]> Pileus Git - ~andy/linux/blob - mm/memcontrol.c
memcg: prevent endless loop when charging huge pages
[~andy/linux] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221
222         /*
223           protect against reclaim related member.
224         */
225         spinlock_t reclaim_param_lock;
226
227         /*
228          * While reclaiming in a hierarchy, we cache the last child we
229          * reclaimed from.
230          */
231         int last_scanned_child;
232         /*
233          * Should the accounting and control be hierarchical, per subtree?
234          */
235         bool use_hierarchy;
236         atomic_t        oom_lock;
237         atomic_t        refcnt;
238
239         unsigned int    swappiness;
240         /* OOM-Killer disable */
241         int             oom_kill_disable;
242
243         /* set when res.limit == memsw.limit */
244         bool            memsw_is_minimum;
245
246         /* protect arrays of thresholds */
247         struct mutex thresholds_lock;
248
249         /* thresholds for memory usage. RCU-protected */
250         struct mem_cgroup_thresholds thresholds;
251
252         /* thresholds for mem+swap usage. RCU-protected */
253         struct mem_cgroup_thresholds memsw_thresholds;
254
255         /* For oom notifier event fd */
256         struct list_head oom_notify;
257
258         /*
259          * Should we move charges of a task when a task is moved into this
260          * mem_cgroup ? And what type of charges should we move ?
261          */
262         unsigned long   move_charge_at_immigrate;
263         /*
264          * percpu counter.
265          */
266         struct mem_cgroup_stat_cpu *stat;
267         /*
268          * used when a cpu is offlined or other synchronizations
269          * See mem_cgroup_read_stat().
270          */
271         struct mem_cgroup_stat_cpu nocpu_base;
272         spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
282         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
283         NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288         spinlock_t        lock; /* for from, to */
289         struct mem_cgroup *from;
290         struct mem_cgroup *to;
291         unsigned long precharge;
292         unsigned long moved_charge;
293         unsigned long moved_swap;
294         struct task_struct *moving_task;        /* a task moving charges */
295         wait_queue_head_t waitq;                /* a waitq for other context */
296 } mc = {
297         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303         return test_bit(MOVE_CHARGE_TYPE_ANON,
304                                         &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309         return test_bit(MOVE_CHARGE_TYPE_FILE,
310                                         &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322         MEM_CGROUP_CHARGE_TYPE_MAPPED,
323         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
324         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
325         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
327         NR_CHARGE_TYPE,
328 };
329
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE      (1UL << PCG_CACHE)
332 #define PCGF_USED       (1UL << PCG_USED)
333 #define PCGF_LOCK       (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT       (1UL << PCG_ACCT)
336
337 /* for encoding cft->private value on file */
338 #define _MEM                    (0)
339 #define _MEMSWAP                (1)
340 #define _OOM_TYPE               (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL             (0)
346
347 /*
348  * Reclaim flags for mem_cgroup_hierarchical_reclaim
349  */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
355 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370         return &mem->css;
371 }
372
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376         struct mem_cgroup *mem = pc->mem_cgroup;
377         int nid = page_cgroup_nid(pc);
378         int zid = page_cgroup_zid(pc);
379
380         if (!mem)
381                 return NULL;
382
383         return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395         int nid = page_to_nid(page);
396         int zid = page_zonenum(page);
397
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403                                 struct mem_cgroup_per_zone *mz,
404                                 struct mem_cgroup_tree_per_zone *mctz,
405                                 unsigned long long new_usage_in_excess)
406 {
407         struct rb_node **p = &mctz->rb_root.rb_node;
408         struct rb_node *parent = NULL;
409         struct mem_cgroup_per_zone *mz_node;
410
411         if (mz->on_tree)
412                 return;
413
414         mz->usage_in_excess = new_usage_in_excess;
415         if (!mz->usage_in_excess)
416                 return;
417         while (*p) {
418                 parent = *p;
419                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420                                         tree_node);
421                 if (mz->usage_in_excess < mz_node->usage_in_excess)
422                         p = &(*p)->rb_left;
423                 /*
424                  * We can't avoid mem cgroups that are over their soft
425                  * limit by the same amount
426                  */
427                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428                         p = &(*p)->rb_right;
429         }
430         rb_link_node(&mz->tree_node, parent, p);
431         rb_insert_color(&mz->tree_node, &mctz->rb_root);
432         mz->on_tree = true;
433 }
434
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437                                 struct mem_cgroup_per_zone *mz,
438                                 struct mem_cgroup_tree_per_zone *mctz)
439 {
440         if (!mz->on_tree)
441                 return;
442         rb_erase(&mz->tree_node, &mctz->rb_root);
443         mz->on_tree = false;
444 }
445
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448                                 struct mem_cgroup_per_zone *mz,
449                                 struct mem_cgroup_tree_per_zone *mctz)
450 {
451         spin_lock(&mctz->lock);
452         __mem_cgroup_remove_exceeded(mem, mz, mctz);
453         spin_unlock(&mctz->lock);
454 }
455
456
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459         unsigned long long excess;
460         struct mem_cgroup_per_zone *mz;
461         struct mem_cgroup_tree_per_zone *mctz;
462         int nid = page_to_nid(page);
463         int zid = page_zonenum(page);
464         mctz = soft_limit_tree_from_page(page);
465
466         /*
467          * Necessary to update all ancestors when hierarchy is used.
468          * because their event counter is not touched.
469          */
470         for (; mem; mem = parent_mem_cgroup(mem)) {
471                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472                 excess = res_counter_soft_limit_excess(&mem->res);
473                 /*
474                  * We have to update the tree if mz is on RB-tree or
475                  * mem is over its softlimit.
476                  */
477                 if (excess || mz->on_tree) {
478                         spin_lock(&mctz->lock);
479                         /* if on-tree, remove it */
480                         if (mz->on_tree)
481                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482                         /*
483                          * Insert again. mz->usage_in_excess will be updated.
484                          * If excess is 0, no tree ops.
485                          */
486                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487                         spin_unlock(&mctz->lock);
488                 }
489         }
490 }
491
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494         int node, zone;
495         struct mem_cgroup_per_zone *mz;
496         struct mem_cgroup_tree_per_zone *mctz;
497
498         for_each_node_state(node, N_POSSIBLE) {
499                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500                         mz = mem_cgroup_zoneinfo(mem, node, zone);
501                         mctz = soft_limit_tree_node_zone(node, zone);
502                         mem_cgroup_remove_exceeded(mem, mz, mctz);
503                 }
504         }
505 }
506
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515         struct rb_node *rightmost = NULL;
516         struct mem_cgroup_per_zone *mz;
517
518 retry:
519         mz = NULL;
520         rightmost = rb_last(&mctz->rb_root);
521         if (!rightmost)
522                 goto done;              /* Nothing to reclaim from */
523
524         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525         /*
526          * Remove the node now but someone else can add it back,
527          * we will to add it back at the end of reclaim to its correct
528          * position in the tree.
529          */
530         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532                 !css_tryget(&mz->mem->css))
533                 goto retry;
534 done:
535         return mz;
536 }
537
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541         struct mem_cgroup_per_zone *mz;
542
543         spin_lock(&mctz->lock);
544         mz = __mem_cgroup_largest_soft_limit_node(mctz);
545         spin_unlock(&mctz->lock);
546         return mz;
547 }
548
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569                 enum mem_cgroup_stat_index idx)
570 {
571         int cpu;
572         s64 val = 0;
573
574         get_online_cpus();
575         for_each_online_cpu(cpu)
576                 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578         spin_lock(&mem->pcp_counter_lock);
579         val += mem->nocpu_base.count[idx];
580         spin_unlock(&mem->pcp_counter_lock);
581 #endif
582         put_online_cpus();
583         return val;
584 }
585
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588         s64 ret;
589
590         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592         return ret;
593 }
594
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596                                          bool charge)
597 {
598         int val = (charge) ? 1 : -1;
599         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603                                          bool file, int nr_pages)
604 {
605         preempt_disable();
606
607         if (file)
608                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609         else
610                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612         /* pagein of a big page is an event. So, ignore page size */
613         if (nr_pages > 0)
614                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615         else
616                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617
618         __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619
620         preempt_enable();
621 }
622
623 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624                                         enum lru_list idx)
625 {
626         int nid, zid;
627         struct mem_cgroup_per_zone *mz;
628         u64 total = 0;
629
630         for_each_online_node(nid)
631                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
633                         total += MEM_CGROUP_ZSTAT(mz, idx);
634                 }
635         return total;
636 }
637
638 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639 {
640         s64 val;
641
642         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644         return !(val & ((1 << event_mask_shift) - 1));
645 }
646
647 /*
648  * Check events in order.
649  *
650  */
651 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652 {
653         /* threshold event is triggered in finer grain than soft limit */
654         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655                 mem_cgroup_threshold(mem);
656                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657                         mem_cgroup_update_tree(mem, page);
658         }
659 }
660
661 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662 {
663         return container_of(cgroup_subsys_state(cont,
664                                 mem_cgroup_subsys_id), struct mem_cgroup,
665                                 css);
666 }
667
668 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669 {
670         /*
671          * mm_update_next_owner() may clear mm->owner to NULL
672          * if it races with swapoff, page migration, etc.
673          * So this can be called with p == NULL.
674          */
675         if (unlikely(!p))
676                 return NULL;
677
678         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679                                 struct mem_cgroup, css);
680 }
681
682 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683 {
684         struct mem_cgroup *mem = NULL;
685
686         if (!mm)
687                 return NULL;
688         /*
689          * Because we have no locks, mm->owner's may be being moved to other
690          * cgroup. We use css_tryget() here even if this looks
691          * pessimistic (rather than adding locks here).
692          */
693         rcu_read_lock();
694         do {
695                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696                 if (unlikely(!mem))
697                         break;
698         } while (!css_tryget(&mem->css));
699         rcu_read_unlock();
700         return mem;
701 }
702
703 /* The caller has to guarantee "mem" exists before calling this */
704 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705 {
706         struct cgroup_subsys_state *css;
707         int found;
708
709         if (!mem) /* ROOT cgroup has the smallest ID */
710                 return root_mem_cgroup; /*css_put/get against root is ignored*/
711         if (!mem->use_hierarchy) {
712                 if (css_tryget(&mem->css))
713                         return mem;
714                 return NULL;
715         }
716         rcu_read_lock();
717         /*
718          * searching a memory cgroup which has the smallest ID under given
719          * ROOT cgroup. (ID >= 1)
720          */
721         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722         if (css && css_tryget(css))
723                 mem = container_of(css, struct mem_cgroup, css);
724         else
725                 mem = NULL;
726         rcu_read_unlock();
727         return mem;
728 }
729
730 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731                                         struct mem_cgroup *root,
732                                         bool cond)
733 {
734         int nextid = css_id(&iter->css) + 1;
735         int found;
736         int hierarchy_used;
737         struct cgroup_subsys_state *css;
738
739         hierarchy_used = iter->use_hierarchy;
740
741         css_put(&iter->css);
742         /* If no ROOT, walk all, ignore hierarchy */
743         if (!cond || (root && !hierarchy_used))
744                 return NULL;
745
746         if (!root)
747                 root = root_mem_cgroup;
748
749         do {
750                 iter = NULL;
751                 rcu_read_lock();
752
753                 css = css_get_next(&mem_cgroup_subsys, nextid,
754                                 &root->css, &found);
755                 if (css && css_tryget(css))
756                         iter = container_of(css, struct mem_cgroup, css);
757                 rcu_read_unlock();
758                 /* If css is NULL, no more cgroups will be found */
759                 nextid = found + 1;
760         } while (css && !iter);
761
762         return iter;
763 }
764 /*
765  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766  * be careful that "break" loop is not allowed. We have reference count.
767  * Instead of that modify "cond" to be false and "continue" to exit the loop.
768  */
769 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
770         for (iter = mem_cgroup_start_loop(root);\
771              iter != NULL;\
772              iter = mem_cgroup_get_next(iter, root, cond))
773
774 #define for_each_mem_cgroup_tree(iter, root) \
775         for_each_mem_cgroup_tree_cond(iter, root, true)
776
777 #define for_each_mem_cgroup_all(iter) \
778         for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
780
781 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782 {
783         return (mem == root_mem_cgroup);
784 }
785
786 /*
787  * Following LRU functions are allowed to be used without PCG_LOCK.
788  * Operations are called by routine of global LRU independently from memcg.
789  * What we have to take care of here is validness of pc->mem_cgroup.
790  *
791  * Changes to pc->mem_cgroup happens when
792  * 1. charge
793  * 2. moving account
794  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795  * It is added to LRU before charge.
796  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797  * When moving account, the page is not on LRU. It's isolated.
798  */
799
800 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801 {
802         struct page_cgroup *pc;
803         struct mem_cgroup_per_zone *mz;
804
805         if (mem_cgroup_disabled())
806                 return;
807         pc = lookup_page_cgroup(page);
808         /* can happen while we handle swapcache. */
809         if (!TestClearPageCgroupAcctLRU(pc))
810                 return;
811         VM_BUG_ON(!pc->mem_cgroup);
812         /*
813          * We don't check PCG_USED bit. It's cleared when the "page" is finally
814          * removed from global LRU.
815          */
816         mz = page_cgroup_zoneinfo(pc);
817         /* huge page split is done under lru_lock. so, we have no races. */
818         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819         if (mem_cgroup_is_root(pc->mem_cgroup))
820                 return;
821         VM_BUG_ON(list_empty(&pc->lru));
822         list_del_init(&pc->lru);
823 }
824
825 void mem_cgroup_del_lru(struct page *page)
826 {
827         mem_cgroup_del_lru_list(page, page_lru(page));
828 }
829
830 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831 {
832         struct mem_cgroup_per_zone *mz;
833         struct page_cgroup *pc;
834
835         if (mem_cgroup_disabled())
836                 return;
837
838         pc = lookup_page_cgroup(page);
839         /* unused or root page is not rotated. */
840         if (!PageCgroupUsed(pc))
841                 return;
842         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
843         smp_rmb();
844         if (mem_cgroup_is_root(pc->mem_cgroup))
845                 return;
846         mz = page_cgroup_zoneinfo(pc);
847         list_move(&pc->lru, &mz->lists[lru]);
848 }
849
850 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851 {
852         struct page_cgroup *pc;
853         struct mem_cgroup_per_zone *mz;
854
855         if (mem_cgroup_disabled())
856                 return;
857         pc = lookup_page_cgroup(page);
858         VM_BUG_ON(PageCgroupAcctLRU(pc));
859         if (!PageCgroupUsed(pc))
860                 return;
861         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
862         smp_rmb();
863         mz = page_cgroup_zoneinfo(pc);
864         /* huge page split is done under lru_lock. so, we have no races. */
865         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866         SetPageCgroupAcctLRU(pc);
867         if (mem_cgroup_is_root(pc->mem_cgroup))
868                 return;
869         list_add(&pc->lru, &mz->lists[lru]);
870 }
871
872 /*
873  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
874  * lru because the page may.be reused after it's fully uncharged (because of
875  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
876  * it again. This function is only used to charge SwapCache. It's done under
877  * lock_page and expected that zone->lru_lock is never held.
878  */
879 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
880 {
881         unsigned long flags;
882         struct zone *zone = page_zone(page);
883         struct page_cgroup *pc = lookup_page_cgroup(page);
884
885         spin_lock_irqsave(&zone->lru_lock, flags);
886         /*
887          * Forget old LRU when this page_cgroup is *not* used. This Used bit
888          * is guarded by lock_page() because the page is SwapCache.
889          */
890         if (!PageCgroupUsed(pc))
891                 mem_cgroup_del_lru_list(page, page_lru(page));
892         spin_unlock_irqrestore(&zone->lru_lock, flags);
893 }
894
895 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
896 {
897         unsigned long flags;
898         struct zone *zone = page_zone(page);
899         struct page_cgroup *pc = lookup_page_cgroup(page);
900
901         spin_lock_irqsave(&zone->lru_lock, flags);
902         /* link when the page is linked to LRU but page_cgroup isn't */
903         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904                 mem_cgroup_add_lru_list(page, page_lru(page));
905         spin_unlock_irqrestore(&zone->lru_lock, flags);
906 }
907
908
909 void mem_cgroup_move_lists(struct page *page,
910                            enum lru_list from, enum lru_list to)
911 {
912         if (mem_cgroup_disabled())
913                 return;
914         mem_cgroup_del_lru_list(page, from);
915         mem_cgroup_add_lru_list(page, to);
916 }
917
918 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
919 {
920         int ret;
921         struct mem_cgroup *curr = NULL;
922         struct task_struct *p;
923
924         p = find_lock_task_mm(task);
925         if (!p)
926                 return 0;
927         curr = try_get_mem_cgroup_from_mm(p->mm);
928         task_unlock(p);
929         if (!curr)
930                 return 0;
931         /*
932          * We should check use_hierarchy of "mem" not "curr". Because checking
933          * use_hierarchy of "curr" here make this function true if hierarchy is
934          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
935          * hierarchy(even if use_hierarchy is disabled in "mem").
936          */
937         if (mem->use_hierarchy)
938                 ret = css_is_ancestor(&curr->css, &mem->css);
939         else
940                 ret = (curr == mem);
941         css_put(&curr->css);
942         return ret;
943 }
944
945 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946 {
947         unsigned long active;
948         unsigned long inactive;
949         unsigned long gb;
950         unsigned long inactive_ratio;
951
952         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
953         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954
955         gb = (inactive + active) >> (30 - PAGE_SHIFT);
956         if (gb)
957                 inactive_ratio = int_sqrt(10 * gb);
958         else
959                 inactive_ratio = 1;
960
961         if (present_pages) {
962                 present_pages[0] = inactive;
963                 present_pages[1] = active;
964         }
965
966         return inactive_ratio;
967 }
968
969 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
970 {
971         unsigned long active;
972         unsigned long inactive;
973         unsigned long present_pages[2];
974         unsigned long inactive_ratio;
975
976         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
977
978         inactive = present_pages[0];
979         active = present_pages[1];
980
981         if (inactive * inactive_ratio < active)
982                 return 1;
983
984         return 0;
985 }
986
987 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
988 {
989         unsigned long active;
990         unsigned long inactive;
991
992         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
993         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
994
995         return (active > inactive);
996 }
997
998 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
999                                        struct zone *zone,
1000                                        enum lru_list lru)
1001 {
1002         int nid = zone_to_nid(zone);
1003         int zid = zone_idx(zone);
1004         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1005
1006         return MEM_CGROUP_ZSTAT(mz, lru);
1007 }
1008
1009 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1010                                                       struct zone *zone)
1011 {
1012         int nid = zone_to_nid(zone);
1013         int zid = zone_idx(zone);
1014         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1015
1016         return &mz->reclaim_stat;
1017 }
1018
1019 struct zone_reclaim_stat *
1020 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1021 {
1022         struct page_cgroup *pc;
1023         struct mem_cgroup_per_zone *mz;
1024
1025         if (mem_cgroup_disabled())
1026                 return NULL;
1027
1028         pc = lookup_page_cgroup(page);
1029         if (!PageCgroupUsed(pc))
1030                 return NULL;
1031         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1032         smp_rmb();
1033         mz = page_cgroup_zoneinfo(pc);
1034         if (!mz)
1035                 return NULL;
1036
1037         return &mz->reclaim_stat;
1038 }
1039
1040 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1041                                         struct list_head *dst,
1042                                         unsigned long *scanned, int order,
1043                                         int mode, struct zone *z,
1044                                         struct mem_cgroup *mem_cont,
1045                                         int active, int file)
1046 {
1047         unsigned long nr_taken = 0;
1048         struct page *page;
1049         unsigned long scan;
1050         LIST_HEAD(pc_list);
1051         struct list_head *src;
1052         struct page_cgroup *pc, *tmp;
1053         int nid = zone_to_nid(z);
1054         int zid = zone_idx(z);
1055         struct mem_cgroup_per_zone *mz;
1056         int lru = LRU_FILE * file + active;
1057         int ret;
1058
1059         BUG_ON(!mem_cont);
1060         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061         src = &mz->lists[lru];
1062
1063         scan = 0;
1064         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1065                 if (scan >= nr_to_scan)
1066                         break;
1067
1068                 page = pc->page;
1069                 if (unlikely(!PageCgroupUsed(pc)))
1070                         continue;
1071                 if (unlikely(!PageLRU(page)))
1072                         continue;
1073
1074                 scan++;
1075                 ret = __isolate_lru_page(page, mode, file);
1076                 switch (ret) {
1077                 case 0:
1078                         list_move(&page->lru, dst);
1079                         mem_cgroup_del_lru(page);
1080                         nr_taken += hpage_nr_pages(page);
1081                         break;
1082                 case -EBUSY:
1083                         /* we don't affect global LRU but rotate in our LRU */
1084                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1085                         break;
1086                 default:
1087                         break;
1088                 }
1089         }
1090
1091         *scanned = scan;
1092
1093         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1094                                       0, 0, 0, mode);
1095
1096         return nr_taken;
1097 }
1098
1099 #define mem_cgroup_from_res_counter(counter, member)    \
1100         container_of(counter, struct mem_cgroup, member)
1101
1102 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1103 {
1104         if (do_swap_account) {
1105                 if (res_counter_check_under_limit(&mem->res) &&
1106                         res_counter_check_under_limit(&mem->memsw))
1107                         return true;
1108         } else
1109                 if (res_counter_check_under_limit(&mem->res))
1110                         return true;
1111         return false;
1112 }
1113
1114 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1115 {
1116         struct cgroup *cgrp = memcg->css.cgroup;
1117         unsigned int swappiness;
1118
1119         /* root ? */
1120         if (cgrp->parent == NULL)
1121                 return vm_swappiness;
1122
1123         spin_lock(&memcg->reclaim_param_lock);
1124         swappiness = memcg->swappiness;
1125         spin_unlock(&memcg->reclaim_param_lock);
1126
1127         return swappiness;
1128 }
1129
1130 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1131 {
1132         int cpu;
1133
1134         get_online_cpus();
1135         spin_lock(&mem->pcp_counter_lock);
1136         for_each_online_cpu(cpu)
1137                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1138         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1139         spin_unlock(&mem->pcp_counter_lock);
1140         put_online_cpus();
1141
1142         synchronize_rcu();
1143 }
1144
1145 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1146 {
1147         int cpu;
1148
1149         if (!mem)
1150                 return;
1151         get_online_cpus();
1152         spin_lock(&mem->pcp_counter_lock);
1153         for_each_online_cpu(cpu)
1154                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1155         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1156         spin_unlock(&mem->pcp_counter_lock);
1157         put_online_cpus();
1158 }
1159 /*
1160  * 2 routines for checking "mem" is under move_account() or not.
1161  *
1162  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1163  *                        for avoiding race in accounting. If true,
1164  *                        pc->mem_cgroup may be overwritten.
1165  *
1166  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1167  *                        under hierarchy of moving cgroups. This is for
1168  *                        waiting at hith-memory prressure caused by "move".
1169  */
1170
1171 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1172 {
1173         VM_BUG_ON(!rcu_read_lock_held());
1174         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1175 }
1176
1177 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1178 {
1179         struct mem_cgroup *from;
1180         struct mem_cgroup *to;
1181         bool ret = false;
1182         /*
1183          * Unlike task_move routines, we access mc.to, mc.from not under
1184          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1185          */
1186         spin_lock(&mc.lock);
1187         from = mc.from;
1188         to = mc.to;
1189         if (!from)
1190                 goto unlock;
1191         if (from == mem || to == mem
1192             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1193             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1194                 ret = true;
1195 unlock:
1196         spin_unlock(&mc.lock);
1197         return ret;
1198 }
1199
1200 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1201 {
1202         if (mc.moving_task && current != mc.moving_task) {
1203                 if (mem_cgroup_under_move(mem)) {
1204                         DEFINE_WAIT(wait);
1205                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1206                         /* moving charge context might have finished. */
1207                         if (mc.moving_task)
1208                                 schedule();
1209                         finish_wait(&mc.waitq, &wait);
1210                         return true;
1211                 }
1212         }
1213         return false;
1214 }
1215
1216 /**
1217  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1218  * @memcg: The memory cgroup that went over limit
1219  * @p: Task that is going to be killed
1220  *
1221  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1222  * enabled
1223  */
1224 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1225 {
1226         struct cgroup *task_cgrp;
1227         struct cgroup *mem_cgrp;
1228         /*
1229          * Need a buffer in BSS, can't rely on allocations. The code relies
1230          * on the assumption that OOM is serialized for memory controller.
1231          * If this assumption is broken, revisit this code.
1232          */
1233         static char memcg_name[PATH_MAX];
1234         int ret;
1235
1236         if (!memcg || !p)
1237                 return;
1238
1239
1240         rcu_read_lock();
1241
1242         mem_cgrp = memcg->css.cgroup;
1243         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1244
1245         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1246         if (ret < 0) {
1247                 /*
1248                  * Unfortunately, we are unable to convert to a useful name
1249                  * But we'll still print out the usage information
1250                  */
1251                 rcu_read_unlock();
1252                 goto done;
1253         }
1254         rcu_read_unlock();
1255
1256         printk(KERN_INFO "Task in %s killed", memcg_name);
1257
1258         rcu_read_lock();
1259         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1260         if (ret < 0) {
1261                 rcu_read_unlock();
1262                 goto done;
1263         }
1264         rcu_read_unlock();
1265
1266         /*
1267          * Continues from above, so we don't need an KERN_ level
1268          */
1269         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1270 done:
1271
1272         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1273                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1274                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1275                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1276         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1277                 "failcnt %llu\n",
1278                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1279                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1280                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1281 }
1282
1283 /*
1284  * This function returns the number of memcg under hierarchy tree. Returns
1285  * 1(self count) if no children.
1286  */
1287 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1288 {
1289         int num = 0;
1290         struct mem_cgroup *iter;
1291
1292         for_each_mem_cgroup_tree(iter, mem)
1293                 num++;
1294         return num;
1295 }
1296
1297 /*
1298  * Return the memory (and swap, if configured) limit for a memcg.
1299  */
1300 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1301 {
1302         u64 limit;
1303         u64 memsw;
1304
1305         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1306         limit += total_swap_pages << PAGE_SHIFT;
1307
1308         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1309         /*
1310          * If memsw is finite and limits the amount of swap space available
1311          * to this memcg, return that limit.
1312          */
1313         return min(limit, memsw);
1314 }
1315
1316 /*
1317  * Visit the first child (need not be the first child as per the ordering
1318  * of the cgroup list, since we track last_scanned_child) of @mem and use
1319  * that to reclaim free pages from.
1320  */
1321 static struct mem_cgroup *
1322 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1323 {
1324         struct mem_cgroup *ret = NULL;
1325         struct cgroup_subsys_state *css;
1326         int nextid, found;
1327
1328         if (!root_mem->use_hierarchy) {
1329                 css_get(&root_mem->css);
1330                 ret = root_mem;
1331         }
1332
1333         while (!ret) {
1334                 rcu_read_lock();
1335                 nextid = root_mem->last_scanned_child + 1;
1336                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1337                                    &found);
1338                 if (css && css_tryget(css))
1339                         ret = container_of(css, struct mem_cgroup, css);
1340
1341                 rcu_read_unlock();
1342                 /* Updates scanning parameter */
1343                 spin_lock(&root_mem->reclaim_param_lock);
1344                 if (!css) {
1345                         /* this means start scan from ID:1 */
1346                         root_mem->last_scanned_child = 0;
1347                 } else
1348                         root_mem->last_scanned_child = found;
1349                 spin_unlock(&root_mem->reclaim_param_lock);
1350         }
1351
1352         return ret;
1353 }
1354
1355 /*
1356  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1357  * we reclaimed from, so that we don't end up penalizing one child extensively
1358  * based on its position in the children list.
1359  *
1360  * root_mem is the original ancestor that we've been reclaim from.
1361  *
1362  * We give up and return to the caller when we visit root_mem twice.
1363  * (other groups can be removed while we're walking....)
1364  *
1365  * If shrink==true, for avoiding to free too much, this returns immedieately.
1366  */
1367 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1368                                                 struct zone *zone,
1369                                                 gfp_t gfp_mask,
1370                                                 unsigned long reclaim_options)
1371 {
1372         struct mem_cgroup *victim;
1373         int ret, total = 0;
1374         int loop = 0;
1375         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1376         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1377         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1378         unsigned long excess = mem_cgroup_get_excess(root_mem);
1379
1380         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1381         if (root_mem->memsw_is_minimum)
1382                 noswap = true;
1383
1384         while (1) {
1385                 victim = mem_cgroup_select_victim(root_mem);
1386                 if (victim == root_mem) {
1387                         loop++;
1388                         if (loop >= 1)
1389                                 drain_all_stock_async();
1390                         if (loop >= 2) {
1391                                 /*
1392                                  * If we have not been able to reclaim
1393                                  * anything, it might because there are
1394                                  * no reclaimable pages under this hierarchy
1395                                  */
1396                                 if (!check_soft || !total) {
1397                                         css_put(&victim->css);
1398                                         break;
1399                                 }
1400                                 /*
1401                                  * We want to do more targetted reclaim.
1402                                  * excess >> 2 is not to excessive so as to
1403                                  * reclaim too much, nor too less that we keep
1404                                  * coming back to reclaim from this cgroup
1405                                  */
1406                                 if (total >= (excess >> 2) ||
1407                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1408                                         css_put(&victim->css);
1409                                         break;
1410                                 }
1411                         }
1412                 }
1413                 if (!mem_cgroup_local_usage(victim)) {
1414                         /* this cgroup's local usage == 0 */
1415                         css_put(&victim->css);
1416                         continue;
1417                 }
1418                 /* we use swappiness of local cgroup */
1419                 if (check_soft)
1420                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1421                                 noswap, get_swappiness(victim), zone);
1422                 else
1423                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1424                                                 noswap, get_swappiness(victim));
1425                 css_put(&victim->css);
1426                 /*
1427                  * At shrinking usage, we can't check we should stop here or
1428                  * reclaim more. It's depends on callers. last_scanned_child
1429                  * will work enough for keeping fairness under tree.
1430                  */
1431                 if (shrink)
1432                         return ret;
1433                 total += ret;
1434                 if (check_soft) {
1435                         if (res_counter_check_under_soft_limit(&root_mem->res))
1436                                 return total;
1437                 } else if (mem_cgroup_check_under_limit(root_mem))
1438                         return 1 + total;
1439         }
1440         return total;
1441 }
1442
1443 /*
1444  * Check OOM-Killer is already running under our hierarchy.
1445  * If someone is running, return false.
1446  */
1447 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1448 {
1449         int x, lock_count = 0;
1450         struct mem_cgroup *iter;
1451
1452         for_each_mem_cgroup_tree(iter, mem) {
1453                 x = atomic_inc_return(&iter->oom_lock);
1454                 lock_count = max(x, lock_count);
1455         }
1456
1457         if (lock_count == 1)
1458                 return true;
1459         return false;
1460 }
1461
1462 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1463 {
1464         struct mem_cgroup *iter;
1465
1466         /*
1467          * When a new child is created while the hierarchy is under oom,
1468          * mem_cgroup_oom_lock() may not be called. We have to use
1469          * atomic_add_unless() here.
1470          */
1471         for_each_mem_cgroup_tree(iter, mem)
1472                 atomic_add_unless(&iter->oom_lock, -1, 0);
1473         return 0;
1474 }
1475
1476
1477 static DEFINE_MUTEX(memcg_oom_mutex);
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480 struct oom_wait_info {
1481         struct mem_cgroup *mem;
1482         wait_queue_t    wait;
1483 };
1484
1485 static int memcg_oom_wake_function(wait_queue_t *wait,
1486         unsigned mode, int sync, void *arg)
1487 {
1488         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1489         struct oom_wait_info *oom_wait_info;
1490
1491         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1492
1493         if (oom_wait_info->mem == wake_mem)
1494                 goto wakeup;
1495         /* if no hierarchy, no match */
1496         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1497                 return 0;
1498         /*
1499          * Both of oom_wait_info->mem and wake_mem are stable under us.
1500          * Then we can use css_is_ancestor without taking care of RCU.
1501          */
1502         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1503             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1504                 return 0;
1505
1506 wakeup:
1507         return autoremove_wake_function(wait, mode, sync, arg);
1508 }
1509
1510 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1511 {
1512         /* for filtering, pass "mem" as argument. */
1513         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1514 }
1515
1516 static void memcg_oom_recover(struct mem_cgroup *mem)
1517 {
1518         if (mem && atomic_read(&mem->oom_lock))
1519                 memcg_wakeup_oom(mem);
1520 }
1521
1522 /*
1523  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1524  */
1525 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1526 {
1527         struct oom_wait_info owait;
1528         bool locked, need_to_kill;
1529
1530         owait.mem = mem;
1531         owait.wait.flags = 0;
1532         owait.wait.func = memcg_oom_wake_function;
1533         owait.wait.private = current;
1534         INIT_LIST_HEAD(&owait.wait.task_list);
1535         need_to_kill = true;
1536         /* At first, try to OOM lock hierarchy under mem.*/
1537         mutex_lock(&memcg_oom_mutex);
1538         locked = mem_cgroup_oom_lock(mem);
1539         /*
1540          * Even if signal_pending(), we can't quit charge() loop without
1541          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1542          * under OOM is always welcomed, use TASK_KILLABLE here.
1543          */
1544         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1545         if (!locked || mem->oom_kill_disable)
1546                 need_to_kill = false;
1547         if (locked)
1548                 mem_cgroup_oom_notify(mem);
1549         mutex_unlock(&memcg_oom_mutex);
1550
1551         if (need_to_kill) {
1552                 finish_wait(&memcg_oom_waitq, &owait.wait);
1553                 mem_cgroup_out_of_memory(mem, mask);
1554         } else {
1555                 schedule();
1556                 finish_wait(&memcg_oom_waitq, &owait.wait);
1557         }
1558         mutex_lock(&memcg_oom_mutex);
1559         mem_cgroup_oom_unlock(mem);
1560         memcg_wakeup_oom(mem);
1561         mutex_unlock(&memcg_oom_mutex);
1562
1563         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1564                 return false;
1565         /* Give chance to dying process */
1566         schedule_timeout(1);
1567         return true;
1568 }
1569
1570 /*
1571  * Currently used to update mapped file statistics, but the routine can be
1572  * generalized to update other statistics as well.
1573  *
1574  * Notes: Race condition
1575  *
1576  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1577  * it tends to be costly. But considering some conditions, we doesn't need
1578  * to do so _always_.
1579  *
1580  * Considering "charge", lock_page_cgroup() is not required because all
1581  * file-stat operations happen after a page is attached to radix-tree. There
1582  * are no race with "charge".
1583  *
1584  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1585  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1586  * if there are race with "uncharge". Statistics itself is properly handled
1587  * by flags.
1588  *
1589  * Considering "move", this is an only case we see a race. To make the race
1590  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1591  * possibility of race condition. If there is, we take a lock.
1592  */
1593
1594 void mem_cgroup_update_page_stat(struct page *page,
1595                                  enum mem_cgroup_page_stat_item idx, int val)
1596 {
1597         struct mem_cgroup *mem;
1598         struct page_cgroup *pc = lookup_page_cgroup(page);
1599         bool need_unlock = false;
1600         unsigned long uninitialized_var(flags);
1601
1602         if (unlikely(!pc))
1603                 return;
1604
1605         rcu_read_lock();
1606         mem = pc->mem_cgroup;
1607         if (unlikely(!mem || !PageCgroupUsed(pc)))
1608                 goto out;
1609         /* pc->mem_cgroup is unstable ? */
1610         if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1611                 /* take a lock against to access pc->mem_cgroup */
1612                 move_lock_page_cgroup(pc, &flags);
1613                 need_unlock = true;
1614                 mem = pc->mem_cgroup;
1615                 if (!mem || !PageCgroupUsed(pc))
1616                         goto out;
1617         }
1618
1619         switch (idx) {
1620         case MEMCG_NR_FILE_MAPPED:
1621                 if (val > 0)
1622                         SetPageCgroupFileMapped(pc);
1623                 else if (!page_mapped(page))
1624                         ClearPageCgroupFileMapped(pc);
1625                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1626                 break;
1627         default:
1628                 BUG();
1629         }
1630
1631         this_cpu_add(mem->stat->count[idx], val);
1632
1633 out:
1634         if (unlikely(need_unlock))
1635                 move_unlock_page_cgroup(pc, &flags);
1636         rcu_read_unlock();
1637         return;
1638 }
1639 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1640
1641 /*
1642  * size of first charge trial. "32" comes from vmscan.c's magic value.
1643  * TODO: maybe necessary to use big numbers in big irons.
1644  */
1645 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1646 struct memcg_stock_pcp {
1647         struct mem_cgroup *cached; /* this never be root cgroup */
1648         int charge;
1649         struct work_struct work;
1650 };
1651 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1652 static atomic_t memcg_drain_count;
1653
1654 /*
1655  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1656  * from local stock and true is returned. If the stock is 0 or charges from a
1657  * cgroup which is not current target, returns false. This stock will be
1658  * refilled.
1659  */
1660 static bool consume_stock(struct mem_cgroup *mem)
1661 {
1662         struct memcg_stock_pcp *stock;
1663         bool ret = true;
1664
1665         stock = &get_cpu_var(memcg_stock);
1666         if (mem == stock->cached && stock->charge)
1667                 stock->charge -= PAGE_SIZE;
1668         else /* need to call res_counter_charge */
1669                 ret = false;
1670         put_cpu_var(memcg_stock);
1671         return ret;
1672 }
1673
1674 /*
1675  * Returns stocks cached in percpu to res_counter and reset cached information.
1676  */
1677 static void drain_stock(struct memcg_stock_pcp *stock)
1678 {
1679         struct mem_cgroup *old = stock->cached;
1680
1681         if (stock->charge) {
1682                 res_counter_uncharge(&old->res, stock->charge);
1683                 if (do_swap_account)
1684                         res_counter_uncharge(&old->memsw, stock->charge);
1685         }
1686         stock->cached = NULL;
1687         stock->charge = 0;
1688 }
1689
1690 /*
1691  * This must be called under preempt disabled or must be called by
1692  * a thread which is pinned to local cpu.
1693  */
1694 static void drain_local_stock(struct work_struct *dummy)
1695 {
1696         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1697         drain_stock(stock);
1698 }
1699
1700 /*
1701  * Cache charges(val) which is from res_counter, to local per_cpu area.
1702  * This will be consumed by consume_stock() function, later.
1703  */
1704 static void refill_stock(struct mem_cgroup *mem, int val)
1705 {
1706         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1707
1708         if (stock->cached != mem) { /* reset if necessary */
1709                 drain_stock(stock);
1710                 stock->cached = mem;
1711         }
1712         stock->charge += val;
1713         put_cpu_var(memcg_stock);
1714 }
1715
1716 /*
1717  * Tries to drain stocked charges in other cpus. This function is asynchronous
1718  * and just put a work per cpu for draining localy on each cpu. Caller can
1719  * expects some charges will be back to res_counter later but cannot wait for
1720  * it.
1721  */
1722 static void drain_all_stock_async(void)
1723 {
1724         int cpu;
1725         /* This function is for scheduling "drain" in asynchronous way.
1726          * The result of "drain" is not directly handled by callers. Then,
1727          * if someone is calling drain, we don't have to call drain more.
1728          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1729          * there is a race. We just do loose check here.
1730          */
1731         if (atomic_read(&memcg_drain_count))
1732                 return;
1733         /* Notify other cpus that system-wide "drain" is running */
1734         atomic_inc(&memcg_drain_count);
1735         get_online_cpus();
1736         for_each_online_cpu(cpu) {
1737                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1738                 schedule_work_on(cpu, &stock->work);
1739         }
1740         put_online_cpus();
1741         atomic_dec(&memcg_drain_count);
1742         /* We don't wait for flush_work */
1743 }
1744
1745 /* This is a synchronous drain interface. */
1746 static void drain_all_stock_sync(void)
1747 {
1748         /* called when force_empty is called */
1749         atomic_inc(&memcg_drain_count);
1750         schedule_on_each_cpu(drain_local_stock);
1751         atomic_dec(&memcg_drain_count);
1752 }
1753
1754 /*
1755  * This function drains percpu counter value from DEAD cpu and
1756  * move it to local cpu. Note that this function can be preempted.
1757  */
1758 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1759 {
1760         int i;
1761
1762         spin_lock(&mem->pcp_counter_lock);
1763         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1764                 s64 x = per_cpu(mem->stat->count[i], cpu);
1765
1766                 per_cpu(mem->stat->count[i], cpu) = 0;
1767                 mem->nocpu_base.count[i] += x;
1768         }
1769         /* need to clear ON_MOVE value, works as a kind of lock. */
1770         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1771         spin_unlock(&mem->pcp_counter_lock);
1772 }
1773
1774 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1775 {
1776         int idx = MEM_CGROUP_ON_MOVE;
1777
1778         spin_lock(&mem->pcp_counter_lock);
1779         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1780         spin_unlock(&mem->pcp_counter_lock);
1781 }
1782
1783 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1784                                         unsigned long action,
1785                                         void *hcpu)
1786 {
1787         int cpu = (unsigned long)hcpu;
1788         struct memcg_stock_pcp *stock;
1789         struct mem_cgroup *iter;
1790
1791         if ((action == CPU_ONLINE)) {
1792                 for_each_mem_cgroup_all(iter)
1793                         synchronize_mem_cgroup_on_move(iter, cpu);
1794                 return NOTIFY_OK;
1795         }
1796
1797         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1798                 return NOTIFY_OK;
1799
1800         for_each_mem_cgroup_all(iter)
1801                 mem_cgroup_drain_pcp_counter(iter, cpu);
1802
1803         stock = &per_cpu(memcg_stock, cpu);
1804         drain_stock(stock);
1805         return NOTIFY_OK;
1806 }
1807
1808
1809 /* See __mem_cgroup_try_charge() for details */
1810 enum {
1811         CHARGE_OK,              /* success */
1812         CHARGE_RETRY,           /* need to retry but retry is not bad */
1813         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1814         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1815         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1816 };
1817
1818 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1819                                 int csize, bool oom_check)
1820 {
1821         struct mem_cgroup *mem_over_limit;
1822         struct res_counter *fail_res;
1823         unsigned long flags = 0;
1824         int ret;
1825
1826         ret = res_counter_charge(&mem->res, csize, &fail_res);
1827
1828         if (likely(!ret)) {
1829                 if (!do_swap_account)
1830                         return CHARGE_OK;
1831                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1832                 if (likely(!ret))
1833                         return CHARGE_OK;
1834
1835                 res_counter_uncharge(&mem->res, csize);
1836                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1837                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1838         } else
1839                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1840         /*
1841          * csize can be either a huge page (HPAGE_SIZE), a batch of
1842          * regular pages (CHARGE_SIZE), or a single regular page
1843          * (PAGE_SIZE).
1844          *
1845          * Never reclaim on behalf of optional batching, retry with a
1846          * single page instead.
1847          */
1848         if (csize == CHARGE_SIZE)
1849                 return CHARGE_RETRY;
1850
1851         if (!(gfp_mask & __GFP_WAIT))
1852                 return CHARGE_WOULDBLOCK;
1853
1854         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1855                                         gfp_mask, flags);
1856         /*
1857          * try_to_free_mem_cgroup_pages() might not give us a full
1858          * picture of reclaim. Some pages are reclaimed and might be
1859          * moved to swap cache or just unmapped from the cgroup.
1860          * Check the limit again to see if the reclaim reduced the
1861          * current usage of the cgroup before giving up
1862          */
1863         if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1864                 return CHARGE_RETRY;
1865
1866         /*
1867          * At task move, charge accounts can be doubly counted. So, it's
1868          * better to wait until the end of task_move if something is going on.
1869          */
1870         if (mem_cgroup_wait_acct_move(mem_over_limit))
1871                 return CHARGE_RETRY;
1872
1873         /* If we don't need to call oom-killer at el, return immediately */
1874         if (!oom_check)
1875                 return CHARGE_NOMEM;
1876         /* check OOM */
1877         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1878                 return CHARGE_OOM_DIE;
1879
1880         return CHARGE_RETRY;
1881 }
1882
1883 /*
1884  * Unlike exported interface, "oom" parameter is added. if oom==true,
1885  * oom-killer can be invoked.
1886  */
1887 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1888                                    gfp_t gfp_mask,
1889                                    struct mem_cgroup **memcg, bool oom,
1890                                    int page_size)
1891 {
1892         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1893         struct mem_cgroup *mem = NULL;
1894         int ret;
1895         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1896
1897         /*
1898          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899          * in system level. So, allow to go ahead dying process in addition to
1900          * MEMDIE process.
1901          */
1902         if (unlikely(test_thread_flag(TIF_MEMDIE)
1903                      || fatal_signal_pending(current)))
1904                 goto bypass;
1905
1906         /*
1907          * We always charge the cgroup the mm_struct belongs to.
1908          * The mm_struct's mem_cgroup changes on task migration if the
1909          * thread group leader migrates. It's possible that mm is not
1910          * set, if so charge the init_mm (happens for pagecache usage).
1911          */
1912         if (!*memcg && !mm)
1913                 goto bypass;
1914 again:
1915         if (*memcg) { /* css should be a valid one */
1916                 mem = *memcg;
1917                 VM_BUG_ON(css_is_removed(&mem->css));
1918                 if (mem_cgroup_is_root(mem))
1919                         goto done;
1920                 if (page_size == PAGE_SIZE && consume_stock(mem))
1921                         goto done;
1922                 css_get(&mem->css);
1923         } else {
1924                 struct task_struct *p;
1925
1926                 rcu_read_lock();
1927                 p = rcu_dereference(mm->owner);
1928                 /*
1929                  * Because we don't have task_lock(), "p" can exit.
1930                  * In that case, "mem" can point to root or p can be NULL with
1931                  * race with swapoff. Then, we have small risk of mis-accouning.
1932                  * But such kind of mis-account by race always happens because
1933                  * we don't have cgroup_mutex(). It's overkill and we allo that
1934                  * small race, here.
1935                  * (*) swapoff at el will charge against mm-struct not against
1936                  * task-struct. So, mm->owner can be NULL.
1937                  */
1938                 mem = mem_cgroup_from_task(p);
1939                 if (!mem || mem_cgroup_is_root(mem)) {
1940                         rcu_read_unlock();
1941                         goto done;
1942                 }
1943                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1944                         /*
1945                          * It seems dagerous to access memcg without css_get().
1946                          * But considering how consume_stok works, it's not
1947                          * necessary. If consume_stock success, some charges
1948                          * from this memcg are cached on this cpu. So, we
1949                          * don't need to call css_get()/css_tryget() before
1950                          * calling consume_stock().
1951                          */
1952                         rcu_read_unlock();
1953                         goto done;
1954                 }
1955                 /* after here, we may be blocked. we need to get refcnt */
1956                 if (!css_tryget(&mem->css)) {
1957                         rcu_read_unlock();
1958                         goto again;
1959                 }
1960                 rcu_read_unlock();
1961         }
1962
1963         do {
1964                 bool oom_check;
1965
1966                 /* If killed, bypass charge */
1967                 if (fatal_signal_pending(current)) {
1968                         css_put(&mem->css);
1969                         goto bypass;
1970                 }
1971
1972                 oom_check = false;
1973                 if (oom && !nr_oom_retries) {
1974                         oom_check = true;
1975                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1976                 }
1977
1978                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979
1980                 switch (ret) {
1981                 case CHARGE_OK:
1982                         break;
1983                 case CHARGE_RETRY: /* not in OOM situation but retry */
1984                         csize = page_size;
1985                         css_put(&mem->css);
1986                         mem = NULL;
1987                         goto again;
1988                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1989                         css_put(&mem->css);
1990                         goto nomem;
1991                 case CHARGE_NOMEM: /* OOM routine works */
1992                         if (!oom) {
1993                                 css_put(&mem->css);
1994                                 goto nomem;
1995                         }
1996                         /* If oom, we never return -ENOMEM */
1997                         nr_oom_retries--;
1998                         break;
1999                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2000                         css_put(&mem->css);
2001                         goto bypass;
2002                 }
2003         } while (ret != CHARGE_OK);
2004
2005         if (csize > page_size)
2006                 refill_stock(mem, csize - page_size);
2007         css_put(&mem->css);
2008 done:
2009         *memcg = mem;
2010         return 0;
2011 nomem:
2012         *memcg = NULL;
2013         return -ENOMEM;
2014 bypass:
2015         *memcg = NULL;
2016         return 0;
2017 }
2018
2019 /*
2020  * Somemtimes we have to undo a charge we got by try_charge().
2021  * This function is for that and do uncharge, put css's refcnt.
2022  * gotten by try_charge().
2023  */
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2025                                                         unsigned long count)
2026 {
2027         if (!mem_cgroup_is_root(mem)) {
2028                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029                 if (do_swap_account)
2030                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2031         }
2032 }
2033
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2035                                      int page_size)
2036 {
2037         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2038 }
2039
2040 /*
2041  * A helper function to get mem_cgroup from ID. must be called under
2042  * rcu_read_lock(). The caller must check css_is_removed() or some if
2043  * it's concern. (dropping refcnt from swap can be called against removed
2044  * memcg.)
2045  */
2046 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2047 {
2048         struct cgroup_subsys_state *css;
2049
2050         /* ID 0 is unused ID */
2051         if (!id)
2052                 return NULL;
2053         css = css_lookup(&mem_cgroup_subsys, id);
2054         if (!css)
2055                 return NULL;
2056         return container_of(css, struct mem_cgroup, css);
2057 }
2058
2059 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2060 {
2061         struct mem_cgroup *mem = NULL;
2062         struct page_cgroup *pc;
2063         unsigned short id;
2064         swp_entry_t ent;
2065
2066         VM_BUG_ON(!PageLocked(page));
2067
2068         pc = lookup_page_cgroup(page);
2069         lock_page_cgroup(pc);
2070         if (PageCgroupUsed(pc)) {
2071                 mem = pc->mem_cgroup;
2072                 if (mem && !css_tryget(&mem->css))
2073                         mem = NULL;
2074         } else if (PageSwapCache(page)) {
2075                 ent.val = page_private(page);
2076                 id = lookup_swap_cgroup(ent);
2077                 rcu_read_lock();
2078                 mem = mem_cgroup_lookup(id);
2079                 if (mem && !css_tryget(&mem->css))
2080                         mem = NULL;
2081                 rcu_read_unlock();
2082         }
2083         unlock_page_cgroup(pc);
2084         return mem;
2085 }
2086
2087 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2088                                        struct page_cgroup *pc,
2089                                        enum charge_type ctype,
2090                                        int page_size)
2091 {
2092         int nr_pages = page_size >> PAGE_SHIFT;
2093
2094         /* try_charge() can return NULL to *memcg, taking care of it. */
2095         if (!mem)
2096                 return;
2097
2098         lock_page_cgroup(pc);
2099         if (unlikely(PageCgroupUsed(pc))) {
2100                 unlock_page_cgroup(pc);
2101                 mem_cgroup_cancel_charge(mem, page_size);
2102                 return;
2103         }
2104         /*
2105          * we don't need page_cgroup_lock about tail pages, becase they are not
2106          * accessed by any other context at this point.
2107          */
2108         pc->mem_cgroup = mem;
2109         /*
2110          * We access a page_cgroup asynchronously without lock_page_cgroup().
2111          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2112          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2113          * before USED bit, we need memory barrier here.
2114          * See mem_cgroup_add_lru_list(), etc.
2115          */
2116         smp_wmb();
2117         switch (ctype) {
2118         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2119         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2120                 SetPageCgroupCache(pc);
2121                 SetPageCgroupUsed(pc);
2122                 break;
2123         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2124                 ClearPageCgroupCache(pc);
2125                 SetPageCgroupUsed(pc);
2126                 break;
2127         default:
2128                 break;
2129         }
2130
2131         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2132         unlock_page_cgroup(pc);
2133         /*
2134          * "charge_statistics" updated event counter. Then, check it.
2135          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2136          * if they exceeds softlimit.
2137          */
2138         memcg_check_events(mem, pc->page);
2139 }
2140
2141 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2142
2143 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2144                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2145 /*
2146  * Because tail pages are not marked as "used", set it. We're under
2147  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2148  */
2149 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2150 {
2151         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2152         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2153         unsigned long flags;
2154
2155         if (mem_cgroup_disabled())
2156                 return;
2157         /*
2158          * We have no races with charge/uncharge but will have races with
2159          * page state accounting.
2160          */
2161         move_lock_page_cgroup(head_pc, &flags);
2162
2163         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2164         smp_wmb(); /* see __commit_charge() */
2165         if (PageCgroupAcctLRU(head_pc)) {
2166                 enum lru_list lru;
2167                 struct mem_cgroup_per_zone *mz;
2168
2169                 /*
2170                  * LRU flags cannot be copied because we need to add tail
2171                  *.page to LRU by generic call and our hook will be called.
2172                  * We hold lru_lock, then, reduce counter directly.
2173                  */
2174                 lru = page_lru(head);
2175                 mz = page_cgroup_zoneinfo(head_pc);
2176                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2177         }
2178         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2179         move_unlock_page_cgroup(head_pc, &flags);
2180 }
2181 #endif
2182
2183 /**
2184  * __mem_cgroup_move_account - move account of the page
2185  * @pc: page_cgroup of the page.
2186  * @from: mem_cgroup which the page is moved from.
2187  * @to: mem_cgroup which the page is moved to. @from != @to.
2188  * @uncharge: whether we should call uncharge and css_put against @from.
2189  *
2190  * The caller must confirm following.
2191  * - page is not on LRU (isolate_page() is useful.)
2192  * - the pc is locked, used, and ->mem_cgroup points to @from.
2193  *
2194  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2195  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2196  * true, this function does "uncharge" from old cgroup, but it doesn't if
2197  * @uncharge is false, so a caller should do "uncharge".
2198  */
2199
2200 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2201         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2202         int charge_size)
2203 {
2204         int nr_pages = charge_size >> PAGE_SHIFT;
2205
2206         VM_BUG_ON(from == to);
2207         VM_BUG_ON(PageLRU(pc->page));
2208         VM_BUG_ON(!page_is_cgroup_locked(pc));
2209         VM_BUG_ON(!PageCgroupUsed(pc));
2210         VM_BUG_ON(pc->mem_cgroup != from);
2211
2212         if (PageCgroupFileMapped(pc)) {
2213                 /* Update mapped_file data for mem_cgroup */
2214                 preempt_disable();
2215                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2216                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2217                 preempt_enable();
2218         }
2219         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2220         if (uncharge)
2221                 /* This is not "cancel", but cancel_charge does all we need. */
2222                 mem_cgroup_cancel_charge(from, charge_size);
2223
2224         /* caller should have done css_get */
2225         pc->mem_cgroup = to;
2226         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2227         /*
2228          * We charges against "to" which may not have any tasks. Then, "to"
2229          * can be under rmdir(). But in current implementation, caller of
2230          * this function is just force_empty() and move charge, so it's
2231          * garanteed that "to" is never removed. So, we don't check rmdir
2232          * status here.
2233          */
2234 }
2235
2236 /*
2237  * check whether the @pc is valid for moving account and call
2238  * __mem_cgroup_move_account()
2239  */
2240 static int mem_cgroup_move_account(struct page_cgroup *pc,
2241                 struct mem_cgroup *from, struct mem_cgroup *to,
2242                 bool uncharge, int charge_size)
2243 {
2244         int ret = -EINVAL;
2245         unsigned long flags;
2246         /*
2247          * The page is isolated from LRU. So, collapse function
2248          * will not handle this page. But page splitting can happen.
2249          * Do this check under compound_page_lock(). The caller should
2250          * hold it.
2251          */
2252         if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2253                 return -EBUSY;
2254
2255         lock_page_cgroup(pc);
2256         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2257                 move_lock_page_cgroup(pc, &flags);
2258                 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2259                 move_unlock_page_cgroup(pc, &flags);
2260                 ret = 0;
2261         }
2262         unlock_page_cgroup(pc);
2263         /*
2264          * check events
2265          */
2266         memcg_check_events(to, pc->page);
2267         memcg_check_events(from, pc->page);
2268         return ret;
2269 }
2270
2271 /*
2272  * move charges to its parent.
2273  */
2274
2275 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2276                                   struct mem_cgroup *child,
2277                                   gfp_t gfp_mask)
2278 {
2279         struct page *page = pc->page;
2280         struct cgroup *cg = child->css.cgroup;
2281         struct cgroup *pcg = cg->parent;
2282         struct mem_cgroup *parent;
2283         int page_size = PAGE_SIZE;
2284         unsigned long flags;
2285         int ret;
2286
2287         /* Is ROOT ? */
2288         if (!pcg)
2289                 return -EINVAL;
2290
2291         ret = -EBUSY;
2292         if (!get_page_unless_zero(page))
2293                 goto out;
2294         if (isolate_lru_page(page))
2295                 goto put;
2296
2297         if (PageTransHuge(page))
2298                 page_size = HPAGE_SIZE;
2299
2300         parent = mem_cgroup_from_cont(pcg);
2301         ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2302                                 &parent, false, page_size);
2303         if (ret || !parent)
2304                 goto put_back;
2305
2306         if (page_size > PAGE_SIZE)
2307                 flags = compound_lock_irqsave(page);
2308
2309         ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2310         if (ret)
2311                 mem_cgroup_cancel_charge(parent, page_size);
2312
2313         if (page_size > PAGE_SIZE)
2314                 compound_unlock_irqrestore(page, flags);
2315 put_back:
2316         putback_lru_page(page);
2317 put:
2318         put_page(page);
2319 out:
2320         return ret;
2321 }
2322
2323 /*
2324  * Charge the memory controller for page usage.
2325  * Return
2326  * 0 if the charge was successful
2327  * < 0 if the cgroup is over its limit
2328  */
2329 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2330                                 gfp_t gfp_mask, enum charge_type ctype)
2331 {
2332         struct mem_cgroup *mem = NULL;
2333         struct page_cgroup *pc;
2334         int ret;
2335         int page_size = PAGE_SIZE;
2336
2337         if (PageTransHuge(page)) {
2338                 page_size <<= compound_order(page);
2339                 VM_BUG_ON(!PageTransHuge(page));
2340         }
2341
2342         pc = lookup_page_cgroup(page);
2343         /* can happen at boot */
2344         if (unlikely(!pc))
2345                 return 0;
2346         prefetchw(pc);
2347
2348         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2349         if (ret || !mem)
2350                 return ret;
2351
2352         __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2353         return 0;
2354 }
2355
2356 int mem_cgroup_newpage_charge(struct page *page,
2357                               struct mm_struct *mm, gfp_t gfp_mask)
2358 {
2359         if (mem_cgroup_disabled())
2360                 return 0;
2361         /*
2362          * If already mapped, we don't have to account.
2363          * If page cache, page->mapping has address_space.
2364          * But page->mapping may have out-of-use anon_vma pointer,
2365          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2366          * is NULL.
2367          */
2368         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2369                 return 0;
2370         if (unlikely(!mm))
2371                 mm = &init_mm;
2372         return mem_cgroup_charge_common(page, mm, gfp_mask,
2373                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2374 }
2375
2376 static void
2377 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2378                                         enum charge_type ctype);
2379
2380 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2381                                 gfp_t gfp_mask)
2382 {
2383         int ret;
2384
2385         if (mem_cgroup_disabled())
2386                 return 0;
2387         if (PageCompound(page))
2388                 return 0;
2389         /*
2390          * Corner case handling. This is called from add_to_page_cache()
2391          * in usual. But some FS (shmem) precharges this page before calling it
2392          * and call add_to_page_cache() with GFP_NOWAIT.
2393          *
2394          * For GFP_NOWAIT case, the page may be pre-charged before calling
2395          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2396          * charge twice. (It works but has to pay a bit larger cost.)
2397          * And when the page is SwapCache, it should take swap information
2398          * into account. This is under lock_page() now.
2399          */
2400         if (!(gfp_mask & __GFP_WAIT)) {
2401                 struct page_cgroup *pc;
2402
2403                 pc = lookup_page_cgroup(page);
2404                 if (!pc)
2405                         return 0;
2406                 lock_page_cgroup(pc);
2407                 if (PageCgroupUsed(pc)) {
2408                         unlock_page_cgroup(pc);
2409                         return 0;
2410                 }
2411                 unlock_page_cgroup(pc);
2412         }
2413
2414         if (unlikely(!mm))
2415                 mm = &init_mm;
2416
2417         if (page_is_file_cache(page))
2418                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2419                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2420
2421         /* shmem */
2422         if (PageSwapCache(page)) {
2423                 struct mem_cgroup *mem = NULL;
2424
2425                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2426                 if (!ret)
2427                         __mem_cgroup_commit_charge_swapin(page, mem,
2428                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2429         } else
2430                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2431                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2432
2433         return ret;
2434 }
2435
2436 /*
2437  * While swap-in, try_charge -> commit or cancel, the page is locked.
2438  * And when try_charge() successfully returns, one refcnt to memcg without
2439  * struct page_cgroup is acquired. This refcnt will be consumed by
2440  * "commit()" or removed by "cancel()"
2441  */
2442 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2443                                  struct page *page,
2444                                  gfp_t mask, struct mem_cgroup **ptr)
2445 {
2446         struct mem_cgroup *mem;
2447         int ret;
2448
2449         if (mem_cgroup_disabled())
2450                 return 0;
2451
2452         if (!do_swap_account)
2453                 goto charge_cur_mm;
2454         /*
2455          * A racing thread's fault, or swapoff, may have already updated
2456          * the pte, and even removed page from swap cache: in those cases
2457          * do_swap_page()'s pte_same() test will fail; but there's also a
2458          * KSM case which does need to charge the page.
2459          */
2460         if (!PageSwapCache(page))
2461                 goto charge_cur_mm;
2462         mem = try_get_mem_cgroup_from_page(page);
2463         if (!mem)
2464                 goto charge_cur_mm;
2465         *ptr = mem;
2466         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2467         css_put(&mem->css);
2468         return ret;
2469 charge_cur_mm:
2470         if (unlikely(!mm))
2471                 mm = &init_mm;
2472         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2473 }
2474
2475 static void
2476 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2477                                         enum charge_type ctype)
2478 {
2479         struct page_cgroup *pc;
2480
2481         if (mem_cgroup_disabled())
2482                 return;
2483         if (!ptr)
2484                 return;
2485         cgroup_exclude_rmdir(&ptr->css);
2486         pc = lookup_page_cgroup(page);
2487         mem_cgroup_lru_del_before_commit_swapcache(page);
2488         __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2489         mem_cgroup_lru_add_after_commit_swapcache(page);
2490         /*
2491          * Now swap is on-memory. This means this page may be
2492          * counted both as mem and swap....double count.
2493          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2494          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2495          * may call delete_from_swap_cache() before reach here.
2496          */
2497         if (do_swap_account && PageSwapCache(page)) {
2498                 swp_entry_t ent = {.val = page_private(page)};
2499                 unsigned short id;
2500                 struct mem_cgroup *memcg;
2501
2502                 id = swap_cgroup_record(ent, 0);
2503                 rcu_read_lock();
2504                 memcg = mem_cgroup_lookup(id);
2505                 if (memcg) {
2506                         /*
2507                          * This recorded memcg can be obsolete one. So, avoid
2508                          * calling css_tryget
2509                          */
2510                         if (!mem_cgroup_is_root(memcg))
2511                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2512                         mem_cgroup_swap_statistics(memcg, false);
2513                         mem_cgroup_put(memcg);
2514                 }
2515                 rcu_read_unlock();
2516         }
2517         /*
2518          * At swapin, we may charge account against cgroup which has no tasks.
2519          * So, rmdir()->pre_destroy() can be called while we do this charge.
2520          * In that case, we need to call pre_destroy() again. check it here.
2521          */
2522         cgroup_release_and_wakeup_rmdir(&ptr->css);
2523 }
2524
2525 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2526 {
2527         __mem_cgroup_commit_charge_swapin(page, ptr,
2528                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2529 }
2530
2531 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2532 {
2533         if (mem_cgroup_disabled())
2534                 return;
2535         if (!mem)
2536                 return;
2537         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2538 }
2539
2540 static void
2541 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2542               int page_size)
2543 {
2544         struct memcg_batch_info *batch = NULL;
2545         bool uncharge_memsw = true;
2546         /* If swapout, usage of swap doesn't decrease */
2547         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2548                 uncharge_memsw = false;
2549
2550         batch = &current->memcg_batch;
2551         /*
2552          * In usual, we do css_get() when we remember memcg pointer.
2553          * But in this case, we keep res->usage until end of a series of
2554          * uncharges. Then, it's ok to ignore memcg's refcnt.
2555          */
2556         if (!batch->memcg)
2557                 batch->memcg = mem;
2558         /*
2559          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2560          * In those cases, all pages freed continously can be expected to be in
2561          * the same cgroup and we have chance to coalesce uncharges.
2562          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2563          * because we want to do uncharge as soon as possible.
2564          */
2565
2566         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2567                 goto direct_uncharge;
2568
2569         if (page_size != PAGE_SIZE)
2570                 goto direct_uncharge;
2571
2572         /*
2573          * In typical case, batch->memcg == mem. This means we can
2574          * merge a series of uncharges to an uncharge of res_counter.
2575          * If not, we uncharge res_counter ony by one.
2576          */
2577         if (batch->memcg != mem)
2578                 goto direct_uncharge;
2579         /* remember freed charge and uncharge it later */
2580         batch->bytes += PAGE_SIZE;
2581         if (uncharge_memsw)
2582                 batch->memsw_bytes += PAGE_SIZE;
2583         return;
2584 direct_uncharge:
2585         res_counter_uncharge(&mem->res, page_size);
2586         if (uncharge_memsw)
2587                 res_counter_uncharge(&mem->memsw, page_size);
2588         if (unlikely(batch->memcg != mem))
2589                 memcg_oom_recover(mem);
2590         return;
2591 }
2592
2593 /*
2594  * uncharge if !page_mapped(page)
2595  */
2596 static struct mem_cgroup *
2597 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2598 {
2599         int count;
2600         struct page_cgroup *pc;
2601         struct mem_cgroup *mem = NULL;
2602         int page_size = PAGE_SIZE;
2603
2604         if (mem_cgroup_disabled())
2605                 return NULL;
2606
2607         if (PageSwapCache(page))
2608                 return NULL;
2609
2610         if (PageTransHuge(page)) {
2611                 page_size <<= compound_order(page);
2612                 VM_BUG_ON(!PageTransHuge(page));
2613         }
2614
2615         count = page_size >> PAGE_SHIFT;
2616         /*
2617          * Check if our page_cgroup is valid
2618          */
2619         pc = lookup_page_cgroup(page);
2620         if (unlikely(!pc || !PageCgroupUsed(pc)))
2621                 return NULL;
2622
2623         lock_page_cgroup(pc);
2624
2625         mem = pc->mem_cgroup;
2626
2627         if (!PageCgroupUsed(pc))
2628                 goto unlock_out;
2629
2630         switch (ctype) {
2631         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2632         case MEM_CGROUP_CHARGE_TYPE_DROP:
2633                 /* See mem_cgroup_prepare_migration() */
2634                 if (page_mapped(page) || PageCgroupMigration(pc))
2635                         goto unlock_out;
2636                 break;
2637         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2638                 if (!PageAnon(page)) {  /* Shared memory */
2639                         if (page->mapping && !page_is_file_cache(page))
2640                                 goto unlock_out;
2641                 } else if (page_mapped(page)) /* Anon */
2642                                 goto unlock_out;
2643                 break;
2644         default:
2645                 break;
2646         }
2647
2648         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2649
2650         ClearPageCgroupUsed(pc);
2651         /*
2652          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2653          * freed from LRU. This is safe because uncharged page is expected not
2654          * to be reused (freed soon). Exception is SwapCache, it's handled by
2655          * special functions.
2656          */
2657
2658         unlock_page_cgroup(pc);
2659         /*
2660          * even after unlock, we have mem->res.usage here and this memcg
2661          * will never be freed.
2662          */
2663         memcg_check_events(mem, page);
2664         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2665                 mem_cgroup_swap_statistics(mem, true);
2666                 mem_cgroup_get(mem);
2667         }
2668         if (!mem_cgroup_is_root(mem))
2669                 __do_uncharge(mem, ctype, page_size);
2670
2671         return mem;
2672
2673 unlock_out:
2674         unlock_page_cgroup(pc);
2675         return NULL;
2676 }
2677
2678 void mem_cgroup_uncharge_page(struct page *page)
2679 {
2680         /* early check. */
2681         if (page_mapped(page))
2682                 return;
2683         if (page->mapping && !PageAnon(page))
2684                 return;
2685         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2686 }
2687
2688 void mem_cgroup_uncharge_cache_page(struct page *page)
2689 {
2690         VM_BUG_ON(page_mapped(page));
2691         VM_BUG_ON(page->mapping);
2692         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2693 }
2694
2695 /*
2696  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2697  * In that cases, pages are freed continuously and we can expect pages
2698  * are in the same memcg. All these calls itself limits the number of
2699  * pages freed at once, then uncharge_start/end() is called properly.
2700  * This may be called prural(2) times in a context,
2701  */
2702
2703 void mem_cgroup_uncharge_start(void)
2704 {
2705         current->memcg_batch.do_batch++;
2706         /* We can do nest. */
2707         if (current->memcg_batch.do_batch == 1) {
2708                 current->memcg_batch.memcg = NULL;
2709                 current->memcg_batch.bytes = 0;
2710                 current->memcg_batch.memsw_bytes = 0;
2711         }
2712 }
2713
2714 void mem_cgroup_uncharge_end(void)
2715 {
2716         struct memcg_batch_info *batch = &current->memcg_batch;
2717
2718         if (!batch->do_batch)
2719                 return;
2720
2721         batch->do_batch--;
2722         if (batch->do_batch) /* If stacked, do nothing. */
2723                 return;
2724
2725         if (!batch->memcg)
2726                 return;
2727         /*
2728          * This "batch->memcg" is valid without any css_get/put etc...
2729          * bacause we hide charges behind us.
2730          */
2731         if (batch->bytes)
2732                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2733         if (batch->memsw_bytes)
2734                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2735         memcg_oom_recover(batch->memcg);
2736         /* forget this pointer (for sanity check) */
2737         batch->memcg = NULL;
2738 }
2739
2740 #ifdef CONFIG_SWAP
2741 /*
2742  * called after __delete_from_swap_cache() and drop "page" account.
2743  * memcg information is recorded to swap_cgroup of "ent"
2744  */
2745 void
2746 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2747 {
2748         struct mem_cgroup *memcg;
2749         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2750
2751         if (!swapout) /* this was a swap cache but the swap is unused ! */
2752                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2753
2754         memcg = __mem_cgroup_uncharge_common(page, ctype);
2755
2756         /*
2757          * record memcg information,  if swapout && memcg != NULL,
2758          * mem_cgroup_get() was called in uncharge().
2759          */
2760         if (do_swap_account && swapout && memcg)
2761                 swap_cgroup_record(ent, css_id(&memcg->css));
2762 }
2763 #endif
2764
2765 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2766 /*
2767  * called from swap_entry_free(). remove record in swap_cgroup and
2768  * uncharge "memsw" account.
2769  */
2770 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2771 {
2772         struct mem_cgroup *memcg;
2773         unsigned short id;
2774
2775         if (!do_swap_account)
2776                 return;
2777
2778         id = swap_cgroup_record(ent, 0);
2779         rcu_read_lock();
2780         memcg = mem_cgroup_lookup(id);
2781         if (memcg) {
2782                 /*
2783                  * We uncharge this because swap is freed.
2784                  * This memcg can be obsolete one. We avoid calling css_tryget
2785                  */
2786                 if (!mem_cgroup_is_root(memcg))
2787                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2788                 mem_cgroup_swap_statistics(memcg, false);
2789                 mem_cgroup_put(memcg);
2790         }
2791         rcu_read_unlock();
2792 }
2793
2794 /**
2795  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2796  * @entry: swap entry to be moved
2797  * @from:  mem_cgroup which the entry is moved from
2798  * @to:  mem_cgroup which the entry is moved to
2799  * @need_fixup: whether we should fixup res_counters and refcounts.
2800  *
2801  * It succeeds only when the swap_cgroup's record for this entry is the same
2802  * as the mem_cgroup's id of @from.
2803  *
2804  * Returns 0 on success, -EINVAL on failure.
2805  *
2806  * The caller must have charged to @to, IOW, called res_counter_charge() about
2807  * both res and memsw, and called css_get().
2808  */
2809 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2810                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2811 {
2812         unsigned short old_id, new_id;
2813
2814         old_id = css_id(&from->css);
2815         new_id = css_id(&to->css);
2816
2817         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2818                 mem_cgroup_swap_statistics(from, false);
2819                 mem_cgroup_swap_statistics(to, true);
2820                 /*
2821                  * This function is only called from task migration context now.
2822                  * It postpones res_counter and refcount handling till the end
2823                  * of task migration(mem_cgroup_clear_mc()) for performance
2824                  * improvement. But we cannot postpone mem_cgroup_get(to)
2825                  * because if the process that has been moved to @to does
2826                  * swap-in, the refcount of @to might be decreased to 0.
2827                  */
2828                 mem_cgroup_get(to);
2829                 if (need_fixup) {
2830                         if (!mem_cgroup_is_root(from))
2831                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2832                         mem_cgroup_put(from);
2833                         /*
2834                          * we charged both to->res and to->memsw, so we should
2835                          * uncharge to->res.
2836                          */
2837                         if (!mem_cgroup_is_root(to))
2838                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2839                 }
2840                 return 0;
2841         }
2842         return -EINVAL;
2843 }
2844 #else
2845 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2846                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2847 {
2848         return -EINVAL;
2849 }
2850 #endif
2851
2852 /*
2853  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2854  * page belongs to.
2855  */
2856 int mem_cgroup_prepare_migration(struct page *page,
2857         struct page *newpage, struct mem_cgroup **ptr)
2858 {
2859         struct page_cgroup *pc;
2860         struct mem_cgroup *mem = NULL;
2861         enum charge_type ctype;
2862         int ret = 0;
2863
2864         VM_BUG_ON(PageTransHuge(page));
2865         if (mem_cgroup_disabled())
2866                 return 0;
2867
2868         pc = lookup_page_cgroup(page);
2869         lock_page_cgroup(pc);
2870         if (PageCgroupUsed(pc)) {
2871                 mem = pc->mem_cgroup;
2872                 css_get(&mem->css);
2873                 /*
2874                  * At migrating an anonymous page, its mapcount goes down
2875                  * to 0 and uncharge() will be called. But, even if it's fully
2876                  * unmapped, migration may fail and this page has to be
2877                  * charged again. We set MIGRATION flag here and delay uncharge
2878                  * until end_migration() is called
2879                  *
2880                  * Corner Case Thinking
2881                  * A)
2882                  * When the old page was mapped as Anon and it's unmap-and-freed
2883                  * while migration was ongoing.
2884                  * If unmap finds the old page, uncharge() of it will be delayed
2885                  * until end_migration(). If unmap finds a new page, it's
2886                  * uncharged when it make mapcount to be 1->0. If unmap code
2887                  * finds swap_migration_entry, the new page will not be mapped
2888                  * and end_migration() will find it(mapcount==0).
2889                  *
2890                  * B)
2891                  * When the old page was mapped but migraion fails, the kernel
2892                  * remaps it. A charge for it is kept by MIGRATION flag even
2893                  * if mapcount goes down to 0. We can do remap successfully
2894                  * without charging it again.
2895                  *
2896                  * C)
2897                  * The "old" page is under lock_page() until the end of
2898                  * migration, so, the old page itself will not be swapped-out.
2899                  * If the new page is swapped out before end_migraton, our
2900                  * hook to usual swap-out path will catch the event.
2901                  */
2902                 if (PageAnon(page))
2903                         SetPageCgroupMigration(pc);
2904         }
2905         unlock_page_cgroup(pc);
2906         /*
2907          * If the page is not charged at this point,
2908          * we return here.
2909          */
2910         if (!mem)
2911                 return 0;
2912
2913         *ptr = mem;
2914         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2915         css_put(&mem->css);/* drop extra refcnt */
2916         if (ret || *ptr == NULL) {
2917                 if (PageAnon(page)) {
2918                         lock_page_cgroup(pc);
2919                         ClearPageCgroupMigration(pc);
2920                         unlock_page_cgroup(pc);
2921                         /*
2922                          * The old page may be fully unmapped while we kept it.
2923                          */
2924                         mem_cgroup_uncharge_page(page);
2925                 }
2926                 return -ENOMEM;
2927         }
2928         /*
2929          * We charge new page before it's used/mapped. So, even if unlock_page()
2930          * is called before end_migration, we can catch all events on this new
2931          * page. In the case new page is migrated but not remapped, new page's
2932          * mapcount will be finally 0 and we call uncharge in end_migration().
2933          */
2934         pc = lookup_page_cgroup(newpage);
2935         if (PageAnon(page))
2936                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2937         else if (page_is_file_cache(page))
2938                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2939         else
2940                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2941         __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2942         return ret;
2943 }
2944
2945 /* remove redundant charge if migration failed*/
2946 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2947         struct page *oldpage, struct page *newpage, bool migration_ok)
2948 {
2949         struct page *used, *unused;
2950         struct page_cgroup *pc;
2951
2952         if (!mem)
2953                 return;
2954         /* blocks rmdir() */
2955         cgroup_exclude_rmdir(&mem->css);
2956         if (!migration_ok) {
2957                 used = oldpage;
2958                 unused = newpage;
2959         } else {
2960                 used = newpage;
2961                 unused = oldpage;
2962         }
2963         /*
2964          * We disallowed uncharge of pages under migration because mapcount
2965          * of the page goes down to zero, temporarly.
2966          * Clear the flag and check the page should be charged.
2967          */
2968         pc = lookup_page_cgroup(oldpage);
2969         lock_page_cgroup(pc);
2970         ClearPageCgroupMigration(pc);
2971         unlock_page_cgroup(pc);
2972
2973         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2974
2975         /*
2976          * If a page is a file cache, radix-tree replacement is very atomic
2977          * and we can skip this check. When it was an Anon page, its mapcount
2978          * goes down to 0. But because we added MIGRATION flage, it's not
2979          * uncharged yet. There are several case but page->mapcount check
2980          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2981          * check. (see prepare_charge() also)
2982          */
2983         if (PageAnon(used))
2984                 mem_cgroup_uncharge_page(used);
2985         /*
2986          * At migration, we may charge account against cgroup which has no
2987          * tasks.
2988          * So, rmdir()->pre_destroy() can be called while we do this charge.
2989          * In that case, we need to call pre_destroy() again. check it here.
2990          */
2991         cgroup_release_and_wakeup_rmdir(&mem->css);
2992 }
2993
2994 /*
2995  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2996  * Calling hierarchical_reclaim is not enough because we should update
2997  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2998  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2999  * not from the memcg which this page would be charged to.
3000  * try_charge_swapin does all of these works properly.
3001  */
3002 int mem_cgroup_shmem_charge_fallback(struct page *page,
3003                             struct mm_struct *mm,
3004                             gfp_t gfp_mask)
3005 {
3006         struct mem_cgroup *mem = NULL;
3007         int ret;
3008
3009         if (mem_cgroup_disabled())
3010                 return 0;
3011
3012         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3013         if (!ret)
3014                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3015
3016         return ret;
3017 }
3018
3019 static DEFINE_MUTEX(set_limit_mutex);
3020
3021 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3022                                 unsigned long long val)
3023 {
3024         int retry_count;
3025         u64 memswlimit, memlimit;
3026         int ret = 0;
3027         int children = mem_cgroup_count_children(memcg);
3028         u64 curusage, oldusage;
3029         int enlarge;
3030
3031         /*
3032          * For keeping hierarchical_reclaim simple, how long we should retry
3033          * is depends on callers. We set our retry-count to be function
3034          * of # of children which we should visit in this loop.
3035          */
3036         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3037
3038         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3039
3040         enlarge = 0;
3041         while (retry_count) {
3042                 if (signal_pending(current)) {
3043                         ret = -EINTR;
3044                         break;
3045                 }
3046                 /*
3047                  * Rather than hide all in some function, I do this in
3048                  * open coded manner. You see what this really does.
3049                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3050                  */
3051                 mutex_lock(&set_limit_mutex);
3052                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3053                 if (memswlimit < val) {
3054                         ret = -EINVAL;
3055                         mutex_unlock(&set_limit_mutex);
3056                         break;
3057                 }
3058
3059                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3060                 if (memlimit < val)
3061                         enlarge = 1;
3062
3063                 ret = res_counter_set_limit(&memcg->res, val);
3064                 if (!ret) {
3065                         if (memswlimit == val)
3066                                 memcg->memsw_is_minimum = true;
3067                         else
3068                                 memcg->memsw_is_minimum = false;
3069                 }
3070                 mutex_unlock(&set_limit_mutex);
3071
3072                 if (!ret)
3073                         break;
3074
3075                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3076                                                 MEM_CGROUP_RECLAIM_SHRINK);
3077                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3078                 /* Usage is reduced ? */
3079                 if (curusage >= oldusage)
3080                         retry_count--;
3081                 else
3082                         oldusage = curusage;
3083         }
3084         if (!ret && enlarge)
3085                 memcg_oom_recover(memcg);
3086
3087         return ret;
3088 }
3089
3090 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3091                                         unsigned long long val)
3092 {
3093         int retry_count;
3094         u64 memlimit, memswlimit, oldusage, curusage;
3095         int children = mem_cgroup_count_children(memcg);
3096         int ret = -EBUSY;
3097         int enlarge = 0;
3098
3099         /* see mem_cgroup_resize_res_limit */
3100         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3101         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3102         while (retry_count) {
3103                 if (signal_pending(current)) {
3104                         ret = -EINTR;
3105                         break;
3106                 }
3107                 /*
3108                  * Rather than hide all in some function, I do this in
3109                  * open coded manner. You see what this really does.
3110                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3111                  */
3112                 mutex_lock(&set_limit_mutex);
3113                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3114                 if (memlimit > val) {
3115                         ret = -EINVAL;
3116                         mutex_unlock(&set_limit_mutex);
3117                         break;
3118                 }
3119                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3120                 if (memswlimit < val)
3121                         enlarge = 1;
3122                 ret = res_counter_set_limit(&memcg->memsw, val);
3123                 if (!ret) {
3124                         if (memlimit == val)
3125                                 memcg->memsw_is_minimum = true;
3126                         else
3127                                 memcg->memsw_is_minimum = false;
3128                 }
3129                 mutex_unlock(&set_limit_mutex);
3130
3131                 if (!ret)
3132                         break;
3133
3134                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3135                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3136                                                 MEM_CGROUP_RECLAIM_SHRINK);
3137                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3138                 /* Usage is reduced ? */
3139                 if (curusage >= oldusage)
3140                         retry_count--;
3141                 else
3142                         oldusage = curusage;
3143         }
3144         if (!ret && enlarge)
3145                 memcg_oom_recover(memcg);
3146         return ret;
3147 }
3148
3149 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3150                                             gfp_t gfp_mask)
3151 {
3152         unsigned long nr_reclaimed = 0;
3153         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3154         unsigned long reclaimed;
3155         int loop = 0;
3156         struct mem_cgroup_tree_per_zone *mctz;
3157         unsigned long long excess;
3158
3159         if (order > 0)
3160                 return 0;
3161
3162         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3163         /*
3164          * This loop can run a while, specially if mem_cgroup's continuously
3165          * keep exceeding their soft limit and putting the system under
3166          * pressure
3167          */
3168         do {
3169                 if (next_mz)
3170                         mz = next_mz;
3171                 else
3172                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3173                 if (!mz)
3174                         break;
3175
3176                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3177                                                 gfp_mask,
3178                                                 MEM_CGROUP_RECLAIM_SOFT);
3179                 nr_reclaimed += reclaimed;
3180                 spin_lock(&mctz->lock);
3181
3182                 /*
3183                  * If we failed to reclaim anything from this memory cgroup
3184                  * it is time to move on to the next cgroup
3185                  */
3186                 next_mz = NULL;
3187                 if (!reclaimed) {
3188                         do {
3189                                 /*
3190                                  * Loop until we find yet another one.
3191                                  *
3192                                  * By the time we get the soft_limit lock
3193                                  * again, someone might have aded the
3194                                  * group back on the RB tree. Iterate to
3195                                  * make sure we get a different mem.
3196                                  * mem_cgroup_largest_soft_limit_node returns
3197                                  * NULL if no other cgroup is present on
3198                                  * the tree
3199                                  */
3200                                 next_mz =
3201                                 __mem_cgroup_largest_soft_limit_node(mctz);
3202                                 if (next_mz == mz) {
3203                                         css_put(&next_mz->mem->css);
3204                                         next_mz = NULL;
3205                                 } else /* next_mz == NULL or other memcg */
3206                                         break;
3207                         } while (1);
3208                 }
3209                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3210                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3211                 /*
3212                  * One school of thought says that we should not add
3213                  * back the node to the tree if reclaim returns 0.
3214                  * But our reclaim could return 0, simply because due
3215                  * to priority we are exposing a smaller subset of
3216                  * memory to reclaim from. Consider this as a longer
3217                  * term TODO.
3218                  */
3219                 /* If excess == 0, no tree ops */
3220                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3221                 spin_unlock(&mctz->lock);
3222                 css_put(&mz->mem->css);
3223                 loop++;
3224                 /*
3225                  * Could not reclaim anything and there are no more
3226                  * mem cgroups to try or we seem to be looping without
3227                  * reclaiming anything.
3228                  */
3229                 if (!nr_reclaimed &&
3230                         (next_mz == NULL ||
3231                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3232                         break;
3233         } while (!nr_reclaimed);
3234         if (next_mz)
3235                 css_put(&next_mz->mem->css);
3236         return nr_reclaimed;
3237 }
3238
3239 /*
3240  * This routine traverse page_cgroup in given list and drop them all.
3241  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3242  */
3243 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3244                                 int node, int zid, enum lru_list lru)
3245 {
3246         struct zone *zone;
3247         struct mem_cgroup_per_zone *mz;
3248         struct page_cgroup *pc, *busy;
3249         unsigned long flags, loop;
3250         struct list_head *list;
3251         int ret = 0;
3252
3253         zone = &NODE_DATA(node)->node_zones[zid];
3254         mz = mem_cgroup_zoneinfo(mem, node, zid);
3255         list = &mz->lists[lru];
3256
3257         loop = MEM_CGROUP_ZSTAT(mz, lru);
3258         /* give some margin against EBUSY etc...*/
3259         loop += 256;
3260         busy = NULL;
3261         while (loop--) {
3262                 ret = 0;
3263                 spin_lock_irqsave(&zone->lru_lock, flags);
3264                 if (list_empty(list)) {
3265                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3266                         break;
3267                 }
3268                 pc = list_entry(list->prev, struct page_cgroup, lru);
3269                 if (busy == pc) {
3270                         list_move(&pc->lru, list);
3271                         busy = NULL;
3272                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3273                         continue;
3274                 }
3275                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3276
3277                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3278                 if (ret == -ENOMEM)
3279                         break;
3280
3281                 if (ret == -EBUSY || ret == -EINVAL) {
3282                         /* found lock contention or "pc" is obsolete. */
3283                         busy = pc;
3284                         cond_resched();
3285                 } else
3286                         busy = NULL;
3287         }
3288
3289         if (!ret && !list_empty(list))
3290                 return -EBUSY;
3291         return ret;
3292 }
3293
3294 /*
3295  * make mem_cgroup's charge to be 0 if there is no task.
3296  * This enables deleting this mem_cgroup.
3297  */
3298 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3299 {
3300         int ret;
3301         int node, zid, shrink;
3302         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3303         struct cgroup *cgrp = mem->css.cgroup;
3304
3305         css_get(&mem->css);
3306
3307         shrink = 0;
3308         /* should free all ? */
3309         if (free_all)
3310                 goto try_to_free;
3311 move_account:
3312         do {
3313                 ret = -EBUSY;
3314                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3315                         goto out;
3316                 ret = -EINTR;
3317                 if (signal_pending(current))
3318                         goto out;
3319                 /* This is for making all *used* pages to be on LRU. */
3320                 lru_add_drain_all();
3321                 drain_all_stock_sync();
3322                 ret = 0;
3323                 mem_cgroup_start_move(mem);
3324                 for_each_node_state(node, N_HIGH_MEMORY) {
3325                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3326                                 enum lru_list l;
3327                                 for_each_lru(l) {
3328                                         ret = mem_cgroup_force_empty_list(mem,
3329                                                         node, zid, l);
3330                                         if (ret)
3331                                                 break;
3332                                 }
3333                         }
3334                         if (ret)
3335                                 break;
3336                 }
3337                 mem_cgroup_end_move(mem);
3338                 memcg_oom_recover(mem);
3339                 /* it seems parent cgroup doesn't have enough mem */
3340                 if (ret == -ENOMEM)
3341                         goto try_to_free;
3342                 cond_resched();
3343         /* "ret" should also be checked to ensure all lists are empty. */
3344         } while (mem->res.usage > 0 || ret);
3345 out:
3346         css_put(&mem->css);
3347         return ret;
3348
3349 try_to_free:
3350         /* returns EBUSY if there is a task or if we come here twice. */
3351         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3352                 ret = -EBUSY;
3353                 goto out;
3354         }
3355         /* we call try-to-free pages for make this cgroup empty */
3356         lru_add_drain_all();
3357         /* try to free all pages in this cgroup */
3358         shrink = 1;
3359         while (nr_retries && mem->res.usage > 0) {
3360                 int progress;
3361
3362                 if (signal_pending(current)) {
3363                         ret = -EINTR;
3364                         goto out;
3365                 }
3366                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3367                                                 false, get_swappiness(mem));
3368                 if (!progress) {
3369                         nr_retries--;
3370                         /* maybe some writeback is necessary */
3371                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3372                 }
3373
3374         }
3375         lru_add_drain();
3376         /* try move_account...there may be some *locked* pages. */
3377         goto move_account;
3378 }
3379
3380 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3381 {
3382         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3383 }
3384
3385
3386 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3387 {
3388         return mem_cgroup_from_cont(cont)->use_hierarchy;
3389 }
3390
3391 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3392                                         u64 val)
3393 {
3394         int retval = 0;
3395         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3396         struct cgroup *parent = cont->parent;
3397         struct mem_cgroup *parent_mem = NULL;
3398
3399         if (parent)
3400                 parent_mem = mem_cgroup_from_cont(parent);
3401
3402         cgroup_lock();
3403         /*
3404          * If parent's use_hierarchy is set, we can't make any modifications
3405          * in the child subtrees. If it is unset, then the change can
3406          * occur, provided the current cgroup has no children.
3407          *
3408          * For the root cgroup, parent_mem is NULL, we allow value to be
3409          * set if there are no children.
3410          */
3411         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3412                                 (val == 1 || val == 0)) {
3413                 if (list_empty(&cont->children))
3414                         mem->use_hierarchy = val;
3415                 else
3416                         retval = -EBUSY;
3417         } else
3418                 retval = -EINVAL;
3419         cgroup_unlock();
3420
3421         return retval;
3422 }
3423
3424
3425 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3426                                 enum mem_cgroup_stat_index idx)
3427 {
3428         struct mem_cgroup *iter;
3429         s64 val = 0;
3430
3431         /* each per cpu's value can be minus.Then, use s64 */
3432         for_each_mem_cgroup_tree(iter, mem)
3433                 val += mem_cgroup_read_stat(iter, idx);
3434
3435         if (val < 0) /* race ? */
3436                 val = 0;
3437         return val;
3438 }
3439
3440 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3441 {
3442         u64 val;
3443
3444         if (!mem_cgroup_is_root(mem)) {
3445                 if (!swap)
3446                         return res_counter_read_u64(&mem->res, RES_USAGE);
3447                 else
3448                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3449         }
3450
3451         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3452         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3453
3454         if (swap)
3455                 val += mem_cgroup_get_recursive_idx_stat(mem,
3456                                 MEM_CGROUP_STAT_SWAPOUT);
3457
3458         return val << PAGE_SHIFT;
3459 }
3460
3461 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3462 {
3463         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3464         u64 val;
3465         int type, name;
3466
3467         type = MEMFILE_TYPE(cft->private);
3468         name = MEMFILE_ATTR(cft->private);
3469         switch (type) {
3470         case _MEM:
3471                 if (name == RES_USAGE)
3472                         val = mem_cgroup_usage(mem, false);
3473                 else
3474                         val = res_counter_read_u64(&mem->res, name);
3475                 break;
3476         case _MEMSWAP:
3477                 if (name == RES_USAGE)
3478                         val = mem_cgroup_usage(mem, true);
3479                 else
3480                         val = res_counter_read_u64(&mem->memsw, name);
3481                 break;
3482         default:
3483                 BUG();
3484                 break;
3485         }
3486         return val;
3487 }
3488 /*
3489  * The user of this function is...
3490  * RES_LIMIT.
3491  */
3492 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3493                             const char *buffer)
3494 {
3495         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3496         int type, name;
3497         unsigned long long val;
3498         int ret;
3499
3500         type = MEMFILE_TYPE(cft->private);
3501         name = MEMFILE_ATTR(cft->private);
3502         switch (name) {
3503         case RES_LIMIT:
3504                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3505                         ret = -EINVAL;
3506                         break;
3507                 }
3508                 /* This function does all necessary parse...reuse it */
3509                 ret = res_counter_memparse_write_strategy(buffer, &val);
3510                 if (ret)
3511                         break;
3512                 if (type == _MEM)
3513                         ret = mem_cgroup_resize_limit(memcg, val);
3514                 else
3515                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3516                 break;
3517         case RES_SOFT_LIMIT:
3518                 ret = res_counter_memparse_write_strategy(buffer, &val);
3519                 if (ret)
3520                         break;
3521                 /*
3522                  * For memsw, soft limits are hard to implement in terms
3523                  * of semantics, for now, we support soft limits for
3524                  * control without swap
3525                  */
3526                 if (type == _MEM)
3527                         ret = res_counter_set_soft_limit(&memcg->res, val);
3528                 else
3529                         ret = -EINVAL;
3530                 break;
3531         default:
3532                 ret = -EINVAL; /* should be BUG() ? */
3533                 break;
3534         }
3535         return ret;
3536 }
3537
3538 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3539                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3540 {
3541         struct cgroup *cgroup;
3542         unsigned long long min_limit, min_memsw_limit, tmp;
3543
3544         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3545         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3546         cgroup = memcg->css.cgroup;
3547         if (!memcg->use_hierarchy)
3548                 goto out;
3549
3550         while (cgroup->parent) {
3551                 cgroup = cgroup->parent;
3552                 memcg = mem_cgroup_from_cont(cgroup);
3553                 if (!memcg->use_hierarchy)
3554                         break;
3555                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3556                 min_limit = min(min_limit, tmp);
3557                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3558                 min_memsw_limit = min(min_memsw_limit, tmp);
3559         }
3560 out:
3561         *mem_limit = min_limit;
3562         *memsw_limit = min_memsw_limit;
3563         return;
3564 }
3565
3566 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3567 {
3568         struct mem_cgroup *mem;
3569         int type, name;
3570
3571         mem = mem_cgroup_from_cont(cont);
3572         type = MEMFILE_TYPE(event);
3573         name = MEMFILE_ATTR(event);
3574         switch (name) {
3575         case RES_MAX_USAGE:
3576                 if (type == _MEM)
3577                         res_counter_reset_max(&mem->res);
3578                 else
3579                         res_counter_reset_max(&mem->memsw);
3580                 break;
3581         case RES_FAILCNT:
3582                 if (type == _MEM)
3583                         res_counter_reset_failcnt(&mem->res);
3584                 else
3585                         res_counter_reset_failcnt(&mem->memsw);
3586                 break;
3587         }
3588
3589         return 0;
3590 }
3591
3592 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3593                                         struct cftype *cft)
3594 {
3595         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3596 }
3597
3598 #ifdef CONFIG_MMU
3599 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3600                                         struct cftype *cft, u64 val)
3601 {
3602         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3603
3604         if (val >= (1 << NR_MOVE_TYPE))
3605                 return -EINVAL;
3606         /*
3607          * We check this value several times in both in can_attach() and
3608          * attach(), so we need cgroup lock to prevent this value from being
3609          * inconsistent.
3610          */
3611         cgroup_lock();
3612         mem->move_charge_at_immigrate = val;
3613         cgroup_unlock();
3614
3615         return 0;
3616 }
3617 #else
3618 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3619                                         struct cftype *cft, u64 val)
3620 {
3621         return -ENOSYS;
3622 }
3623 #endif
3624
3625
3626 /* For read statistics */
3627 enum {
3628         MCS_CACHE,
3629         MCS_RSS,
3630         MCS_FILE_MAPPED,
3631         MCS_PGPGIN,
3632         MCS_PGPGOUT,
3633         MCS_SWAP,
3634         MCS_INACTIVE_ANON,
3635         MCS_ACTIVE_ANON,
3636         MCS_INACTIVE_FILE,
3637         MCS_ACTIVE_FILE,
3638         MCS_UNEVICTABLE,
3639         NR_MCS_STAT,
3640 };
3641
3642 struct mcs_total_stat {
3643         s64 stat[NR_MCS_STAT];
3644 };
3645
3646 struct {
3647         char *local_name;
3648         char *total_name;
3649 } memcg_stat_strings[NR_MCS_STAT] = {
3650         {"cache", "total_cache"},
3651         {"rss", "total_rss"},
3652         {"mapped_file", "total_mapped_file"},
3653         {"pgpgin", "total_pgpgin"},
3654         {"pgpgout", "total_pgpgout"},
3655         {"swap", "total_swap"},
3656         {"inactive_anon", "total_inactive_anon"},
3657         {"active_anon", "total_active_anon"},
3658         {"inactive_file", "total_inactive_file"},
3659         {"active_file", "total_active_file"},
3660         {"unevictable", "total_unevictable"}
3661 };
3662
3663
3664 static void
3665 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3666 {
3667         s64 val;
3668
3669         /* per cpu stat */
3670         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3671         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3672         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3673         s->stat[MCS_RSS] += val * PAGE_SIZE;
3674         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3675         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3676         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3677         s->stat[MCS_PGPGIN] += val;
3678         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3679         s->stat[MCS_PGPGOUT] += val;
3680         if (do_swap_account) {
3681                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3682                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3683         }
3684
3685         /* per zone stat */
3686         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3687         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3688         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3689         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3690         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3691         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3692         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3693         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3694         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3695         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3696 }
3697
3698 static void
3699 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3700 {
3701         struct mem_cgroup *iter;
3702
3703         for_each_mem_cgroup_tree(iter, mem)
3704                 mem_cgroup_get_local_stat(iter, s);
3705 }
3706
3707 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3708                                  struct cgroup_map_cb *cb)
3709 {
3710         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3711         struct mcs_total_stat mystat;
3712         int i;
3713
3714         memset(&mystat, 0, sizeof(mystat));
3715         mem_cgroup_get_local_stat(mem_cont, &mystat);
3716
3717         for (i = 0; i < NR_MCS_STAT; i++) {
3718                 if (i == MCS_SWAP && !do_swap_account)
3719                         continue;
3720                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3721         }
3722
3723         /* Hierarchical information */
3724         {
3725                 unsigned long long limit, memsw_limit;
3726                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3727                 cb->fill(cb, "hierarchical_memory_limit", limit);
3728                 if (do_swap_account)
3729                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3730         }
3731
3732         memset(&mystat, 0, sizeof(mystat));
3733         mem_cgroup_get_total_stat(mem_cont, &mystat);
3734         for (i = 0; i < NR_MCS_STAT; i++) {
3735                 if (i == MCS_SWAP && !do_swap_account)
3736                         continue;
3737                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3738         }
3739
3740 #ifdef CONFIG_DEBUG_VM
3741         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3742
3743         {
3744                 int nid, zid;
3745                 struct mem_cgroup_per_zone *mz;
3746                 unsigned long recent_rotated[2] = {0, 0};
3747                 unsigned long recent_scanned[2] = {0, 0};
3748
3749                 for_each_online_node(nid)
3750                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3751                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3752
3753                                 recent_rotated[0] +=
3754                                         mz->reclaim_stat.recent_rotated[0];
3755                                 recent_rotated[1] +=
3756                                         mz->reclaim_stat.recent_rotated[1];
3757                                 recent_scanned[0] +=
3758                                         mz->reclaim_stat.recent_scanned[0];
3759                                 recent_scanned[1] +=
3760                                         mz->reclaim_stat.recent_scanned[1];
3761                         }
3762                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3763                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3764                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3765                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3766         }
3767 #endif
3768
3769         return 0;
3770 }
3771
3772 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3773 {
3774         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3775
3776         return get_swappiness(memcg);
3777 }
3778
3779 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3780                                        u64 val)
3781 {
3782         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3783         struct mem_cgroup *parent;
3784
3785         if (val > 100)
3786                 return -EINVAL;
3787
3788         if (cgrp->parent == NULL)
3789                 return -EINVAL;
3790
3791         parent = mem_cgroup_from_cont(cgrp->parent);
3792
3793         cgroup_lock();
3794
3795         /* If under hierarchy, only empty-root can set this value */
3796         if ((parent->use_hierarchy) ||
3797             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3798                 cgroup_unlock();
3799                 return -EINVAL;
3800         }
3801
3802         spin_lock(&memcg->reclaim_param_lock);
3803         memcg->swappiness = val;
3804         spin_unlock(&memcg->reclaim_param_lock);
3805
3806         cgroup_unlock();
3807
3808         return 0;
3809 }
3810
3811 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3812 {
3813         struct mem_cgroup_threshold_ary *t;
3814         u64 usage;
3815         int i;
3816
3817         rcu_read_lock();
3818         if (!swap)
3819                 t = rcu_dereference(memcg->thresholds.primary);
3820         else
3821                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3822
3823         if (!t)
3824                 goto unlock;
3825
3826         usage = mem_cgroup_usage(memcg, swap);
3827
3828         /*
3829          * current_threshold points to threshold just below usage.
3830          * If it's not true, a threshold was crossed after last
3831          * call of __mem_cgroup_threshold().
3832          */
3833         i = t->current_threshold;
3834
3835         /*
3836          * Iterate backward over array of thresholds starting from
3837          * current_threshold and check if a threshold is crossed.
3838          * If none of thresholds below usage is crossed, we read
3839          * only one element of the array here.
3840          */
3841         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3842                 eventfd_signal(t->entries[i].eventfd, 1);
3843
3844         /* i = current_threshold + 1 */
3845         i++;
3846
3847         /*
3848          * Iterate forward over array of thresholds starting from
3849          * current_threshold+1 and check if a threshold is crossed.
3850          * If none of thresholds above usage is crossed, we read
3851          * only one element of the array here.
3852          */
3853         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3854                 eventfd_signal(t->entries[i].eventfd, 1);
3855
3856         /* Update current_threshold */
3857         t->current_threshold = i - 1;
3858 unlock:
3859         rcu_read_unlock();
3860 }
3861
3862 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3863 {
3864         while (memcg) {
3865                 __mem_cgroup_threshold(memcg, false);
3866                 if (do_swap_account)
3867                         __mem_cgroup_threshold(memcg, true);
3868
3869                 memcg = parent_mem_cgroup(memcg);
3870         }
3871 }
3872
3873 static int compare_thresholds(const void *a, const void *b)
3874 {
3875         const struct mem_cgroup_threshold *_a = a;
3876         const struct mem_cgroup_threshold *_b = b;
3877
3878         return _a->threshold - _b->threshold;
3879 }
3880
3881 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3882 {
3883         struct mem_cgroup_eventfd_list *ev;
3884
3885         list_for_each_entry(ev, &mem->oom_notify, list)
3886                 eventfd_signal(ev->eventfd, 1);
3887         return 0;
3888 }
3889
3890 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3891 {
3892         struct mem_cgroup *iter;
3893
3894         for_each_mem_cgroup_tree(iter, mem)
3895                 mem_cgroup_oom_notify_cb(iter);
3896 }
3897
3898 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3899         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3900 {
3901         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3902         struct mem_cgroup_thresholds *thresholds;
3903         struct mem_cgroup_threshold_ary *new;
3904         int type = MEMFILE_TYPE(cft->private);
3905         u64 threshold, usage;
3906         int i, size, ret;
3907
3908         ret = res_counter_memparse_write_strategy(args, &threshold);
3909         if (ret)
3910                 return ret;
3911
3912         mutex_lock(&memcg->thresholds_lock);
3913
3914         if (type == _MEM)
3915                 thresholds = &memcg->thresholds;
3916         else if (type == _MEMSWAP)
3917                 thresholds = &memcg->memsw_thresholds;
3918         else
3919                 BUG();
3920
3921         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3922
3923         /* Check if a threshold crossed before adding a new one */
3924         if (thresholds->primary)
3925                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3926
3927         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3928
3929         /* Allocate memory for new array of thresholds */
3930         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3931                         GFP_KERNEL);
3932         if (!new) {
3933                 ret = -ENOMEM;
3934                 goto unlock;
3935         }
3936         new->size = size;
3937
3938         /* Copy thresholds (if any) to new array */
3939         if (thresholds->primary) {
3940                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3941                                 sizeof(struct mem_cgroup_threshold));
3942         }
3943
3944         /* Add new threshold */
3945         new->entries[size - 1].eventfd = eventfd;
3946         new->entries[size - 1].threshold = threshold;
3947
3948         /* Sort thresholds. Registering of new threshold isn't time-critical */
3949         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3950                         compare_thresholds, NULL);
3951
3952         /* Find current threshold */
3953         new->current_threshold = -1;
3954         for (i = 0; i < size; i++) {
3955                 if (new->entries[i].threshold < usage) {
3956                         /*
3957                          * new->current_threshold will not be used until
3958                          * rcu_assign_pointer(), so it's safe to increment
3959                          * it here.
3960                          */
3961                         ++new->current_threshold;
3962                 }
3963         }
3964
3965         /* Free old spare buffer and save old primary buffer as spare */
3966         kfree(thresholds->spare);
3967         thresholds->spare = thresholds->primary;
3968
3969         rcu_assign_pointer(thresholds->primary, new);
3970
3971         /* To be sure that nobody uses thresholds */
3972         synchronize_rcu();
3973
3974 unlock:
3975         mutex_unlock(&memcg->thresholds_lock);
3976
3977         return ret;
3978 }
3979
3980 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3981         struct cftype *cft, struct eventfd_ctx *eventfd)
3982 {
3983         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3984         struct mem_cgroup_thresholds *thresholds;
3985         struct mem_cgroup_threshold_ary *new;
3986         int type = MEMFILE_TYPE(cft->private);
3987         u64 usage;
3988         int i, j, size;
3989
3990         mutex_lock(&memcg->thresholds_lock);
3991         if (type == _MEM)
3992                 thresholds = &memcg->thresholds;
3993         else if (type == _MEMSWAP)
3994                 thresholds = &memcg->memsw_thresholds;
3995         else
3996                 BUG();
3997
3998         /*
3999          * Something went wrong if we trying to unregister a threshold
4000          * if we don't have thresholds
4001          */
4002         BUG_ON(!thresholds);
4003
4004         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4005
4006         /* Check if a threshold crossed before removing */
4007         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4008
4009         /* Calculate new number of threshold */
4010         size = 0;
4011         for (i = 0; i < thresholds->primary->size; i++) {
4012                 if (thresholds->primary->entries[i].eventfd != eventfd)
4013                         size++;
4014         }
4015
4016         new = thresholds->spare;
4017
4018         /* Set thresholds array to NULL if we don't have thresholds */
4019         if (!size) {
4020                 kfree(new);
4021                 new = NULL;
4022                 goto swap_buffers;
4023         }
4024
4025         new->size = size;
4026
4027         /* Copy thresholds and find current threshold */
4028         new->current_threshold = -1;
4029         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4030                 if (thresholds->primary->entries[i].eventfd == eventfd)
4031                         continue;
4032
4033                 new->entries[j] = thresholds->primary->entries[i];
4034                 if (new->entries[j].threshold < usage) {
4035                         /*
4036                          * new->current_threshold will not be used
4037                          * until rcu_assign_pointer(), so it's safe to increment
4038                          * it here.
4039                          */
4040                         ++new->current_threshold;
4041                 }
4042                 j++;
4043         }
4044
4045 swap_buffers:
4046         /* Swap primary and spare array */
4047         thresholds->spare = thresholds->primary;
4048         rcu_assign_pointer(thresholds->primary, new);
4049
4050         /* To be sure that nobody uses thresholds */
4051         synchronize_rcu();
4052
4053         mutex_unlock(&memcg->thresholds_lock);
4054 }
4055
4056 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4057         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4058 {
4059         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4060         struct mem_cgroup_eventfd_list *event;
4061         int type = MEMFILE_TYPE(cft->private);
4062
4063         BUG_ON(type != _OOM_TYPE);
4064         event = kmalloc(sizeof(*event), GFP_KERNEL);
4065         if (!event)
4066                 return -ENOMEM;
4067
4068         mutex_lock(&memcg_oom_mutex);
4069
4070         event->eventfd = eventfd;
4071         list_add(&event->list, &memcg->oom_notify);
4072
4073         /* already in OOM ? */
4074         if (atomic_read(&memcg->oom_lock))
4075                 eventfd_signal(eventfd, 1);
4076         mutex_unlock(&memcg_oom_mutex);
4077
4078         return 0;
4079 }
4080
4081 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4082         struct cftype *cft, struct eventfd_ctx *eventfd)
4083 {
4084         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4085         struct mem_cgroup_eventfd_list *ev, *tmp;
4086         int type = MEMFILE_TYPE(cft->private);
4087
4088         BUG_ON(type != _OOM_TYPE);
4089
4090         mutex_lock(&memcg_oom_mutex);
4091
4092         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4093                 if (ev->eventfd == eventfd) {
4094                         list_del(&ev->list);
4095                         kfree(ev);
4096                 }
4097         }
4098
4099         mutex_unlock(&memcg_oom_mutex);
4100 }
4101
4102 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4103         struct cftype *cft,  struct cgroup_map_cb *cb)
4104 {
4105         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4106
4107         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4108
4109         if (atomic_read(&mem->oom_lock))
4110                 cb->fill(cb, "under_oom", 1);
4111         else
4112                 cb->fill(cb, "under_oom", 0);
4113         return 0;
4114 }
4115
4116 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4117         struct cftype *cft, u64 val)
4118 {
4119         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4120         struct mem_cgroup *parent;
4121
4122         /* cannot set to root cgroup and only 0 and 1 are allowed */
4123         if (!cgrp->parent || !((val == 0) || (val == 1)))
4124                 return -EINVAL;
4125
4126         parent = mem_cgroup_from_cont(cgrp->parent);
4127
4128         cgroup_lock();
4129         /* oom-kill-disable is a flag for subhierarchy. */
4130         if ((parent->use_hierarchy) ||
4131             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4132                 cgroup_unlock();
4133                 return -EINVAL;
4134         }
4135         mem->oom_kill_disable = val;
4136         if (!val)
4137                 memcg_oom_recover(mem);
4138         cgroup_unlock();
4139         return 0;
4140 }
4141
4142 static struct cftype mem_cgroup_files[] = {
4143         {
4144                 .name = "usage_in_bytes",
4145                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4146                 .read_u64 = mem_cgroup_read,
4147                 .register_event = mem_cgroup_usage_register_event,
4148                 .unregister_event = mem_cgroup_usage_unregister_event,
4149         },
4150         {
4151                 .name = "max_usage_in_bytes",
4152                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4153                 .trigger = mem_cgroup_reset,
4154                 .read_u64 = mem_cgroup_read,
4155         },
4156         {
4157                 .name = "limit_in_bytes",
4158                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4159                 .write_string = mem_cgroup_write,
4160                 .read_u64 = mem_cgroup_read,
4161         },
4162         {
4163                 .name = "soft_limit_in_bytes",
4164                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4165                 .write_string = mem_cgroup_write,
4166                 .read_u64 = mem_cgroup_read,
4167         },
4168         {
4169                 .name = "failcnt",
4170                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4171                 .trigger = mem_cgroup_reset,
4172                 .read_u64 = mem_cgroup_read,
4173         },
4174         {
4175                 .name = "stat",
4176                 .read_map = mem_control_stat_show,
4177         },
4178         {
4179                 .name = "force_empty",
4180                 .trigger = mem_cgroup_force_empty_write,
4181         },
4182         {
4183                 .name = "use_hierarchy",
4184                 .write_u64 = mem_cgroup_hierarchy_write,
4185                 .read_u64 = mem_cgroup_hierarchy_read,
4186         },
4187         {
4188                 .name = "swappiness",
4189                 .read_u64 = mem_cgroup_swappiness_read,
4190                 .write_u64 = mem_cgroup_swappiness_write,
4191         },
4192         {
4193                 .name = "move_charge_at_immigrate",
4194                 .read_u64 = mem_cgroup_move_charge_read,
4195                 .write_u64 = mem_cgroup_move_charge_write,
4196         },
4197         {
4198                 .name = "oom_control",
4199                 .read_map = mem_cgroup_oom_control_read,
4200                 .write_u64 = mem_cgroup_oom_control_write,
4201                 .register_event = mem_cgroup_oom_register_event,
4202                 .unregister_event = mem_cgroup_oom_unregister_event,
4203                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4204         },
4205 };
4206
4207 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4208 static struct cftype memsw_cgroup_files[] = {
4209         {
4210                 .name = "memsw.usage_in_bytes",
4211                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4212                 .read_u64 = mem_cgroup_read,
4213                 .register_event = mem_cgroup_usage_register_event,
4214                 .unregister_event = mem_cgroup_usage_unregister_event,
4215         },
4216         {
4217                 .name = "memsw.max_usage_in_bytes",
4218                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4219                 .trigger = mem_cgroup_reset,
4220                 .read_u64 = mem_cgroup_read,
4221         },
4222         {
4223                 .name = "memsw.limit_in_bytes",
4224                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4225                 .write_string = mem_cgroup_write,
4226                 .read_u64 = mem_cgroup_read,
4227         },
4228         {
4229                 .name = "memsw.failcnt",
4230                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4231                 .trigger = mem_cgroup_reset,
4232                 .read_u64 = mem_cgroup_read,
4233         },
4234 };
4235
4236 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4237 {
4238         if (!do_swap_account)
4239                 return 0;
4240         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4241                                 ARRAY_SIZE(memsw_cgroup_files));
4242 };
4243 #else
4244 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4245 {
4246         return 0;
4247 }
4248 #endif
4249
4250 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4251 {
4252         struct mem_cgroup_per_node *pn;
4253         struct mem_cgroup_per_zone *mz;
4254         enum lru_list l;
4255         int zone, tmp = node;
4256         /*
4257          * This routine is called against possible nodes.
4258          * But it's BUG to call kmalloc() against offline node.
4259          *
4260          * TODO: this routine can waste much memory for nodes which will
4261          *       never be onlined. It's better to use memory hotplug callback
4262          *       function.
4263          */
4264         if (!node_state(node, N_NORMAL_MEMORY))
4265                 tmp = -1;
4266         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4267         if (!pn)
4268                 return 1;
4269
4270         mem->info.nodeinfo[node] = pn;
4271         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4272                 mz = &pn->zoneinfo[zone];
4273                 for_each_lru(l)
4274                         INIT_LIST_HEAD(&mz->lists[l]);
4275                 mz->usage_in_excess = 0;
4276                 mz->on_tree = false;
4277                 mz->mem = mem;
4278         }
4279         return 0;
4280 }
4281
4282 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4283 {
4284         kfree(mem->info.nodeinfo[node]);
4285 }
4286
4287 static struct mem_cgroup *mem_cgroup_alloc(void)
4288 {
4289         struct mem_cgroup *mem;
4290         int size = sizeof(struct mem_cgroup);
4291
4292         /* Can be very big if MAX_NUMNODES is very big */
4293         if (size < PAGE_SIZE)
4294                 mem = kzalloc(size, GFP_KERNEL);
4295         else
4296                 mem = vzalloc(size);
4297
4298         if (!mem)
4299                 return NULL;
4300
4301         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4302         if (!mem->stat)
4303                 goto out_free;
4304         spin_lock_init(&mem->pcp_counter_lock);
4305         return mem;
4306
4307 out_free:
4308         if (size < PAGE_SIZE)
4309                 kfree(mem);
4310         else
4311                 vfree(mem);
4312         return NULL;
4313 }
4314
4315 /*
4316  * At destroying mem_cgroup, references from swap_cgroup can remain.
4317  * (scanning all at force_empty is too costly...)
4318  *
4319  * Instead of clearing all references at force_empty, we remember
4320  * the number of reference from swap_cgroup and free mem_cgroup when
4321  * it goes down to 0.
4322  *
4323  * Removal of cgroup itself succeeds regardless of refs from swap.
4324  */
4325
4326 static void __mem_cgroup_free(struct mem_cgroup *mem)
4327 {
4328         int node;
4329
4330         mem_cgroup_remove_from_trees(mem);
4331         free_css_id(&mem_cgroup_subsys, &mem->css);
4332
4333         for_each_node_state(node, N_POSSIBLE)
4334                 free_mem_cgroup_per_zone_info(mem, node);
4335
4336         free_percpu(mem->stat);
4337         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4338                 kfree(mem);
4339         else
4340                 vfree(mem);
4341 }
4342
4343 static void mem_cgroup_get(struct mem_cgroup *mem)
4344 {
4345         atomic_inc(&mem->refcnt);
4346 }
4347
4348 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4349 {
4350         if (atomic_sub_and_test(count, &mem->refcnt)) {
4351                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4352                 __mem_cgroup_free(mem);
4353                 if (parent)
4354                         mem_cgroup_put(parent);
4355         }
4356 }
4357
4358 static void mem_cgroup_put(struct mem_cgroup *mem)
4359 {
4360         __mem_cgroup_put(mem, 1);
4361 }
4362
4363 /*
4364  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4365  */
4366 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4367 {
4368         if (!mem->res.parent)
4369                 return NULL;
4370         return mem_cgroup_from_res_counter(mem->res.parent, res);
4371 }
4372
4373 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4374 static void __init enable_swap_cgroup(void)
4375 {
4376         if (!mem_cgroup_disabled() && really_do_swap_account)
4377                 do_swap_account = 1;
4378 }
4379 #else
4380 static void __init enable_swap_cgroup(void)
4381 {
4382 }
4383 #endif
4384
4385 static int mem_cgroup_soft_limit_tree_init(void)
4386 {
4387         struct mem_cgroup_tree_per_node *rtpn;
4388         struct mem_cgroup_tree_per_zone *rtpz;
4389         int tmp, node, zone;
4390
4391         for_each_node_state(node, N_POSSIBLE) {
4392                 tmp = node;
4393                 if (!node_state(node, N_NORMAL_MEMORY))
4394                         tmp = -1;
4395                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4396                 if (!rtpn)
4397                         return 1;
4398
4399                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4400
4401                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4402                         rtpz = &rtpn->rb_tree_per_zone[zone];
4403                         rtpz->rb_root = RB_ROOT;
4404                         spin_lock_init(&rtpz->lock);
4405                 }
4406         }
4407         return 0;
4408 }
4409
4410 static struct cgroup_subsys_state * __ref
4411 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4412 {
4413         struct mem_cgroup *mem, *parent;
4414         long error = -ENOMEM;
4415         int node;
4416
4417         mem = mem_cgroup_alloc();
4418         if (!mem)
4419                 return ERR_PTR(error);
4420
4421         for_each_node_state(node, N_POSSIBLE)
4422                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4423                         goto free_out;
4424
4425         /* root ? */
4426         if (cont->parent == NULL) {
4427                 int cpu;
4428                 enable_swap_cgroup();
4429                 parent = NULL;
4430                 root_mem_cgroup = mem;
4431                 if (mem_cgroup_soft_limit_tree_init())
4432                         goto free_out;
4433                 for_each_possible_cpu(cpu) {
4434                         struct memcg_stock_pcp *stock =
4435                                                 &per_cpu(memcg_stock, cpu);
4436                         INIT_WORK(&stock->work, drain_local_stock);
4437                 }
4438                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4439         } else {
4440                 parent = mem_cgroup_from_cont(cont->parent);
4441                 mem->use_hierarchy = parent->use_hierarchy;
4442                 mem->oom_kill_disable = parent->oom_kill_disable;
4443         }
4444
4445         if (parent && parent->use_hierarchy) {
4446                 res_counter_init(&mem->res, &parent->res);
4447                 res_counter_init(&mem->memsw, &parent->memsw);
4448                 /*
4449                  * We increment refcnt of the parent to ensure that we can
4450                  * safely access it on res_counter_charge/uncharge.
4451                  * This refcnt will be decremented when freeing this
4452                  * mem_cgroup(see mem_cgroup_put).
4453                  */
4454                 mem_cgroup_get(parent);
4455         } else {
4456                 res_counter_init(&mem->res, NULL);
4457                 res_counter_init(&mem->memsw, NULL);
4458         }
4459         mem->last_scanned_child = 0;
4460         spin_lock_init(&mem->reclaim_param_lock);
4461         INIT_LIST_HEAD(&mem->oom_notify);
4462
4463         if (parent)
4464                 mem->swappiness = get_swappiness(parent);
4465         atomic_set(&mem->refcnt, 1);
4466         mem->move_charge_at_immigrate = 0;
4467         mutex_init(&mem->thresholds_lock);
4468         return &mem->css;
4469 free_out:
4470         __mem_cgroup_free(mem);
4471         root_mem_cgroup = NULL;
4472         return ERR_PTR(error);
4473 }
4474
4475 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4476                                         struct cgroup *cont)
4477 {
4478         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4479
4480         return mem_cgroup_force_empty(mem, false);
4481 }
4482
4483 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4484                                 struct cgroup *cont)
4485 {
4486         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4487
4488         mem_cgroup_put(mem);
4489 }
4490
4491 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4492                                 struct cgroup *cont)
4493 {
4494         int ret;
4495
4496         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4497                                 ARRAY_SIZE(mem_cgroup_files));
4498
4499         if (!ret)
4500                 ret = register_memsw_files(cont, ss);
4501         return ret;
4502 }
4503
4504 #ifdef CONFIG_MMU
4505 /* Handlers for move charge at task migration. */
4506 #define PRECHARGE_COUNT_AT_ONCE 256
4507 static int mem_cgroup_do_precharge(unsigned long count)
4508 {
4509         int ret = 0;
4510         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4511         struct mem_cgroup *mem = mc.to;
4512
4513         if (mem_cgroup_is_root(mem)) {
4514                 mc.precharge += count;
4515                 /* we don't need css_get for root */
4516                 return ret;
4517         }
4518         /* try to charge at once */
4519         if (count > 1) {
4520                 struct res_counter *dummy;
4521                 /*
4522                  * "mem" cannot be under rmdir() because we've already checked
4523                  * by cgroup_lock_live_cgroup() that it is not removed and we
4524                  * are still under the same cgroup_mutex. So we can postpone
4525                  * css_get().
4526                  */
4527                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4528                         goto one_by_one;
4529                 if (do_swap_account && res_counter_charge(&mem->memsw,
4530                                                 PAGE_SIZE * count, &dummy)) {
4531                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4532                         goto one_by_one;
4533                 }
4534                 mc.precharge += count;
4535                 return ret;
4536         }
4537 one_by_one:
4538         /* fall back to one by one charge */
4539         while (count--) {
4540                 if (signal_pending(current)) {
4541                         ret = -EINTR;
4542                         break;
4543                 }
4544                 if (!batch_count--) {
4545                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4546                         cond_resched();
4547                 }
4548                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4549                                               PAGE_SIZE);
4550                 if (ret || !mem)
4551                         /* mem_cgroup_clear_mc() will do uncharge later */
4552                         return -ENOMEM;
4553                 mc.precharge++;
4554         }
4555         return ret;
4556 }
4557
4558 /**
4559  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4560  * @vma: the vma the pte to be checked belongs
4561  * @addr: the address corresponding to the pte to be checked
4562  * @ptent: the pte to be checked
4563  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564  *
4565  * Returns
4566  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568  *     move charge. if @target is not NULL, the page is stored in target->page
4569  *     with extra refcnt got(Callers should handle it).
4570  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571  *     target for charge migration. if @target is not NULL, the entry is stored
4572  *     in target->ent.
4573  *
4574  * Called with pte lock held.
4575  */
4576 union mc_target {
4577         struct page     *page;
4578         swp_entry_t     ent;
4579 };
4580
4581 enum mc_target_type {
4582         MC_TARGET_NONE, /* not used */
4583         MC_TARGET_PAGE,
4584         MC_TARGET_SWAP,
4585 };
4586
4587 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4588                                                 unsigned long addr, pte_t ptent)
4589 {
4590         struct page *page = vm_normal_page(vma, addr, ptent);
4591
4592         if (!page || !page_mapped(page))
4593                 return NULL;
4594         if (PageAnon(page)) {
4595                 /* we don't move shared anon */
4596                 if (!move_anon() || page_mapcount(page) > 2)
4597                         return NULL;
4598         } else if (!move_file())
4599                 /* we ignore mapcount for file pages */
4600                 return NULL;
4601         if (!get_page_unless_zero(page))
4602                 return NULL;
4603
4604         return page;
4605 }
4606
4607 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4608                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4609 {
4610         int usage_count;
4611         struct page *page = NULL;
4612         swp_entry_t ent = pte_to_swp_entry(ptent);
4613
4614         if (!move_anon() || non_swap_entry(ent))
4615                 return NULL;
4616         usage_count = mem_cgroup_count_swap_user(ent, &page);
4617         if (usage_count > 1) { /* we don't move shared anon */
4618                 if (page)
4619                         put_page(page);
4620                 return NULL;
4621         }
4622         if (do_swap_account)
4623                 entry->val = ent.val;
4624
4625         return page;
4626 }
4627
4628 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4629                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4630 {
4631         struct page *page = NULL;
4632         struct inode *inode;
4633         struct address_space *mapping;
4634         pgoff_t pgoff;
4635
4636         if (!vma->vm_file) /* anonymous vma */
4637                 return NULL;
4638         if (!move_file())
4639                 return NULL;
4640
4641         inode = vma->vm_file->f_path.dentry->d_inode;
4642         mapping = vma->vm_file->f_mapping;
4643         if (pte_none(ptent))
4644                 pgoff = linear_page_index(vma, addr);
4645         else /* pte_file(ptent) is true */
4646                 pgoff = pte_to_pgoff(ptent);
4647
4648         /* page is moved even if it's not RSS of this task(page-faulted). */
4649         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4650                 page = find_get_page(mapping, pgoff);
4651         } else { /* shmem/tmpfs file. we should take account of swap too. */
4652                 swp_entry_t ent;
4653                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4654                 if (do_swap_account)
4655                         entry->val = ent.val;
4656         }
4657
4658         return page;
4659 }
4660
4661 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4662                 unsigned long addr, pte_t ptent, union mc_target *target)
4663 {
4664         struct page *page = NULL;
4665         struct page_cgroup *pc;
4666         int ret = 0;
4667         swp_entry_t ent = { .val = 0 };
4668
4669         if (pte_present(ptent))
4670                 page = mc_handle_present_pte(vma, addr, ptent);
4671         else if (is_swap_pte(ptent))
4672                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4673         else if (pte_none(ptent) || pte_file(ptent))
4674                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4675
4676         if (!page && !ent.val)
4677                 return 0;
4678         if (page) {
4679                 pc = lookup_page_cgroup(page);
4680                 /*
4681                  * Do only loose check w/o page_cgroup lock.
4682                  * mem_cgroup_move_account() checks the pc is valid or not under
4683                  * the lock.
4684                  */
4685                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4686                         ret = MC_TARGET_PAGE;
4687                         if (target)
4688                                 target->page = page;
4689                 }
4690                 if (!ret || !target)
4691                         put_page(page);
4692         }
4693         /* There is a swap entry and a page doesn't exist or isn't charged */
4694         if (ent.val && !ret &&
4695                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4696                 ret = MC_TARGET_SWAP;
4697                 if (target)
4698                         target->ent = ent;
4699         }
4700         return ret;
4701 }
4702
4703 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4704                                         unsigned long addr, unsigned long end,
4705                                         struct mm_walk *walk)
4706 {
4707         struct vm_area_struct *vma = walk->private;
4708         pte_t *pte;
4709         spinlock_t *ptl;
4710
4711         VM_BUG_ON(pmd_trans_huge(*pmd));
4712         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4713         for (; addr != end; pte++, addr += PAGE_SIZE)
4714                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4715                         mc.precharge++; /* increment precharge temporarily */
4716         pte_unmap_unlock(pte - 1, ptl);
4717         cond_resched();
4718
4719         return 0;
4720 }
4721
4722 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4723 {
4724         unsigned long precharge;
4725         struct vm_area_struct *vma;
4726
4727         down_read(&mm->mmap_sem);
4728         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4729                 struct mm_walk mem_cgroup_count_precharge_walk = {
4730                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4731                         .mm = mm,
4732                         .private = vma,
4733                 };
4734                 if (is_vm_hugetlb_page(vma))
4735                         continue;
4736                 walk_page_range(vma->vm_start, vma->vm_end,
4737                                         &mem_cgroup_count_precharge_walk);
4738         }
4739         up_read(&mm->mmap_sem);
4740
4741         precharge = mc.precharge;
4742         mc.precharge = 0;
4743
4744         return precharge;
4745 }
4746
4747 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4748 {
4749         unsigned long precharge = mem_cgroup_count_precharge(mm);
4750
4751         VM_BUG_ON(mc.moving_task);
4752         mc.moving_task = current;
4753         return mem_cgroup_do_precharge(precharge);
4754 }
4755
4756 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4757 static void __mem_cgroup_clear_mc(void)
4758 {
4759         struct mem_cgroup *from = mc.from;
4760         struct mem_cgroup *to = mc.to;
4761
4762         /* we must uncharge all the leftover precharges from mc.to */
4763         if (mc.precharge) {
4764                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4765                 mc.precharge = 0;
4766         }
4767         /*
4768          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4769          * we must uncharge here.
4770          */
4771         if (mc.moved_charge) {
4772                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4773                 mc.moved_charge = 0;
4774         }
4775         /* we must fixup refcnts and charges */
4776         if (mc.moved_swap) {
4777                 /* uncharge swap account from the old cgroup */
4778                 if (!mem_cgroup_is_root(mc.from))
4779                         res_counter_uncharge(&mc.from->memsw,
4780                                                 PAGE_SIZE * mc.moved_swap);
4781                 __mem_cgroup_put(mc.from, mc.moved_swap);
4782
4783                 if (!mem_cgroup_is_root(mc.to)) {
4784                         /*
4785                          * we charged both to->res and to->memsw, so we should
4786                          * uncharge to->res.
4787                          */
4788                         res_counter_uncharge(&mc.to->res,
4789                                                 PAGE_SIZE * mc.moved_swap);
4790                 }
4791                 /* we've already done mem_cgroup_get(mc.to) */
4792                 mc.moved_swap = 0;
4793         }
4794         memcg_oom_recover(from);
4795         memcg_oom_recover(to);
4796         wake_up_all(&mc.waitq);
4797 }
4798
4799 static void mem_cgroup_clear_mc(void)
4800 {
4801         struct mem_cgroup *from = mc.from;
4802
4803         /*
4804          * we must clear moving_task before waking up waiters at the end of
4805          * task migration.
4806          */
4807         mc.moving_task = NULL;
4808         __mem_cgroup_clear_mc();
4809         spin_lock(&mc.lock);
4810         mc.from = NULL;
4811         mc.to = NULL;
4812         spin_unlock(&mc.lock);
4813         mem_cgroup_end_move(from);
4814 }
4815
4816 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4817                                 struct cgroup *cgroup,
4818                                 struct task_struct *p,
4819                                 bool threadgroup)
4820 {
4821         int ret = 0;
4822         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4823
4824         if (mem->move_charge_at_immigrate) {
4825                 struct mm_struct *mm;
4826                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4827
4828                 VM_BUG_ON(from == mem);
4829
4830                 mm = get_task_mm(p);
4831                 if (!mm)
4832                         return 0;
4833                 /* We move charges only when we move a owner of the mm */
4834                 if (mm->owner == p) {
4835                         VM_BUG_ON(mc.from);
4836                         VM_BUG_ON(mc.to);
4837                         VM_BUG_ON(mc.precharge);
4838                         VM_BUG_ON(mc.moved_charge);
4839                         VM_BUG_ON(mc.moved_swap);
4840                         mem_cgroup_start_move(from);
4841                         spin_lock(&mc.lock);
4842                         mc.from = from;
4843                         mc.to = mem;
4844                         spin_unlock(&mc.lock);
4845                         /* We set mc.moving_task later */
4846
4847                         ret = mem_cgroup_precharge_mc(mm);
4848                         if (ret)
4849                                 mem_cgroup_clear_mc();
4850                 }
4851                 mmput(mm);
4852         }
4853         return ret;
4854 }
4855
4856 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4857                                 struct cgroup *cgroup,
4858                                 struct task_struct *p,
4859                                 bool threadgroup)
4860 {
4861         mem_cgroup_clear_mc();
4862 }
4863
4864 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4865                                 unsigned long addr, unsigned long end,
4866                                 struct mm_walk *walk)
4867 {
4868         int ret = 0;
4869         struct vm_area_struct *vma = walk->private;
4870         pte_t *pte;
4871         spinlock_t *ptl;
4872
4873 retry:
4874         VM_BUG_ON(pmd_trans_huge(*pmd));
4875         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4876         for (; addr != end; addr += PAGE_SIZE) {
4877                 pte_t ptent = *(pte++);
4878                 union mc_target target;
4879                 int type;
4880                 struct page *page;
4881                 struct page_cgroup *pc;
4882                 swp_entry_t ent;
4883
4884                 if (!mc.precharge)
4885                         break;
4886
4887                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4888                 switch (type) {
4889                 case MC_TARGET_PAGE:
4890                         page = target.page;
4891                         if (isolate_lru_page(page))
4892                                 goto put;
4893                         pc = lookup_page_cgroup(page);
4894                         if (!mem_cgroup_move_account(pc,
4895                                         mc.from, mc.to, false, PAGE_SIZE)) {
4896                                 mc.precharge--;
4897                                 /* we uncharge from mc.from later. */
4898                                 mc.moved_charge++;
4899                         }
4900                         putback_lru_page(page);
4901 put:                    /* is_target_pte_for_mc() gets the page */
4902                         put_page(page);
4903                         break;
4904                 case MC_TARGET_SWAP:
4905                         ent = target.ent;
4906                         if (!mem_cgroup_move_swap_account(ent,
4907                                                 mc.from, mc.to, false)) {
4908                                 mc.precharge--;
4909                                 /* we fixup refcnts and charges later. */
4910                                 mc.moved_swap++;
4911                         }
4912                         break;
4913                 default:
4914                         break;
4915                 }
4916         }
4917         pte_unmap_unlock(pte - 1, ptl);
4918         cond_resched();
4919
4920         if (addr != end) {
4921                 /*
4922                  * We have consumed all precharges we got in can_attach().
4923                  * We try charge one by one, but don't do any additional
4924                  * charges to mc.to if we have failed in charge once in attach()
4925                  * phase.
4926                  */
4927                 ret = mem_cgroup_do_precharge(1);
4928                 if (!ret)
4929                         goto retry;
4930         }
4931
4932         return ret;
4933 }
4934
4935 static void mem_cgroup_move_charge(struct mm_struct *mm)
4936 {
4937         struct vm_area_struct *vma;
4938
4939         lru_add_drain_all();
4940 retry:
4941         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4942                 /*
4943                  * Someone who are holding the mmap_sem might be waiting in
4944                  * waitq. So we cancel all extra charges, wake up all waiters,
4945                  * and retry. Because we cancel precharges, we might not be able
4946                  * to move enough charges, but moving charge is a best-effort
4947                  * feature anyway, so it wouldn't be a big problem.
4948                  */
4949                 __mem_cgroup_clear_mc();
4950                 cond_resched();
4951                 goto retry;
4952         }
4953         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4954                 int ret;
4955                 struct mm_walk mem_cgroup_move_charge_walk = {
4956                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4957                         .mm = mm,
4958                         .private = vma,
4959                 };
4960                 if (is_vm_hugetlb_page(vma))
4961                         continue;
4962                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4963                                                 &mem_cgroup_move_charge_walk);
4964                 if (ret)
4965                         /*
4966                          * means we have consumed all precharges and failed in
4967                          * doing additional charge. Just abandon here.
4968                          */
4969                         break;
4970         }
4971         up_read(&mm->mmap_sem);
4972 }
4973
4974 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4975                                 struct cgroup *cont,
4976                                 struct cgroup *old_cont,
4977                                 struct task_struct *p,
4978                                 bool threadgroup)
4979 {
4980         struct mm_struct *mm;
4981
4982         if (!mc.to)
4983                 /* no need to move charge */
4984                 return;
4985
4986         mm = get_task_mm(p);
4987         if (mm) {
4988                 mem_cgroup_move_charge(mm);
4989                 mmput(mm);
4990         }
4991         mem_cgroup_clear_mc();
4992 }
4993 #else   /* !CONFIG_MMU */
4994 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4995                                 struct cgroup *cgroup,
4996                                 struct task_struct *p,
4997                                 bool threadgroup)
4998 {
4999         return 0;
5000 }
5001 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5002                                 struct cgroup *cgroup,
5003                                 struct task_struct *p,
5004                                 bool threadgroup)
5005 {
5006 }
5007 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5008                                 struct cgroup *cont,
5009                                 struct cgroup *old_cont,
5010                                 struct task_struct *p,
5011                                 bool threadgroup)
5012 {
5013 }
5014 #endif
5015
5016 struct cgroup_subsys mem_cgroup_subsys = {
5017         .name = "memory",
5018         .subsys_id = mem_cgroup_subsys_id,
5019         .create = mem_cgroup_create,
5020         .pre_destroy = mem_cgroup_pre_destroy,
5021         .destroy = mem_cgroup_destroy,
5022         .populate = mem_cgroup_populate,
5023         .can_attach = mem_cgroup_can_attach,
5024         .cancel_attach = mem_cgroup_cancel_attach,
5025         .attach = mem_cgroup_move_task,
5026         .early_init = 0,
5027         .use_id = 1,
5028 };
5029
5030 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5031 static int __init enable_swap_account(char *s)
5032 {
5033         /* consider enabled if no parameter or 1 is given */
5034         if (!(*s) || !strcmp(s, "=1"))
5035                 really_do_swap_account = 1;
5036         else if (!strcmp(s, "=0"))
5037                 really_do_swap_account = 0;
5038         return 1;
5039 }
5040 __setup("swapaccount", enable_swap_account);
5041
5042 static int __init disable_swap_account(char *s)
5043 {
5044         printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5045         enable_swap_account("=0");
5046         return 1;
5047 }
5048 __setup("noswapaccount", disable_swap_account);
5049 #endif