]> Pileus Git - ~andy/linux/blob - mm/ksm.c
ksm: remove VM_MERGEABLE_FLAGS
[~andy/linux] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/ksm.h>
34
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37
38 /*
39  * A few notes about the KSM scanning process,
40  * to make it easier to understand the data structures below:
41  *
42  * In order to reduce excessive scanning, KSM sorts the memory pages by their
43  * contents into a data structure that holds pointers to the pages' locations.
44  *
45  * Since the contents of the pages may change at any moment, KSM cannot just
46  * insert the pages into a normal sorted tree and expect it to find anything.
47  * Therefore KSM uses two data structures - the stable and the unstable tree.
48  *
49  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
50  * by their contents.  Because each such page is write-protected, searching on
51  * this tree is fully assured to be working (except when pages are unmapped),
52  * and therefore this tree is called the stable tree.
53  *
54  * In addition to the stable tree, KSM uses a second data structure called the
55  * unstable tree: this tree holds pointers to pages which have been found to
56  * be "unchanged for a period of time".  The unstable tree sorts these pages
57  * by their contents, but since they are not write-protected, KSM cannot rely
58  * upon the unstable tree to work correctly - the unstable tree is liable to
59  * be corrupted as its contents are modified, and so it is called unstable.
60  *
61  * KSM solves this problem by several techniques:
62  *
63  * 1) The unstable tree is flushed every time KSM completes scanning all
64  *    memory areas, and then the tree is rebuilt again from the beginning.
65  * 2) KSM will only insert into the unstable tree, pages whose hash value
66  *    has not changed since the previous scan of all memory areas.
67  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
68  *    colors of the nodes and not on their contents, assuring that even when
69  *    the tree gets "corrupted" it won't get out of balance, so scanning time
70  *    remains the same (also, searching and inserting nodes in an rbtree uses
71  *    the same algorithm, so we have no overhead when we flush and rebuild).
72  * 4) KSM never flushes the stable tree, which means that even if it were to
73  *    take 10 attempts to find a page in the unstable tree, once it is found,
74  *    it is secured in the stable tree.  (When we scan a new page, we first
75  *    compare it against the stable tree, and then against the unstable tree.)
76  */
77
78 /**
79  * struct mm_slot - ksm information per mm that is being scanned
80  * @link: link to the mm_slots hash list
81  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
82  * @rmap_list: head for this mm_slot's list of rmap_items
83  * @mm: the mm that this information is valid for
84  */
85 struct mm_slot {
86         struct hlist_node link;
87         struct list_head mm_list;
88         struct list_head rmap_list;
89         struct mm_struct *mm;
90 };
91
92 /**
93  * struct ksm_scan - cursor for scanning
94  * @mm_slot: the current mm_slot we are scanning
95  * @address: the next address inside that to be scanned
96  * @rmap_item: the current rmap that we are scanning inside the rmap_list
97  * @seqnr: count of completed full scans (needed when removing unstable node)
98  *
99  * There is only the one ksm_scan instance of this cursor structure.
100  */
101 struct ksm_scan {
102         struct mm_slot *mm_slot;
103         unsigned long address;
104         struct rmap_item *rmap_item;
105         unsigned long seqnr;
106 };
107
108 /**
109  * struct rmap_item - reverse mapping item for virtual addresses
110  * @link: link into mm_slot's rmap_list (rmap_list is per mm)
111  * @mm: the memory structure this rmap_item is pointing into
112  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
113  * @oldchecksum: previous checksum of the page at that virtual address
114  * @node: rb_node of this rmap_item in either unstable or stable tree
115  * @next: next rmap_item hanging off the same node of the stable tree
116  * @prev: previous rmap_item hanging off the same node of the stable tree
117  */
118 struct rmap_item {
119         struct list_head link;
120         struct mm_struct *mm;
121         unsigned long address;          /* + low bits used for flags below */
122         union {
123                 unsigned int oldchecksum;               /* when unstable */
124                 struct rmap_item *next;                 /* when stable */
125         };
126         union {
127                 struct rb_node node;                    /* when tree node */
128                 struct rmap_item *prev;                 /* in stable list */
129         };
130 };
131
132 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
133 #define NODE_FLAG       0x100   /* is a node of unstable or stable tree */
134 #define STABLE_FLAG     0x200   /* is a node or list item of stable tree */
135
136 /* The stable and unstable tree heads */
137 static struct rb_root root_stable_tree = RB_ROOT;
138 static struct rb_root root_unstable_tree = RB_ROOT;
139
140 #define MM_SLOTS_HASH_HEADS 1024
141 static struct hlist_head *mm_slots_hash;
142
143 static struct mm_slot ksm_mm_head = {
144         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
145 };
146 static struct ksm_scan ksm_scan = {
147         .mm_slot = &ksm_mm_head,
148 };
149
150 static struct kmem_cache *rmap_item_cache;
151 static struct kmem_cache *mm_slot_cache;
152
153 /* The number of nodes in the stable tree */
154 static unsigned long ksm_pages_shared;
155
156 /* The number of page slots additionally sharing those nodes */
157 static unsigned long ksm_pages_sharing;
158
159 /* The number of nodes in the unstable tree */
160 static unsigned long ksm_pages_unshared;
161
162 /* The number of rmap_items in use: to calculate pages_volatile */
163 static unsigned long ksm_rmap_items;
164
165 /* Limit on the number of unswappable pages used */
166 static unsigned long ksm_max_kernel_pages = 2000;
167
168 /* Number of pages ksmd should scan in one batch */
169 static unsigned int ksm_thread_pages_to_scan = 200;
170
171 /* Milliseconds ksmd should sleep between batches */
172 static unsigned int ksm_thread_sleep_millisecs = 20;
173
174 #define KSM_RUN_STOP    0
175 #define KSM_RUN_MERGE   1
176 #define KSM_RUN_UNMERGE 2
177 static unsigned int ksm_run = KSM_RUN_MERGE;
178
179 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
180 static DEFINE_MUTEX(ksm_thread_mutex);
181 static DEFINE_SPINLOCK(ksm_mmlist_lock);
182
183 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
184                 sizeof(struct __struct), __alignof__(struct __struct),\
185                 (__flags), NULL)
186
187 static int __init ksm_slab_init(void)
188 {
189         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
190         if (!rmap_item_cache)
191                 goto out;
192
193         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
194         if (!mm_slot_cache)
195                 goto out_free;
196
197         return 0;
198
199 out_free:
200         kmem_cache_destroy(rmap_item_cache);
201 out:
202         return -ENOMEM;
203 }
204
205 static void __init ksm_slab_free(void)
206 {
207         kmem_cache_destroy(mm_slot_cache);
208         kmem_cache_destroy(rmap_item_cache);
209         mm_slot_cache = NULL;
210 }
211
212 static inline struct rmap_item *alloc_rmap_item(void)
213 {
214         struct rmap_item *rmap_item;
215
216         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
217         if (rmap_item)
218                 ksm_rmap_items++;
219         return rmap_item;
220 }
221
222 static inline void free_rmap_item(struct rmap_item *rmap_item)
223 {
224         ksm_rmap_items--;
225         rmap_item->mm = NULL;   /* debug safety */
226         kmem_cache_free(rmap_item_cache, rmap_item);
227 }
228
229 static inline struct mm_slot *alloc_mm_slot(void)
230 {
231         if (!mm_slot_cache)     /* initialization failed */
232                 return NULL;
233         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
234 }
235
236 static inline void free_mm_slot(struct mm_slot *mm_slot)
237 {
238         kmem_cache_free(mm_slot_cache, mm_slot);
239 }
240
241 static int __init mm_slots_hash_init(void)
242 {
243         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
244                                 GFP_KERNEL);
245         if (!mm_slots_hash)
246                 return -ENOMEM;
247         return 0;
248 }
249
250 static void __init mm_slots_hash_free(void)
251 {
252         kfree(mm_slots_hash);
253 }
254
255 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
256 {
257         struct mm_slot *mm_slot;
258         struct hlist_head *bucket;
259         struct hlist_node *node;
260
261         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
262                                 % MM_SLOTS_HASH_HEADS];
263         hlist_for_each_entry(mm_slot, node, bucket, link) {
264                 if (mm == mm_slot->mm)
265                         return mm_slot;
266         }
267         return NULL;
268 }
269
270 static void insert_to_mm_slots_hash(struct mm_struct *mm,
271                                     struct mm_slot *mm_slot)
272 {
273         struct hlist_head *bucket;
274
275         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
276                                 % MM_SLOTS_HASH_HEADS];
277         mm_slot->mm = mm;
278         INIT_LIST_HEAD(&mm_slot->rmap_list);
279         hlist_add_head(&mm_slot->link, bucket);
280 }
281
282 static inline int in_stable_tree(struct rmap_item *rmap_item)
283 {
284         return rmap_item->address & STABLE_FLAG;
285 }
286
287 /*
288  * We use break_ksm to break COW on a ksm page: it's a stripped down
289  *
290  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
291  *              put_page(page);
292  *
293  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
294  * in case the application has unmapped and remapped mm,addr meanwhile.
295  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
296  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
297  */
298 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
299 {
300         struct page *page;
301         int ret = 0;
302
303         do {
304                 cond_resched();
305                 page = follow_page(vma, addr, FOLL_GET);
306                 if (!page)
307                         break;
308                 if (PageKsm(page))
309                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
310                                                         FAULT_FLAG_WRITE);
311                 else
312                         ret = VM_FAULT_WRITE;
313                 put_page(page);
314         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
315         /*
316          * We must loop because handle_mm_fault() may back out if there's
317          * any difficulty e.g. if pte accessed bit gets updated concurrently.
318          *
319          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
320          * COW has been broken, even if the vma does not permit VM_WRITE;
321          * but note that a concurrent fault might break PageKsm for us.
322          *
323          * VM_FAULT_SIGBUS could occur if we race with truncation of the
324          * backing file, which also invalidates anonymous pages: that's
325          * okay, that truncation will have unmapped the PageKsm for us.
326          *
327          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
328          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
329          * current task has TIF_MEMDIE set, and will be OOM killed on return
330          * to user; and ksmd, having no mm, would never be chosen for that.
331          *
332          * But if the mm is in a limited mem_cgroup, then the fault may fail
333          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
334          * even ksmd can fail in this way - though it's usually breaking ksm
335          * just to undo a merge it made a moment before, so unlikely to oom.
336          *
337          * That's a pity: we might therefore have more kernel pages allocated
338          * than we're counting as nodes in the stable tree; but ksm_do_scan
339          * will retry to break_cow on each pass, so should recover the page
340          * in due course.  The important thing is to not let VM_MERGEABLE
341          * be cleared while any such pages might remain in the area.
342          */
343         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
344 }
345
346 static void break_cow(struct mm_struct *mm, unsigned long addr)
347 {
348         struct vm_area_struct *vma;
349
350         down_read(&mm->mmap_sem);
351         if (ksm_test_exit(mm))
352                 goto out;
353         vma = find_vma(mm, addr);
354         if (!vma || vma->vm_start > addr)
355                 goto out;
356         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
357                 goto out;
358         break_ksm(vma, addr);
359 out:
360         up_read(&mm->mmap_sem);
361 }
362
363 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
364 {
365         struct mm_struct *mm = rmap_item->mm;
366         unsigned long addr = rmap_item->address;
367         struct vm_area_struct *vma;
368         struct page *page;
369
370         down_read(&mm->mmap_sem);
371         if (ksm_test_exit(mm))
372                 goto out;
373         vma = find_vma(mm, addr);
374         if (!vma || vma->vm_start > addr)
375                 goto out;
376         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
377                 goto out;
378
379         page = follow_page(vma, addr, FOLL_GET);
380         if (!page)
381                 goto out;
382         if (PageAnon(page)) {
383                 flush_anon_page(vma, page, addr);
384                 flush_dcache_page(page);
385         } else {
386                 put_page(page);
387 out:            page = NULL;
388         }
389         up_read(&mm->mmap_sem);
390         return page;
391 }
392
393 /*
394  * get_ksm_page: checks if the page at the virtual address in rmap_item
395  * is still PageKsm, in which case we can trust the content of the page,
396  * and it returns the gotten page; but NULL if the page has been zapped.
397  */
398 static struct page *get_ksm_page(struct rmap_item *rmap_item)
399 {
400         struct page *page;
401
402         page = get_mergeable_page(rmap_item);
403         if (page && !PageKsm(page)) {
404                 put_page(page);
405                 page = NULL;
406         }
407         return page;
408 }
409
410 /*
411  * Removing rmap_item from stable or unstable tree.
412  * This function will clean the information from the stable/unstable tree.
413  */
414 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
415 {
416         if (in_stable_tree(rmap_item)) {
417                 struct rmap_item *next_item = rmap_item->next;
418
419                 if (rmap_item->address & NODE_FLAG) {
420                         if (next_item) {
421                                 rb_replace_node(&rmap_item->node,
422                                                 &next_item->node,
423                                                 &root_stable_tree);
424                                 next_item->address |= NODE_FLAG;
425                                 ksm_pages_sharing--;
426                         } else {
427                                 rb_erase(&rmap_item->node, &root_stable_tree);
428                                 ksm_pages_shared--;
429                         }
430                 } else {
431                         struct rmap_item *prev_item = rmap_item->prev;
432
433                         BUG_ON(prev_item->next != rmap_item);
434                         prev_item->next = next_item;
435                         if (next_item) {
436                                 BUG_ON(next_item->prev != rmap_item);
437                                 next_item->prev = rmap_item->prev;
438                         }
439                         ksm_pages_sharing--;
440                 }
441
442                 rmap_item->next = NULL;
443
444         } else if (rmap_item->address & NODE_FLAG) {
445                 unsigned char age;
446                 /*
447                  * Usually ksmd can and must skip the rb_erase, because
448                  * root_unstable_tree was already reset to RB_ROOT.
449                  * But be careful when an mm is exiting: do the rb_erase
450                  * if this rmap_item was inserted by this scan, rather
451                  * than left over from before.
452                  */
453                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
454                 BUG_ON(age > 1);
455                 if (!age)
456                         rb_erase(&rmap_item->node, &root_unstable_tree);
457                 ksm_pages_unshared--;
458         }
459
460         rmap_item->address &= PAGE_MASK;
461
462         cond_resched();         /* we're called from many long loops */
463 }
464
465 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
466                                        struct list_head *cur)
467 {
468         struct rmap_item *rmap_item;
469
470         while (cur != &mm_slot->rmap_list) {
471                 rmap_item = list_entry(cur, struct rmap_item, link);
472                 cur = cur->next;
473                 remove_rmap_item_from_tree(rmap_item);
474                 list_del(&rmap_item->link);
475                 free_rmap_item(rmap_item);
476         }
477 }
478
479 /*
480  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
481  * than check every pte of a given vma, the locking doesn't quite work for
482  * that - an rmap_item is assigned to the stable tree after inserting ksm
483  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
484  * rmap_items from parent to child at fork time (so as not to waste time
485  * if exit comes before the next scan reaches it).
486  *
487  * Similarly, although we'd like to remove rmap_items (so updating counts
488  * and freeing memory) when unmerging an area, it's easier to leave that
489  * to the next pass of ksmd - consider, for example, how ksmd might be
490  * in cmp_and_merge_page on one of the rmap_items we would be removing.
491  */
492 static int unmerge_ksm_pages(struct vm_area_struct *vma,
493                              unsigned long start, unsigned long end)
494 {
495         unsigned long addr;
496         int err = 0;
497
498         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
499                 if (ksm_test_exit(vma->vm_mm))
500                         break;
501                 if (signal_pending(current))
502                         err = -ERESTARTSYS;
503                 else
504                         err = break_ksm(vma, addr);
505         }
506         return err;
507 }
508
509 #ifdef CONFIG_SYSFS
510 /*
511  * Only called through the sysfs control interface:
512  */
513 static int unmerge_and_remove_all_rmap_items(void)
514 {
515         struct mm_slot *mm_slot;
516         struct mm_struct *mm;
517         struct vm_area_struct *vma;
518         int err = 0;
519
520         spin_lock(&ksm_mmlist_lock);
521         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
522                                                 struct mm_slot, mm_list);
523         spin_unlock(&ksm_mmlist_lock);
524
525         for (mm_slot = ksm_scan.mm_slot;
526                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
527                 mm = mm_slot->mm;
528                 down_read(&mm->mmap_sem);
529                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
530                         if (ksm_test_exit(mm))
531                                 break;
532                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
533                                 continue;
534                         err = unmerge_ksm_pages(vma,
535                                                 vma->vm_start, vma->vm_end);
536                         if (err)
537                                 goto error;
538                 }
539
540                 remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
541
542                 spin_lock(&ksm_mmlist_lock);
543                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
544                                                 struct mm_slot, mm_list);
545                 if (ksm_test_exit(mm)) {
546                         hlist_del(&mm_slot->link);
547                         list_del(&mm_slot->mm_list);
548                         spin_unlock(&ksm_mmlist_lock);
549
550                         free_mm_slot(mm_slot);
551                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
552                         up_read(&mm->mmap_sem);
553                         mmdrop(mm);
554                 } else {
555                         spin_unlock(&ksm_mmlist_lock);
556                         up_read(&mm->mmap_sem);
557                 }
558         }
559
560         ksm_scan.seqnr = 0;
561         return 0;
562
563 error:
564         up_read(&mm->mmap_sem);
565         spin_lock(&ksm_mmlist_lock);
566         ksm_scan.mm_slot = &ksm_mm_head;
567         spin_unlock(&ksm_mmlist_lock);
568         return err;
569 }
570 #endif /* CONFIG_SYSFS */
571
572 static u32 calc_checksum(struct page *page)
573 {
574         u32 checksum;
575         void *addr = kmap_atomic(page, KM_USER0);
576         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
577         kunmap_atomic(addr, KM_USER0);
578         return checksum;
579 }
580
581 static int memcmp_pages(struct page *page1, struct page *page2)
582 {
583         char *addr1, *addr2;
584         int ret;
585
586         addr1 = kmap_atomic(page1, KM_USER0);
587         addr2 = kmap_atomic(page2, KM_USER1);
588         ret = memcmp(addr1, addr2, PAGE_SIZE);
589         kunmap_atomic(addr2, KM_USER1);
590         kunmap_atomic(addr1, KM_USER0);
591         return ret;
592 }
593
594 static inline int pages_identical(struct page *page1, struct page *page2)
595 {
596         return !memcmp_pages(page1, page2);
597 }
598
599 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
600                               pte_t *orig_pte)
601 {
602         struct mm_struct *mm = vma->vm_mm;
603         unsigned long addr;
604         pte_t *ptep;
605         spinlock_t *ptl;
606         int swapped;
607         int err = -EFAULT;
608
609         addr = page_address_in_vma(page, vma);
610         if (addr == -EFAULT)
611                 goto out;
612
613         ptep = page_check_address(page, mm, addr, &ptl, 0);
614         if (!ptep)
615                 goto out;
616
617         if (pte_write(*ptep)) {
618                 pte_t entry;
619
620                 swapped = PageSwapCache(page);
621                 flush_cache_page(vma, addr, page_to_pfn(page));
622                 /*
623                  * Ok this is tricky, when get_user_pages_fast() run it doesnt
624                  * take any lock, therefore the check that we are going to make
625                  * with the pagecount against the mapcount is racey and
626                  * O_DIRECT can happen right after the check.
627                  * So we clear the pte and flush the tlb before the check
628                  * this assure us that no O_DIRECT can happen after the check
629                  * or in the middle of the check.
630                  */
631                 entry = ptep_clear_flush(vma, addr, ptep);
632                 /*
633                  * Check that no O_DIRECT or similar I/O is in progress on the
634                  * page
635                  */
636                 if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
637                         set_pte_at_notify(mm, addr, ptep, entry);
638                         goto out_unlock;
639                 }
640                 entry = pte_wrprotect(entry);
641                 set_pte_at_notify(mm, addr, ptep, entry);
642         }
643         *orig_pte = *ptep;
644         err = 0;
645
646 out_unlock:
647         pte_unmap_unlock(ptep, ptl);
648 out:
649         return err;
650 }
651
652 /**
653  * replace_page - replace page in vma by new ksm page
654  * @vma:      vma that holds the pte pointing to oldpage
655  * @oldpage:  the page we are replacing by newpage
656  * @newpage:  the ksm page we replace oldpage by
657  * @orig_pte: the original value of the pte
658  *
659  * Returns 0 on success, -EFAULT on failure.
660  */
661 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
662                         struct page *newpage, pte_t orig_pte)
663 {
664         struct mm_struct *mm = vma->vm_mm;
665         pgd_t *pgd;
666         pud_t *pud;
667         pmd_t *pmd;
668         pte_t *ptep;
669         spinlock_t *ptl;
670         unsigned long addr;
671         pgprot_t prot;
672         int err = -EFAULT;
673
674         prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
675
676         addr = page_address_in_vma(oldpage, vma);
677         if (addr == -EFAULT)
678                 goto out;
679
680         pgd = pgd_offset(mm, addr);
681         if (!pgd_present(*pgd))
682                 goto out;
683
684         pud = pud_offset(pgd, addr);
685         if (!pud_present(*pud))
686                 goto out;
687
688         pmd = pmd_offset(pud, addr);
689         if (!pmd_present(*pmd))
690                 goto out;
691
692         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
693         if (!pte_same(*ptep, orig_pte)) {
694                 pte_unmap_unlock(ptep, ptl);
695                 goto out;
696         }
697
698         get_page(newpage);
699         page_add_ksm_rmap(newpage);
700
701         flush_cache_page(vma, addr, pte_pfn(*ptep));
702         ptep_clear_flush(vma, addr, ptep);
703         set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
704
705         page_remove_rmap(oldpage);
706         put_page(oldpage);
707
708         pte_unmap_unlock(ptep, ptl);
709         err = 0;
710 out:
711         return err;
712 }
713
714 /*
715  * try_to_merge_one_page - take two pages and merge them into one
716  * @vma: the vma that hold the pte pointing into oldpage
717  * @oldpage: the page that we want to replace with newpage
718  * @newpage: the page that we want to map instead of oldpage
719  *
720  * Note:
721  * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
722  * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
723  *
724  * This function returns 0 if the pages were merged, -EFAULT otherwise.
725  */
726 static int try_to_merge_one_page(struct vm_area_struct *vma,
727                                  struct page *oldpage,
728                                  struct page *newpage)
729 {
730         pte_t orig_pte = __pte(0);
731         int err = -EFAULT;
732
733         if (!(vma->vm_flags & VM_MERGEABLE))
734                 goto out;
735
736         if (!PageAnon(oldpage))
737                 goto out;
738
739         get_page(newpage);
740         get_page(oldpage);
741
742         /*
743          * We need the page lock to read a stable PageSwapCache in
744          * write_protect_page().  We use trylock_page() instead of
745          * lock_page() because we don't want to wait here - we
746          * prefer to continue scanning and merging different pages,
747          * then come back to this page when it is unlocked.
748          */
749         if (!trylock_page(oldpage))
750                 goto out_putpage;
751         /*
752          * If this anonymous page is mapped only here, its pte may need
753          * to be write-protected.  If it's mapped elsewhere, all of its
754          * ptes are necessarily already write-protected.  But in either
755          * case, we need to lock and check page_count is not raised.
756          */
757         if (write_protect_page(vma, oldpage, &orig_pte)) {
758                 unlock_page(oldpage);
759                 goto out_putpage;
760         }
761         unlock_page(oldpage);
762
763         if (pages_identical(oldpage, newpage))
764                 err = replace_page(vma, oldpage, newpage, orig_pte);
765
766 out_putpage:
767         put_page(oldpage);
768         put_page(newpage);
769 out:
770         return err;
771 }
772
773 /*
774  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
775  * but no new kernel page is allocated: kpage must already be a ksm page.
776  */
777 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
778                                       unsigned long addr1,
779                                       struct page *page1,
780                                       struct page *kpage)
781 {
782         struct vm_area_struct *vma;
783         int err = -EFAULT;
784
785         down_read(&mm1->mmap_sem);
786         if (ksm_test_exit(mm1))
787                 goto out;
788
789         vma = find_vma(mm1, addr1);
790         if (!vma || vma->vm_start > addr1)
791                 goto out;
792
793         err = try_to_merge_one_page(vma, page1, kpage);
794 out:
795         up_read(&mm1->mmap_sem);
796         return err;
797 }
798
799 /*
800  * try_to_merge_two_pages - take two identical pages and prepare them
801  * to be merged into one page.
802  *
803  * This function returns 0 if we successfully mapped two identical pages
804  * into one page, -EFAULT otherwise.
805  *
806  * Note that this function allocates a new kernel page: if one of the pages
807  * is already a ksm page, try_to_merge_with_ksm_page should be used.
808  */
809 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
810                                   struct page *page1, struct mm_struct *mm2,
811                                   unsigned long addr2, struct page *page2)
812 {
813         struct vm_area_struct *vma;
814         struct page *kpage;
815         int err = -EFAULT;
816
817         /*
818          * The number of nodes in the stable tree
819          * is the number of kernel pages that we hold.
820          */
821         if (ksm_max_kernel_pages &&
822             ksm_max_kernel_pages <= ksm_pages_shared)
823                 return err;
824
825         kpage = alloc_page(GFP_HIGHUSER);
826         if (!kpage)
827                 return err;
828
829         down_read(&mm1->mmap_sem);
830         if (ksm_test_exit(mm1)) {
831                 up_read(&mm1->mmap_sem);
832                 goto out;
833         }
834         vma = find_vma(mm1, addr1);
835         if (!vma || vma->vm_start > addr1) {
836                 up_read(&mm1->mmap_sem);
837                 goto out;
838         }
839
840         copy_user_highpage(kpage, page1, addr1, vma);
841         err = try_to_merge_one_page(vma, page1, kpage);
842         up_read(&mm1->mmap_sem);
843
844         if (!err) {
845                 err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
846                 /*
847                  * If that fails, we have a ksm page with only one pte
848                  * pointing to it: so break it.
849                  */
850                 if (err)
851                         break_cow(mm1, addr1);
852         }
853 out:
854         put_page(kpage);
855         return err;
856 }
857
858 /*
859  * stable_tree_search - search page inside the stable tree
860  * @page: the page that we are searching identical pages to.
861  * @page2: pointer into identical page that we are holding inside the stable
862  *         tree that we have found.
863  * @rmap_item: the reverse mapping item
864  *
865  * This function checks if there is a page inside the stable tree
866  * with identical content to the page that we are scanning right now.
867  *
868  * This function return rmap_item pointer to the identical item if found,
869  * NULL otherwise.
870  */
871 static struct rmap_item *stable_tree_search(struct page *page,
872                                             struct page **page2,
873                                             struct rmap_item *rmap_item)
874 {
875         struct rb_node *node = root_stable_tree.rb_node;
876
877         while (node) {
878                 struct rmap_item *tree_rmap_item, *next_rmap_item;
879                 int ret;
880
881                 tree_rmap_item = rb_entry(node, struct rmap_item, node);
882                 while (tree_rmap_item) {
883                         BUG_ON(!in_stable_tree(tree_rmap_item));
884                         cond_resched();
885                         page2[0] = get_ksm_page(tree_rmap_item);
886                         if (page2[0])
887                                 break;
888                         next_rmap_item = tree_rmap_item->next;
889                         remove_rmap_item_from_tree(tree_rmap_item);
890                         tree_rmap_item = next_rmap_item;
891                 }
892                 if (!tree_rmap_item)
893                         return NULL;
894
895                 ret = memcmp_pages(page, page2[0]);
896
897                 if (ret < 0) {
898                         put_page(page2[0]);
899                         node = node->rb_left;
900                 } else if (ret > 0) {
901                         put_page(page2[0]);
902                         node = node->rb_right;
903                 } else {
904                         return tree_rmap_item;
905                 }
906         }
907
908         return NULL;
909 }
910
911 /*
912  * stable_tree_insert - insert rmap_item pointing to new ksm page
913  * into the stable tree.
914  *
915  * @page: the page that we are searching identical page to inside the stable
916  *        tree.
917  * @rmap_item: pointer to the reverse mapping item.
918  *
919  * This function returns rmap_item if success, NULL otherwise.
920  */
921 static struct rmap_item *stable_tree_insert(struct page *page,
922                                             struct rmap_item *rmap_item)
923 {
924         struct rb_node **new = &root_stable_tree.rb_node;
925         struct rb_node *parent = NULL;
926
927         while (*new) {
928                 struct rmap_item *tree_rmap_item, *next_rmap_item;
929                 struct page *tree_page;
930                 int ret;
931
932                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
933                 while (tree_rmap_item) {
934                         BUG_ON(!in_stable_tree(tree_rmap_item));
935                         cond_resched();
936                         tree_page = get_ksm_page(tree_rmap_item);
937                         if (tree_page)
938                                 break;
939                         next_rmap_item = tree_rmap_item->next;
940                         remove_rmap_item_from_tree(tree_rmap_item);
941                         tree_rmap_item = next_rmap_item;
942                 }
943                 if (!tree_rmap_item)
944                         return NULL;
945
946                 ret = memcmp_pages(page, tree_page);
947                 put_page(tree_page);
948
949                 parent = *new;
950                 if (ret < 0)
951                         new = &parent->rb_left;
952                 else if (ret > 0)
953                         new = &parent->rb_right;
954                 else {
955                         /*
956                          * It is not a bug that stable_tree_search() didn't
957                          * find this node: because at that time our page was
958                          * not yet write-protected, so may have changed since.
959                          */
960                         return NULL;
961                 }
962         }
963
964         rmap_item->address |= NODE_FLAG | STABLE_FLAG;
965         rmap_item->next = NULL;
966         rb_link_node(&rmap_item->node, parent, new);
967         rb_insert_color(&rmap_item->node, &root_stable_tree);
968
969         ksm_pages_shared++;
970         return rmap_item;
971 }
972
973 /*
974  * unstable_tree_search_insert - search and insert items into the unstable tree.
975  *
976  * @page: the page that we are going to search for identical page or to insert
977  *        into the unstable tree
978  * @page2: pointer into identical page that was found inside the unstable tree
979  * @rmap_item: the reverse mapping item of page
980  *
981  * This function searches for a page in the unstable tree identical to the
982  * page currently being scanned; and if no identical page is found in the
983  * tree, we insert rmap_item as a new object into the unstable tree.
984  *
985  * This function returns pointer to rmap_item found to be identical
986  * to the currently scanned page, NULL otherwise.
987  *
988  * This function does both searching and inserting, because they share
989  * the same walking algorithm in an rbtree.
990  */
991 static struct rmap_item *unstable_tree_search_insert(struct page *page,
992                                                 struct page **page2,
993                                                 struct rmap_item *rmap_item)
994 {
995         struct rb_node **new = &root_unstable_tree.rb_node;
996         struct rb_node *parent = NULL;
997
998         while (*new) {
999                 struct rmap_item *tree_rmap_item;
1000                 int ret;
1001
1002                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1003                 page2[0] = get_mergeable_page(tree_rmap_item);
1004                 if (!page2[0])
1005                         return NULL;
1006
1007                 /*
1008                  * Don't substitute an unswappable ksm page
1009                  * just for one good swappable forked page.
1010                  */
1011                 if (page == page2[0]) {
1012                         put_page(page2[0]);
1013                         return NULL;
1014                 }
1015
1016                 ret = memcmp_pages(page, page2[0]);
1017
1018                 parent = *new;
1019                 if (ret < 0) {
1020                         put_page(page2[0]);
1021                         new = &parent->rb_left;
1022                 } else if (ret > 0) {
1023                         put_page(page2[0]);
1024                         new = &parent->rb_right;
1025                 } else {
1026                         return tree_rmap_item;
1027                 }
1028         }
1029
1030         rmap_item->address |= NODE_FLAG;
1031         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1032         rb_link_node(&rmap_item->node, parent, new);
1033         rb_insert_color(&rmap_item->node, &root_unstable_tree);
1034
1035         ksm_pages_unshared++;
1036         return NULL;
1037 }
1038
1039 /*
1040  * stable_tree_append - add another rmap_item to the linked list of
1041  * rmap_items hanging off a given node of the stable tree, all sharing
1042  * the same ksm page.
1043  */
1044 static void stable_tree_append(struct rmap_item *rmap_item,
1045                                struct rmap_item *tree_rmap_item)
1046 {
1047         rmap_item->next = tree_rmap_item->next;
1048         rmap_item->prev = tree_rmap_item;
1049
1050         if (tree_rmap_item->next)
1051                 tree_rmap_item->next->prev = rmap_item;
1052
1053         tree_rmap_item->next = rmap_item;
1054         rmap_item->address |= STABLE_FLAG;
1055
1056         ksm_pages_sharing++;
1057 }
1058
1059 /*
1060  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1061  * if not, compare checksum to previous and if it's the same, see if page can
1062  * be inserted into the unstable tree, or merged with a page already there and
1063  * both transferred to the stable tree.
1064  *
1065  * @page: the page that we are searching identical page to.
1066  * @rmap_item: the reverse mapping into the virtual address of this page
1067  */
1068 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1069 {
1070         struct page *page2[1];
1071         struct rmap_item *tree_rmap_item;
1072         unsigned int checksum;
1073         int err;
1074
1075         if (in_stable_tree(rmap_item))
1076                 remove_rmap_item_from_tree(rmap_item);
1077
1078         /* We first start with searching the page inside the stable tree */
1079         tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1080         if (tree_rmap_item) {
1081                 if (page == page2[0])                   /* forked */
1082                         err = 0;
1083                 else
1084                         err = try_to_merge_with_ksm_page(rmap_item->mm,
1085                                                          rmap_item->address,
1086                                                          page, page2[0]);
1087                 put_page(page2[0]);
1088
1089                 if (!err) {
1090                         /*
1091                          * The page was successfully merged:
1092                          * add its rmap_item to the stable tree.
1093                          */
1094                         stable_tree_append(rmap_item, tree_rmap_item);
1095                 }
1096                 return;
1097         }
1098
1099         /*
1100          * A ksm page might have got here by fork, but its other
1101          * references have already been removed from the stable tree.
1102          * Or it might be left over from a break_ksm which failed
1103          * when the mem_cgroup had reached its limit: try again now.
1104          */
1105         if (PageKsm(page))
1106                 break_cow(rmap_item->mm, rmap_item->address);
1107
1108         /*
1109          * In case the hash value of the page was changed from the last time we
1110          * have calculated it, this page to be changed frequely, therefore we
1111          * don't want to insert it to the unstable tree, and we don't want to
1112          * waste our time to search if there is something identical to it there.
1113          */
1114         checksum = calc_checksum(page);
1115         if (rmap_item->oldchecksum != checksum) {
1116                 rmap_item->oldchecksum = checksum;
1117                 return;
1118         }
1119
1120         tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1121         if (tree_rmap_item) {
1122                 err = try_to_merge_two_pages(rmap_item->mm,
1123                                              rmap_item->address, page,
1124                                              tree_rmap_item->mm,
1125                                              tree_rmap_item->address, page2[0]);
1126                 /*
1127                  * As soon as we merge this page, we want to remove the
1128                  * rmap_item of the page we have merged with from the unstable
1129                  * tree, and insert it instead as new node in the stable tree.
1130                  */
1131                 if (!err) {
1132                         rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1133                         tree_rmap_item->address &= ~NODE_FLAG;
1134                         ksm_pages_unshared--;
1135
1136                         /*
1137                          * If we fail to insert the page into the stable tree,
1138                          * we will have 2 virtual addresses that are pointing
1139                          * to a ksm page left outside the stable tree,
1140                          * in which case we need to break_cow on both.
1141                          */
1142                         if (stable_tree_insert(page2[0], tree_rmap_item))
1143                                 stable_tree_append(rmap_item, tree_rmap_item);
1144                         else {
1145                                 break_cow(tree_rmap_item->mm,
1146                                                 tree_rmap_item->address);
1147                                 break_cow(rmap_item->mm, rmap_item->address);
1148                         }
1149                 }
1150
1151                 put_page(page2[0]);
1152         }
1153 }
1154
1155 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1156                                             struct list_head *cur,
1157                                             unsigned long addr)
1158 {
1159         struct rmap_item *rmap_item;
1160
1161         while (cur != &mm_slot->rmap_list) {
1162                 rmap_item = list_entry(cur, struct rmap_item, link);
1163                 if ((rmap_item->address & PAGE_MASK) == addr) {
1164                         if (!in_stable_tree(rmap_item))
1165                                 remove_rmap_item_from_tree(rmap_item);
1166                         return rmap_item;
1167                 }
1168                 if (rmap_item->address > addr)
1169                         break;
1170                 cur = cur->next;
1171                 remove_rmap_item_from_tree(rmap_item);
1172                 list_del(&rmap_item->link);
1173                 free_rmap_item(rmap_item);
1174         }
1175
1176         rmap_item = alloc_rmap_item();
1177         if (rmap_item) {
1178                 /* It has already been zeroed */
1179                 rmap_item->mm = mm_slot->mm;
1180                 rmap_item->address = addr;
1181                 list_add_tail(&rmap_item->link, cur);
1182         }
1183         return rmap_item;
1184 }
1185
1186 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1187 {
1188         struct mm_struct *mm;
1189         struct mm_slot *slot;
1190         struct vm_area_struct *vma;
1191         struct rmap_item *rmap_item;
1192
1193         if (list_empty(&ksm_mm_head.mm_list))
1194                 return NULL;
1195
1196         slot = ksm_scan.mm_slot;
1197         if (slot == &ksm_mm_head) {
1198                 root_unstable_tree = RB_ROOT;
1199
1200                 spin_lock(&ksm_mmlist_lock);
1201                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1202                 ksm_scan.mm_slot = slot;
1203                 spin_unlock(&ksm_mmlist_lock);
1204 next_mm:
1205                 ksm_scan.address = 0;
1206                 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1207                                                 struct rmap_item, link);
1208         }
1209
1210         mm = slot->mm;
1211         down_read(&mm->mmap_sem);
1212         if (ksm_test_exit(mm))
1213                 vma = NULL;
1214         else
1215                 vma = find_vma(mm, ksm_scan.address);
1216
1217         for (; vma; vma = vma->vm_next) {
1218                 if (!(vma->vm_flags & VM_MERGEABLE))
1219                         continue;
1220                 if (ksm_scan.address < vma->vm_start)
1221                         ksm_scan.address = vma->vm_start;
1222                 if (!vma->anon_vma)
1223                         ksm_scan.address = vma->vm_end;
1224
1225                 while (ksm_scan.address < vma->vm_end) {
1226                         if (ksm_test_exit(mm))
1227                                 break;
1228                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1229                         if (*page && PageAnon(*page)) {
1230                                 flush_anon_page(vma, *page, ksm_scan.address);
1231                                 flush_dcache_page(*page);
1232                                 rmap_item = get_next_rmap_item(slot,
1233                                         ksm_scan.rmap_item->link.next,
1234                                         ksm_scan.address);
1235                                 if (rmap_item) {
1236                                         ksm_scan.rmap_item = rmap_item;
1237                                         ksm_scan.address += PAGE_SIZE;
1238                                 } else
1239                                         put_page(*page);
1240                                 up_read(&mm->mmap_sem);
1241                                 return rmap_item;
1242                         }
1243                         if (*page)
1244                                 put_page(*page);
1245                         ksm_scan.address += PAGE_SIZE;
1246                         cond_resched();
1247                 }
1248         }
1249
1250         if (ksm_test_exit(mm)) {
1251                 ksm_scan.address = 0;
1252                 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1253                                                 struct rmap_item, link);
1254         }
1255         /*
1256          * Nuke all the rmap_items that are above this current rmap:
1257          * because there were no VM_MERGEABLE vmas with such addresses.
1258          */
1259         remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1260
1261         spin_lock(&ksm_mmlist_lock);
1262         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1263                                                 struct mm_slot, mm_list);
1264         if (ksm_scan.address == 0) {
1265                 /*
1266                  * We've completed a full scan of all vmas, holding mmap_sem
1267                  * throughout, and found no VM_MERGEABLE: so do the same as
1268                  * __ksm_exit does to remove this mm from all our lists now.
1269                  * This applies either when cleaning up after __ksm_exit
1270                  * (but beware: we can reach here even before __ksm_exit),
1271                  * or when all VM_MERGEABLE areas have been unmapped (and
1272                  * mmap_sem then protects against race with MADV_MERGEABLE).
1273                  */
1274                 hlist_del(&slot->link);
1275                 list_del(&slot->mm_list);
1276                 spin_unlock(&ksm_mmlist_lock);
1277
1278                 free_mm_slot(slot);
1279                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1280                 up_read(&mm->mmap_sem);
1281                 mmdrop(mm);
1282         } else {
1283                 spin_unlock(&ksm_mmlist_lock);
1284                 up_read(&mm->mmap_sem);
1285         }
1286
1287         /* Repeat until we've completed scanning the whole list */
1288         slot = ksm_scan.mm_slot;
1289         if (slot != &ksm_mm_head)
1290                 goto next_mm;
1291
1292         ksm_scan.seqnr++;
1293         return NULL;
1294 }
1295
1296 /**
1297  * ksm_do_scan  - the ksm scanner main worker function.
1298  * @scan_npages - number of pages we want to scan before we return.
1299  */
1300 static void ksm_do_scan(unsigned int scan_npages)
1301 {
1302         struct rmap_item *rmap_item;
1303         struct page *page;
1304
1305         while (scan_npages--) {
1306                 cond_resched();
1307                 rmap_item = scan_get_next_rmap_item(&page);
1308                 if (!rmap_item)
1309                         return;
1310                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1311                         cmp_and_merge_page(page, rmap_item);
1312                 else if (page_mapcount(page) == 1) {
1313                         /*
1314                          * Replace now-unshared ksm page by ordinary page.
1315                          */
1316                         break_cow(rmap_item->mm, rmap_item->address);
1317                         remove_rmap_item_from_tree(rmap_item);
1318                         rmap_item->oldchecksum = calc_checksum(page);
1319                 }
1320                 put_page(page);
1321         }
1322 }
1323
1324 static int ksmd_should_run(void)
1325 {
1326         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1327 }
1328
1329 static int ksm_scan_thread(void *nothing)
1330 {
1331         set_user_nice(current, 5);
1332
1333         while (!kthread_should_stop()) {
1334                 mutex_lock(&ksm_thread_mutex);
1335                 if (ksmd_should_run())
1336                         ksm_do_scan(ksm_thread_pages_to_scan);
1337                 mutex_unlock(&ksm_thread_mutex);
1338
1339                 if (ksmd_should_run()) {
1340                         schedule_timeout_interruptible(
1341                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1342                 } else {
1343                         wait_event_interruptible(ksm_thread_wait,
1344                                 ksmd_should_run() || kthread_should_stop());
1345                 }
1346         }
1347         return 0;
1348 }
1349
1350 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1351                 unsigned long end, int advice, unsigned long *vm_flags)
1352 {
1353         struct mm_struct *mm = vma->vm_mm;
1354         int err;
1355
1356         switch (advice) {
1357         case MADV_MERGEABLE:
1358                 /*
1359                  * Be somewhat over-protective for now!
1360                  */
1361                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1362                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1363                                  VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1364                                  VM_MIXEDMAP  | VM_SAO))
1365                         return 0;               /* just ignore the advice */
1366
1367                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1368                         err = __ksm_enter(mm);
1369                         if (err)
1370                                 return err;
1371                 }
1372
1373                 *vm_flags |= VM_MERGEABLE;
1374                 break;
1375
1376         case MADV_UNMERGEABLE:
1377                 if (!(*vm_flags & VM_MERGEABLE))
1378                         return 0;               /* just ignore the advice */
1379
1380                 if (vma->anon_vma) {
1381                         err = unmerge_ksm_pages(vma, start, end);
1382                         if (err)
1383                                 return err;
1384                 }
1385
1386                 *vm_flags &= ~VM_MERGEABLE;
1387                 break;
1388         }
1389
1390         return 0;
1391 }
1392
1393 int __ksm_enter(struct mm_struct *mm)
1394 {
1395         struct mm_slot *mm_slot;
1396         int needs_wakeup;
1397
1398         mm_slot = alloc_mm_slot();
1399         if (!mm_slot)
1400                 return -ENOMEM;
1401
1402         /* Check ksm_run too?  Would need tighter locking */
1403         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1404
1405         spin_lock(&ksm_mmlist_lock);
1406         insert_to_mm_slots_hash(mm, mm_slot);
1407         /*
1408          * Insert just behind the scanning cursor, to let the area settle
1409          * down a little; when fork is followed by immediate exec, we don't
1410          * want ksmd to waste time setting up and tearing down an rmap_list.
1411          */
1412         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1413         spin_unlock(&ksm_mmlist_lock);
1414
1415         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1416         atomic_inc(&mm->mm_count);
1417
1418         if (needs_wakeup)
1419                 wake_up_interruptible(&ksm_thread_wait);
1420
1421         return 0;
1422 }
1423
1424 void __ksm_exit(struct mm_struct *mm)
1425 {
1426         struct mm_slot *mm_slot;
1427         int easy_to_free = 0;
1428
1429         /*
1430          * This process is exiting: if it's straightforward (as is the
1431          * case when ksmd was never running), free mm_slot immediately.
1432          * But if it's at the cursor or has rmap_items linked to it, use
1433          * mmap_sem to synchronize with any break_cows before pagetables
1434          * are freed, and leave the mm_slot on the list for ksmd to free.
1435          * Beware: ksm may already have noticed it exiting and freed the slot.
1436          */
1437
1438         spin_lock(&ksm_mmlist_lock);
1439         mm_slot = get_mm_slot(mm);
1440         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1441                 if (list_empty(&mm_slot->rmap_list)) {
1442                         hlist_del(&mm_slot->link);
1443                         list_del(&mm_slot->mm_list);
1444                         easy_to_free = 1;
1445                 } else {
1446                         list_move(&mm_slot->mm_list,
1447                                   &ksm_scan.mm_slot->mm_list);
1448                 }
1449         }
1450         spin_unlock(&ksm_mmlist_lock);
1451
1452         if (easy_to_free) {
1453                 free_mm_slot(mm_slot);
1454                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1455                 mmdrop(mm);
1456         } else if (mm_slot) {
1457                 down_write(&mm->mmap_sem);
1458                 up_write(&mm->mmap_sem);
1459         }
1460 }
1461
1462 #ifdef CONFIG_SYSFS
1463 /*
1464  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1465  */
1466
1467 #define KSM_ATTR_RO(_name) \
1468         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1469 #define KSM_ATTR(_name) \
1470         static struct kobj_attribute _name##_attr = \
1471                 __ATTR(_name, 0644, _name##_show, _name##_store)
1472
1473 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1474                                     struct kobj_attribute *attr, char *buf)
1475 {
1476         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1477 }
1478
1479 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1480                                      struct kobj_attribute *attr,
1481                                      const char *buf, size_t count)
1482 {
1483         unsigned long msecs;
1484         int err;
1485
1486         err = strict_strtoul(buf, 10, &msecs);
1487         if (err || msecs > UINT_MAX)
1488                 return -EINVAL;
1489
1490         ksm_thread_sleep_millisecs = msecs;
1491
1492         return count;
1493 }
1494 KSM_ATTR(sleep_millisecs);
1495
1496 static ssize_t pages_to_scan_show(struct kobject *kobj,
1497                                   struct kobj_attribute *attr, char *buf)
1498 {
1499         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1500 }
1501
1502 static ssize_t pages_to_scan_store(struct kobject *kobj,
1503                                    struct kobj_attribute *attr,
1504                                    const char *buf, size_t count)
1505 {
1506         int err;
1507         unsigned long nr_pages;
1508
1509         err = strict_strtoul(buf, 10, &nr_pages);
1510         if (err || nr_pages > UINT_MAX)
1511                 return -EINVAL;
1512
1513         ksm_thread_pages_to_scan = nr_pages;
1514
1515         return count;
1516 }
1517 KSM_ATTR(pages_to_scan);
1518
1519 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1520                         char *buf)
1521 {
1522         return sprintf(buf, "%u\n", ksm_run);
1523 }
1524
1525 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1526                          const char *buf, size_t count)
1527 {
1528         int err;
1529         unsigned long flags;
1530
1531         err = strict_strtoul(buf, 10, &flags);
1532         if (err || flags > UINT_MAX)
1533                 return -EINVAL;
1534         if (flags > KSM_RUN_UNMERGE)
1535                 return -EINVAL;
1536
1537         /*
1538          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1539          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1540          * breaking COW to free the unswappable pages_shared (but leaves
1541          * mm_slots on the list for when ksmd may be set running again).
1542          */
1543
1544         mutex_lock(&ksm_thread_mutex);
1545         if (ksm_run != flags) {
1546                 ksm_run = flags;
1547                 if (flags & KSM_RUN_UNMERGE) {
1548                         err = unmerge_and_remove_all_rmap_items();
1549                         if (err) {
1550                                 ksm_run = KSM_RUN_STOP;
1551                                 count = err;
1552                         }
1553                 }
1554         }
1555         mutex_unlock(&ksm_thread_mutex);
1556
1557         if (flags & KSM_RUN_MERGE)
1558                 wake_up_interruptible(&ksm_thread_wait);
1559
1560         return count;
1561 }
1562 KSM_ATTR(run);
1563
1564 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1565                                       struct kobj_attribute *attr,
1566                                       const char *buf, size_t count)
1567 {
1568         int err;
1569         unsigned long nr_pages;
1570
1571         err = strict_strtoul(buf, 10, &nr_pages);
1572         if (err)
1573                 return -EINVAL;
1574
1575         ksm_max_kernel_pages = nr_pages;
1576
1577         return count;
1578 }
1579
1580 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1581                                      struct kobj_attribute *attr, char *buf)
1582 {
1583         return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1584 }
1585 KSM_ATTR(max_kernel_pages);
1586
1587 static ssize_t pages_shared_show(struct kobject *kobj,
1588                                  struct kobj_attribute *attr, char *buf)
1589 {
1590         return sprintf(buf, "%lu\n", ksm_pages_shared);
1591 }
1592 KSM_ATTR_RO(pages_shared);
1593
1594 static ssize_t pages_sharing_show(struct kobject *kobj,
1595                                   struct kobj_attribute *attr, char *buf)
1596 {
1597         return sprintf(buf, "%lu\n", ksm_pages_sharing);
1598 }
1599 KSM_ATTR_RO(pages_sharing);
1600
1601 static ssize_t pages_unshared_show(struct kobject *kobj,
1602                                    struct kobj_attribute *attr, char *buf)
1603 {
1604         return sprintf(buf, "%lu\n", ksm_pages_unshared);
1605 }
1606 KSM_ATTR_RO(pages_unshared);
1607
1608 static ssize_t pages_volatile_show(struct kobject *kobj,
1609                                    struct kobj_attribute *attr, char *buf)
1610 {
1611         long ksm_pages_volatile;
1612
1613         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1614                                 - ksm_pages_sharing - ksm_pages_unshared;
1615         /*
1616          * It was not worth any locking to calculate that statistic,
1617          * but it might therefore sometimes be negative: conceal that.
1618          */
1619         if (ksm_pages_volatile < 0)
1620                 ksm_pages_volatile = 0;
1621         return sprintf(buf, "%ld\n", ksm_pages_volatile);
1622 }
1623 KSM_ATTR_RO(pages_volatile);
1624
1625 static ssize_t full_scans_show(struct kobject *kobj,
1626                                struct kobj_attribute *attr, char *buf)
1627 {
1628         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1629 }
1630 KSM_ATTR_RO(full_scans);
1631
1632 static struct attribute *ksm_attrs[] = {
1633         &sleep_millisecs_attr.attr,
1634         &pages_to_scan_attr.attr,
1635         &run_attr.attr,
1636         &max_kernel_pages_attr.attr,
1637         &pages_shared_attr.attr,
1638         &pages_sharing_attr.attr,
1639         &pages_unshared_attr.attr,
1640         &pages_volatile_attr.attr,
1641         &full_scans_attr.attr,
1642         NULL,
1643 };
1644
1645 static struct attribute_group ksm_attr_group = {
1646         .attrs = ksm_attrs,
1647         .name = "ksm",
1648 };
1649 #endif /* CONFIG_SYSFS */
1650
1651 static int __init ksm_init(void)
1652 {
1653         struct task_struct *ksm_thread;
1654         int err;
1655
1656         err = ksm_slab_init();
1657         if (err)
1658                 goto out;
1659
1660         err = mm_slots_hash_init();
1661         if (err)
1662                 goto out_free1;
1663
1664         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1665         if (IS_ERR(ksm_thread)) {
1666                 printk(KERN_ERR "ksm: creating kthread failed\n");
1667                 err = PTR_ERR(ksm_thread);
1668                 goto out_free2;
1669         }
1670
1671 #ifdef CONFIG_SYSFS
1672         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1673         if (err) {
1674                 printk(KERN_ERR "ksm: register sysfs failed\n");
1675                 kthread_stop(ksm_thread);
1676                 goto out_free2;
1677         }
1678 #endif /* CONFIG_SYSFS */
1679
1680         return 0;
1681
1682 out_free2:
1683         mm_slots_hash_free();
1684 out_free1:
1685         ksm_slab_free();
1686 out:
1687         return err;
1688 }
1689 module_init(ksm_init)