PTE_SPECIAL 0
767 #endif
768 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
769                                 pte_t pte)
770 {
771         unsigned long pfn = pte_pfn(pte);
772
773         if (HAVE_PTE_SPECIAL) {
774                 if (likely(!pte_special(pte)))
775                         goto check_pfn;
776                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
777                         return NULL;
778                 if (!is_zero_pfn(pfn))
779                         print_bad_pte(vma, addr, pte, NULL);
780                 return NULL;
781         }
782
783         /* !HAVE_PTE_SPECIAL case follows: */
784
785         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
786                 if (vma->vm_flags & VM_MIXEDMAP) {
787                         if (!pfn_valid(pfn))
788                                 return NULL;
789                         goto out;
790                 } else {
791                         unsigned long off;
792                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
793                         if (pfn == vma->vm_pgoff + off)
794                                 return NULL;
795                         if (!is_cow_mapping(vma->vm_flags))
796                                 return NULL;
797                 }
798         }
799
800         if (is_zero_pfn(pfn))
801                 return NULL;
802 check_pfn:
803         if (unlikely(pfn > highest_memmap_pfn)) {
804                 print_bad_pte(vma, addr, pte, NULL);
805                 return NULL;
806         }
807
808         /*
809          * NOTE! We still have PageReserved() pages in the page tables.
810          * eg. VDSO mappings can cause them to exist.
811          */
812 out:
813         return pfn_to_page(pfn);
814 }
815
816 /*
817  * copy one vm_area from one task to the other. Assumes the page tables
818  * already present in the new task to be cleared in the whole range
819  * covered by this vma.
820  */
821
822 static inline unsigned long
823 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
824                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
825                 unsigned long addr, int *rss)
826 {
827         unsigned long vm_flags = vma->vm_flags;
828         pte_t pte = *src_pte;
829         struct page *page;
830
831         /* pte contains position in swap or file, so copy. */
832         if (unlikely(!pte_present(pte))) {
833                 if (!pte_file(pte)) {
834                         swp_entry_t entry = pte_to_swp_entry(pte);
835
836                         if (swap_duplicate(entry) < 0)
837                                 return entry.val;
838
839                         /* make sure dst_mm is on swapoff's mmlist. */
840                         if (unlikely(list_empty(&dst_mm->mmlist))) {
841                                 spin_lock(&mmlist_lock);
842                                 if (list_empty(&dst_mm->mmlist))
843                                         list_add(&dst_mm->mmlist,
844                                                  &src_mm->mmlist);
845                                 spin_unlock(&mmlist_lock);
846                         }
847                         if (likely(!non_swap_entry(entry)))
848                                 rss[MM_SWAPENTS]++;
849                         else if (is_migration_entry(entry)) {
850                                 page = migration_entry_to_page(entry);
851
852                                 if (PageAnon(page))
853                                         rss[MM_ANONPAGES]++;
854                                 else
855                                         rss[MM_FILEPAGES]++;
856
857                                 if (is_write_migration_entry(entry) &&
858                                     is_cow_mapping(vm_flags)) {
859                                         /*
860                                          * COW mappings require pages in both
861                                          * parent and child to be set to read.
862                                          */
863                                         make_migration_entry_read(&entry);
864                                         pte = swp_entry_to_pte(entry);
865                                         set_pte_at(src_mm, addr, src_pte, pte);
866                                 }
867                         }
868                 }
869                 goto out_set_pte;
870         }
871
872         /*
873          * If it's a COW mapping, write protect it both
874          * in the parent and the child
875          */
876         if (is_cow_mapping(vm_flags)) {
877                 ptep_set_wrprotect(src_mm, addr, src_pte);
878                 pte = pte_wrprotect(pte);
879         }
880
881         /*
882          * If it's a shared mapping, mark it clean in
883          * the child
884          */
885         if (vm_flags & VM_SHARED)
886                 pte = pte_mkclean(pte);
887         pte = pte_mkold(pte);
888
889         page = vm_normal_page(vma, addr, pte);
890         if (page) {
891                 get_page(page);
892                 page_dup_rmap(page);
893                 if (PageAnon(page))
894                         rss[MM_ANONPAGES]++;
895                 else
896                         rss[MM_FILEPAGES]++;
897         }
898
899 out_set_pte:
900         set_pte_at(dst_mm, addr, dst_pte, pte);
901         return 0;
902 }
903
904 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
905                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
906                    unsigned long addr, unsigned long end)
907 {
908         pte_t *orig_src_pte, *orig_dst_pte;
909         pte_t *src_pte, *dst_pte;
910         spinlock_t *src_ptl, *dst_ptl;
911         int progress = 0;
912         int rss[NR_MM_COUNTERS];
913         swp_entry_t entry = (swp_entry_t){0};
914
915 again:
916         init_rss_vec(rss);
917
918         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
919         if (!dst_pte)
920                 return -ENOMEM;
921         src_pte = pte_offset_map(src_pmd, addr);
922         src_ptl = pte_lockptr(src_mm, src_pmd);
923         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
924         orig_src_pte = src_pte;
925         orig_dst_pte = dst_pte;
926         arch_enter_lazy_mmu_mode();
927
928         do {
929                 /*
930                  * We are holding two locks at this point - either of them
931                  * could generate latencies in another task on another CPU.
932                  */
933                 if (progress >= 32) {
934                         progress = 0;
935                         if (need_resched() ||
936                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
937                                 break;
938                 }
939                 if (pte_none(*src_pte)) {
940                         progress++;
941                         continue;
942                 }
943                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
944                                                         vma, addr, rss);
945                 if (entry.val)
946                         break;
947                 progress += 8;
948         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
949
950         arch_leave_lazy_mmu_mode();
951         spin_unlock(src_ptl);
952         pte_unmap(orig_src_pte);
953         add_mm_rss_vec(dst_mm, rss);
954         pte_unmap_unlock(orig_dst_pte, dst_ptl);
955         cond_resched();
956
957         if (entry.val) {
958                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
959                         return -ENOMEM;
960                 progress = 0;
961         }
962         if (addr != end)
963                 goto again;
964         return 0;
965 }
966
967 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
969                 unsigned long addr, unsigned long end)
970 {
971         pmd_t *src_pmd, *dst_pmd;
972         unsigned long next;
973
974         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
975         if (!dst_pmd)
976                 return -ENOMEM;
977         src_pmd = pmd_offset(src_pud, addr);
978         do {
979                 next = pmd_addr_end(addr, end);
980                 if (pmd_trans_huge(*src_pmd)) {
981                         int err;
982                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
983                         err = copy_huge_pmd(dst_mm, src_mm,
984                                             dst_pmd, src_pmd, addr, vma);
985                         if (err == -ENOMEM)
986                                 return -ENOMEM;
987                         if (!err)
988                                 continue;
989                         /* fall through */
990                 }
991                 if (pmd_none_or_clear_bad(src_pmd))
992                         continue;
993                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
994                                                 vma, addr, next))
995                         return -ENOMEM;
996         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
997         return 0;
998 }
999
1000 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1002                 unsigned long addr, unsigned long end)
1003 {
1004         pud_t *src_pud, *dst_pud;
1005         unsigned long next;
1006
1007         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1008         if (!dst_pud)
1009                 return -ENOMEM;
1010         src_pud = pud_offset(src_pgd, addr);
1011         do {
1012                 next = pud_addr_end(addr, end);
1013                 if (pud_none_or_clear_bad(src_pud))
1014                         continue;
1015                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1016                                                 vma, addr, next))
1017                         return -ENOMEM;
1018         } while (dst_pud++, src_pud++, addr = next, addr != end);
1019         return 0;
1020 }
1021
1022 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023                 struct vm_area_struct *vma)
1024 {
1025         pgd_t *src_pgd, *dst_pgd;
1026         unsigned long next;
1027         unsigned long addr = vma->vm_start;
1028         unsigned long end = vma->vm_end;
1029         unsigned long mmun_start;       /* For mmu_notifiers */
1030         unsigned long mmun_end;         /* For mmu_notifiers */
1031         bool is_cow;
1032         int ret;
1033
1034         /*
1035          * Don't copy ptes where a page fault will fill them correctly.
1036          * Fork becomes much lighter when there are big shared or private
1037          * readonly mappings. The tradeoff is that copy_page_range is more
1038          * efficient than faulting.
1039          */
1040         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1041                                VM_PFNMAP | VM_MIXEDMAP))) {
1042                 if (!vma->anon_vma)
1043                         return 0;
1044         }
1045
1046         if (is_vm_hugetlb_page(vma))
1047                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1048
1049         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1050                 /*
1051                  * We do not free on error cases below as remove_vma
1052                  * gets called on error from higher level routine
1053                  */
1054                 ret = track_pfn_copy(vma);
1055                 if (ret)
1056                         return ret;
1057         }
1058
1059         /*
1060          * We need to invalidate the secondary MMU mappings only when
1061          * there could be a permission downgrade on the ptes of the
1062          * parent mm. And a permission downgrade will only happen if
1063          * is_cow_mapping() returns true.
1064          */
1065         is_cow = is_cow_mapping(vma->vm_flags);
1066         mmun_start = addr;
1067         mmun_end   = end;
1068         if (is_cow)
1069                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1070                                                     mmun_end);
1071
1072         ret = 0;
1073         dst_pgd = pgd_offset(dst_mm, addr);
1074         src_pgd = pgd_offset(src_mm, addr);
1075         do {
1076                 next = pgd_addr_end(addr, end);
1077                 if (pgd_none_or_clear_bad(src_pgd))
1078                         continue;
1079                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1080                                             vma, addr, next))) {
1081                         ret = -ENOMEM;
1082                         break;
1083                 }
1084         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1085
1086         if (is_cow)
1087                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1088         return ret;
1089 }
1090
1091 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1092                                 struct vm_area_struct *vma, pmd_t *pmd,
1093                                 unsigned long addr, unsigned long end,
1094                                 struct zap_details *details)
1095 {
1096         struct mm_struct *mm = tlb->mm;
1097         int force_flush = 0;
1098         int rss[NR_MM_COUNTERS];
1099         spinlock_t *ptl;
1100         pte_t *start_pte;
1101         pte_t *pte;
1102         unsigned long range_start = addr;
1103
1104 again:
1105         init_rss_vec(rss);
1106         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107         pte = start_pte;
1108         arch_enter_lazy_mmu_mode();
1109         do {
1110                 pte_t ptent = *pte;
1111                 if (pte_none(ptent)) {
1112                         continue;
1113                 }
1114
1115                 if (pte_present(ptent)) {
1116                         struct page *page;
1117
1118                         page = vm_normal_page(vma, addr, ptent);
1119                         if (unlikely(details) && page) {
1120                                 /*
1121                                  * unmap_shared_mapping_pages() wants to
1122                                  * invalidate cache without truncating:
1123                                  * unmap shared but keep private pages.
1124                                  */
1125                                 if (details->check_mapping &&
1126                                     details->check_mapping != page->mapping)
1127                                         continue;
1128                                 /*
1129                                  * Each page->index must be checked when
1130                                  * invalidating or truncating nonlinear.
1131                                  */
1132                                 if (details->nonlinear_vma &&
1133                                     (page->index < details->first_index ||
1134                                      page->index > details->last_index))
1135                                         continue;
1136                         }
1137                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1138                                                         tlb->fullmm);
1139                         tlb_remove_tlb_entry(tlb, pte, addr);
1140                         if (unlikely(!page))
1141                                 continue;
1142                         if (unlikely(details) && details->nonlinear_vma
1143                             && linear_page_index(details->nonlinear_vma,
1144                                                 addr) != page->index) {
1145                                 pte_t ptfile = pgoff_to_pte(page->index);
1146                                 if (pte_soft_dirty(ptent))
1147                                         pte_file_mksoft_dirty(ptfile);
1148                                 set_pte_at(mm, addr, pte, ptfile);
1149                         }
1150                         if (PageAnon(page))
1151                                 rss[MM_ANONPAGES]--;
1152                         else {
1153                                 if (pte_dirty(ptent))
1154                                         set_page_dirty(page);
1155                                 if (pte_young(ptent) &&
1156                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1157                                         mark_page_accessed(page);
1158                                 rss[MM_FILEPAGES]--;
1159                         }
1160                         page_remove_rmap(page);
1161                         if (unlikely(page_mapcount(page) < 0))
1162                                 print_bad_pte(vma, addr, ptent, page);
1163                         force_flush = !__tlb_remove_page(tlb, page);
1164                         if (force_flush)
1165                                 break;
1166                         continue;
1167                 }
1168                 /*
1169                  * If details->check_mapping, we leave swap entries;
1170                  * if details->nonlinear_vma, we leave file entries.
1171                  */
1172                 if (unlikely(details))
1173                         continue;
1174                 if (pte_file(ptent)) {
1175                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1176                                 print_bad_pte(vma, addr, ptent, NULL);
1177                 } else {
1178                         swp_entry_t entry = pte_to_swp_entry(ptent);
1179
1180                         if (!non_swap_entry(entry))
1181                                 rss[MM_SWAPENTS]--;
1182                         else if (is_migration_entry(entry)) {
1183                                 struct page *page;
1184
1185                                 page = migration_entry_to_page(entry);
1186
1187                                 if (PageAnon(page))
1188                                         rss[MM_ANONPAGES]--;
1189                                 else
1190                                         rss[MM_FILEPAGES]--;
1191                         }
1192                         if (unlikely(!free_swap_and_cache(entry)))
1193                                 print_bad_pte(vma, addr, ptent, NULL);
1194                 }
1195                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1196         } while (pte++, addr += PAGE_SIZE, addr != end);
1197
1198         add_mm_rss_vec(mm, rss);
1199         arch_leave_lazy_mmu_mode();
1200         pte_unmap_unlock(start_pte, ptl);
1201
1202         /*
1203          * mmu_gather ran out of room to batch pages, we break out of
1204          * the PTE lock to avoid doing the potential expensive TLB invalidate
1205          * and page-free while holding it.
1206          */
1207         if (force_flush) {
1208                 force_flush = 0;
1209
1210 #ifdef HAVE_GENERIC_MMU_GATHER
1211                 tlb->start = range_start;
1212                 tlb->end = addr;
1213 #endif
1214                 tlb_flush_mmu(tlb);
1215                 if (addr != end) {
1216                         range_start = addr;
1217                         goto again;
1218                 }
1219         }
1220
1221         return addr;
1222 }
1223
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225                                 struct vm_area_struct *vma, pud_t *pud,
1226                                 unsigned long addr, unsigned long end,
1227                                 struct zap_details *details)
1228 {
1229         pmd_t *pmd;
1230         unsigned long next;
1231
1232         pmd = pmd_offset(pud, addr);
1233         do {
1234                 next = pmd_addr_end(addr, end);
1235                 if (pmd_trans_huge(*pmd)) {
1236                         if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240                                                 __func__, addr, end,
1241                                                 vma->vm_start,
1242                                                 vma->vm_end);
1243                                         BUG();
1244                                 }
1245 #endif
1246                                 split_huge_page_pmd(vma, addr, pmd);
1247                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248                                 goto next;
1249                         /* fall through */
1250                 }
1251                 /*
1252                  * Here there can be other concurrent MADV_DONTNEED or
1253                  * trans huge page faults running, and if the pmd is
1254                  * none or trans huge it can change under us. This is
1255                  * because MADV_DONTNEED holds the mmap_sem in read
1256                  * mode.
1257                  */
1258                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259                         goto next;
1260                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262                 cond_resched();
1263         } while (pmd++, addr = next, addr != end);
1264
1265         return addr;
1266 }
1267
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269                                 struct vm_area_struct *vma, pgd_t *pgd,
1270                                 unsigned long addr, unsigned long end,
1271                                 struct zap_details *details)
1272 {
1273         pud_t *pud;
1274         unsigned long next;
1275
1276         pud = pud_offset(pgd, addr);
1277         do {
1278                 next = pud_addr_end(addr, end);
1279                 if (pud_none_or_clear_bad(pud))
1280                         continue;
1281                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282         } while (pud++, addr = next, addr != end);
1283
1284         return addr;
1285 }
1286
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288                              struct vm_area_struct *vma,
1289                              unsigned long addr, unsigned long end,
1290                              struct zap_details *details)
1291 {
1292         pgd_t *pgd;
1293         unsigned long next;
1294
1295         if (details && !details->check_mapping && !details->nonlinear_vma)
1296                 details = NULL;
1297
1298         BUG_ON(addr >= end);
1299         mem_cgroup_uncharge_start();
1300         tlb_start_vma(tlb, vma);
1301         pgd = pgd_offset(vma->vm_mm, addr);
1302         do {
1303                 next = pgd_addr_end(addr, end);
1304                 if (pgd_none_or_clear_bad(pgd))
1305                         continue;
1306                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307         } while (pgd++, addr = next, addr != end);
1308         tlb_end_vma(tlb, vma);
1309         mem_cgroup_uncharge_end();
1310 }
1311
1312
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314                 struct vm_area_struct *vma, unsigned long start_addr,
1315                 unsigned long end_addr,
1316                 struct zap_details *details)
1317 {
1318         unsigned long start = max(vma->vm_start, start_addr);
1319         unsigned long end;
1320
1321         if (start >= vma->vm_end)
1322                 return;
1323         end = min(vma->vm_end, end_addr);
1324         if (end <= vma->vm_start)
1325                 return;
1326
1327         if (vma->vm_file)
1328                 uprobe_munmap(vma, start, end);
1329
1330         if (unlikely(vma->vm_flags & VM_PFNMAP))
1331                 untrack_pfn(vma, 0, 0);
1332
1333         if (start != end) {
1334                 if (unlikely(is_vm_hugetlb_page(vma))) {
1335                         /*
1336                          * It is undesirable to test vma->vm_file as it
1337                          * should be non-null for valid hugetlb area.
1338                          * However, vm_file will be NULL in the error
1339                          * cleanup path of do_mmap_pgoff. When
1340                          * hugetlbfs ->mmap method fails,
1341                          * do_mmap_pgoff() nullifies vma->vm_file
1342                          * before calling this function to clean up.
1343                          * Since no pte has actually been setup, it is
1344                          * safe to do nothing in this case.
1345                          */
1346                         if (vma->vm_file) {
1347                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350                         }
1351                 } else
1352                         unmap_page_range(tlb, vma, start, end, details);
1353         }
1354 }
1355
1356 /**
1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
1358  * @tlb: address of the caller's struct mmu_gather
1359  * @vma: the starting vma
1360  * @start_addr: virtual address at which to start unmapping
1361  * @end_addr: virtual address at which to end unmapping
1362  *
1363  * Unmap all pages in the vma list.
1364  *
1365  * Only addresses between `start' and `end' will be unmapped.
1366  *
1367  * The VMA list must be sorted in ascending virtual address order.
1368  *
1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370  * range after unmap_vmas() returns.  So the only responsibility here is to
1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372  * drops the lock and schedules.
1373  */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375                 struct vm_area_struct *vma, unsigned long start_addr,
1376                 unsigned long end_addr)
1377 {
1378         struct mm_struct *mm = vma->vm_mm;
1379
1380         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385
1386 /**
1387  * zap_page_range - remove user pages in a given range
1388  * @vma: vm_area_struct holding the applicable pages
1389  * @start: starting address of pages to zap
1390  * @size: number of bytes to zap
1391  * @details: details of nonlinear truncation or shared cache invalidation
1392  *
1393  * Caller must protect the VMA list
1394  */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396                 unsigned long size, struct zap_details *details)
1397 {
1398         struct mm_struct *mm = vma->vm_mm;
1399         struct mmu_gather tlb;
1400         unsigned long end = start + size;
1401
1402         lru_add_drain();
1403         tlb_gather_mmu(&tlb, mm, 0);
1404         update_hiwater_rss(mm);
1405         mmu_notifier_invalidate_range_start(mm, start, end);
1406         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407                 unmap_single_vma(&tlb, vma, start, end, details);
1408         mmu_notifier_invalidate_range_end(mm, start, end);
1409         tlb_finish_mmu(&tlb, start, end);
1410 }
1411
1412 /**
1413  * zap_page_range_single - remove user pages in a given range
1414  * @vma: vm_area_struct holding the applicable pages
1415  * @address: starting address of pages to zap
1416  * @size: number of bytes to zap
1417  * @details: details of nonlinear truncation or shared cache invalidation
1418  *
1419  * The range must fit into one VMA.
1420  */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422                 unsigned long size, struct zap_details *details)
1423 {
1424         struct mm_struct *mm = vma->vm_mm;
1425         struct mmu_gather tlb;
1426         unsigned long end = address + size;
1427
1428         lru_add_drain();
1429         tlb_gather_mmu(&tlb, mm, 0);
1430         update_hiwater_rss(mm);
1431         mmu_notifier_invalidate_range_start(mm, address, end);
1432         unmap_single_vma(&tlb, vma, address, end, details);
1433         mmu_notifier_invalidate_range_end(mm, address, end);
1434         tlb_finish_mmu(&tlb, address, end);
1435 }
1436
1437 /**
1438  * zap_vma_ptes - remove ptes mapping the vma
1439  * @vma: vm_area_struct holding ptes to be zapped
1440  * @address: starting address of pages to zap
1441  * @size: number of bytes to zap
1442  *
1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444  *
1445  * The entire address range must be fully contained within the vma.
1446  *
1447  * Returns 0 if successful.
1448  */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450                 unsigned long size)
1451 {
1452         if (address < vma->vm_start || address + size > vma->vm_end ||
1453                         !(vma->vm_flags & VM_PFNMAP))
1454                 return -1;
1455         zap_page_range_single(vma, address, size, NULL);
1456         return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460 /**
1461  * follow_page_mask - look up a page descriptor from a user-virtual address
1462  * @vma: vm_area_struct mapping @address
1463  * @address: virtual address to look up
1464  * @flags: flags modifying lookup behaviour
1465  * @page_mask: on output, *page_mask is set according to the size of the page
1466  *
1467  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468  *
1469  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470  * an error pointer if there is a mapping to something not represented
1471  * by a page descriptor (see also vm_normal_page()).
1472  */
1473 struct page *follow_page_mask(struct vm_area_struct *vma,
1474                               unsigned long address, unsigned int flags,
1475                               unsigned int *page_mask)
1476 {
1477         pgd_t *pgd;
1478         pud_t *pud;
1479         pmd_t *pmd;
1480         pte_t *ptep, pte;
1481         spinlock_t *ptl;
1482         struct page *page;
1483         struct mm_struct *mm = vma->vm_mm;
1484
1485         *page_mask = 0;
1486
1487         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1488         if (!IS_ERR(page)) {
1489                 BUG_ON(flags & FOLL_GET);
1490                 goto out;
1491         }
1492
1493         page = NULL;
1494         pgd = pgd_offset(mm, address);
1495         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1496                 goto no_page_table;
1497
1498         pud = pud_offset(pgd, address);
1499         if (pud_none(*pud))
1500                 goto no_page_table;
1501         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1502                 BUG_ON(flags & FOLL_GET);
1503                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1504                 goto out;
1505         }
1506         if (unlikely(pud_bad(*pud)))
1507                 goto no_page_table;
1508
1509         pmd = pmd_offset(pud, address);
1510         if (pmd_none(*pmd))
1511                 goto no_page_table;
1512         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1513                 BUG_ON(flags & FOLL_GET);
1514                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1515                 goto out;
1516         }
1517         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1518                 goto no_page_table;
1519         if (pmd_trans_huge(*pmd)) {
1520                 if (flags & FOLL_SPLIT) {
1521                         split_huge_page_pmd(vma, address, pmd);
1522                         goto split_fallthrough;
1523                 }
1524                 spin_lock(&mm->page_table_lock);
1525                 if (likely(pmd_trans_huge(*pmd))) {
1526                         if (unlikely(pmd_trans_splitting(*pmd))) {
1527                                 spin_unlock(&mm->page_table_lock);
1528                                 wait_split_huge_page(vma->anon_vma, pmd);
1529                         } else {
1530                                 page = follow_trans_huge_pmd(vma, address,
1531                                                              pmd, flags);
1532                                 spin_unlock(&mm->page_table_lock);
1533                                 *page_mask = HPAGE_PMD_NR - 1;
1534                                 goto out;
1535                         }
1536                 } else
1537                         spin_unlock(&mm->page_table_lock);
1538                 /* fall through */
1539         }
1540 split_fallthrough:
1541         if (unlikely(pmd_bad(*pmd)))
1542                 goto no_page_table;
1543
1544         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1545
1546         pte = *ptep;
1547         if (!pte_present(pte)) {
1548                 swp_entry_t entry;
1549                 /*
1550                  * KSM's break_ksm() relies upon recognizing a ksm page
1551                  * even while it is being migrated, so for that case we
1552                  * need migration_entry_wait().
1553                  */
1554                 if (likely(!(flags & FOLL_MIGRATION)))
1555                         goto no_page;
1556                 if (pte_none(pte) || pte_file(pte))
1557                         goto no_page;
1558                 entry = pte_to_swp_entry(pte);
1559                 if (!is_migration_entry(entry))
1560                         goto no_page;
1561                 pte_unmap_unlock(ptep, ptl);
1562                 migration_entry_wait(mm, pmd, address);
1563                 goto split_fallthrough;
1564         }
1565         if ((flags & FOLL_NUMA) && pte_numa(pte))
1566                 goto no_page;
1567         if ((flags & FOLL_WRITE) && !pte_write(pte))
1568                 goto unlock;
1569
1570         page = vm_normal_page(vma, address, pte);
1571         if (unlikely(!page)) {
1572                 if ((flags & FOLL_DUMP) ||
1573                     !is_zero_pfn(pte_pfn(pte)))
1574                         goto bad_page;
1575                 page = pte_page(pte);
1576         }
1577
1578         if (flags & FOLL_GET)
1579                 get_page_foll(page);
1580         if (flags & FOLL_TOUCH) {
1581                 if ((flags & FOLL_WRITE) &&
1582                     !pte_dirty(pte) && !PageDirty(page))
1583                         set_page_dirty(page);
1584                 /*
1585                  * pte_mkyoung() would be more correct here, but atomic care
1586                  * is needed to avoid losing the dirty bit: it is easier to use
1587                  * mark_page_accessed().
1588                  */
1589                 mark_page_accessed(page);
1590         }
1591         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1592                 /*
1593                  * The preliminary mapping check is mainly to avoid the
1594                  * pointless overhead of lock_page on the ZERO_PAGE
1595                  * which might bounce very badly if there is contention.
1596                  *
1597                  * If the page is already locked, we don't need to
1598                  * handle it now - vmscan will handle it later if and
1599                  * when it attempts to reclaim the page.
1600                  */
1601                 if (page->mapping && trylock_page(page)) {
1602                         lru_add_drain();  /* push cached pages to LRU */
1603                         /*
1604                          * Because we lock page here, and migration is
1605                          * blocked by the pte's page reference, and we
1606                          * know the page is still mapped, we don't even
1607                          * need to check for file-cache page truncation.
1608                          */
1609                         mlock_vma_page(page);
1610                         unlock_page(page);
1611                 }
1612         }
1613 unlock:
1614         pte_unmap_unlock(ptep, ptl);
1615 out:
1616         return page;
1617
1618 bad_page:
1619         pte_unmap_unlock(ptep, ptl);
1620         return ERR_PTR(-EFAULT);
1621
1622 no_page:
1623         pte_unmap_unlock(ptep, ptl);
1624         if (!pte_none(pte))
1625                 return page;
1626
1627 no_page_table:
1628         /*
1629          * When core dumping an enormous anonymous area that nobody
1630          * has touched so far, we don't want to allocate unnecessary pages or
1631          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1632          * then get_dump_page() will return NULL to leave a hole in the dump.
1633          * But we can only make this optimization where a hole would surely
1634          * be zero-filled if handle_mm_fault() actually did handle it.
1635          */
1636         if ((flags & FOLL_DUMP) &&
1637             (!vma->vm_ops || !vma->vm_ops->fault))
1638                 return ERR_PTR(-EFAULT);
1639         return page;
1640 }
1641
1642 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1643 {
1644         return stack_guard_page_start(vma, addr) ||
1645                stack_guard_page_end(vma, addr+PAGE_SIZE);
1646 }
1647
1648 /**
1649  * __get_user_pages() - pin user pages in memory
1650  * @tsk:        task_struct of target task
1651  * @mm:         mm_struct of target mm
1652  * @start:      starting user address
1653  * @nr_pages:   number of pages from start to pin
1654  * @gup_flags:  flags modifying pin behaviour
1655  * @pages:      array that receives pointers to the pages pinned.
1656  *              Should be at least nr_pages long. Or NULL, if caller
1657  *              only intends to ensure the pages are faulted in.
1658  * @vmas:       array of pointers to vmas corresponding to each page.
1659  *              Or NULL if the caller does not require them.
1660  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1661  *
1662  * Returns number of pages pinned. This may be fewer than the number
1663  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1664  * were pinned, returns -errno. Each page returned must be released
1665  * with a put_page() call when it is finished with. vmas will only
1666  * remain valid while mmap_sem is held.
1667  *
1668  * Must be called with mmap_sem held for read or write.
1669  *
1670  * __get_user_pages walks a process's page tables and takes a reference to
1671  * each struct page that each user address corresponds to at a given
1672  * instant. That is, it takes the page that would be accessed if a user
1673  * thread accesses the given user virtual address at that instant.
1674  *
1675  * This does not guarantee that the page exists in the user mappings when
1676  * __get_user_pages returns, and there may even be a completely different
1677  * page there in some cases (eg. if mmapped pagecache has been invalidated
1678  * and subsequently re faulted). However it does guarantee that the page
1679  * won't be freed completely. And mostly callers simply care that the page
1680  * contains data that was valid *at some point in time*. Typically, an IO
1681  * or similar operation cannot guarantee anything stronger anyway because
1682  * locks can't be held over the syscall boundary.
1683  *
1684  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1685  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1686  * appropriate) must be called after the page is finished with, and
1687  * before put_page is called.
1688  *
1689  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1690  * or mmap_sem contention, and if waiting is needed to pin all pages,
1691  * *@nonblocking will be set to 0.
1692  *
1693  * In most cases, get_user_pages or get_user_pages_fast should be used
1694  * instead of __get_user_pages. __get_user_pages should be used only if
1695  * you need some special @gup_flags.
1696  */
1697 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1698                 unsigned long start, unsigned long nr_pages,
1699                 unsigned int gup_flags, struct page **pages,
1700                 struct vm_area_struct **vmas, int *nonblocking)
1701 {
1702         long i;
1703         unsigned long vm_flags;
1704         unsigned int page_mask;
1705
1706         if (!nr_pages)
1707                 return 0;
1708
1709         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1710
1711         /* 
1712          * Require read or write permissions.
1713          * If FOLL_FORCE is set, we only require the "MAY" flags.
1714          */
1715         vm_flags  = (gup_flags & FOLL_WRITE) ?
1716                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1717         vm_flags &= (gup_flags & FOLL_FORCE) ?
1718                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1719
1720         /*
1721          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1722          * would be called on PROT_NONE ranges. We must never invoke
1723          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1724          * page faults would unprotect the PROT_NONE ranges if
1725          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1726          * bitflag. So to avoid that, don't set FOLL_NUMA if
1727          * FOLL_FORCE is set.
1728          */
1729         if (!(gup_flags & FOLL_FORCE))
1730                 gup_flags |= FOLL_NUMA;
1731
1732         i = 0;
1733
1734         do {
1735                 struct vm_area_struct *vma;
1736
1737                 vma = find_extend_vma(mm, start);
1738                 if (!vma && in_gate_area(mm, start)) {
1739                         unsigned long pg = start & PAGE_MASK;
1740                         pgd_t *pgd;
1741                         pud_t *pud;
1742                         pmd_t *pmd;
1743                         pte_t *pte;
1744
1745                         /* user gate pages are read-only */
1746                         if (gup_flags & FOLL_WRITE)
1747                                 return i ? : -EFAULT;
1748                         if (pg > TASK_SIZE)
1749                                 pgd = pgd_offset_k(pg);
1750                         else
1751                                 pgd = pgd_offset_gate(mm, pg);
1752                         BUG_ON(pgd_none(*pgd));
1753                         pud = pud_offset(pgd, pg);
1754                         BUG_ON(pud_none(*pud));
1755                         pmd = pmd_offset(pud, pg);
1756                         if (pmd_none(*pmd))
1757                                 return i ? : -EFAULT;
1758                         VM_BUG_ON(pmd_trans_huge(*pmd));
1759                         pte = pte_offset_map(pmd, pg);
1760                         if (pte_none(*pte)) {
1761                                 pte_unmap(pte);
1762                                 return i ? : -EFAULT;
1763                         }
1764                         vma = get_gate_vma(mm);
1765                         if (pages) {
1766                                 struct page *page;
1767
1768                                 page = vm_normal_page(vma, start, *pte);
1769                                 if (!page) {
1770                                         if (!(gup_flags & FOLL_DUMP) &&
1771                                              is_zero_pfn(pte_pfn(*pte)))
1772                                                 page = pte_page(*pte);
1773                                         else {
1774                                                 pte_unmap(pte);
1775                                                 return i ? : -EFAULT;
1776                                         }
1777                                 }
1778                                 pages[i] = page;
1779                                 get_page(page);
1780                         }
1781                         pte_unmap(pte);
1782                         page_mask = 0;
1783                         goto next_page;
1784                 }
1785
1786                 if (!vma ||
1787                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1788                     !(vm_flags & vma->vm_flags))
1789                         return i ? : -EFAULT;
1790
1791                 if (is_vm_hugetlb_page(vma)) {
1792                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1793                                         &start, &nr_pages, i, gup_flags);
1794                         continue;
1795                 }
1796
1797                 do {
1798                         struct page *page;
1799                         unsigned int foll_flags = gup_flags;
1800                         unsigned int page_increm;
1801
1802                         /*
1803                          * If we have a pending SIGKILL, don't keep faulting
1804                          * pages and potentially allocating memory.
1805                          */
1806                         if (unlikely(fatal_signal_pending(current)))
1807                                 return i ? i : -ERESTARTSYS;
1808
1809                         cond_resched();
1810                         while (!(page = follow_page_mask(vma, start,
1811                                                 foll_flags, &page_mask))) {
1812                                 int ret;
1813                                 unsigned int fault_flags = 0;
1814
1815                                 /* For mlock, just skip the stack guard page. */
1816                                 if (foll_flags & FOLL_MLOCK) {
1817                                         if (stack_guard_page(vma, start))
1818                                                 goto next_page;
1819                                 }
1820                                 if (foll_flags & FOLL_WRITE)
1821                                         fault_flags |= FAULT_FLAG_WRITE;
1822                                 if (nonblocking)
1823                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1824                                 if (foll_flags & FOLL_NOWAIT)
1825                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1826
1827                                 ret = handle_mm_fault(mm, vma, start,
1828                                                         fault_flags);
1829
1830                                 if (ret & VM_FAULT_ERROR) {
1831                                         if (ret & VM_FAULT_OOM)
1832                                                 return i ? i : -ENOMEM;
1833                                         if (ret & (VM_FAULT_HWPOISON |
1834                                                    VM_FAULT_HWPOISON_LARGE)) {
1835                                                 if (i)
1836                                                         return i;
1837                                                 else if (gup_flags & FOLL_HWPOISON)
1838                                                         return -EHWPOISON;
1839                                                 else
1840                                                         return -EFAULT;
1841                                         }
1842                                         if (ret & VM_FAULT_SIGBUS)
1843                                                 return i ? i : -EFAULT;
1844                                         BUG();
1845                                 }
1846
1847                                 if (tsk) {
1848                                         if (ret & VM_FAULT_MAJOR)
1849                                                 tsk->maj_flt++;
1850                                         else
1851                                                 tsk->min_flt++;
1852                                 }
1853
1854                                 if (ret & VM_FAULT_RETRY) {
1855                                         if (nonblocking)
1856                                                 *nonblocking = 0;
1857                                         return i;
1858                                 }
1859
1860                                 /*
1861                                  * The VM_FAULT_WRITE bit tells us that
1862                                  * do_wp_page has broken COW when necessary,
1863                                  * even if maybe_mkwrite decided not to set
1864                                  * pte_write. We can thus safely do subsequent
1865                                  * page lookups as if they were reads. But only
1866                                  * do so when looping for pte_write is futile:
1867                                  * in some cases userspace may also be wanting
1868                                  * to write to the gotten user page, which a
1869                                  * read fault here might prevent (a readonly
1870                                  * page might get reCOWed by userspace write).
1871                                  */
1872                                 if ((ret & VM_FAULT_WRITE) &&
1873                                     !(vma->vm_flags & VM_WRITE))
1874                                         foll_flags &= ~FOLL_WRITE;
1875
1876                                 cond_resched();
1877                         }
1878                         if (IS_ERR(page))
1879                                 return i ? i : PTR_ERR(page);
1880                         if (pages) {
1881                                 pages[i] = page;
1882
1883                                 flush_anon_page(vma, page, start);
1884                                 flush_dcache_page(page);
1885                                 page_mask = 0;
1886                         }
1887 next_page:
1888                         if (vmas) {
1889                                 vmas[i] = vma;
1890                                 page_mask = 0;
1891                         }
1892                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1893                         if (page_increm > nr_pages)
1894                                 page_increm = nr_pages;
1895                         i += page_increm;
1896                         start += page_increm * PAGE_SIZE;
1897                         nr_pages -= page_increm;
1898                 } while (nr_pages && start < vma->vm_end);
1899         } while (nr_pages);
1900         return i;
1901 }
1902 EXPORT_SYMBOL(__get_user_pages);
1903
1904 /*
1905  * fixup_user_fault() - manually resolve a user page fault
1906  * @tsk:        the task_struct to use for page fault accounting, or
1907  *              NULL if faults are not to be recorded.
1908  * @mm:         mm_struct of target mm
1909  * @address:    user address
1910  * @fault_flags:flags to pass down to handle_mm_fault()
1911  *
1912  * This is meant to be called in the specific scenario where for locking reasons
1913  * we try to access user memory in atomic context (within a pagefault_disable()
1914  * section), this returns -EFAULT, and we want to resolve the user fault before
1915  * trying again.
1916  *
1917  * Typically this is meant to be used by the futex code.
1918  *
1919  * The main difference with get_user_pages() is that this function will
1920  * unconditionally call handle_mm_fault() which will in turn perform all the
1921  * necessary SW fixup of the dirty and young bits in the PTE, while
1922  * handle_mm_fault() only guarantees to update these in the struct page.
1923  *
1924  * This is important for some architectures where those bits also gate the
1925  * access permission to the page because they are maintained in software.  On
1926  * such architectures, gup() will not be enough to make a subsequent access
1927  * succeed.
1928  *
1929  * This should be called with the mm_sem held for read.
1930  */
1931 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1932                      unsigned long address, unsigned int fault_flags)
1933 {
1934         struct vm_area_struct *vma;
1935         int ret;
1936
1937         vma = find_extend_vma(mm, address);
1938         if (!vma || address < vma->vm_start)
1939                 return -EFAULT;
1940
1941         ret = handle_mm_fault(mm, vma, address, fault_flags);
1942         if (ret & VM_FAULT_ERROR) {
1943                 if (ret & VM_FAULT_OOM)
1944                         return -ENOMEM;
1945                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1946                         return -EHWPOISON;
1947                 if (ret & VM_FAULT_SIGBUS)
1948                         return -EFAULT;
1949                 BUG();
1950         }
1951         if (tsk) {
1952                 if (ret & VM_FAULT_MAJOR)
1953                         tsk->maj_flt++;
1954                 else
1955                         tsk->min_flt++;
1956         }
1957         return 0;
1958 }
1959
1960 /*
1961  * get_user_pages() - pin user pages in memory
1962  * @tsk:        the task_struct to use for page fault accounting, or
1963  *              NULL if faults are not to be recorded.
1964  * @mm:         mm_struct of target mm
1965  * @start:      starting user address
1966  * @nr_pages:   number of pages from start to pin
1967  * @write:      whether pages will be written to by the caller
1968  * @force:      whether to force write access even if user mapping is
1969  *              readonly. This will result in the page being COWed even
1970  *              in MAP_SHARED mappings. You do not want this.
1971  * @pages:      array that receives pointers to the pages pinned.
1972  *              Should be at least nr_pages long. Or NULL, if caller
1973  *              only intends to ensure the pages are faulted in.
1974  * @vmas:       array of pointers to vmas corresponding to each page.
1975  *              Or NULL if the caller does not require them.
1976  *
1977  * Returns number of pages pinned. This may be fewer than the number
1978  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1979  * were pinned, returns -errno. Each page returned must be released
1980  * with a put_page() call when it is finished with. vmas will only
1981  * remain valid while mmap_sem is held.
1982  *
1983  * Must be called with mmap_sem held for read or write.
1984  *
1985  * get_user_pages walks a process's page tables and takes a reference to
1986  * each struct page that each user address corresponds to at a given
1987  * instant. That is, it takes the page that would be accessed if a user
1988  * thread accesses the given user virtual address at that instant.
1989  *
1990  * This does not guarantee that the page exists in the user mappings when
1991  * get_user_pages returns, and there may even be a completely different
1992  * page there in some cases (eg. if mmapped pagecache has been invalidated
1993  * and subsequently re faulted). However it does guarantee that the page
1994  * won't be freed completely. And mostly callers simply care that the page
1995  * contains data that was valid *at some point in time*. Typically, an IO
1996  * or similar operation cannot guarantee anything stronger anyway because
1997  * locks can't be held over the syscall boundary.
1998  *
1999  * If write=0, the page must not be written to. If the page is written to,
2000  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2001  * after the page is finished with, and before put_page is called.
2002  *
2003  * get_user_pages is typically used for fewer-copy IO operations, to get a
2004  * handle on the memory by some means other than accesses via the user virtual
2005  * addresses. The pages may be submitted for DMA to devices or accessed via
2006  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2007  * use the correct cache flushing APIs.
2008  *
2009  * See also get_user_pages_fast, for performance critical applications.
2010  */
2011 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2012                 unsigned long start, unsigned long nr_pages, int write,
2013                 int force, struct page **pages, struct vm_area_struct **vmas)
2014 {
2015         int flags = FOLL_TOUCH;
2016
2017         if (pages)
2018                 flags |= FOLL_GET;
2019         if (write)
2020                 flags |= FOLL_WRITE;
2021         if (force)
2022                 flags |= FOLL_FORCE;
2023
2024         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2025                                 NULL);
2026 }
2027 EXPORT_SYMBOL(get_user_pages);
2028
2029 /**
2030  * get_dump_page() - pin user page in memory while writing it to core dump
2031  * @addr: user address
2032  *
2033  * Returns struct page pointer of user page pinned for dump,
2034  * to be freed afterwards by page_cache_release() or put_page().
2035  *
2036  * Returns NULL on any kind of failure - a hole must then be inserted into
2037  * the corefile, to preserve alignment with its headers; and also returns
2038  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2039  * allowing a hole to be left in the corefile to save diskspace.
2040  *
2041  * Called without mmap_sem, but after all other threads have been killed.
2042  */
2043 #ifdef CONFIG_ELF_CORE
2044 struct page *get_dump_page(unsigned long addr)
2045 {
2046         struct vm_area_struct *vma;
2047         struct page *page;
2048
2049         if (__get_user_pages(current, current->mm, addr, 1,
2050                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2051                              NULL) < 1)
2052                 return NULL;
2053         flush_cache_page(vma, addr, page_to_pfn(page));
2054         return page;
2055 }
2056 #endif /* CONFIG_ELF_CORE */
2057
2058 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2059                         spinlock_t **ptl)
2060 {
2061         pgd_t * pgd = pgd_offset(mm, addr);
2062         pud_t * pud = pud_alloc(mm, pgd, addr);
2063         if (pud) {
2064                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2065                 if (pmd) {
2066                         VM_BUG_ON(pmd_trans_huge(*pmd));
2067                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2068                 }
2069         }
2070         return NULL;
2071 }
2072
2073 /*
2074  * This is the old fallback for page remapping.
2075  *
2076  * For historical reasons, it only allows reserved pages. Only
2077  * old drivers should use this, and they needed to mark their
2078  * pages reserved for the old functions anyway.
2079  */
2080 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2081                         struct page *page, pgprot_t prot)
2082 {
2083         struct mm_struct *mm = vma->vm_mm;
2084         int retval;
2085         pte_t *pte;
2086         spinlock_t *ptl;
2087
2088         retval = -EINVAL;
2089         if (PageAnon(page))
2090                 goto out;
2091         retval = -ENOMEM;
2092         flush_dcache_page(page);
2093         pte = get_locked_pte(mm, addr, &ptl);
2094         if (!pte)
2095                 goto out;
2096         retval = -EBUSY;
2097         if (!pte_none(*pte))
2098                 goto out_unlock;
2099
2100         /* Ok, finally just insert the thing.. */
2101         get_page(page);
2102         inc_mm_counter_fast(mm, MM_FILEPAGES);
2103         page_add_file_rmap(page);
2104         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2105
2106         retval = 0;
2107         pte_unmap_unlock(pte, ptl);
2108         return retval;
2109 out_unlock:
2110         pte_unmap_unlock(pte, ptl);
2111 out:
2112         return retval;
2113 }
2114
2115 /**
2116  * vm_insert_page - insert single page into user vma
2117  * @vma: user vma to map to
2118  * @addr: target user address of this page
2119  * @page: source kernel page
2120  *
2121  * This allows drivers to insert individual pages they've allocated
2122  * into a user vma.
2123  *
2124  * The page has to be a nice clean _individual_ kernel allocation.
2125  * If you allocate a compound page, you need to have marked it as
2126  * such (__GFP_COMP), or manually just split the page up yourself
2127  * (see split_page()).
2128  *
2129  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2130  * took an arbitrary page protection parameter. This doesn't allow
2131  * that. Your vma protection will have to be set up correctly, which
2132  * means that if you want a shared writable mapping, you'd better
2133  * ask for a shared writable mapping!
2134  *
2135  * The page does not need to be reserved.
2136  *
2137  * Usually this function is called from f_op->mmap() handler
2138  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2139  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2140  * function from other places, for example from page-fault handler.
2141  */
2142 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2143                         struct page *page)
2144 {
2145         if (addr < vma->vm_start || addr >= vma->vm_end)
2146                 return -EFAULT;
2147         if (!page_count(page))
2148                 return -EINVAL;
2149         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2150                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2151                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2152                 vma->vm_flags |= VM_MIXEDMAP;
2153         }
2154         return insert_page(vma, addr, page, vma->vm_page_prot);
2155 }
2156 EXPORT_SYMBOL(vm_insert_page);
2157
2158 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2159                         unsigned long pfn, pgprot_t prot)
2160 {
2161         struct mm_struct *mm = vma->vm_mm;
2162         int retval;
2163         pte_t *pte, entry;
2164         spinlock_t *ptl;
2165
2166         retval = -ENOMEM;
2167         pte = get_locked_pte(mm, addr, &ptl);
2168         if (!pte)
2169                 goto out;
2170         retval = -EBUSY;
2171         if (!pte_none(*pte))
2172                 goto out_unlock;
2173
2174         /* Ok, finally just insert the thing.. */
2175         entry = pte_mkspecial(pfn_pte(pfn, prot));
2176         set_pte_at(mm, addr, pte, entry);
2177         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2178
2179         retval = 0;
2180 out_unlock:
2181         pte_unmap_unlock(pte, ptl);
2182 out:
2183         return retval;
2184 }
2185
2186 /**
2187  * vm_insert_pfn - insert single pfn into user vma
2188  * @vma: user vma to map to
2189  * @addr: target user address of this page
2190  * @pfn: source kernel pfn
2191  *
2192  * Similar to vm_insert_page, this allows drivers to insert individual pages
2193  * they've allocated into a user vma. Same comments apply.
2194  *
2195  * This function should only be called from a vm_ops->fault handler, and
2196  * in that case the handler should return NULL.
2197  *
2198  * vma cannot be a COW mapping.
2199  *
2200  * As this is called only for pages that do not currently exist, we
2201  * do not need to flush old virtual caches or the TLB.
2202  */
2203 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2204                         unsigned long pfn)
2205 {
2206         int ret;
2207         pgprot_t pgprot = vma->vm_page_prot;
2208         /*
2209          * Technically, architectures with pte_special can avoid all these
2210          * restrictions (same for remap_pfn_range).  However we would like
2211          * consistency in testing and feature parity among all, so we should
2212          * try to keep these invariants in place for everybody.
2213          */
2214         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2215         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2216                                                 (VM_PFNMAP|VM_MIXEDMAP));
2217         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2218         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2219
2220         if (addr < vma->vm_start || addr >= vma->vm_end)
2221                 return -EFAULT;
2222         if (track_pfn_insert(vma, &pgprot, pfn))
2223                 return -EINVAL;
2224
2225         ret = insert_pfn(vma, addr, pfn, pgprot);
2226
2227         return ret;
2228 }
2229 EXPORT_SYMBOL(vm_insert_pfn);
2230
2231 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2232                         unsigned long pfn)
2233 {
2234         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2235
2236         if (addr < vma->vm_start || addr >= vma->vm_end)
2237                 return -EFAULT;
2238
2239         /*
2240          * If we don't have pte special, then we have to use the pfn_valid()
2241          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2242          * refcount the page if pfn_valid is true (hence insert_page rather
2243          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2244          * without pte special, it would there be refcounted as a normal page.
2245          */
2246         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2247                 struct page *page;
2248
2249                 page = pfn_to_page(pfn);
2250                 return insert_page(vma, addr, page, vma->vm_page_prot);
2251         }
2252         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2253 }
2254 EXPORT_SYMBOL(vm_insert_mixed);
2255
2256 /*
2257  * maps a range of physical memory into the requested pages. the old
2258  * mappings are removed. any references to nonexistent pages results
2259  * in null mappings (currently treated as "copy-on-access")
2260  */
2261 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2262                         unsigned long addr, unsigned long end,
2263                         unsigned long pfn, pgprot_t prot)
2264 {
2265         pte_t *pte;
2266         spinlock_t *ptl;
2267
2268         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2269         if (!pte)
2270                 return -ENOMEM;
2271         arch_enter_lazy_mmu_mode();
2272         do {
2273                 BUG_ON(!pte_none(*pte));
2274                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2275                 pfn++;
2276         } while (pte++, addr += PAGE_SIZE, addr != end);
2277         arch_leave_lazy_mmu_mode();
2278         pte_unmap_unlock(pte - 1, ptl);
2279         return 0;
2280 }
2281
2282 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2283                         unsigned long addr, unsigned long end,
2284                         unsigned long pfn, pgprot_t prot)
2285 {
2286         pmd_t *pmd;
2287         unsigned long next;
2288
2289         pfn -= addr >> PAGE_SHIFT;
2290         pmd = pmd_alloc(mm, pud, addr);
2291         if (!pmd)
2292                 return -ENOMEM;
2293         VM_BUG_ON(pmd_trans_huge(*pmd));
2294         do {
2295                 next = pmd_addr_end(addr, end);
2296                 if (remap_pte_range(mm, pmd, addr, next,
2297                                 pfn + (addr >> PAGE_SHIFT), prot))
2298                         return -ENOMEM;
2299         } while (pmd++, addr = next, addr != end);
2300         return 0;
2301 }
2302
2303 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2304                         unsigned long addr, unsigned long end,
2305                         unsigned long pfn, pgprot_t prot)
2306 {
2307         pud_t *pud;
2308         unsigned long next;
2309
2310         pfn -= addr >> PAGE_SHIFT;
2311         pud = pud_alloc(mm, pgd, addr);
2312         if (!pud)
2313                 return -ENOMEM;
2314         do {
2315                 next = pud_addr_end(addr, end);
2316                 if (remap_pmd_range(mm, pud, addr, next,
2317                                 pfn + (addr >> PAGE_SHIFT), prot))
2318                         return -ENOMEM;
2319         } while (pud++, addr = next, addr != end);
2320         return 0;
2321 }
2322
2323 /**
2324  * remap_pfn_range - remap kernel memory to userspace
2325  * @vma: user vma to map to
2326  * @addr: target user address to start at
2327  * @pfn: physical address of kernel memory
2328  * @size: size of map area
2329  * @prot: page protection flags for this mapping
2330  *
2331  *  Note: this is only safe if the mm semaphore is held when called.
2332  */
2333 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2334                     unsigned long pfn, unsigned long size, pgprot_t prot)
2335 {
2336         pgd_t *pgd;
2337         unsigned long next;
2338         unsigned long end = addr + PAGE_ALIGN(size);
2339         struct mm_struct *mm = vma->vm_mm;
2340         int err;
2341
2342         /*
2343          * Physically remapped pages are special. Tell the
2344          * rest of the world about it:
2345          *   VM_IO tells people not to look at these pages
2346          *      (accesses can have side effects).
2347          *   VM_PFNMAP tells the core MM that the base pages are just
2348          *      raw PFN mappings, and do not have a "struct page" associated
2349          *      with them.
2350          *   VM_DONTEXPAND
2351          *      Disable vma merging and expanding with mremap().
2352          *   VM_DONTDUMP
2353          *      Omit vma from core dump, even when VM_IO turned off.
2354          *
2355          * There's a horrible special case to handle copy-on-write
2356          * behaviour that some programs depend on. We mark the "original"
2357          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2358          * See vm_normal_page() for details.
2359          */
2360         if (is_cow_mapping(vma->vm_flags)) {
2361                 if (addr != vma->vm_start || end != vma->vm_end)
2362                         return -EINVAL;
2363                 vma->vm_pgoff = pfn;
2364         }
2365
2366         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2367         if (err)
2368                 return -EINVAL;
2369
2370         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2371
2372         BUG_ON(addr >= end);
2373         pfn -= addr >> PAGE_SHIFT;
2374         pgd = pgd_offset(mm, addr);
2375         flush_cache_range(vma, addr, end);
2376         do {
2377                 next = pgd_addr_end(addr, end);
2378                 err = remap_pud_range(mm, pgd, addr, next,
2379                                 pfn + (addr >> PAGE_SHIFT), prot);
2380                 if (err)
2381                         break;
2382         } while (pgd++, addr = next, addr != end);
2383
2384         if (err)
2385                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2386
2387         return err;
2388 }
2389 EXPORT_SYMBOL(remap_pfn_range);
2390
2391 /**
2392  * vm_iomap_memory - remap memory to userspace
2393  * @vma: user vma to map to
2394  * @start: start of area
2395  * @len: size of area
2396  *
2397  * This is a simplified io_remap_pfn_range() for common driver use. The
2398  * driver just needs to give us the physical memory range to be mapped,
2399  * we'll figure out the rest from the vma information.
2400  *
2401  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2402  * whatever write-combining details or similar.
2403  */
2404 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2405 {
2406         unsigned long vm_len, pfn, pages;
2407
2408         /* Check that the physical memory area passed in looks valid */
2409         if (start + len < start)
2410                 return -EINVAL;
2411         /*
2412          * You *really* shouldn't map things that aren't page-aligned,
2413          * but we've historically allowed it because IO memory might
2414          * just have smaller alignment.
2415          */
2416         len += start & ~PAGE_MASK;
2417         pfn = start >> PAGE_SHIFT;
2418         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2419         if (pfn + pages < pfn)
2420                 return -EINVAL;
2421
2422         /* We start the mapping 'vm_pgoff' pages into the area */
2423         if (vma->vm_pgoff > pages)
2424                 return -EINVAL;
2425         pfn += vma->vm_pgoff;
2426         pages -= vma->vm_pgoff;
2427
2428         /* Can we fit all of the mapping? */
2429         vm_len = vma->vm_end - vma->vm_start;
2430         if (vm_len >> PAGE_SHIFT > pages)
2431                 return -EINVAL;
2432
2433         /* Ok, let it rip */
2434         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2435 }
2436 EXPORT_SYMBOL(vm_iomap_memory);
2437
2438 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2439                                      unsigned long addr, unsigned long end,
2440                                      pte_fn_t fn, void *data)
2441 {
2442         pte_t *pte;
2443         int err;
2444         pgtable_t token;
2445         spinlock_t *uninitialized_var(ptl);
2446
2447         pte = (mm == &init_mm) ?
2448                 pte_alloc_kernel(pmd, addr) :
2449                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2450         if (!pte)
2451                 return -ENOMEM;
2452
2453         BUG_ON(pmd_huge(*pmd));
2454
2455         arch_enter_lazy_mmu_mode();
2456
2457         token = pmd_pgtable(*pmd);
2458
2459         do {
2460                 err = fn(pte++, token, addr, data);
2461                 if (err)
2462                         break;
2463         } while (addr += PAGE_SIZE, addr != end);
2464
2465         arch_leave_lazy_mmu_mode();
2466
2467         if (mm != &init_mm)
2468                 pte_unmap_unlock(pte-1, ptl);
2469         return err;
2470 }
2471
2472 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2473                                      unsigned long addr, unsigned long end,
2474                                      pte_fn_t fn, void *data)
2475 {
2476         pmd_t *pmd;
2477         unsigned long next;
2478         int err;
2479
2480         BUG_ON(pud_huge(*pud));
2481
2482         pmd = pmd_alloc(mm, pud, addr);
2483         if (!pmd)
2484                 return -ENOMEM;
2485         do {
2486                 next = pmd_addr_end(addr, end);
2487                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2488                 if (err)
2489                         break;
2490         } while (pmd++, addr = next, addr != end);
2491         return err;
2492 }
2493
2494 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2495                                      unsigned long addr, unsigned long end,
2496                                      pte_fn_t fn, void *data)
2497 {
2498         pud_t *pud;
2499         unsigned long next;
2500         int err;
2501
2502         pud = pud_alloc(mm, pgd, addr);
2503         if (!pud)
2504                 return -ENOMEM;
2505         do {
2506                 next = pud_addr_end(addr, end);
2507                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2508                 if (err)
2509                         break;
2510         } while (pud++, addr = next, addr != end);
2511         return err;
2512 }
2513
2514 /*
2515  * Scan a region of virtual memory, filling in page tables as necessary
2516  * and calling a provided function on each leaf page table.
2517  */
2518 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2519                         unsigned long size, pte_fn_t fn, void *data)
2520 {
2521         pgd_t *pgd;
2522         unsigned long next;
2523         unsigned long end = addr + size;
2524         int err;
2525
2526         BUG_ON(addr >= end);
2527         pgd = pgd_offset(mm, addr);
2528         do {
2529                 next = pgd_addr_end(addr, end);
2530                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2531                 if (err)
2532                         break;
2533         } while (pgd++, addr = next, addr != end);
2534
2535         return err;
2536 }
2537 EXPORT_SYMBOL_GPL(apply_to_page_range);
2538
2539 /*
2540  * handle_pte_fault chooses page fault handler according to an entry
2541  * which was read non-atomically.  Before making any commitment, on
2542  * those architectures or configurations (e.g. i386 with PAE) which
2543  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2544  * must check under lock before unmapping the pte and proceeding
2545  * (but do_wp_page is only called after already making such a check;
2546  * and do_anonymous_page can safely check later on).
2547  */
2548 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2549                                 pte_t *page_table, pte_t orig_pte)
2550 {
2551         int same = 1;
2552 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2553         if (sizeof(pte_t) > sizeof(unsigned long)) {
2554                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2555                 spin_lock(ptl);
2556                 same = pte_same(*page_table, orig_pte);
2557                 spin_unlock(ptl);
2558         }
2559 #endif
2560         pte_unmap(page_table);
2561         return same;
2562 }
2563
2564 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2565 {
2566         /*
2567          * If the source page was a PFN mapping, we don't have
2568          * a "struct page" for it. We do a best-effort copy by
2569          * just copying from the original user address. If that
2570          * fails, we just zero-fill it. Live with it.
2571          */
2572         if (unlikely(!src)) {
2573                 void *kaddr = kmap_atomic(dst);
2574                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2575
2576                 /*
2577                  * This really shouldn't fail, because the page is there
2578                  * in the page tables. But it might just be unreadable,
2579                  * in which case we just give up and fill the result with
2580                  * zeroes.
2581                  */
2582                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2583                         clear_page(kaddr);
2584                 kunmap_atomic(kaddr);
2585                 flush_dcache_page(dst);
2586         } else
2587                 copy_user_highpage(dst, src, va, vma);
2588 }
2589
2590 /*
2591  * This routine handles present pages, when users try to write
2592  * to a shared page. It is done by copying the page to a new address
2593  * and decrementing the shared-page counter for the old page.
2594  *
2595  * Note that this routine assumes that the protection checks have been
2596  * done by the caller (the low-level page fault routine in most cases).
2597  * Thus we can safely just mark it writable once we've done any necessary
2598  * COW.
2599  *
2600  * We also mark the page dirty at this point even though the page will
2601  * change only once the write actually happens. This avoids a few races,
2602  * and potentially makes it more efficient.
2603  *
2604  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2605  * but allow concurrent faults), with pte both mapped and locked.
2606  * We return with mmap_sem still held, but pte unmapped and unlocked.
2607  */
2608 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2609                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2610                 spinlock_t *ptl, pte_t orig_pte)
2611         __releases(ptl)
2612 {
2613         struct page *old_page, *new_page = NULL;
2614         pte_t entry;
2615         int ret = 0;
2616         int page_mkwrite = 0;
2617         struct page *dirty_page = NULL;
2618         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2619         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2620
2621         old_page = vm_normal_page(vma, address, orig_pte);
2622         if (!old_page) {
2623                 /*
2624                  * VM_MIXEDMAP !pfn_valid() case
2625                  *
2626                  * We should not cow pages in a shared writeable mapping.
2627                  * Just mark the pages writable as we can't do any dirty
2628                  * accounting on raw pfn maps.
2629                  */
2630                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2631                                      (VM_WRITE|VM_SHARED))
2632                         goto reuse;
2633                 goto gotten;
2634         }
2635
2636         /*
2637          * Take out anonymous pages first, anonymous shared vmas are
2638          * not dirty accountable.
2639          */
2640         if (PageAnon(old_page) && !PageKsm(old_page)) {
2641                 if (!trylock_page(old_page)) {
2642                         page_cache_get(old_page);
2643                         pte_unmap_unlock(page_table, ptl);
2644                         lock_page(old_page);
2645                         page_table = pte_offset_map_lock(mm, pmd, address,
2646                                                          &ptl);
2647                         if (!pte_same(*page_table, orig_pte)) {
2648                                 unlock_page(old_page);
2649                                 goto unlock;
2650                         }
2651                         page_cache_release(old_page);
2652                 }
2653                 if (reuse_swap_page(old_page)) {
2654                         /*
2655                          * The page is all ours.  Move it to our anon_vma so
2656                          * the rmap code will not search our parent or siblings.
2657                          * Protected against the rmap code by the page lock.
2658                          */
2659                         page_move_anon_rmap(old_page, vma, address);
2660                         unlock_page(old_page);
2661                         goto reuse;
2662                 }
2663                 unlock_page(old_page);
2664         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2665                                         (VM_WRITE|VM_SHARED))) {
2666                 /*
2667                  * Only catch write-faults on shared writable pages,
2668                  * read-only shared pages can get COWed by
2669                  * get_user_pages(.write=1, .force=1).
2670                  */
2671                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2672                         struct vm_fault vmf;
2673                         int tmp;
2674
2675                         vmf.virtual_address = (void __user *)(address &
2676                                                                 PAGE_MASK);
2677                         vmf.pgoff = old_page->index;
2678                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2679                         vmf.page = old_page;
2680
2681                         /*
2682                          * Notify the address space that the page is about to
2683                          * become writable so that it can prohibit this or wait
2684                          * for the page to get into an appropriate state.
2685                          *
2686                          * We do this without the lock held, so that it can
2687                          * sleep if it needs to.
2688                          */
2689                         page_cache_get(old_page);
2690                         pte_unmap_unlock(page_table, ptl);
2691
2692                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2693                         if (unlikely(tmp &
2694                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2695                                 ret = tmp;
2696                                 goto unwritable_page;
2697                         }
2698                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2699                                 lock_page(old_page);
2700                                 if (!old_page->mapping) {
2701                                         ret = 0; /* retry the fault */
2702                                         unlock_page(old_page);
2703                                         goto unwritable_page;
2704                                 }
2705                         } else
2706                                 VM_BUG_ON(!PageLocked(old_page));
2707
2708                         /*
2709                          * Since we dropped the lock we need to revalidate
2710                          * the PTE as someone else may have changed it.  If
2711                          * they did, we just return, as we can count on the
2712                          * MMU to tell us if they didn't also make it writable.
2713                          */
2714                         page_table = pte_offset_map_lock(mm, pmd, address,
2715                                                          &ptl);
2716                         if (!pte_same(*page_table, orig_pte)) {
2717                                 unlock_page(old_page);
2718                                 goto unlock;
2719                         }
2720
2721                         page_mkwrite = 1;
2722                 }
2723                 dirty_page = old_page;
2724                 get_page(dirty_page);
2725
2726 reuse:
2727                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2728                 entry = pte_mkyoung(orig_pte);
2729                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2730                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2731                         update_mmu_cache(vma, address, page_table);
2732                 pte_unmap_unlock(page_table, ptl);
2733                 ret |= VM_FAULT_WRITE;
2734
2735                 if (!dirty_page)
2736                         return ret;
2737
2738                 /*
2739                  * Yes, Virginia, this is actually required to prevent a race
2740                  * with clear_page_dirty_for_io() from clearing the page dirty
2741                  * bit after it clear all dirty ptes, but before a racing
2742                  * do_wp_page installs a dirty pte.
2743                  *
2744                  * __do_fault is protected similarly.
2745                  */
2746                 if (!page_mkwrite) {
2747                         wait_on_page_locked(dirty_page);
2748                         set_page_dirty_balance(dirty_page, page_mkwrite);
2749                         /* file_update_time outside page_lock */
2750                         if (vma->vm_file)
2751                                 file_update_time(vma->vm_file);
2752                 }
2753                 put_page(dirty_page);
2754                 if (page_mkwrite) {
2755                         struct address_space *mapping = dirty_page->mapping;
2756
2757                         set_page_dirty(dirty_page);
2758                         unlock_page(dirty_page);
2759                         page_cache_release(dirty_page);
2760                         if (mapping)    {
2761                                 /*
2762                                  * Some device drivers do not set page.mapping
2763                                  * but still dirty their pages
2764                                  */
2765                                 balance_dirty_pages_ratelimited(mapping);
2766                         }
2767                 }
2768
2769                 return ret;
2770         }
2771
2772         /*
2773          * Ok, we need to copy. Oh, well..
2774          */
2775         page_cache_get(old_page);
2776 gotten:
2777         pte_unmap_unlock(page_table, ptl);
2778
2779         if (unlikely(anon_vma_prepare(vma)))
2780                 goto oom;
2781
2782         if (is_zero_pfn(pte_pfn(orig_pte))) {
2783                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2784                 if (!new_page)
2785                         goto oom;
2786         } else {
2787                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2788                 if (!new_page)
2789                         goto oom;
2790                 cow_user_page(new_page, old_page, address, vma);
2791         }
2792         __SetPageUptodate(new_page);
2793
2794         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2795                 goto oom_free_new;
2796
2797         mmun_start  = address & PAGE_MASK;
2798         mmun_end    = mmun_start + PAGE_SIZE;
2799         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2800
2801         /*
2802          * Re-check the pte - we dropped the lock
2803          */
2804         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2805         if (likely(pte_same(*page_table, orig_pte))) {
2806                 if (old_page) {
2807                         if (!PageAnon(old_page)) {
2808                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2809                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2810                         }
2811                 } else
2812                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2813                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2814                 entry = mk_pte(new_page, vma->vm_page_prot);
2815                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2816                 /*
2817                  * Clear the pte entry and flush it first, before updating the
2818                  * pte with the new entry. This will avoid a race condition
2819                  * seen in the presence of one thread doing SMC and another
2820                  * thread doing COW.
2821                  */
2822                 ptep_clear_flush(vma, address, page_table);
2823                 page_add_new_anon_rmap(new_page, vma, address);
2824                 /*
2825                  * We call the notify macro here because, when using secondary
2826                  * mmu page tables (such as kvm shadow page tables), we want the
2827                  * new page to be mapped directly into the secondary page table.
2828                  */
2829                 set_pte_at_notify(mm, address, page_table, entry);
2830                 update_mmu_cache(vma, address, page_table);
2831                 if (old_page) {
2832                         /*
2833                          * Only after switching the pte to the new page may
2834                          * we remove the mapcount here. Otherwise another
2835                          * process may come and find the rmap count decremented
2836                          * before the pte is switched to the new page, and
2837                          * "reuse" the old page writing into it while our pte
2838                          * here still points into it and can be read by other
2839                          * threads.
2840                          *
2841                          * The critical issue is to order this
2842                          * page_remove_rmap with the ptp_clear_flush above.
2843                          * Those stores are ordered by (if nothing else,)
2844                          * the barrier present in the atomic_add_negative
2845                          * in page_remove_rmap.
2846                          *
2847                          * Then the TLB flush in ptep_clear_flush ensures that
2848                          * no process can access the old page before the
2849                          * decremented mapcount is visible. And the old page
2850                          * cannot be reused until after the decremented
2851                          * mapcount is visible. So transitively, TLBs to
2852                          * old page will be flushed before it can be reused.
2853                          */
2854                         page_remove_rmap(old_page);
2855                 }
2856
2857                 /* Free the old page.. */
2858                 new_page = old_page;
2859                 ret |= VM_FAULT_WRITE;
2860         } else
2861                 mem_cgroup_uncharge_page(new_page);
2862
2863         if (new_page)
2864                 page_cache_release(new_page);
2865 unlock:
2866         pte_unmap_unlock(page_table, ptl);
2867         if (mmun_end > mmun_start)
2868                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2869         if (old_page) {
2870                 /*
2871                  * Don't let another task, with possibly unlocked vma,
2872                  * keep the mlocked page.
2873                  */
2874                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2875                         lock_page(old_page);    /* LRU manipulation */
2876                         munlock_vma_page(old_page);
2877                         unlock_page(old_page);
2878                 }
2879                 page_cache_release(old_page);
2880         }
2881         return ret;
2882 oom_free_new:
2883         page_cache_release(new_page);
2884 oom:
2885         if (old_page)
2886                 page_cache_release(old_page);
2887         return VM_FAULT_OOM;
2888
2889 unwritable_page:
2890         page_cache_release(old_page);
2891         return ret;
2892 }
2893
2894 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2895                 unsigned long start_addr, unsigned long end_addr,
2896                 struct zap_details *details)
2897 {
2898         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2899 }
2900
2901 static inline void unmap_mapping_range_tree(struct rb_root *root,
2902                                             struct zap_details *details)
2903 {
2904         struct vm_area_struct *vma;
2905         pgoff_t vba, vea, zba, zea;
2906
2907         vma_interval_tree_foreach(vma, root,
2908                         details->first_index, details->last_index) {
2909
2910                 vba = vma->vm_pgoff;
2911                 vea = vba + vma_pages(vma) - 1;
2912                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2913                 zba = details->first_index;
2914                 if (zba < vba)
2915                         zba = vba;
2916                 zea = details->last_index;
2917                 if (zea > vea)
2918                         zea = vea;
2919
2920                 unmap_mapping_range_vma(vma,
2921                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2922                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2923                                 details);
2924         }
2925 }
2926
2927 static inline void unmap_mapping_range_list(struct list_head *head,
2928                                             struct zap_details *details)
2929 {
2930         struct vm_area_struct *vma;
2931
2932         /*
2933          * In nonlinear VMAs there is no correspondence between virtual address
2934          * offset and file offset.  So we must perform an exhaustive search
2935          * across *all* the pages in each nonlinear VMA, not just the pages
2936          * whose virtual address lies outside the file truncation point.
2937          */
2938         list_for_each_entry(vma, head, shared.nonlinear) {
2939                 details->nonlinear_vma = vma;
2940                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2941         }
2942 }
2943
2944 /**
2945  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2946  * @mapping: the address space containing mmaps to be unmapped.
2947  * @holebegin: byte in first page to unmap, relative to the start of
2948  * the underlying file.  This will be rounded down to a PAGE_SIZE
2949  * boundary.  Note that this is different from truncate_pagecache(), which
2950  * must keep the partial page.  In contrast, we must get rid of
2951  * partial pages.
2952  * @holelen: size of prospective hole in bytes.  This will be rounded
2953  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2954  * end of the file.
2955  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2956  * but 0 when invalidating pagecache, don't throw away private data.
2957  */
2958 void unmap_mapping_range(struct address_space *mapping,
2959                 loff_t const holebegin, loff_t const holelen, int even_cows)
2960 {
2961         struct zap_details details;
2962         pgoff_t hba = holebegin >> PAGE_SHIFT;
2963         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2964
2965         /* Check for overflow. */
2966         if (sizeof(holelen) > sizeof(hlen)) {
2967                 long long holeend =
2968                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2969                 if (holeend & ~(long long)ULONG_MAX)
2970                         hlen = ULONG_MAX - hba + 1;
2971         }
2972
2973         details.check_mapping = even_cows? NULL: mapping;
2974         details.nonlinear_vma = NULL;
2975         details.first_index = hba;
2976         details.last_index = hba + hlen - 1;
2977         if (details.last_index < details.first_index)
2978                 details.last_index = ULONG_MAX;
2979
2980
2981         mutex_lock(&mapping->i_mmap_mutex);
2982         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2983                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2984         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2985                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2986         mutex_unlock(&mapping->i_mmap_mutex);
2987 }
2988 EXPORT_SYMBOL(unmap_mapping_range);
2989
2990 /*
2991  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2992  * but allow concurrent faults), and pte mapped but not yet locked.
2993  * We return with mmap_sem still held, but pte unmapped and unlocked.
2994  */
2995 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2996                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2997                 unsigned int flags, pte_t orig_pte)
2998 {
2999         spinlock_t *ptl;
3000         struct page *page, *swapcache;
3001         swp_entry_t entry;
3002         pte_t pte;
3003         int locked;
3004         struct mem_cgroup *ptr;
3005         int exclusive = 0;
3006         int ret = 0;
3007
3008         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3009                 goto out;
3010
3011         entry = pte_to_swp_entry(orig_pte);
3012         if (unlikely(non_swap_entry(entry))) {
3013                 if (is_migration_entry(entry)) {
3014                         migration_entry_wait(mm, pmd, address);
3015                 } else if (is_hwpoison_entry(entry)) {
3016                         ret = VM_FAULT_HWPOISON;
3017                 } else {
3018                         print_bad_pte(vma, address, orig_pte, NULL);
3019                         ret = VM_FAULT_SIGBUS;
3020                 }
3021                 goto out;
3022         }
3023         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3024         page = lookup_swap_cache(entry);
3025         if (!page) {
3026                 page = swapin_readahead(entry,
3027                                         GFP_HIGHUSER_MOVABLE, vma, address);
3028                 if (!page) {
3029                         /*
3030                          * Back out if somebody else faulted in this pte
3031                          * while we released the pte lock.
3032                          */
3033                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3034                         if (likely(pte_same(*page_table, orig_pte)))
3035                                 ret = VM_FAULT_OOM;
3036                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3037                         goto unlock;
3038                 }
3039
3040                 /* Had to read the page from swap area: Major fault */
3041                 ret = VM_FAULT_MAJOR;
3042                 count_vm_event(PGMAJFAULT);
3043                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3044         } else if (PageHWPoison(page)) {
3045                 /*
3046                  * hwpoisoned dirty swapcache pages are kept for killing
3047                  * owner processes (which may be unknown at hwpoison time)
3048                  */
3049                 ret = VM_FAULT_HWPOISON;
3050                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3051                 swapcache = page;
3052                 goto out_release;
3053         }
3054
3055         swapcache = page;
3056         locked = lock_page_or_retry(page, mm, flags);
3057
3058         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3059         if (!locked) {
3060                 ret |= VM_FAULT_RETRY;
3061                 goto out_release;
3062         }
3063
3064         /*
3065          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3066          * release the swapcache from under us.  The page pin, and pte_same
3067          * test below, are not enough to exclude that.  Even if it is still
3068          * swapcache, we need to check that the page's swap has not changed.
3069          */
3070         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3071                 goto out_page;
3072
3073         page = ksm_might_need_to_copy(page, vma, address);
3074         if (unlikely(!page)) {
3075                 ret = VM_FAULT_OOM;
3076                 page = swapcache;
3077                 goto out_page;
3078         }
3079
3080         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3081                 ret = VM_FAULT_OOM;
3082                 goto out_page;
3083         }
3084
3085         /*
3086          * Back out if somebody else already faulted in this pte.
3087          */
3088         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3089         if (unlikely(!pte_same(*page_table, orig_pte)))
3090                 goto out_nomap;
3091
3092         if (unlikely(!PageUptodate(page))) {
3093                 ret = VM_FAULT_SIGBUS;
3094                 goto out_nomap;
3095         }
3096
3097         /*
3098          * The page isn't present yet, go ahead with the fault.
3099          *
3100          * Be careful about the sequence of operations here.
3101          * To get its accounting right, reuse_swap_page() must be called
3102          * while the page is counted on swap but not yet in mapcount i.e.
3103          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3104          * must be called after the swap_free(), or it will never succeed.
3105          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3106          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3107          * in page->private. In this case, a record in swap_cgroup  is silently
3108          * discarded at swap_free().
3109          */
3110
3111         inc_mm_counter_fast(mm, MM_ANONPAGES);
3112         dec_mm_counter_fast(mm, MM_SWAPENTS);
3113         pte = mk_pte(page, vma->vm_page_prot);
3114         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3115                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3116                 flags &= ~FAULT_FLAG_WRITE;
3117                 ret |= VM_FAULT_WRITE;
3118                 exclusive = 1;
3119         }
3120         flush_icache_page(vma, page);
3121         if (pte_swp_soft_dirty(orig_pte))
3122                 pte = pte_mksoft_dirty(pte);
3123         set_pte_at(mm, address, page_table, pte);
3124         if (page == swapcache)
3125                 do_page_add_anon_rmap(page, vma, address, exclusive);
3126         else /* ksm created a completely new copy */
3127                 page_add_new_anon_rmap(page, vma, address);
3128         /* It's better to call commit-charge after rmap is established */
3129         mem_cgroup_commit_charge_swapin(page, ptr);
3130
3131         swap_free(entry);
3132         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3133                 try_to_free_swap(page);
3134         unlock_page(page);
3135         if (page != swapcache) {
3136                 /*
3137                  * Hold the lock to avoid the swap entry to be reused
3138                  * until we take the PT lock for the pte_same() check
3139                  * (to avoid false positives from pte_same). For
3140                  * further safety release the lock after the swap_free
3141                  * so that the swap count won't change under a
3142                  * parallel locked swapcache.
3143                  */
3144                 unlock_page(swapcache);
3145                 page_cache_release(swapcache);
3146         }
3147
3148         if (flags & FAULT_FLAG_WRITE) {
3149                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3150                 if (ret & VM_FAULT_ERROR)
3151                         ret &= VM_FAULT_ERROR;
3152                 goto out;
3153         }
3154
3155         /* No need to invalidate - it was non-present before */
3156         update_mmu_cache(vma, address, page_table);
3157 unlock:
3158         pte_unmap_unlock(page_table, ptl);
3159 out:
3160         return ret;
3161 out_nomap:
3162         mem_cgroup_cancel_charge_swapin(ptr);
3163         pte_unmap_unlock(page_table, ptl);
3164 out_page:
3165         unlock_page(page);
3166 out_release:
3167         page_cache_release(page);
3168         if (page != swapcache) {
3169                 unlock_page(swapcache);
3170                 page_cache_release(swapcache);
3171         }
3172         return ret;
3173 }
3174
3175 /*
3176  * This is like a special single-page "expand_{down|up}wards()",
3177  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3178  * doesn't hit another vma.
3179  */
3180 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3181 {
3182         address &= PAGE_MASK;
3183         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3184                 struct vm_area_struct *prev = vma->vm_prev;
3185
3186                 /*
3187                  * Is there a mapping abutting this one below?
3188                  *
3189                  * That's only ok if it's the same stack mapping
3190                  * that has gotten split..
3191                  */
3192                 if (prev && prev->vm_end == address)
3193                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3194
3195                 expand_downwards(vma, address - PAGE_SIZE);
3196         }
3197         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3198                 struct vm_area_struct *next = vma->vm_next;
3199
3200                 /* As VM_GROWSDOWN but s/below/above/ */
3201                 if (next && next->vm_start == address + PAGE_SIZE)
3202                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3203
3204                 expand_upwards(vma, address + PAGE_SIZE);
3205         }
3206         return 0;
3207 }
3208
3209 /*
3210  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3211  * but allow concurrent faults), and pte mapped but not yet locked.
3212  * We return with mmap_sem still held, but pte unmapped and unlocked.
3213  */
3214 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3215                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3216                 unsigned int flags)
3217 {
3218         struct page *page;
3219         spinlock_t *ptl;
3220         pte_t entry;
3221
3222         pte_unmap(page_table);
3223
3224         /* Check if we need to add a guard page to the stack */
3225         if (check_stack_guard_page(vma, address) < 0)
3226                 return VM_FAULT_SIGBUS;
3227
3228         /* Use the zero-page for reads */
3229         if (!(flags & FAULT_FLAG_WRITE)) {
3230                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3231                                                 vma->vm_page_prot));
3232                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3233                 if (!pte_none(*page_table))
3234                         goto unlock;
3235                 goto setpte;
3236         }
3237
3238         /* Allocate our own private page. */
3239         if (unlikely(anon_vma_prepare(vma)))
3240                 goto oom;
3241         page = alloc_zeroed_user_highpage_movable(vma, address);
3242         if (!page)
3243                 goto oom;
3244         /*
3245          * The memory barrier inside __SetPageUptodate makes sure that
3246          * preceeding stores to the page contents become visible before
3247          * the set_pte_at() write.
3248          */
3249         __SetPageUptodate(page);
3250
3251         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3252                 goto oom_free_page;
3253
3254         entry = mk_pte(page, vma->vm_page_prot);
3255         if (vma->vm_flags & VM_WRITE)
3256                 entry = pte_mkwrite(pte_mkdirty(entry));
3257
3258         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3259         if (!pte_none(*page_table))
3260                 goto release;
3261
3262         inc_mm_counter_fast(mm, MM_ANONPAGES);
3263         page_add_new_anon_rmap(page, vma, address);
3264 setpte:
3265         set_pte_at(mm, address, page_table, entry);
3266
3267         /* No need to invalidate - it was non-present before */
3268         update_mmu_cache(vma, address, page_table);
3269 unlock:
3270         pte_unmap_unlock(page_table, ptl);
3271         return 0;
3272 release:
3273         mem_cgroup_uncharge_page(page);
3274         page_cache_release(page);
3275         goto unlock;
3276 oom_free_page:
3277         page_cache_release(page);
3278 oom:
3279         return VM_FAULT_OOM;
3280 }
3281
3282 /*
3283  * __do_fault() tries to create a new page mapping. It aggressively
3284  * tries to share with existing pages, but makes a separate copy if
3285  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3286  * the next page fault.
3287  *
3288  * As this is called only for pages that do not currently exist, we
3289  * do not need to flush old virtual caches or the TLB.
3290  *
3291  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3292  * but allow concurrent faults), and pte neither mapped nor locked.
3293  * We return with mmap_sem still held, but pte unmapped and unlocked.
3294  */
3295 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3296                 unsigned long address, pmd_t *pmd,
3297                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3298 {
3299         pte_t *page_table;
3300         spinlock_t *ptl;
3301         struct page *page;
3302         struct page *cow_page;
3303         pte_t entry;
3304         int anon = 0;
3305         struct page *dirty_page = NULL;
3306         struct vm_fault vmf;
3307         int ret;
3308         int page_mkwrite = 0;
3309
3310         /*
3311          * If we do COW later, allocate page befor taking lock_page()
3312          * on the file cache page. This will reduce lock holding time.
3313          */
3314         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3315
3316                 if (unlikely(anon_vma_prepare(vma)))
3317                         return VM_FAULT_OOM;
3318
3319                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3320                 if (!cow_page)
3321                         return VM_FAULT_OOM;
3322
3323                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3324                         page_cache_release(cow_page);
3325                         return VM_FAULT_OOM;
3326                 }
3327         } else
3328                 cow_page = NULL;
3329
3330         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3331         vmf.pgoff = pgoff;
3332         vmf.flags = flags;
3333         vmf.page = NULL;
3334
3335         ret = vma->vm_ops->fault(vma, &vmf);
3336         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3337                             VM_FAULT_RETRY)))
3338                 goto uncharge_out;
3339
3340         if (unlikely(PageHWPoison(vmf.page))) {
3341                 if (ret & VM_FAULT_LOCKED)
3342                         unlock_page(vmf.page);
3343                 ret = VM_FAULT_HWPOISON;
3344                 goto uncharge_out;
3345         }
3346
3347         /*
3348          * For consistency in subsequent calls, make the faulted page always
3349          * locked.
3350          */
3351         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3352                 lock_page(vmf.page);
3353         else
3354                 VM_BUG_ON(!PageLocked(vmf.page));
3355
3356         /*
3357          * Should we do an early C-O-W break?
3358          */
3359         page = vmf.page;
3360         if (flags & FAULT_FLAG_WRITE) {
3361                 if (!(vma->vm_flags & VM_SHARED)) {
3362                         page = cow_page;
3363                         anon = 1;
3364                         copy_user_highpage(page, vmf.page, address, vma);
3365                         __SetPageUptodate(page);
3366                 } else {
3367                         /*
3368                          * If the page will be shareable, see if the backing
3369                          * address space wants to know that the page is about
3370                          * to become writable
3371                          */
3372                         if (vma->vm_ops->page_mkwrite) {
3373                                 int tmp;
3374
3375                                 unlock_page(page);
3376                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3377                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3378                                 if (unlikely(tmp &
3379                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3380                                         ret = tmp;
3381                                         goto unwritable_page;
3382                                 }
3383                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3384                                         lock_page(page);
3385                                         if (!page->mapping) {
3386                                                 ret = 0; /* retry the fault */
3387                                                 unlock_page(page);
3388                                                 goto unwritable_page;
3389                                         }
3390                                 } else
3391                                         VM_BUG_ON(!PageLocked(page));
3392                                 page_mkwrite = 1;
3393                         }
3394                 }
3395
3396         }
3397
3398         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3399
3400         /*
3401          * This silly early PAGE_DIRTY setting removes a race
3402          * due to the bad i386 page protection. But it's valid
3403          * for other architectures too.
3404          *
3405          * Note that if FAULT_FLAG_WRITE is set, we either now have
3406          * an exclusive copy of the page, or this is a shared mapping,
3407          * so we can make it writable and dirty to avoid having to
3408          * handle that later.
3409          */
3410         /* Only go through if we didn't race with anybody else... */
3411         if (likely(pte_same(*page_table, orig_pte))) {
3412                 flush_icache_page(vma, page);
3413                 entry = mk_pte(page, vma->vm_page_prot);
3414                 if (flags & FAULT_FLAG_WRITE)
3415                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3416                 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3417                         pte_mksoft_dirty(entry);
3418                 if (anon) {
3419                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3420                         page_add_new_anon_rmap(page, vma, address);
3421                 } else {
3422                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3423                         page_add_file_rmap(page);
3424                         if (flags & FAULT_FLAG_WRITE) {
3425                                 dirty_page = page;
3426                                 get_page(dirty_page);
3427                         }
3428                 }
3429                 set_pte_at(mm, address, page_table, entry);
3430
3431                 /* no need to invalidate: a not-present page won't be cached */
3432                 update_mmu_cache(vma, address, page_table);
3433         } else {
3434                 if (cow_page)
3435                         mem_cgroup_uncharge_page(cow_page);
3436                 if (anon)
3437                         page_cache_release(page);
3438                 else
3439                         anon = 1; /* no anon but release faulted_page */
3440         }
3441
3442         pte_unmap_unlock(page_table, ptl);
3443
3444         if (dirty_page) {
3445                 struct address_space *mapping = page->mapping;
3446                 int dirtied = 0;
3447
3448                 if (set_page_dirty(dirty_page))
3449                         dirtied = 1;
3450                 unlock_page(dirty_page);
3451                 put_page(dirty_page);
3452                 if ((dirtied || page_mkwrite) && mapping) {
3453                         /*
3454                          * Some device drivers do not set page.mapping but still
3455                          * dirty their pages
3456                          */
3457                         balance_dirty_pages_ratelimited(mapping);
3458                 }
3459
3460                 /* file_update_time outside page_lock */
3461                 if (vma->vm_file && !page_mkwrite)
3462                         file_update_time(vma->vm_file);
3463         } else {
3464                 unlock_page(vmf.page);
3465                 if (anon)
3466                         page_cache_release(vmf.page);
3467         }
3468
3469         return ret;
3470
3471 unwritable_page:
3472         page_cache_release(page);
3473         return ret;
3474 uncharge_out:
3475         /* fs's fault handler get error */
3476         if (cow_page) {
3477                 mem_cgroup_uncharge_page(cow_page);
3478                 page_cache_release(cow_page);
3479         }
3480         return ret;
3481 }
3482
3483 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3484                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3485                 unsigned int flags, pte_t orig_pte)
3486 {
3487         pgoff_t pgoff = (((address & PAGE_MASK)
3488                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3489
3490         pte_unmap(page_table);
3491         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3492 }
3493
3494 /*
3495  * Fault of a previously existing named mapping. Repopulate the pte
3496  * from the encoded file_pte if possible. This enables swappable
3497  * nonlinear vmas.
3498  *
3499  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3500  * but allow concurrent faults), and pte mapped but not yet locked.
3501  * We return with mmap_sem still held, but pte unmapped and unlocked.
3502  */
3503 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3504                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3505                 unsigned int flags, pte_t orig_pte)
3506 {
3507         pgoff_t pgoff;
3508
3509         flags |= FAULT_FLAG_NONLINEAR;
3510
3511         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3512                 return 0;
3513
3514         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3515                 /*
3516                  * Page table corrupted: show pte and kill process.
3517                  */
3518                 print_bad_pte(vma, address, orig_pte, NULL);
3519                 return VM_FAULT_SIGBUS;
3520         }
3521
3522         pgoff = pte_to_pgoff(orig_pte);
3523         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3524 }
3525
3526 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3527                                 unsigned long addr, int current_nid)
3528 {
3529         get_page(page);
3530
3531         count_vm_numa_event(NUMA_HINT_FAULTS);
3532         if (current_nid == numa_node_id())
3533                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3534
3535         return mpol_misplaced(page, vma, addr);
3536 }
3537
3538 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3539                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3540 {
3541         struct page *page = NULL;
3542         spinlock_t *ptl;
3543         int current_nid = -1;
3544         int target_nid;
3545         bool migrated = false;
3546
3547         /*
3548         * The "pte" at this point cannot be used safely without
3549         * validation through pte_unmap_same(). It's of NUMA type but
3550         * the pfn may be screwed if the read is non atomic.
3551         *
3552         * ptep_modify_prot_start is not called as this is clearing
3553         * the _PAGE_NUMA bit and it is not really expected that there
3554         * would be concurrent hardware modifications to the PTE.
3555         */
3556         ptl = pte_lockptr(mm, pmd);
3557         spin_lock(ptl);
3558         if (unlikely(!pte_same(*ptep, pte))) {
3559                 pte_unmap_unlock(ptep, ptl);
3560                 goto out;
3561         }
3562
3563         pte = pte_mknonnuma(pte);
3564         set_pte_at(mm, addr, ptep, pte);
3565         update_mmu_cache(vma, addr, ptep);
3566
3567         page = vm_normal_page(vma, addr, pte);
3568         if (!page) {
3569                 pte_unmap_unlock(ptep, ptl);
3570                 return 0;
3571         }
3572
3573         current_nid = page_to_nid(page);
3574         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3575         pte_unmap_unlock(ptep, ptl);
3576         if (target_nid == -1) {
3577                 /*
3578                  * Account for the fault against the current node if it not
3579                  * being replaced regardless of where the page is located.
3580                  */
3581                 current_nid = numa_node_id();
3582                 put_page(page);
3583                 goto out;
3584         }
3585
3586         /* Migrate to the requested node */
3587         migrated = migrate_misplaced_page(page, target_nid);
3588         if (migrated)
3589                 current_nid = target_nid;
3590
3591 out:
3592         if (current_nid != -1)
3593                 task_numa_fault(current_nid, 1, migrated);
3594         return 0;
3595 }
3596
3597 /* NUMA hinting page fault entry point for regular pmds */
3598 #ifdef CONFIG_NUMA_BALANCING
3599 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3600                      unsigned long addr, pmd_t *pmdp)
3601 {
3602         pmd_t pmd;
3603         pte_t *pte, *orig_pte;
3604         unsigned long _addr = addr & PMD_MASK;
3605         unsigned long offset;
3606         spinlock_t *ptl;
3607         bool numa = false;
3608         int local_nid = numa_node_id();
3609
3610         spin_lock(&mm->page_table_lock);
3611         pmd = *pmdp;
3612         if (pmd_numa(pmd)) {
3613                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3614                 numa = true;
3615         }
3616         spin_unlock(&mm->page_table_lock);
3617
3618         if (!numa)
3619                 return 0;
3620
3621         /* we're in a page fault so some vma must be in the range */
3622         BUG_ON(!vma);
3623         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3624         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3625         VM_BUG_ON(offset >= PMD_SIZE);
3626         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3627         pte += offset >> PAGE_SHIFT;
3628         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3629                 pte_t pteval = *pte;
3630                 struct page *page;
3631                 int curr_nid = local_nid;
3632                 int target_nid;
3633                 bool migrated;
3634                 if (!pte_present(pteval))
3635                         continue;
3636                 if (!pte_numa(pteval))
3637                         continue;
3638                 if (addr >= vma->vm_end) {
3639                         vma = find_vma(mm, addr);
3640                         /* there's a pte present so there must be a vma */
3641                         BUG_ON(!vma);
3642                         BUG_ON(addr < vma->vm_start);
3643                 }
3644                 if (pte_numa(pteval)) {
3645                         pteval = pte_mknonnuma(pteval);
3646                         set_pte_at(mm, addr, pte, pteval);
3647                 }
3648                 page = vm_normal_page(vma, addr, pteval);
3649                 if (unlikely(!page))
3650                         continue;
3651                 /* only check non-shared pages */
3652                 if (unlikely(page_mapcount(page) != 1))
3653                         continue;
3654
3655                 /*
3656                  * Note that the NUMA fault is later accounted to either
3657                  * the node that is currently running or where the page is
3658                  * migrated to.
3659                  */
3660                 curr_nid = local_nid;
3661                 target_nid = numa_migrate_prep(page, vma, addr,
3662                                                page_to_nid(page));
3663                 if (target_nid == -1) {
3664                         put_page(page);
3665                         continue;
3666                 }
3667
3668                 /* Migrate to the requested node */
3669                 pte_unmap_unlock(pte, ptl);
3670                 migrated = migrate_misplaced_page(page, target_nid);
3671                 if (migrated)
3672                         curr_nid = target_nid;
3673                 task_numa_fault(curr_nid, 1, migrated);
3674
3675                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3676         }
3677         pte_unmap_unlock(orig_pte, ptl);
3678
3679         return 0;
3680 }
3681 #else
3682 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3683                      unsigned long addr, pmd_t *pmdp)
3684 {
3685         BUG();
3686         return 0;
3687 }
3688 #endif /* CONFIG_NUMA_BALANCING */
3689
3690 /*
3691  * These routines also need to handle stuff like marking pages dirty
3692  * and/or accessed for architectures that don't do it in hardware (most
3693  * RISC architectures).  The early dirtying is also good on the i386.
3694  *
3695  * There is also a hook called "update_mmu_cache()" that architectures
3696  * with external mmu caches can use to update those (ie the Sparc or
3697  * PowerPC hashed page tables that act as extended TLBs).
3698  *
3699  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3700  * but allow concurrent faults), and pte mapped but not yet locked.
3701  * We return with mmap_sem still held, but pte unmapped and unlocked.
3702  */
3703 int handle_pte_fault(struct mm_struct *mm,
3704                      struct vm_area_struct *vma, unsigned long address,
3705                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3706 {
3707         pte_t entry;
3708         spinlock_t *ptl;
3709
3710         entry = *pte;
3711         if (!pte_present(entry)) {
3712                 if (pte_none(entry)) {
3713                         if (vma->vm_ops) {
3714                                 if (likely(vma->vm_ops->fault))
3715                                         return do_linear_fault(mm, vma, address,
3716                                                 pte, pmd, flags, entry);
3717                         }
3718                         return do_anonymous_page(mm, vma, address,
3719                                                  pte, pmd, flags);
3720                 }
3721                 if (pte_file(entry))
3722                         return do_nonlinear_fault(mm, vma, address,
3723                                         pte, pmd, flags, entry);
3724                 return do_swap_page(mm, vma, address,
3725                                         pte, pmd, flags, entry);
3726         }
3727
3728         if (pte_numa(entry))
3729                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3730
3731         ptl = pte_lockptr(mm, pmd);
3732         spin_lock(ptl);
3733         if (unlikely(!pte_same(*pte, entry)))
3734                 goto unlock;
3735         if (flags & FAULT_FLAG_WRITE) {
3736                 if (!pte_write(entry))
3737                         return do_wp_page(mm, vma, address,
3738                                         pte, pmd, ptl, entry);
3739                 entry = pte_mkdirty(entry);
3740         }
3741         entry = pte_mkyoung(entry);
3742         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3743                 update_mmu_cache(vma, address, pte);
3744         } else {
3745                 /*
3746                  * This is needed only for protection faults but the arch code
3747                  * is not yet telling us if this is a protection fault or not.
3748                  * This still avoids useless tlb flushes for .text page faults
3749                  * with threads.
3750                  */
3751                 if (flags & FAULT_FLAG_WRITE)
3752                         flush_tlb_fix_spurious_fault(vma, address);
3753         }
3754 unlock:
3755         pte_unmap_unlock(pte, ptl);
3756         return 0;
3757 }
3758
3759 /*
3760  * By the time we get here, we already hold the mm semaphore
3761  */
3762 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3763                 unsigned long address, unsigned int flags)
3764 {
3765         pgd_t *pgd;
3766         pud_t *pud;
3767         pmd_t *pmd;
3768         pte_t *pte;
3769
3770         __set_current_state(TASK_RUNNING);
3771
3772         count_vm_event(PGFAULT);
3773         mem_cgroup_count_vm_event(mm, PGFAULT);
3774
3775         /* do counter updates before entering really critical section. */
3776         check_sync_rss_stat(current);
3777
3778         if (unlikely(is_vm_hugetlb_page(vma)))
3779                 return hugetlb_fault(mm, vma, address, flags);
3780
3781 retry:
3782         pgd = pgd_offset(mm, address);
3783         pud = pud_alloc(mm, pgd, address);
3784         if (!pud)
3785                 return VM_FAULT_OOM;
3786         pmd = pmd_alloc(mm, pud, address);
3787         if (!pmd)
3788                 return VM_FAULT_OOM;
3789         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3790                 if (!vma->vm_ops)
3791                         return do_huge_pmd_anonymous_page(mm, vma, address,
3792                                                           pmd, flags);
3793         } else {
3794                 pmd_t orig_pmd = *pmd;
3795                 int ret;
3796
3797                 barrier();
3798                 if (pmd_trans_huge(orig_pmd)) {
3799                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3800
3801                         /*
3802                          * If the pmd is splitting, return and retry the
3803                          * the fault.  Alternative: wait until the split
3804                          * is done, and goto retry.
3805                          */
3806                         if (pmd_trans_splitting(orig_pmd))
3807                                 return 0;
3808
3809                         if (pmd_numa(orig_pmd))
3810                                 return do_huge_pmd_numa_page(mm, vma, address,
3811                                                              orig_pmd, pmd);
3812
3813                         if (dirty && !pmd_write(orig_pmd)) {
3814                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3815                                                           orig_pmd);
3816                                 /*
3817                                  * If COW results in an oom, the huge pmd will
3818                                  * have been split, so retry the fault on the
3819                                  * pte for a smaller charge.
3820                                  */
3821                                 if (unlikely(ret & VM_FAULT_OOM))
3822                                         goto retry;
3823                                 return ret;
3824                         } else {
3825                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3826                                                       orig_pmd, dirty);
3827                         }
3828
3829                         return 0;
3830                 }
3831         }
3832
3833         if (pmd_numa(*pmd))
3834                 return do_pmd_numa_page(mm, vma, address, pmd);
3835
3836         /*
3837          * Use __pte_alloc instead of pte_alloc_map, because we can't
3838          * run pte_offset_map on the pmd, if an huge pmd could
3839          * materialize from under us from a different thread.
3840          */
3841         if (unlikely(pmd_none(*pmd)) &&
3842             unlikely(__pte_alloc(mm, vma, pmd, address)))
3843                 return VM_FAULT_OOM;
3844         /* if an huge pmd materialized from under us just retry later */
3845         if (unlikely(pmd_trans_huge(*pmd)))
3846                 return 0;
3847         /*
3848          * A regular pmd is established and it can't morph into a huge pmd
3849          * from under us anymore at this point because we hold the mmap_sem
3850          * read mode and khugepaged takes it in write mode. So now it's
3851          * safe to run pte_offset_map().
3852          */
3853         pte = pte_offset_map(pmd, address);
3854
3855         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3856 }
3857
3858 #ifndef __PAGETABLE_PUD_FOLDED
3859 /*
3860  * Allocate page upper directory.
3861  * We've already handled the fast-path in-line.
3862  */
3863 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3864 {
3865         pud_t *new = pud_alloc_one(mm, address);
3866         if (!new)
3867                 return -ENOMEM;
3868
3869         smp_wmb(); /* See comment in __pte_alloc */
3870
3871         spin_lock(&mm->page_table_lock);
3872         if (pgd_present(*pgd))          /* Another has populated it */
3873                 pud_free(mm, new);
3874         else
3875                 pgd_populate(mm, pgd, new);
3876         spin_unlock(&mm->page_table_lock);
3877         return 0;
3878 }
3879 #endif /* __PAGETABLE_PUD_FOLDED */
3880
3881 #ifndef __PAGETABLE_PMD_FOLDED
3882 /*
3883  * Allocate page middle directory.
3884  * We've already handled the fast-path in-line.
3885  */
3886 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3887 {
3888         pmd_t *new = pmd_alloc_one(mm, address);
3889         if (!new)
3890                 return -ENOMEM;
3891
3892         smp_wmb(); /* See comment in __pte_alloc */
3893
3894         spin_lock(&mm->page_table_lock);
3895 #ifndef __ARCH_HAS_4LEVEL_HACK
3896         if (pud_present(*pud))          /* Another has populated it */
3897                 pmd_free(mm, new);
3898         else
3899                 pud_populate(mm, pud, new);
3900 #else
3901         if (pgd_present(*pud))          /* Another has populated it */
3902                 pmd_free(mm, new);
3903         else
3904                 pgd_populate(mm, pud, new);
3905 #endif /* __ARCH_HAS_4LEVEL_HACK */
3906         spin_unlock(&mm->page_table_lock);
3907         return 0;
3908 }
3909 #endif /* __PAGETABLE_PMD_FOLDED */
3910
3911 #if !defined(__HAVE_ARCH_GATE_AREA)
3912
3913 #if defined(AT_SYSINFO_EHDR)
3914 static struct vm_area_struct gate_vma;
3915
3916 static int __init gate_vma_init(void)
3917 {
3918         gate_vma.vm_mm = NULL;
3919         gate_vma.vm_start = FIXADDR_USER_START;
3920         gate_vma.vm_end = FIXADDR_USER_END;
3921         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3922         gate_vma.vm_page_prot = __P101;
3923
3924         return 0;
3925 }
3926 __initcall(gate_vma_init);
3927 #endif
3928
3929 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3930 {
3931 #ifdef AT_SYSINFO_EHDR
3932         return &gate_vma;
3933 #else
3934         return NULL;
3935 #endif
3936 }
3937
3938 int in_gate_area_no_mm(unsigned long addr)
3939 {
3940 #ifdef AT_SYSINFO_EHDR
3941         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3942                 return 1;
3943 #endif
3944         return 0;
3945 }
3946
3947 #endif  /* __HAVE_ARCH_GATE_AREA */
3948
3949 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3950                 pte_t **ptepp, spinlock_t **ptlp)
3951 {
3952         pgd_t *pgd;
3953         pud_t *pud;
3954         pmd_t *pmd;
3955         pte_t *ptep;
3956
3957         pgd = pgd_offset(mm, address);
3958         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3959                 goto out;
3960
3961         pud = pud_offset(pgd, address);
3962         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3963                 goto out;
3964
3965         pmd = pmd_offset(pud, address);
3966         VM_BUG_ON(pmd_trans_huge(*pmd));
3967         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3968                 goto out;
3969
3970         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3971         if (pmd_huge(*pmd))
3972                 goto out;
3973
3974         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3975         if (!ptep)
3976                 goto out;
3977         if (!pte_present(*ptep))
3978                 goto unlock;
3979         *ptepp = ptep;
3980         return 0;
3981 unlock:
3982         pte_unmap_unlock(ptep, *ptlp);
3983 out:
3984         return -EINVAL;
3985 }
3986
3987 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3988                              pte_t **ptepp, spinlock_t **ptlp)
3989 {
3990         int res;
3991
3992         /* (void) is needed to make gcc happy */
3993         (void) __cond_lock(*ptlp,
3994                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3995         return res;
3996 }
3997
3998 /**
3999  * follow_pfn - look up PFN at a user virtual address
4000  * @vma: memory mapping
4001  * @address: user virtual address
4002  * @pfn: location to store found PFN
4003  *
4004  * Only IO mappings and raw PFN mappings are allowed.
4005  *
4006  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4007  */
4008 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4009         unsigned long *pfn)
4010 {
4011         int ret = -EINVAL;
4012         spinlock_t *ptl;
4013         pte_t *ptep;
4014
4015         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4016                 return ret;
4017
4018         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4019         if (ret)
4020                 return ret;
4021         *pfn = pte_pfn(*ptep);
4022         pte_unmap_unlock(ptep, ptl);
4023         return 0;
4024 }
4025 EXPORT_SYMBOL(follow_pfn);
4026
4027 #ifdef CONFIG_HAVE_IOREMAP_PROT
4028 int follow_phys(struct vm_area_struct *vma,
4029                 unsigned long address, unsigned int flags,
4030                 unsigned long *prot, resource_size_t *phys)
4031 {
4032         int ret = -EINVAL;
4033         pte_t *ptep, pte;
4034         spinlock_t *ptl;
4035
4036         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4037                 goto out;
4038
4039         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4040                 goto out;
4041         pte = *ptep;
4042
4043         if ((flags & FOLL_WRITE) && !pte_write(pte))
4044                 goto unlock;
4045
4046         *prot = pgprot_val(pte_pgprot(pte));
4047         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4048
4049         ret = 0;
4050 unlock:
4051         pte_unmap_unlock(ptep, ptl);
4052 out:
4053         return ret;
4054 }
4055
4056 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4057                         void *buf, int len, int write)
4058 {
4059         resource_size_t phys_addr;
4060         unsigned long prot = 0;
4061         void __iomem *maddr;
4062         int offset = addr & (PAGE_SIZE-1);
4063
4064         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4065                 return -EINVAL;
4066
4067         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4068         if (write)
4069                 memcpy_toio(maddr + offset, buf, len);
4070         else
4071                 memcpy_fromio(buf, maddr + offset, len);
4072         iounmap(maddr);
4073
4074         return len;
4075 }
4076 #endif
4077
4078 /*
4079  * Access another process' address space as given in mm.  If non-NULL, use the
4080  * given task for page fault accounting.
4081  */
4082 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4083                 unsigned long addr, void *buf, int len, int write)
4084 {
4085         struct vm_area_struct *vma;
4086         void *old_buf = buf;
4087
4088         down_read(&mm->mmap_sem);
4089         /* ignore errors, just check how much was successfully transferred */
4090         while (len) {
4091                 int bytes, ret, offset;
4092                 void *maddr;
4093                 struct page *page = NULL;
4094
4095                 ret = get_user_pages(tsk, mm, addr, 1,
4096                                 write, 1, &page, &vma);
4097                 if (ret <= 0) {
4098                         /*
4099                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4100                          * we can access using slightly different code.
4101                          */
4102 #ifdef CONFIG_HAVE_IOREMAP_PROT
4103                         vma = find_vma(mm, addr);
4104                         if (!vma || vma->vm_start > addr)
4105                                 break;
4106                         if (vma->vm_ops && vma->vm_ops->access)
4107                                 ret = vma->vm_ops->access(vma, addr, buf,
4108                                                           len, write);
4109                         if (ret <= 0)
4110 #endif
4111                                 break;
4112                         bytes = ret;
4113                 } else {
4114                         bytes = len;
4115                         offset = addr & (PAGE_SIZE-1);
4116                         if (bytes > PAGE_SIZE-offset)
4117                                 bytes = PAGE_SIZE-offset;
4118
4119                         maddr = kmap(page);
4120                         if (write) {
4121                                 copy_to_user_page(vma, page, addr,
4122                                                   maddr + offset, buf, bytes);
4123                                 set_page_dirty_lock(page);
4124                         } else {
4125                                 copy_from_user_page(vma, page, addr,
4126                                                     buf, maddr + offset, bytes);
4127                         }
4128                         kunmap(page);
4129                         page_cache_release(page);
4130                 }
4131                 len -= bytes;
4132                 buf += bytes;
4133                 addr += bytes;
4134         }
4135         up_read(&mm->mmap_sem);
4136
4137         return buf - old_buf;
4138 }
4139
4140 /**
4141  * access_remote_vm - access another process' address space
4142  * @mm:         the mm_struct of the target address space
4143  * @addr:       start address to access
4144  * @buf:        source or destination buffer
4145  * @len:        number of bytes to transfer
4146  * @write:      whether the access is a write
4147  *
4148  * The caller must hold a reference on @mm.
4149  */
4150 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4151                 void *buf, int len, int write)
4152 {
4153         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4154 }
4155
4156 /*
4157  * Access another process' address space.
4158  * Source/target buffer must be kernel space,
4159  * Do not walk the page table directly, use get_user_pages
4160  */
4161 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4162                 void *buf, int len, int write)
4163 {
4164         struct mm_struct *mm;
4165         int ret;
4166
4167         mm = get_task_mm(tsk);
4168         if (!mm)
4169                 return 0;
4170
4171         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4172         mmput(mm);
4173
4174         return ret;
4175 }
4176
4177 /*
4178  * Print the name of a VMA.
4179  */
4180 void print_vma_addr(char *prefix, unsigned long ip)
4181 {
4182         struct mm_struct *mm = current->mm;
4183         struct vm_area_struct *vma;
4184
4185         /*
4186          * Do not print if we are in atomic
4187          * contexts (in exception stacks, etc.):
4188          */
4189         if (preempt_count())
4190                 return;
4191
4192         down_read(&mm->mmap_sem);
4193         vma = find_vma(mm, ip);
4194         if (vma && vma->vm_file) {
4195                 struct file *f = vma->vm_file;
4196                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4197                 if (buf) {
4198                         char *p;
4199
4200                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4201                         if (IS_ERR(p))
4202                                 p = "?";
4203                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4204                                         vma->vm_start,
4205                                         vma->vm_end - vma->vm_start);
4206                         free_page((unsigned long)buf);
4207                 }
4208         }
4209         up_read(&mm->mmap_sem);
4210 }
4211
4212 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4213 void might_fault(void)
4214 {
4215         /*
4216          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4217          * holding the mmap_sem, this is safe because kernel memory doesn't
4218          * get paged out, therefore we'll never actually fault, and the
4219          * below annotations will generate false positives.
4220          */
4221         if (segment_eq(get_fs(), KERNEL_DS))
4222                 return;
4223
4224         /*
4225          * it would be nicer only to annotate paths which are not under
4226          * pagefault_disable, however that requires a larger audit and
4227          * providing helpers like get_user_atomic.
4228          */
4229         if (in_atomic())
4230                 return;
4231
4232         __might_sleep(__FILE__, __LINE__, 0);
4233
4234         if (current->mm)
4235                 might_lock_read(&current->mm->mmap_sem);
4236 }
4237 EXPORT_SYMBOL(might_fault);
4238 #endif
4239
4240 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4241 static void clear_gigantic_page(struct page *page,
4242                                 unsigned long addr,
4243                                 unsigned int pages_per_huge_page)
4244 {
4245         int i;
4246         struct page *p = page;
4247
4248         might_sleep();
4249         for (i = 0; i < pages_per_huge_page;
4250              i++, p = mem_map_next(p, page, i)) {
4251                 cond_resched();
4252                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4253         }
4254 }
4255 void clear_huge_page(struct page *page,
4256                      unsigned long addr, unsigned int pages_per_huge_page)
4257 {
4258         int i;
4259
4260         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4261                 clear_gigantic_page(page, addr, pages_per_huge_page);
4262                 return;
4263         }
4264
4265         might_sleep();
4266         for (i = 0; i < pages_per_huge_page; i++) {
4267                 cond_resched();
4268                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4269         }
4270 }
4271
4272 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4273                                     unsigned long addr,
4274                                     struct vm_area_struct *vma,
4275                                     unsigned int pages_per_huge_page)
4276 {
4277         int i;
4278         struct page *dst_base = dst;
4279         struct page *src_base = src;
4280
4281         for (i = 0; i < pages_per_huge_page; ) {
4282                 cond_resched();
4283                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4284
4285                 i++;
4286                 dst = mem_map_next(dst, dst_base, i);
4287                 src = mem_map_next(src, src_base, i);
4288         }
4289 }
4290
4291 void copy_user_huge_page(struct page *dst, struct page *src,
4292                          unsigned long addr, struct vm_area_struct *vma,
4293                          unsigned int pages_per_huge_page)
4294 {
4295         int i;
4296
4297         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4298                 copy_user_gigantic_page(dst, src, addr, vma,
4299                                         pages_per_huge_page);
4300                 return;
4301         }
4302
4303         might_sleep();
4304         for (i = 0; i < pages_per_huge_page; i++) {
4305                 cond_resched();
4306                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4307         }
4308 }
4309 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */