]> Pileus Git - ~andy/linux/blob - mm/ksm.c
e10dc24508f4c4e20fe37523bf3470da8f936611
[~andy/linux] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  */
91
92 /**
93  * struct mm_slot - ksm information per mm that is being scanned
94  * @link: link to the mm_slots hash list
95  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
96  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
97  * @mm: the mm that this information is valid for
98  */
99 struct mm_slot {
100         struct hlist_node link;
101         struct list_head mm_list;
102         struct rmap_item *rmap_list;
103         struct mm_struct *mm;
104 };
105
106 /**
107  * struct ksm_scan - cursor for scanning
108  * @mm_slot: the current mm_slot we are scanning
109  * @address: the next address inside that to be scanned
110  * @rmap_list: link to the next rmap to be scanned in the rmap_list
111  * @seqnr: count of completed full scans (needed when removing unstable node)
112  *
113  * There is only the one ksm_scan instance of this cursor structure.
114  */
115 struct ksm_scan {
116         struct mm_slot *mm_slot;
117         unsigned long address;
118         struct rmap_item **rmap_list;
119         unsigned long seqnr;
120 };
121
122 /**
123  * struct stable_node - node of the stable rbtree
124  * @node: rb node of this ksm page in the stable tree
125  * @hlist: hlist head of rmap_items using this ksm page
126  * @kpfn: page frame number of this ksm page
127  */
128 struct stable_node {
129         struct rb_node node;
130         struct hlist_head hlist;
131         unsigned long kpfn;
132 };
133
134 /**
135  * struct rmap_item - reverse mapping item for virtual addresses
136  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
137  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
138  * @mm: the memory structure this rmap_item is pointing into
139  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
140  * @oldchecksum: previous checksum of the page at that virtual address
141  * @nid: NUMA node id of unstable tree in which linked (may not match page)
142  * @node: rb node of this rmap_item in the unstable tree
143  * @head: pointer to stable_node heading this list in the stable tree
144  * @hlist: link into hlist of rmap_items hanging off that stable_node
145  */
146 struct rmap_item {
147         struct rmap_item *rmap_list;
148         struct anon_vma *anon_vma;      /* when stable */
149         struct mm_struct *mm;
150         unsigned long address;          /* + low bits used for flags below */
151         unsigned int oldchecksum;       /* when unstable */
152 #ifdef CONFIG_NUMA
153         int nid;
154 #endif
155         union {
156                 struct rb_node node;    /* when node of unstable tree */
157                 struct {                /* when listed from stable tree */
158                         struct stable_node *head;
159                         struct hlist_node hlist;
160                 };
161         };
162 };
163
164 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
165 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
166 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
167
168 /* The stable and unstable tree heads */
169 static struct rb_root root_unstable_tree[MAX_NUMNODES];
170 static struct rb_root root_stable_tree[MAX_NUMNODES];
171
172 #define MM_SLOTS_HASH_BITS 10
173 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
174
175 static struct mm_slot ksm_mm_head = {
176         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
177 };
178 static struct ksm_scan ksm_scan = {
179         .mm_slot = &ksm_mm_head,
180 };
181
182 static struct kmem_cache *rmap_item_cache;
183 static struct kmem_cache *stable_node_cache;
184 static struct kmem_cache *mm_slot_cache;
185
186 /* The number of nodes in the stable tree */
187 static unsigned long ksm_pages_shared;
188
189 /* The number of page slots additionally sharing those nodes */
190 static unsigned long ksm_pages_sharing;
191
192 /* The number of nodes in the unstable tree */
193 static unsigned long ksm_pages_unshared;
194
195 /* The number of rmap_items in use: to calculate pages_volatile */
196 static unsigned long ksm_rmap_items;
197
198 /* Number of pages ksmd should scan in one batch */
199 static unsigned int ksm_thread_pages_to_scan = 100;
200
201 /* Milliseconds ksmd should sleep between batches */
202 static unsigned int ksm_thread_sleep_millisecs = 20;
203
204 #ifdef CONFIG_NUMA
205 /* Zeroed when merging across nodes is not allowed */
206 static unsigned int ksm_merge_across_nodes = 1;
207 #else
208 #define ksm_merge_across_nodes  1U
209 #endif
210
211 #define KSM_RUN_STOP    0
212 #define KSM_RUN_MERGE   1
213 #define KSM_RUN_UNMERGE 2
214 static unsigned int ksm_run = KSM_RUN_STOP;
215
216 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
217 static DEFINE_MUTEX(ksm_thread_mutex);
218 static DEFINE_SPINLOCK(ksm_mmlist_lock);
219
220 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
221                 sizeof(struct __struct), __alignof__(struct __struct),\
222                 (__flags), NULL)
223
224 static int __init ksm_slab_init(void)
225 {
226         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
227         if (!rmap_item_cache)
228                 goto out;
229
230         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
231         if (!stable_node_cache)
232                 goto out_free1;
233
234         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
235         if (!mm_slot_cache)
236                 goto out_free2;
237
238         return 0;
239
240 out_free2:
241         kmem_cache_destroy(stable_node_cache);
242 out_free1:
243         kmem_cache_destroy(rmap_item_cache);
244 out:
245         return -ENOMEM;
246 }
247
248 static void __init ksm_slab_free(void)
249 {
250         kmem_cache_destroy(mm_slot_cache);
251         kmem_cache_destroy(stable_node_cache);
252         kmem_cache_destroy(rmap_item_cache);
253         mm_slot_cache = NULL;
254 }
255
256 static inline struct rmap_item *alloc_rmap_item(void)
257 {
258         struct rmap_item *rmap_item;
259
260         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
261         if (rmap_item)
262                 ksm_rmap_items++;
263         return rmap_item;
264 }
265
266 static inline void free_rmap_item(struct rmap_item *rmap_item)
267 {
268         ksm_rmap_items--;
269         rmap_item->mm = NULL;   /* debug safety */
270         kmem_cache_free(rmap_item_cache, rmap_item);
271 }
272
273 static inline struct stable_node *alloc_stable_node(void)
274 {
275         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
276 }
277
278 static inline void free_stable_node(struct stable_node *stable_node)
279 {
280         kmem_cache_free(stable_node_cache, stable_node);
281 }
282
283 static inline struct mm_slot *alloc_mm_slot(void)
284 {
285         if (!mm_slot_cache)     /* initialization failed */
286                 return NULL;
287         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
288 }
289
290 static inline void free_mm_slot(struct mm_slot *mm_slot)
291 {
292         kmem_cache_free(mm_slot_cache, mm_slot);
293 }
294
295 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
296 {
297         struct hlist_node *node;
298         struct mm_slot *slot;
299
300         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
301                 if (slot->mm == mm)
302                         return slot;
303
304         return NULL;
305 }
306
307 static void insert_to_mm_slots_hash(struct mm_struct *mm,
308                                     struct mm_slot *mm_slot)
309 {
310         mm_slot->mm = mm;
311         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
312 }
313
314 static inline int in_stable_tree(struct rmap_item *rmap_item)
315 {
316         return rmap_item->address & STABLE_FLAG;
317 }
318
319 /*
320  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
321  * page tables after it has passed through ksm_exit() - which, if necessary,
322  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
323  * a special flag: they can just back out as soon as mm_users goes to zero.
324  * ksm_test_exit() is used throughout to make this test for exit: in some
325  * places for correctness, in some places just to avoid unnecessary work.
326  */
327 static inline bool ksm_test_exit(struct mm_struct *mm)
328 {
329         return atomic_read(&mm->mm_users) == 0;
330 }
331
332 /*
333  * We use break_ksm to break COW on a ksm page: it's a stripped down
334  *
335  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
336  *              put_page(page);
337  *
338  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
339  * in case the application has unmapped and remapped mm,addr meanwhile.
340  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
341  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
342  */
343 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
344 {
345         struct page *page;
346         int ret = 0;
347
348         do {
349                 cond_resched();
350                 page = follow_page(vma, addr, FOLL_GET);
351                 if (IS_ERR_OR_NULL(page))
352                         break;
353                 if (PageKsm(page))
354                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
355                                                         FAULT_FLAG_WRITE);
356                 else
357                         ret = VM_FAULT_WRITE;
358                 put_page(page);
359         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
360         /*
361          * We must loop because handle_mm_fault() may back out if there's
362          * any difficulty e.g. if pte accessed bit gets updated concurrently.
363          *
364          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
365          * COW has been broken, even if the vma does not permit VM_WRITE;
366          * but note that a concurrent fault might break PageKsm for us.
367          *
368          * VM_FAULT_SIGBUS could occur if we race with truncation of the
369          * backing file, which also invalidates anonymous pages: that's
370          * okay, that truncation will have unmapped the PageKsm for us.
371          *
372          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
373          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
374          * current task has TIF_MEMDIE set, and will be OOM killed on return
375          * to user; and ksmd, having no mm, would never be chosen for that.
376          *
377          * But if the mm is in a limited mem_cgroup, then the fault may fail
378          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
379          * even ksmd can fail in this way - though it's usually breaking ksm
380          * just to undo a merge it made a moment before, so unlikely to oom.
381          *
382          * That's a pity: we might therefore have more kernel pages allocated
383          * than we're counting as nodes in the stable tree; but ksm_do_scan
384          * will retry to break_cow on each pass, so should recover the page
385          * in due course.  The important thing is to not let VM_MERGEABLE
386          * be cleared while any such pages might remain in the area.
387          */
388         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
389 }
390
391 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
392                 unsigned long addr)
393 {
394         struct vm_area_struct *vma;
395         if (ksm_test_exit(mm))
396                 return NULL;
397         vma = find_vma(mm, addr);
398         if (!vma || vma->vm_start > addr)
399                 return NULL;
400         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
401                 return NULL;
402         return vma;
403 }
404
405 static void break_cow(struct rmap_item *rmap_item)
406 {
407         struct mm_struct *mm = rmap_item->mm;
408         unsigned long addr = rmap_item->address;
409         struct vm_area_struct *vma;
410
411         /*
412          * It is not an accident that whenever we want to break COW
413          * to undo, we also need to drop a reference to the anon_vma.
414          */
415         put_anon_vma(rmap_item->anon_vma);
416
417         down_read(&mm->mmap_sem);
418         vma = find_mergeable_vma(mm, addr);
419         if (vma)
420                 break_ksm(vma, addr);
421         up_read(&mm->mmap_sem);
422 }
423
424 static struct page *page_trans_compound_anon(struct page *page)
425 {
426         if (PageTransCompound(page)) {
427                 struct page *head = compound_trans_head(page);
428                 /*
429                  * head may actually be splitted and freed from under
430                  * us but it's ok here.
431                  */
432                 if (PageAnon(head))
433                         return head;
434         }
435         return NULL;
436 }
437
438 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
439 {
440         struct mm_struct *mm = rmap_item->mm;
441         unsigned long addr = rmap_item->address;
442         struct vm_area_struct *vma;
443         struct page *page;
444
445         down_read(&mm->mmap_sem);
446         vma = find_mergeable_vma(mm, addr);
447         if (!vma)
448                 goto out;
449
450         page = follow_page(vma, addr, FOLL_GET);
451         if (IS_ERR_OR_NULL(page))
452                 goto out;
453         if (PageAnon(page) || page_trans_compound_anon(page)) {
454                 flush_anon_page(vma, page, addr);
455                 flush_dcache_page(page);
456         } else {
457                 put_page(page);
458 out:            page = NULL;
459         }
460         up_read(&mm->mmap_sem);
461         return page;
462 }
463
464 /*
465  * This helper is used for getting right index into array of tree roots.
466  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
467  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
468  * every node has its own stable and unstable tree.
469  */
470 static inline int get_kpfn_nid(unsigned long kpfn)
471 {
472         return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
473 }
474
475 static void remove_node_from_stable_tree(struct stable_node *stable_node)
476 {
477         struct rmap_item *rmap_item;
478         struct hlist_node *hlist;
479         int nid;
480
481         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
482                 if (rmap_item->hlist.next)
483                         ksm_pages_sharing--;
484                 else
485                         ksm_pages_shared--;
486                 put_anon_vma(rmap_item->anon_vma);
487                 rmap_item->address &= PAGE_MASK;
488                 cond_resched();
489         }
490
491         nid = get_kpfn_nid(stable_node->kpfn);
492         rb_erase(&stable_node->node, &root_stable_tree[nid]);
493         free_stable_node(stable_node);
494 }
495
496 /*
497  * get_ksm_page: checks if the page indicated by the stable node
498  * is still its ksm page, despite having held no reference to it.
499  * In which case we can trust the content of the page, and it
500  * returns the gotten page; but if the page has now been zapped,
501  * remove the stale node from the stable tree and return NULL.
502  *
503  * You would expect the stable_node to hold a reference to the ksm page.
504  * But if it increments the page's count, swapping out has to wait for
505  * ksmd to come around again before it can free the page, which may take
506  * seconds or even minutes: much too unresponsive.  So instead we use a
507  * "keyhole reference": access to the ksm page from the stable node peeps
508  * out through its keyhole to see if that page still holds the right key,
509  * pointing back to this stable node.  This relies on freeing a PageAnon
510  * page to reset its page->mapping to NULL, and relies on no other use of
511  * a page to put something that might look like our key in page->mapping.
512  *
513  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
514  * but this is different - made simpler by ksm_thread_mutex being held, but
515  * interesting for assuming that no other use of the struct page could ever
516  * put our expected_mapping into page->mapping (or a field of the union which
517  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
518  * to keep the page_count protocol described with page_cache_get_speculative.
519  *
520  * Note: it is possible that get_ksm_page() will return NULL one moment,
521  * then page the next, if the page is in between page_freeze_refs() and
522  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
523  * is on its way to being freed; but it is an anomaly to bear in mind.
524  */
525 static struct page *get_ksm_page(struct stable_node *stable_node)
526 {
527         struct page *page;
528         void *expected_mapping;
529
530         page = pfn_to_page(stable_node->kpfn);
531         expected_mapping = (void *)stable_node +
532                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
533         rcu_read_lock();
534         if (page->mapping != expected_mapping)
535                 goto stale;
536         if (!get_page_unless_zero(page))
537                 goto stale;
538         if (page->mapping != expected_mapping) {
539                 put_page(page);
540                 goto stale;
541         }
542         rcu_read_unlock();
543         return page;
544 stale:
545         rcu_read_unlock();
546         remove_node_from_stable_tree(stable_node);
547         return NULL;
548 }
549
550 /*
551  * Removing rmap_item from stable or unstable tree.
552  * This function will clean the information from the stable/unstable tree.
553  */
554 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
555 {
556         if (rmap_item->address & STABLE_FLAG) {
557                 struct stable_node *stable_node;
558                 struct page *page;
559
560                 stable_node = rmap_item->head;
561                 page = get_ksm_page(stable_node);
562                 if (!page)
563                         goto out;
564
565                 lock_page(page);
566                 hlist_del(&rmap_item->hlist);
567                 unlock_page(page);
568                 put_page(page);
569
570                 if (stable_node->hlist.first)
571                         ksm_pages_sharing--;
572                 else
573                         ksm_pages_shared--;
574
575                 put_anon_vma(rmap_item->anon_vma);
576                 rmap_item->address &= PAGE_MASK;
577
578         } else if (rmap_item->address & UNSTABLE_FLAG) {
579                 unsigned char age;
580                 /*
581                  * Usually ksmd can and must skip the rb_erase, because
582                  * root_unstable_tree was already reset to RB_ROOT.
583                  * But be careful when an mm is exiting: do the rb_erase
584                  * if this rmap_item was inserted by this scan, rather
585                  * than left over from before.
586                  */
587                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
588                 BUG_ON(age > 1);
589                 if (!age)
590                         rb_erase(&rmap_item->node,
591                                  &root_unstable_tree[NUMA(rmap_item->nid)]);
592                 ksm_pages_unshared--;
593                 rmap_item->address &= PAGE_MASK;
594         }
595 out:
596         cond_resched();         /* we're called from many long loops */
597 }
598
599 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
600                                        struct rmap_item **rmap_list)
601 {
602         while (*rmap_list) {
603                 struct rmap_item *rmap_item = *rmap_list;
604                 *rmap_list = rmap_item->rmap_list;
605                 remove_rmap_item_from_tree(rmap_item);
606                 free_rmap_item(rmap_item);
607         }
608 }
609
610 /*
611  * Though it's very tempting to unmerge rmap_items from stable tree rather
612  * than check every pte of a given vma, the locking doesn't quite work for
613  * that - an rmap_item is assigned to the stable tree after inserting ksm
614  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
615  * rmap_items from parent to child at fork time (so as not to waste time
616  * if exit comes before the next scan reaches it).
617  *
618  * Similarly, although we'd like to remove rmap_items (so updating counts
619  * and freeing memory) when unmerging an area, it's easier to leave that
620  * to the next pass of ksmd - consider, for example, how ksmd might be
621  * in cmp_and_merge_page on one of the rmap_items we would be removing.
622  */
623 static int unmerge_ksm_pages(struct vm_area_struct *vma,
624                              unsigned long start, unsigned long end)
625 {
626         unsigned long addr;
627         int err = 0;
628
629         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
630                 if (ksm_test_exit(vma->vm_mm))
631                         break;
632                 if (signal_pending(current))
633                         err = -ERESTARTSYS;
634                 else
635                         err = break_ksm(vma, addr);
636         }
637         return err;
638 }
639
640 #ifdef CONFIG_SYSFS
641 /*
642  * Only called through the sysfs control interface:
643  */
644 static int unmerge_and_remove_all_rmap_items(void)
645 {
646         struct mm_slot *mm_slot;
647         struct mm_struct *mm;
648         struct vm_area_struct *vma;
649         int err = 0;
650
651         spin_lock(&ksm_mmlist_lock);
652         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
653                                                 struct mm_slot, mm_list);
654         spin_unlock(&ksm_mmlist_lock);
655
656         for (mm_slot = ksm_scan.mm_slot;
657                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
658                 mm = mm_slot->mm;
659                 down_read(&mm->mmap_sem);
660                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
661                         if (ksm_test_exit(mm))
662                                 break;
663                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
664                                 continue;
665                         err = unmerge_ksm_pages(vma,
666                                                 vma->vm_start, vma->vm_end);
667                         if (err)
668                                 goto error;
669                 }
670
671                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
672
673                 spin_lock(&ksm_mmlist_lock);
674                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
675                                                 struct mm_slot, mm_list);
676                 if (ksm_test_exit(mm)) {
677                         hash_del(&mm_slot->link);
678                         list_del(&mm_slot->mm_list);
679                         spin_unlock(&ksm_mmlist_lock);
680
681                         free_mm_slot(mm_slot);
682                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
683                         up_read(&mm->mmap_sem);
684                         mmdrop(mm);
685                 } else {
686                         spin_unlock(&ksm_mmlist_lock);
687                         up_read(&mm->mmap_sem);
688                 }
689         }
690
691         ksm_scan.seqnr = 0;
692         return 0;
693
694 error:
695         up_read(&mm->mmap_sem);
696         spin_lock(&ksm_mmlist_lock);
697         ksm_scan.mm_slot = &ksm_mm_head;
698         spin_unlock(&ksm_mmlist_lock);
699         return err;
700 }
701 #endif /* CONFIG_SYSFS */
702
703 static u32 calc_checksum(struct page *page)
704 {
705         u32 checksum;
706         void *addr = kmap_atomic(page);
707         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
708         kunmap_atomic(addr);
709         return checksum;
710 }
711
712 static int memcmp_pages(struct page *page1, struct page *page2)
713 {
714         char *addr1, *addr2;
715         int ret;
716
717         addr1 = kmap_atomic(page1);
718         addr2 = kmap_atomic(page2);
719         ret = memcmp(addr1, addr2, PAGE_SIZE);
720         kunmap_atomic(addr2);
721         kunmap_atomic(addr1);
722         return ret;
723 }
724
725 static inline int pages_identical(struct page *page1, struct page *page2)
726 {
727         return !memcmp_pages(page1, page2);
728 }
729
730 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
731                               pte_t *orig_pte)
732 {
733         struct mm_struct *mm = vma->vm_mm;
734         unsigned long addr;
735         pte_t *ptep;
736         spinlock_t *ptl;
737         int swapped;
738         int err = -EFAULT;
739         unsigned long mmun_start;       /* For mmu_notifiers */
740         unsigned long mmun_end;         /* For mmu_notifiers */
741
742         addr = page_address_in_vma(page, vma);
743         if (addr == -EFAULT)
744                 goto out;
745
746         BUG_ON(PageTransCompound(page));
747
748         mmun_start = addr;
749         mmun_end   = addr + PAGE_SIZE;
750         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
751
752         ptep = page_check_address(page, mm, addr, &ptl, 0);
753         if (!ptep)
754                 goto out_mn;
755
756         if (pte_write(*ptep) || pte_dirty(*ptep)) {
757                 pte_t entry;
758
759                 swapped = PageSwapCache(page);
760                 flush_cache_page(vma, addr, page_to_pfn(page));
761                 /*
762                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
763                  * take any lock, therefore the check that we are going to make
764                  * with the pagecount against the mapcount is racey and
765                  * O_DIRECT can happen right after the check.
766                  * So we clear the pte and flush the tlb before the check
767                  * this assure us that no O_DIRECT can happen after the check
768                  * or in the middle of the check.
769                  */
770                 entry = ptep_clear_flush(vma, addr, ptep);
771                 /*
772                  * Check that no O_DIRECT or similar I/O is in progress on the
773                  * page
774                  */
775                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
776                         set_pte_at(mm, addr, ptep, entry);
777                         goto out_unlock;
778                 }
779                 if (pte_dirty(entry))
780                         set_page_dirty(page);
781                 entry = pte_mkclean(pte_wrprotect(entry));
782                 set_pte_at_notify(mm, addr, ptep, entry);
783         }
784         *orig_pte = *ptep;
785         err = 0;
786
787 out_unlock:
788         pte_unmap_unlock(ptep, ptl);
789 out_mn:
790         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
791 out:
792         return err;
793 }
794
795 /**
796  * replace_page - replace page in vma by new ksm page
797  * @vma:      vma that holds the pte pointing to page
798  * @page:     the page we are replacing by kpage
799  * @kpage:    the ksm page we replace page by
800  * @orig_pte: the original value of the pte
801  *
802  * Returns 0 on success, -EFAULT on failure.
803  */
804 static int replace_page(struct vm_area_struct *vma, struct page *page,
805                         struct page *kpage, pte_t orig_pte)
806 {
807         struct mm_struct *mm = vma->vm_mm;
808         pmd_t *pmd;
809         pte_t *ptep;
810         spinlock_t *ptl;
811         unsigned long addr;
812         int err = -EFAULT;
813         unsigned long mmun_start;       /* For mmu_notifiers */
814         unsigned long mmun_end;         /* For mmu_notifiers */
815
816         addr = page_address_in_vma(page, vma);
817         if (addr == -EFAULT)
818                 goto out;
819
820         pmd = mm_find_pmd(mm, addr);
821         if (!pmd)
822                 goto out;
823         BUG_ON(pmd_trans_huge(*pmd));
824
825         mmun_start = addr;
826         mmun_end   = addr + PAGE_SIZE;
827         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
828
829         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
830         if (!pte_same(*ptep, orig_pte)) {
831                 pte_unmap_unlock(ptep, ptl);
832                 goto out_mn;
833         }
834
835         get_page(kpage);
836         page_add_anon_rmap(kpage, vma, addr);
837
838         flush_cache_page(vma, addr, pte_pfn(*ptep));
839         ptep_clear_flush(vma, addr, ptep);
840         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
841
842         page_remove_rmap(page);
843         if (!page_mapped(page))
844                 try_to_free_swap(page);
845         put_page(page);
846
847         pte_unmap_unlock(ptep, ptl);
848         err = 0;
849 out_mn:
850         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
851 out:
852         return err;
853 }
854
855 static int page_trans_compound_anon_split(struct page *page)
856 {
857         int ret = 0;
858         struct page *transhuge_head = page_trans_compound_anon(page);
859         if (transhuge_head) {
860                 /* Get the reference on the head to split it. */
861                 if (get_page_unless_zero(transhuge_head)) {
862                         /*
863                          * Recheck we got the reference while the head
864                          * was still anonymous.
865                          */
866                         if (PageAnon(transhuge_head))
867                                 ret = split_huge_page(transhuge_head);
868                         else
869                                 /*
870                                  * Retry later if split_huge_page run
871                                  * from under us.
872                                  */
873                                 ret = 1;
874                         put_page(transhuge_head);
875                 } else
876                         /* Retry later if split_huge_page run from under us. */
877                         ret = 1;
878         }
879         return ret;
880 }
881
882 /*
883  * try_to_merge_one_page - take two pages and merge them into one
884  * @vma: the vma that holds the pte pointing to page
885  * @page: the PageAnon page that we want to replace with kpage
886  * @kpage: the PageKsm page that we want to map instead of page,
887  *         or NULL the first time when we want to use page as kpage.
888  *
889  * This function returns 0 if the pages were merged, -EFAULT otherwise.
890  */
891 static int try_to_merge_one_page(struct vm_area_struct *vma,
892                                  struct page *page, struct page *kpage)
893 {
894         pte_t orig_pte = __pte(0);
895         int err = -EFAULT;
896
897         if (page == kpage)                      /* ksm page forked */
898                 return 0;
899
900         if (!(vma->vm_flags & VM_MERGEABLE))
901                 goto out;
902         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
903                 goto out;
904         BUG_ON(PageTransCompound(page));
905         if (!PageAnon(page))
906                 goto out;
907
908         /*
909          * We need the page lock to read a stable PageSwapCache in
910          * write_protect_page().  We use trylock_page() instead of
911          * lock_page() because we don't want to wait here - we
912          * prefer to continue scanning and merging different pages,
913          * then come back to this page when it is unlocked.
914          */
915         if (!trylock_page(page))
916                 goto out;
917         /*
918          * If this anonymous page is mapped only here, its pte may need
919          * to be write-protected.  If it's mapped elsewhere, all of its
920          * ptes are necessarily already write-protected.  But in either
921          * case, we need to lock and check page_count is not raised.
922          */
923         if (write_protect_page(vma, page, &orig_pte) == 0) {
924                 if (!kpage) {
925                         /*
926                          * While we hold page lock, upgrade page from
927                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
928                          * stable_tree_insert() will update stable_node.
929                          */
930                         set_page_stable_node(page, NULL);
931                         mark_page_accessed(page);
932                         err = 0;
933                 } else if (pages_identical(page, kpage))
934                         err = replace_page(vma, page, kpage, orig_pte);
935         }
936
937         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
938                 munlock_vma_page(page);
939                 if (!PageMlocked(kpage)) {
940                         unlock_page(page);
941                         lock_page(kpage);
942                         mlock_vma_page(kpage);
943                         page = kpage;           /* for final unlock */
944                 }
945         }
946
947         unlock_page(page);
948 out:
949         return err;
950 }
951
952 /*
953  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
954  * but no new kernel page is allocated: kpage must already be a ksm page.
955  *
956  * This function returns 0 if the pages were merged, -EFAULT otherwise.
957  */
958 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
959                                       struct page *page, struct page *kpage)
960 {
961         struct mm_struct *mm = rmap_item->mm;
962         struct vm_area_struct *vma;
963         int err = -EFAULT;
964
965         down_read(&mm->mmap_sem);
966         if (ksm_test_exit(mm))
967                 goto out;
968         vma = find_vma(mm, rmap_item->address);
969         if (!vma || vma->vm_start > rmap_item->address)
970                 goto out;
971
972         err = try_to_merge_one_page(vma, page, kpage);
973         if (err)
974                 goto out;
975
976         /* Must get reference to anon_vma while still holding mmap_sem */
977         rmap_item->anon_vma = vma->anon_vma;
978         get_anon_vma(vma->anon_vma);
979 out:
980         up_read(&mm->mmap_sem);
981         return err;
982 }
983
984 /*
985  * try_to_merge_two_pages - take two identical pages and prepare them
986  * to be merged into one page.
987  *
988  * This function returns the kpage if we successfully merged two identical
989  * pages into one ksm page, NULL otherwise.
990  *
991  * Note that this function upgrades page to ksm page: if one of the pages
992  * is already a ksm page, try_to_merge_with_ksm_page should be used.
993  */
994 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
995                                            struct page *page,
996                                            struct rmap_item *tree_rmap_item,
997                                            struct page *tree_page)
998 {
999         int err;
1000
1001         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1002         if (!err) {
1003                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1004                                                         tree_page, page);
1005                 /*
1006                  * If that fails, we have a ksm page with only one pte
1007                  * pointing to it: so break it.
1008                  */
1009                 if (err)
1010                         break_cow(rmap_item);
1011         }
1012         return err ? NULL : page;
1013 }
1014
1015 /*
1016  * stable_tree_search - search for page inside the stable tree
1017  *
1018  * This function checks if there is a page inside the stable tree
1019  * with identical content to the page that we are scanning right now.
1020  *
1021  * This function returns the stable tree node of identical content if found,
1022  * NULL otherwise.
1023  */
1024 static struct page *stable_tree_search(struct page *page)
1025 {
1026         struct rb_node *node;
1027         struct stable_node *stable_node;
1028         int nid;
1029
1030         stable_node = page_stable_node(page);
1031         if (stable_node) {                      /* ksm page forked */
1032                 get_page(page);
1033                 return page;
1034         }
1035
1036         nid = get_kpfn_nid(page_to_pfn(page));
1037         node = root_stable_tree[nid].rb_node;
1038
1039         while (node) {
1040                 struct page *tree_page;
1041                 int ret;
1042
1043                 cond_resched();
1044                 stable_node = rb_entry(node, struct stable_node, node);
1045                 tree_page = get_ksm_page(stable_node);
1046                 if (!tree_page)
1047                         return NULL;
1048
1049                 ret = memcmp_pages(page, tree_page);
1050
1051                 if (ret < 0) {
1052                         put_page(tree_page);
1053                         node = node->rb_left;
1054                 } else if (ret > 0) {
1055                         put_page(tree_page);
1056                         node = node->rb_right;
1057                 } else
1058                         return tree_page;
1059         }
1060
1061         return NULL;
1062 }
1063
1064 /*
1065  * stable_tree_insert - insert stable tree node pointing to new ksm page
1066  * into the stable tree.
1067  *
1068  * This function returns the stable tree node just allocated on success,
1069  * NULL otherwise.
1070  */
1071 static struct stable_node *stable_tree_insert(struct page *kpage)
1072 {
1073         int nid;
1074         unsigned long kpfn;
1075         struct rb_node **new;
1076         struct rb_node *parent = NULL;
1077         struct stable_node *stable_node;
1078
1079         kpfn = page_to_pfn(kpage);
1080         nid = get_kpfn_nid(kpfn);
1081         new = &root_stable_tree[nid].rb_node;
1082
1083         while (*new) {
1084                 struct page *tree_page;
1085                 int ret;
1086
1087                 cond_resched();
1088                 stable_node = rb_entry(*new, struct stable_node, node);
1089                 tree_page = get_ksm_page(stable_node);
1090                 if (!tree_page)
1091                         return NULL;
1092
1093                 ret = memcmp_pages(kpage, tree_page);
1094                 put_page(tree_page);
1095
1096                 parent = *new;
1097                 if (ret < 0)
1098                         new = &parent->rb_left;
1099                 else if (ret > 0)
1100                         new = &parent->rb_right;
1101                 else {
1102                         /*
1103                          * It is not a bug that stable_tree_search() didn't
1104                          * find this node: because at that time our page was
1105                          * not yet write-protected, so may have changed since.
1106                          */
1107                         return NULL;
1108                 }
1109         }
1110
1111         stable_node = alloc_stable_node();
1112         if (!stable_node)
1113                 return NULL;
1114
1115         INIT_HLIST_HEAD(&stable_node->hlist);
1116         stable_node->kpfn = kpfn;
1117         set_page_stable_node(kpage, stable_node);
1118         rb_link_node(&stable_node->node, parent, new);
1119         rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1120
1121         return stable_node;
1122 }
1123
1124 /*
1125  * unstable_tree_search_insert - search for identical page,
1126  * else insert rmap_item into the unstable tree.
1127  *
1128  * This function searches for a page in the unstable tree identical to the
1129  * page currently being scanned; and if no identical page is found in the
1130  * tree, we insert rmap_item as a new object into the unstable tree.
1131  *
1132  * This function returns pointer to rmap_item found to be identical
1133  * to the currently scanned page, NULL otherwise.
1134  *
1135  * This function does both searching and inserting, because they share
1136  * the same walking algorithm in an rbtree.
1137  */
1138 static
1139 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1140                                               struct page *page,
1141                                               struct page **tree_pagep)
1142 {
1143         struct rb_node **new;
1144         struct rb_root *root;
1145         struct rb_node *parent = NULL;
1146         int nid;
1147
1148         nid = get_kpfn_nid(page_to_pfn(page));
1149         root = &root_unstable_tree[nid];
1150         new = &root->rb_node;
1151
1152         while (*new) {
1153                 struct rmap_item *tree_rmap_item;
1154                 struct page *tree_page;
1155                 int ret;
1156
1157                 cond_resched();
1158                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1159                 tree_page = get_mergeable_page(tree_rmap_item);
1160                 if (IS_ERR_OR_NULL(tree_page))
1161                         return NULL;
1162
1163                 /*
1164                  * Don't substitute a ksm page for a forked page.
1165                  */
1166                 if (page == tree_page) {
1167                         put_page(tree_page);
1168                         return NULL;
1169                 }
1170
1171                 /*
1172                  * If tree_page has been migrated to another NUMA node, it
1173                  * will be flushed out and put into the right unstable tree
1174                  * next time: only merge with it if merge_across_nodes.
1175                  */
1176                 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1177                         put_page(tree_page);
1178                         return NULL;
1179                 }
1180
1181                 ret = memcmp_pages(page, tree_page);
1182
1183                 parent = *new;
1184                 if (ret < 0) {
1185                         put_page(tree_page);
1186                         new = &parent->rb_left;
1187                 } else if (ret > 0) {
1188                         put_page(tree_page);
1189                         new = &parent->rb_right;
1190                 } else {
1191                         *tree_pagep = tree_page;
1192                         return tree_rmap_item;
1193                 }
1194         }
1195
1196         rmap_item->address |= UNSTABLE_FLAG;
1197         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1198         DO_NUMA(rmap_item->nid = nid);
1199         rb_link_node(&rmap_item->node, parent, new);
1200         rb_insert_color(&rmap_item->node, root);
1201
1202         ksm_pages_unshared++;
1203         return NULL;
1204 }
1205
1206 /*
1207  * stable_tree_append - add another rmap_item to the linked list of
1208  * rmap_items hanging off a given node of the stable tree, all sharing
1209  * the same ksm page.
1210  */
1211 static void stable_tree_append(struct rmap_item *rmap_item,
1212                                struct stable_node *stable_node)
1213 {
1214         /*
1215          * Usually rmap_item->nid is already set correctly,
1216          * but it may be wrong after switching merge_across_nodes.
1217          */
1218         DO_NUMA(rmap_item->nid = get_kpfn_nid(stable_node->kpfn));
1219         rmap_item->head = stable_node;
1220         rmap_item->address |= STABLE_FLAG;
1221         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1222
1223         if (rmap_item->hlist.next)
1224                 ksm_pages_sharing++;
1225         else
1226                 ksm_pages_shared++;
1227 }
1228
1229 /*
1230  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1231  * if not, compare checksum to previous and if it's the same, see if page can
1232  * be inserted into the unstable tree, or merged with a page already there and
1233  * both transferred to the stable tree.
1234  *
1235  * @page: the page that we are searching identical page to.
1236  * @rmap_item: the reverse mapping into the virtual address of this page
1237  */
1238 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1239 {
1240         struct rmap_item *tree_rmap_item;
1241         struct page *tree_page = NULL;
1242         struct stable_node *stable_node;
1243         struct page *kpage;
1244         unsigned int checksum;
1245         int err;
1246
1247         remove_rmap_item_from_tree(rmap_item);
1248
1249         /* We first start with searching the page inside the stable tree */
1250         kpage = stable_tree_search(page);
1251         if (kpage) {
1252                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1253                 if (!err) {
1254                         /*
1255                          * The page was successfully merged:
1256                          * add its rmap_item to the stable tree.
1257                          */
1258                         lock_page(kpage);
1259                         stable_tree_append(rmap_item, page_stable_node(kpage));
1260                         unlock_page(kpage);
1261                 }
1262                 put_page(kpage);
1263                 return;
1264         }
1265
1266         /*
1267          * If the hash value of the page has changed from the last time
1268          * we calculated it, this page is changing frequently: therefore we
1269          * don't want to insert it in the unstable tree, and we don't want
1270          * to waste our time searching for something identical to it there.
1271          */
1272         checksum = calc_checksum(page);
1273         if (rmap_item->oldchecksum != checksum) {
1274                 rmap_item->oldchecksum = checksum;
1275                 return;
1276         }
1277
1278         tree_rmap_item =
1279                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1280         if (tree_rmap_item) {
1281                 kpage = try_to_merge_two_pages(rmap_item, page,
1282                                                 tree_rmap_item, tree_page);
1283                 put_page(tree_page);
1284                 /*
1285                  * As soon as we merge this page, we want to remove the
1286                  * rmap_item of the page we have merged with from the unstable
1287                  * tree, and insert it instead as new node in the stable tree.
1288                  */
1289                 if (kpage) {
1290                         remove_rmap_item_from_tree(tree_rmap_item);
1291
1292                         lock_page(kpage);
1293                         stable_node = stable_tree_insert(kpage);
1294                         if (stable_node) {
1295                                 stable_tree_append(tree_rmap_item, stable_node);
1296                                 stable_tree_append(rmap_item, stable_node);
1297                         }
1298                         unlock_page(kpage);
1299
1300                         /*
1301                          * If we fail to insert the page into the stable tree,
1302                          * we will have 2 virtual addresses that are pointing
1303                          * to a ksm page left outside the stable tree,
1304                          * in which case we need to break_cow on both.
1305                          */
1306                         if (!stable_node) {
1307                                 break_cow(tree_rmap_item);
1308                                 break_cow(rmap_item);
1309                         }
1310                 }
1311         }
1312 }
1313
1314 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1315                                             struct rmap_item **rmap_list,
1316                                             unsigned long addr)
1317 {
1318         struct rmap_item *rmap_item;
1319
1320         while (*rmap_list) {
1321                 rmap_item = *rmap_list;
1322                 if ((rmap_item->address & PAGE_MASK) == addr)
1323                         return rmap_item;
1324                 if (rmap_item->address > addr)
1325                         break;
1326                 *rmap_list = rmap_item->rmap_list;
1327                 remove_rmap_item_from_tree(rmap_item);
1328                 free_rmap_item(rmap_item);
1329         }
1330
1331         rmap_item = alloc_rmap_item();
1332         if (rmap_item) {
1333                 /* It has already been zeroed */
1334                 rmap_item->mm = mm_slot->mm;
1335                 rmap_item->address = addr;
1336                 rmap_item->rmap_list = *rmap_list;
1337                 *rmap_list = rmap_item;
1338         }
1339         return rmap_item;
1340 }
1341
1342 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1343 {
1344         struct mm_struct *mm;
1345         struct mm_slot *slot;
1346         struct vm_area_struct *vma;
1347         struct rmap_item *rmap_item;
1348         int nid;
1349
1350         if (list_empty(&ksm_mm_head.mm_list))
1351                 return NULL;
1352
1353         slot = ksm_scan.mm_slot;
1354         if (slot == &ksm_mm_head) {
1355                 /*
1356                  * A number of pages can hang around indefinitely on per-cpu
1357                  * pagevecs, raised page count preventing write_protect_page
1358                  * from merging them.  Though it doesn't really matter much,
1359                  * it is puzzling to see some stuck in pages_volatile until
1360                  * other activity jostles them out, and they also prevented
1361                  * LTP's KSM test from succeeding deterministically; so drain
1362                  * them here (here rather than on entry to ksm_do_scan(),
1363                  * so we don't IPI too often when pages_to_scan is set low).
1364                  */
1365                 lru_add_drain_all();
1366
1367                 for (nid = 0; nid < nr_node_ids; nid++)
1368                         root_unstable_tree[nid] = RB_ROOT;
1369
1370                 spin_lock(&ksm_mmlist_lock);
1371                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1372                 ksm_scan.mm_slot = slot;
1373                 spin_unlock(&ksm_mmlist_lock);
1374                 /*
1375                  * Although we tested list_empty() above, a racing __ksm_exit
1376                  * of the last mm on the list may have removed it since then.
1377                  */
1378                 if (slot == &ksm_mm_head)
1379                         return NULL;
1380 next_mm:
1381                 ksm_scan.address = 0;
1382                 ksm_scan.rmap_list = &slot->rmap_list;
1383         }
1384
1385         mm = slot->mm;
1386         down_read(&mm->mmap_sem);
1387         if (ksm_test_exit(mm))
1388                 vma = NULL;
1389         else
1390                 vma = find_vma(mm, ksm_scan.address);
1391
1392         for (; vma; vma = vma->vm_next) {
1393                 if (!(vma->vm_flags & VM_MERGEABLE))
1394                         continue;
1395                 if (ksm_scan.address < vma->vm_start)
1396                         ksm_scan.address = vma->vm_start;
1397                 if (!vma->anon_vma)
1398                         ksm_scan.address = vma->vm_end;
1399
1400                 while (ksm_scan.address < vma->vm_end) {
1401                         if (ksm_test_exit(mm))
1402                                 break;
1403                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1404                         if (IS_ERR_OR_NULL(*page)) {
1405                                 ksm_scan.address += PAGE_SIZE;
1406                                 cond_resched();
1407                                 continue;
1408                         }
1409                         if (PageAnon(*page) ||
1410                             page_trans_compound_anon(*page)) {
1411                                 flush_anon_page(vma, *page, ksm_scan.address);
1412                                 flush_dcache_page(*page);
1413                                 rmap_item = get_next_rmap_item(slot,
1414                                         ksm_scan.rmap_list, ksm_scan.address);
1415                                 if (rmap_item) {
1416                                         ksm_scan.rmap_list =
1417                                                         &rmap_item->rmap_list;
1418                                         ksm_scan.address += PAGE_SIZE;
1419                                 } else
1420                                         put_page(*page);
1421                                 up_read(&mm->mmap_sem);
1422                                 return rmap_item;
1423                         }
1424                         put_page(*page);
1425                         ksm_scan.address += PAGE_SIZE;
1426                         cond_resched();
1427                 }
1428         }
1429
1430         if (ksm_test_exit(mm)) {
1431                 ksm_scan.address = 0;
1432                 ksm_scan.rmap_list = &slot->rmap_list;
1433         }
1434         /*
1435          * Nuke all the rmap_items that are above this current rmap:
1436          * because there were no VM_MERGEABLE vmas with such addresses.
1437          */
1438         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1439
1440         spin_lock(&ksm_mmlist_lock);
1441         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1442                                                 struct mm_slot, mm_list);
1443         if (ksm_scan.address == 0) {
1444                 /*
1445                  * We've completed a full scan of all vmas, holding mmap_sem
1446                  * throughout, and found no VM_MERGEABLE: so do the same as
1447                  * __ksm_exit does to remove this mm from all our lists now.
1448                  * This applies either when cleaning up after __ksm_exit
1449                  * (but beware: we can reach here even before __ksm_exit),
1450                  * or when all VM_MERGEABLE areas have been unmapped (and
1451                  * mmap_sem then protects against race with MADV_MERGEABLE).
1452                  */
1453                 hash_del(&slot->link);
1454                 list_del(&slot->mm_list);
1455                 spin_unlock(&ksm_mmlist_lock);
1456
1457                 free_mm_slot(slot);
1458                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1459                 up_read(&mm->mmap_sem);
1460                 mmdrop(mm);
1461         } else {
1462                 spin_unlock(&ksm_mmlist_lock);
1463                 up_read(&mm->mmap_sem);
1464         }
1465
1466         /* Repeat until we've completed scanning the whole list */
1467         slot = ksm_scan.mm_slot;
1468         if (slot != &ksm_mm_head)
1469                 goto next_mm;
1470
1471         ksm_scan.seqnr++;
1472         return NULL;
1473 }
1474
1475 /**
1476  * ksm_do_scan  - the ksm scanner main worker function.
1477  * @scan_npages - number of pages we want to scan before we return.
1478  */
1479 static void ksm_do_scan(unsigned int scan_npages)
1480 {
1481         struct rmap_item *rmap_item;
1482         struct page *uninitialized_var(page);
1483
1484         while (scan_npages-- && likely(!freezing(current))) {
1485                 cond_resched();
1486                 rmap_item = scan_get_next_rmap_item(&page);
1487                 if (!rmap_item)
1488                         return;
1489                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1490                         cmp_and_merge_page(page, rmap_item);
1491                 put_page(page);
1492         }
1493 }
1494
1495 static int ksmd_should_run(void)
1496 {
1497         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1498 }
1499
1500 static int ksm_scan_thread(void *nothing)
1501 {
1502         set_freezable();
1503         set_user_nice(current, 5);
1504
1505         while (!kthread_should_stop()) {
1506                 mutex_lock(&ksm_thread_mutex);
1507                 if (ksmd_should_run())
1508                         ksm_do_scan(ksm_thread_pages_to_scan);
1509                 mutex_unlock(&ksm_thread_mutex);
1510
1511                 try_to_freeze();
1512
1513                 if (ksmd_should_run()) {
1514                         schedule_timeout_interruptible(
1515                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1516                 } else {
1517                         wait_event_freezable(ksm_thread_wait,
1518                                 ksmd_should_run() || kthread_should_stop());
1519                 }
1520         }
1521         return 0;
1522 }
1523
1524 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1525                 unsigned long end, int advice, unsigned long *vm_flags)
1526 {
1527         struct mm_struct *mm = vma->vm_mm;
1528         int err;
1529
1530         switch (advice) {
1531         case MADV_MERGEABLE:
1532                 /*
1533                  * Be somewhat over-protective for now!
1534                  */
1535                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1536                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1537                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1538                         return 0;               /* just ignore the advice */
1539
1540 #ifdef VM_SAO
1541                 if (*vm_flags & VM_SAO)
1542                         return 0;
1543 #endif
1544
1545                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1546                         err = __ksm_enter(mm);
1547                         if (err)
1548                                 return err;
1549                 }
1550
1551                 *vm_flags |= VM_MERGEABLE;
1552                 break;
1553
1554         case MADV_UNMERGEABLE:
1555                 if (!(*vm_flags & VM_MERGEABLE))
1556                         return 0;               /* just ignore the advice */
1557
1558                 if (vma->anon_vma) {
1559                         err = unmerge_ksm_pages(vma, start, end);
1560                         if (err)
1561                                 return err;
1562                 }
1563
1564                 *vm_flags &= ~VM_MERGEABLE;
1565                 break;
1566         }
1567
1568         return 0;
1569 }
1570
1571 int __ksm_enter(struct mm_struct *mm)
1572 {
1573         struct mm_slot *mm_slot;
1574         int needs_wakeup;
1575
1576         mm_slot = alloc_mm_slot();
1577         if (!mm_slot)
1578                 return -ENOMEM;
1579
1580         /* Check ksm_run too?  Would need tighter locking */
1581         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1582
1583         spin_lock(&ksm_mmlist_lock);
1584         insert_to_mm_slots_hash(mm, mm_slot);
1585         /*
1586          * Insert just behind the scanning cursor, to let the area settle
1587          * down a little; when fork is followed by immediate exec, we don't
1588          * want ksmd to waste time setting up and tearing down an rmap_list.
1589          */
1590         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1591         spin_unlock(&ksm_mmlist_lock);
1592
1593         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1594         atomic_inc(&mm->mm_count);
1595
1596         if (needs_wakeup)
1597                 wake_up_interruptible(&ksm_thread_wait);
1598
1599         return 0;
1600 }
1601
1602 void __ksm_exit(struct mm_struct *mm)
1603 {
1604         struct mm_slot *mm_slot;
1605         int easy_to_free = 0;
1606
1607         /*
1608          * This process is exiting: if it's straightforward (as is the
1609          * case when ksmd was never running), free mm_slot immediately.
1610          * But if it's at the cursor or has rmap_items linked to it, use
1611          * mmap_sem to synchronize with any break_cows before pagetables
1612          * are freed, and leave the mm_slot on the list for ksmd to free.
1613          * Beware: ksm may already have noticed it exiting and freed the slot.
1614          */
1615
1616         spin_lock(&ksm_mmlist_lock);
1617         mm_slot = get_mm_slot(mm);
1618         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1619                 if (!mm_slot->rmap_list) {
1620                         hash_del(&mm_slot->link);
1621                         list_del(&mm_slot->mm_list);
1622                         easy_to_free = 1;
1623                 } else {
1624                         list_move(&mm_slot->mm_list,
1625                                   &ksm_scan.mm_slot->mm_list);
1626                 }
1627         }
1628         spin_unlock(&ksm_mmlist_lock);
1629
1630         if (easy_to_free) {
1631                 free_mm_slot(mm_slot);
1632                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1633                 mmdrop(mm);
1634         } else if (mm_slot) {
1635                 down_write(&mm->mmap_sem);
1636                 up_write(&mm->mmap_sem);
1637         }
1638 }
1639
1640 struct page *ksm_does_need_to_copy(struct page *page,
1641                         struct vm_area_struct *vma, unsigned long address)
1642 {
1643         struct page *new_page;
1644
1645         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1646         if (new_page) {
1647                 copy_user_highpage(new_page, page, address, vma);
1648
1649                 SetPageDirty(new_page);
1650                 __SetPageUptodate(new_page);
1651                 __set_page_locked(new_page);
1652         }
1653
1654         return new_page;
1655 }
1656
1657 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1658                         unsigned long *vm_flags)
1659 {
1660         struct stable_node *stable_node;
1661         struct rmap_item *rmap_item;
1662         struct hlist_node *hlist;
1663         unsigned int mapcount = page_mapcount(page);
1664         int referenced = 0;
1665         int search_new_forks = 0;
1666
1667         VM_BUG_ON(!PageKsm(page));
1668         VM_BUG_ON(!PageLocked(page));
1669
1670         stable_node = page_stable_node(page);
1671         if (!stable_node)
1672                 return 0;
1673 again:
1674         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1675                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1676                 struct anon_vma_chain *vmac;
1677                 struct vm_area_struct *vma;
1678
1679                 anon_vma_lock_read(anon_vma);
1680                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1681                                                0, ULONG_MAX) {
1682                         vma = vmac->vma;
1683                         if (rmap_item->address < vma->vm_start ||
1684                             rmap_item->address >= vma->vm_end)
1685                                 continue;
1686                         /*
1687                          * Initially we examine only the vma which covers this
1688                          * rmap_item; but later, if there is still work to do,
1689                          * we examine covering vmas in other mms: in case they
1690                          * were forked from the original since ksmd passed.
1691                          */
1692                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1693                                 continue;
1694
1695                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1696                                 continue;
1697
1698                         referenced += page_referenced_one(page, vma,
1699                                 rmap_item->address, &mapcount, vm_flags);
1700                         if (!search_new_forks || !mapcount)
1701                                 break;
1702                 }
1703                 anon_vma_unlock_read(anon_vma);
1704                 if (!mapcount)
1705                         goto out;
1706         }
1707         if (!search_new_forks++)
1708                 goto again;
1709 out:
1710         return referenced;
1711 }
1712
1713 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1714 {
1715         struct stable_node *stable_node;
1716         struct hlist_node *hlist;
1717         struct rmap_item *rmap_item;
1718         int ret = SWAP_AGAIN;
1719         int search_new_forks = 0;
1720
1721         VM_BUG_ON(!PageKsm(page));
1722         VM_BUG_ON(!PageLocked(page));
1723
1724         stable_node = page_stable_node(page);
1725         if (!stable_node)
1726                 return SWAP_FAIL;
1727 again:
1728         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1729                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1730                 struct anon_vma_chain *vmac;
1731                 struct vm_area_struct *vma;
1732
1733                 anon_vma_lock_read(anon_vma);
1734                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1735                                                0, ULONG_MAX) {
1736                         vma = vmac->vma;
1737                         if (rmap_item->address < vma->vm_start ||
1738                             rmap_item->address >= vma->vm_end)
1739                                 continue;
1740                         /*
1741                          * Initially we examine only the vma which covers this
1742                          * rmap_item; but later, if there is still work to do,
1743                          * we examine covering vmas in other mms: in case they
1744                          * were forked from the original since ksmd passed.
1745                          */
1746                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1747                                 continue;
1748
1749                         ret = try_to_unmap_one(page, vma,
1750                                         rmap_item->address, flags);
1751                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1752                                 anon_vma_unlock_read(anon_vma);
1753                                 goto out;
1754                         }
1755                 }
1756                 anon_vma_unlock_read(anon_vma);
1757         }
1758         if (!search_new_forks++)
1759                 goto again;
1760 out:
1761         return ret;
1762 }
1763
1764 #ifdef CONFIG_MIGRATION
1765 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1766                   struct vm_area_struct *, unsigned long, void *), void *arg)
1767 {
1768         struct stable_node *stable_node;
1769         struct hlist_node *hlist;
1770         struct rmap_item *rmap_item;
1771         int ret = SWAP_AGAIN;
1772         int search_new_forks = 0;
1773
1774         VM_BUG_ON(!PageKsm(page));
1775         VM_BUG_ON(!PageLocked(page));
1776
1777         stable_node = page_stable_node(page);
1778         if (!stable_node)
1779                 return ret;
1780 again:
1781         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1782                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1783                 struct anon_vma_chain *vmac;
1784                 struct vm_area_struct *vma;
1785
1786                 anon_vma_lock_read(anon_vma);
1787                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1788                                                0, ULONG_MAX) {
1789                         vma = vmac->vma;
1790                         if (rmap_item->address < vma->vm_start ||
1791                             rmap_item->address >= vma->vm_end)
1792                                 continue;
1793                         /*
1794                          * Initially we examine only the vma which covers this
1795                          * rmap_item; but later, if there is still work to do,
1796                          * we examine covering vmas in other mms: in case they
1797                          * were forked from the original since ksmd passed.
1798                          */
1799                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1800                                 continue;
1801
1802                         ret = rmap_one(page, vma, rmap_item->address, arg);
1803                         if (ret != SWAP_AGAIN) {
1804                                 anon_vma_unlock_read(anon_vma);
1805                                 goto out;
1806                         }
1807                 }
1808                 anon_vma_unlock_read(anon_vma);
1809         }
1810         if (!search_new_forks++)
1811                 goto again;
1812 out:
1813         return ret;
1814 }
1815
1816 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1817 {
1818         struct stable_node *stable_node;
1819
1820         VM_BUG_ON(!PageLocked(oldpage));
1821         VM_BUG_ON(!PageLocked(newpage));
1822         VM_BUG_ON(newpage->mapping != oldpage->mapping);
1823
1824         stable_node = page_stable_node(newpage);
1825         if (stable_node) {
1826                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1827                 stable_node->kpfn = page_to_pfn(newpage);
1828         }
1829 }
1830 #endif /* CONFIG_MIGRATION */
1831
1832 #ifdef CONFIG_MEMORY_HOTREMOVE
1833 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1834                                                  unsigned long end_pfn)
1835 {
1836         struct rb_node *node;
1837         int nid;
1838
1839         for (nid = 0; nid < nr_node_ids; nid++)
1840                 for (node = rb_first(&root_stable_tree[nid]); node;
1841                                 node = rb_next(node)) {
1842                         struct stable_node *stable_node;
1843
1844                         stable_node = rb_entry(node, struct stable_node, node);
1845                         if (stable_node->kpfn >= start_pfn &&
1846                             stable_node->kpfn < end_pfn)
1847                                 return stable_node;
1848                 }
1849
1850         return NULL;
1851 }
1852
1853 static int ksm_memory_callback(struct notifier_block *self,
1854                                unsigned long action, void *arg)
1855 {
1856         struct memory_notify *mn = arg;
1857         struct stable_node *stable_node;
1858
1859         switch (action) {
1860         case MEM_GOING_OFFLINE:
1861                 /*
1862                  * Keep it very simple for now: just lock out ksmd and
1863                  * MADV_UNMERGEABLE while any memory is going offline.
1864                  * mutex_lock_nested() is necessary because lockdep was alarmed
1865                  * that here we take ksm_thread_mutex inside notifier chain
1866                  * mutex, and later take notifier chain mutex inside
1867                  * ksm_thread_mutex to unlock it.   But that's safe because both
1868                  * are inside mem_hotplug_mutex.
1869                  */
1870                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1871                 break;
1872
1873         case MEM_OFFLINE:
1874                 /*
1875                  * Most of the work is done by page migration; but there might
1876                  * be a few stable_nodes left over, still pointing to struct
1877                  * pages which have been offlined: prune those from the tree.
1878                  */
1879                 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1880                                         mn->start_pfn + mn->nr_pages)) != NULL)
1881                         remove_node_from_stable_tree(stable_node);
1882                 /* fallthrough */
1883
1884         case MEM_CANCEL_OFFLINE:
1885                 mutex_unlock(&ksm_thread_mutex);
1886                 break;
1887         }
1888         return NOTIFY_OK;
1889 }
1890 #endif /* CONFIG_MEMORY_HOTREMOVE */
1891
1892 #ifdef CONFIG_SYSFS
1893 /*
1894  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1895  */
1896
1897 #define KSM_ATTR_RO(_name) \
1898         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1899 #define KSM_ATTR(_name) \
1900         static struct kobj_attribute _name##_attr = \
1901                 __ATTR(_name, 0644, _name##_show, _name##_store)
1902
1903 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1904                                     struct kobj_attribute *attr, char *buf)
1905 {
1906         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1907 }
1908
1909 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1910                                      struct kobj_attribute *attr,
1911                                      const char *buf, size_t count)
1912 {
1913         unsigned long msecs;
1914         int err;
1915
1916         err = strict_strtoul(buf, 10, &msecs);
1917         if (err || msecs > UINT_MAX)
1918                 return -EINVAL;
1919
1920         ksm_thread_sleep_millisecs = msecs;
1921
1922         return count;
1923 }
1924 KSM_ATTR(sleep_millisecs);
1925
1926 static ssize_t pages_to_scan_show(struct kobject *kobj,
1927                                   struct kobj_attribute *attr, char *buf)
1928 {
1929         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1930 }
1931
1932 static ssize_t pages_to_scan_store(struct kobject *kobj,
1933                                    struct kobj_attribute *attr,
1934                                    const char *buf, size_t count)
1935 {
1936         int err;
1937         unsigned long nr_pages;
1938
1939         err = strict_strtoul(buf, 10, &nr_pages);
1940         if (err || nr_pages > UINT_MAX)
1941                 return -EINVAL;
1942
1943         ksm_thread_pages_to_scan = nr_pages;
1944
1945         return count;
1946 }
1947 KSM_ATTR(pages_to_scan);
1948
1949 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1950                         char *buf)
1951 {
1952         return sprintf(buf, "%u\n", ksm_run);
1953 }
1954
1955 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1956                          const char *buf, size_t count)
1957 {
1958         int err;
1959         unsigned long flags;
1960
1961         err = strict_strtoul(buf, 10, &flags);
1962         if (err || flags > UINT_MAX)
1963                 return -EINVAL;
1964         if (flags > KSM_RUN_UNMERGE)
1965                 return -EINVAL;
1966
1967         /*
1968          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1969          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1970          * breaking COW to free the pages_shared (but leaves mm_slots
1971          * on the list for when ksmd may be set running again).
1972          */
1973
1974         mutex_lock(&ksm_thread_mutex);
1975         if (ksm_run != flags) {
1976                 ksm_run = flags;
1977                 if (flags & KSM_RUN_UNMERGE) {
1978                         set_current_oom_origin();
1979                         err = unmerge_and_remove_all_rmap_items();
1980                         clear_current_oom_origin();
1981                         if (err) {
1982                                 ksm_run = KSM_RUN_STOP;
1983                                 count = err;
1984                         }
1985                 }
1986         }
1987         mutex_unlock(&ksm_thread_mutex);
1988
1989         if (flags & KSM_RUN_MERGE)
1990                 wake_up_interruptible(&ksm_thread_wait);
1991
1992         return count;
1993 }
1994 KSM_ATTR(run);
1995
1996 #ifdef CONFIG_NUMA
1997 static ssize_t merge_across_nodes_show(struct kobject *kobj,
1998                                 struct kobj_attribute *attr, char *buf)
1999 {
2000         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2001 }
2002
2003 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2004                                    struct kobj_attribute *attr,
2005                                    const char *buf, size_t count)
2006 {
2007         int err;
2008         unsigned long knob;
2009
2010         err = kstrtoul(buf, 10, &knob);
2011         if (err)
2012                 return err;
2013         if (knob > 1)
2014                 return -EINVAL;
2015
2016         mutex_lock(&ksm_thread_mutex);
2017         if (ksm_merge_across_nodes != knob) {
2018                 if (ksm_pages_shared)
2019                         err = -EBUSY;
2020                 else
2021                         ksm_merge_across_nodes = knob;
2022         }
2023         mutex_unlock(&ksm_thread_mutex);
2024
2025         return err ? err : count;
2026 }
2027 KSM_ATTR(merge_across_nodes);
2028 #endif
2029
2030 static ssize_t pages_shared_show(struct kobject *kobj,
2031                                  struct kobj_attribute *attr, char *buf)
2032 {
2033         return sprintf(buf, "%lu\n", ksm_pages_shared);
2034 }
2035 KSM_ATTR_RO(pages_shared);
2036
2037 static ssize_t pages_sharing_show(struct kobject *kobj,
2038                                   struct kobj_attribute *attr, char *buf)
2039 {
2040         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2041 }
2042 KSM_ATTR_RO(pages_sharing);
2043
2044 static ssize_t pages_unshared_show(struct kobject *kobj,
2045                                    struct kobj_attribute *attr, char *buf)
2046 {
2047         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2048 }
2049 KSM_ATTR_RO(pages_unshared);
2050
2051 static ssize_t pages_volatile_show(struct kobject *kobj,
2052                                    struct kobj_attribute *attr, char *buf)
2053 {
2054         long ksm_pages_volatile;
2055
2056         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2057                                 - ksm_pages_sharing - ksm_pages_unshared;
2058         /*
2059          * It was not worth any locking to calculate that statistic,
2060          * but it might therefore sometimes be negative: conceal that.
2061          */
2062         if (ksm_pages_volatile < 0)
2063                 ksm_pages_volatile = 0;
2064         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2065 }
2066 KSM_ATTR_RO(pages_volatile);
2067
2068 static ssize_t full_scans_show(struct kobject *kobj,
2069                                struct kobj_attribute *attr, char *buf)
2070 {
2071         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2072 }
2073 KSM_ATTR_RO(full_scans);
2074
2075 static struct attribute *ksm_attrs[] = {
2076         &sleep_millisecs_attr.attr,
2077         &pages_to_scan_attr.attr,
2078         &run_attr.attr,
2079         &pages_shared_attr.attr,
2080         &pages_sharing_attr.attr,
2081         &pages_unshared_attr.attr,
2082         &pages_volatile_attr.attr,
2083         &full_scans_attr.attr,
2084 #ifdef CONFIG_NUMA
2085         &merge_across_nodes_attr.attr,
2086 #endif
2087         NULL,
2088 };
2089
2090 static struct attribute_group ksm_attr_group = {
2091         .attrs = ksm_attrs,
2092         .name = "ksm",
2093 };
2094 #endif /* CONFIG_SYSFS */
2095
2096 static int __init ksm_init(void)
2097 {
2098         struct task_struct *ksm_thread;
2099         int err;
2100         int nid;
2101
2102         err = ksm_slab_init();
2103         if (err)
2104                 goto out;
2105
2106         for (nid = 0; nid < nr_node_ids; nid++)
2107                 root_stable_tree[nid] = RB_ROOT;
2108
2109         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2110         if (IS_ERR(ksm_thread)) {
2111                 printk(KERN_ERR "ksm: creating kthread failed\n");
2112                 err = PTR_ERR(ksm_thread);
2113                 goto out_free;
2114         }
2115
2116 #ifdef CONFIG_SYSFS
2117         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2118         if (err) {
2119                 printk(KERN_ERR "ksm: register sysfs failed\n");
2120                 kthread_stop(ksm_thread);
2121                 goto out_free;
2122         }
2123 #else
2124         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2125
2126 #endif /* CONFIG_SYSFS */
2127
2128 #ifdef CONFIG_MEMORY_HOTREMOVE
2129         /*
2130          * Choose a high priority since the callback takes ksm_thread_mutex:
2131          * later callbacks could only be taking locks which nest within that.
2132          */
2133         hotplug_memory_notifier(ksm_memory_callback, 100);
2134 #endif
2135         return 0;
2136
2137 out_free:
2138         ksm_slab_free();
2139 out:
2140         return err;
2141 }
2142 module_init(ksm_init)