]> Pileus Git - ~andy/linux/blob - mm/hugetlb.c
d37b3b95c4392cb8d156ba915827dea820d3483a
[~andy/linux] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441         VM_BUG_ON(!is_vm_hugetlb_page(vma));
442         if (!(vma->vm_flags & VM_MAYSHARE))
443                 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449         if (vma->vm_flags & VM_NORESERVE) {
450                 /*
451                  * This address is already reserved by other process(chg == 0),
452                  * so, we should decrement reserved count. Without decrementing,
453                  * reserve count remains after releasing inode, because this
454                  * allocated page will go into page cache and is regarded as
455                  * coming from reserved pool in releasing step.  Currently, we
456                  * don't have any other solution to deal with this situation
457                  * properly, so add work-around here.
458                  */
459                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460                         return 1;
461                 else
462                         return 0;
463         }
464
465         /* Shared mappings always use reserves */
466         if (vma->vm_flags & VM_MAYSHARE)
467                 return 1;
468
469         /*
470          * Only the process that called mmap() has reserves for
471          * private mappings.
472          */
473         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474                 return 1;
475
476         return 0;
477 }
478
479 static void copy_gigantic_page(struct page *dst, struct page *src)
480 {
481         int i;
482         struct hstate *h = page_hstate(src);
483         struct page *dst_base = dst;
484         struct page *src_base = src;
485
486         for (i = 0; i < pages_per_huge_page(h); ) {
487                 cond_resched();
488                 copy_highpage(dst, src);
489
490                 i++;
491                 dst = mem_map_next(dst, dst_base, i);
492                 src = mem_map_next(src, src_base, i);
493         }
494 }
495
496 void copy_huge_page(struct page *dst, struct page *src)
497 {
498         int i;
499         struct hstate *h = page_hstate(src);
500
501         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502                 copy_gigantic_page(dst, src);
503                 return;
504         }
505
506         might_sleep();
507         for (i = 0; i < pages_per_huge_page(h); i++) {
508                 cond_resched();
509                 copy_highpage(dst + i, src + i);
510         }
511 }
512
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
514 {
515         int nid = page_to_nid(page);
516         list_move(&page->lru, &h->hugepage_freelists[nid]);
517         h->free_huge_pages++;
518         h->free_huge_pages_node[nid]++;
519 }
520
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522 {
523         struct page *page;
524
525         if (list_empty(&h->hugepage_freelists[nid]))
526                 return NULL;
527         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
528         list_move(&page->lru, &h->hugepage_activelist);
529         set_page_refcounted(page);
530         h->free_huge_pages--;
531         h->free_huge_pages_node[nid]--;
532         return page;
533 }
534
535 static struct page *dequeue_huge_page_vma(struct hstate *h,
536                                 struct vm_area_struct *vma,
537                                 unsigned long address, int avoid_reserve,
538                                 long chg)
539 {
540         struct page *page = NULL;
541         struct mempolicy *mpol;
542         nodemask_t *nodemask;
543         struct zonelist *zonelist;
544         struct zone *zone;
545         struct zoneref *z;
546         unsigned int cpuset_mems_cookie;
547
548         /*
549          * A child process with MAP_PRIVATE mappings created by their parent
550          * have no page reserves. This check ensures that reservations are
551          * not "stolen". The child may still get SIGKILLed
552          */
553         if (!vma_has_reserves(vma, chg) &&
554                         h->free_huge_pages - h->resv_huge_pages == 0)
555                 goto err;
556
557         /* If reserves cannot be used, ensure enough pages are in the pool */
558         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559                 goto err;
560
561 retry_cpuset:
562         cpuset_mems_cookie = get_mems_allowed();
563         zonelist = huge_zonelist(vma, address,
564                                         htlb_alloc_mask, &mpol, &nodemask);
565
566         for_each_zone_zonelist_nodemask(zone, z, zonelist,
567                                                 MAX_NR_ZONES - 1, nodemask) {
568                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
570                         if (page) {
571                                 if (avoid_reserve)
572                                         break;
573                                 if (!vma_has_reserves(vma, chg))
574                                         break;
575
576                                 SetPagePrivate(page);
577                                 h->resv_huge_pages--;
578                                 break;
579                         }
580                 }
581         }
582
583         mpol_cond_put(mpol);
584         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
585                 goto retry_cpuset;
586         return page;
587
588 err:
589         return NULL;
590 }
591
592 static void update_and_free_page(struct hstate *h, struct page *page)
593 {
594         int i;
595
596         VM_BUG_ON(h->order >= MAX_ORDER);
597
598         h->nr_huge_pages--;
599         h->nr_huge_pages_node[page_to_nid(page)]--;
600         for (i = 0; i < pages_per_huge_page(h); i++) {
601                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
602                                 1 << PG_referenced | 1 << PG_dirty |
603                                 1 << PG_active | 1 << PG_reserved |
604                                 1 << PG_private | 1 << PG_writeback);
605         }
606         VM_BUG_ON(hugetlb_cgroup_from_page(page));
607         set_compound_page_dtor(page, NULL);
608         set_page_refcounted(page);
609         arch_release_hugepage(page);
610         __free_pages(page, huge_page_order(h));
611 }
612
613 struct hstate *size_to_hstate(unsigned long size)
614 {
615         struct hstate *h;
616
617         for_each_hstate(h) {
618                 if (huge_page_size(h) == size)
619                         return h;
620         }
621         return NULL;
622 }
623
624 static void free_huge_page(struct page *page)
625 {
626         /*
627          * Can't pass hstate in here because it is called from the
628          * compound page destructor.
629          */
630         struct hstate *h = page_hstate(page);
631         int nid = page_to_nid(page);
632         struct hugepage_subpool *spool =
633                 (struct hugepage_subpool *)page_private(page);
634         bool restore_reserve;
635
636         set_page_private(page, 0);
637         page->mapping = NULL;
638         BUG_ON(page_count(page));
639         BUG_ON(page_mapcount(page));
640         restore_reserve = PagePrivate(page);
641
642         spin_lock(&hugetlb_lock);
643         hugetlb_cgroup_uncharge_page(hstate_index(h),
644                                      pages_per_huge_page(h), page);
645         if (restore_reserve)
646                 h->resv_huge_pages++;
647
648         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
649                 /* remove the page from active list */
650                 list_del(&page->lru);
651                 update_and_free_page(h, page);
652                 h->surplus_huge_pages--;
653                 h->surplus_huge_pages_node[nid]--;
654         } else {
655                 arch_clear_hugepage_flags(page);
656                 enqueue_huge_page(h, page);
657         }
658         spin_unlock(&hugetlb_lock);
659         hugepage_subpool_put_pages(spool, 1);
660 }
661
662 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
663 {
664         INIT_LIST_HEAD(&page->lru);
665         set_compound_page_dtor(page, free_huge_page);
666         spin_lock(&hugetlb_lock);
667         set_hugetlb_cgroup(page, NULL);
668         h->nr_huge_pages++;
669         h->nr_huge_pages_node[nid]++;
670         spin_unlock(&hugetlb_lock);
671         put_page(page); /* free it into the hugepage allocator */
672 }
673
674 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
675 {
676         int i;
677         int nr_pages = 1 << order;
678         struct page *p = page + 1;
679
680         /* we rely on prep_new_huge_page to set the destructor */
681         set_compound_order(page, order);
682         __SetPageHead(page);
683         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
684                 __SetPageTail(p);
685                 set_page_count(p, 0);
686                 p->first_page = page;
687         }
688 }
689
690 /*
691  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
692  * transparent huge pages.  See the PageTransHuge() documentation for more
693  * details.
694  */
695 int PageHuge(struct page *page)
696 {
697         compound_page_dtor *dtor;
698
699         if (!PageCompound(page))
700                 return 0;
701
702         page = compound_head(page);
703         dtor = get_compound_page_dtor(page);
704
705         return dtor == free_huge_page;
706 }
707 EXPORT_SYMBOL_GPL(PageHuge);
708
709 pgoff_t __basepage_index(struct page *page)
710 {
711         struct page *page_head = compound_head(page);
712         pgoff_t index = page_index(page_head);
713         unsigned long compound_idx;
714
715         if (!PageHuge(page_head))
716                 return page_index(page);
717
718         if (compound_order(page_head) >= MAX_ORDER)
719                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
720         else
721                 compound_idx = page - page_head;
722
723         return (index << compound_order(page_head)) + compound_idx;
724 }
725
726 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
727 {
728         struct page *page;
729
730         if (h->order >= MAX_ORDER)
731                 return NULL;
732
733         page = alloc_pages_exact_node(nid,
734                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
735                                                 __GFP_REPEAT|__GFP_NOWARN,
736                 huge_page_order(h));
737         if (page) {
738                 if (arch_prepare_hugepage(page)) {
739                         __free_pages(page, huge_page_order(h));
740                         return NULL;
741                 }
742                 prep_new_huge_page(h, page, nid);
743         }
744
745         return page;
746 }
747
748 /*
749  * common helper functions for hstate_next_node_to_{alloc|free}.
750  * We may have allocated or freed a huge page based on a different
751  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
752  * be outside of *nodes_allowed.  Ensure that we use an allowed
753  * node for alloc or free.
754  */
755 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
756 {
757         nid = next_node(nid, *nodes_allowed);
758         if (nid == MAX_NUMNODES)
759                 nid = first_node(*nodes_allowed);
760         VM_BUG_ON(nid >= MAX_NUMNODES);
761
762         return nid;
763 }
764
765 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
766 {
767         if (!node_isset(nid, *nodes_allowed))
768                 nid = next_node_allowed(nid, nodes_allowed);
769         return nid;
770 }
771
772 /*
773  * returns the previously saved node ["this node"] from which to
774  * allocate a persistent huge page for the pool and advance the
775  * next node from which to allocate, handling wrap at end of node
776  * mask.
777  */
778 static int hstate_next_node_to_alloc(struct hstate *h,
779                                         nodemask_t *nodes_allowed)
780 {
781         int nid;
782
783         VM_BUG_ON(!nodes_allowed);
784
785         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
786         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
787
788         return nid;
789 }
790
791 /*
792  * helper for free_pool_huge_page() - return the previously saved
793  * node ["this node"] from which to free a huge page.  Advance the
794  * next node id whether or not we find a free huge page to free so
795  * that the next attempt to free addresses the next node.
796  */
797 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
798 {
799         int nid;
800
801         VM_BUG_ON(!nodes_allowed);
802
803         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
804         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
805
806         return nid;
807 }
808
809 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
810         for (nr_nodes = nodes_weight(*mask);                            \
811                 nr_nodes > 0 &&                                         \
812                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
813                 nr_nodes--)
814
815 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
816         for (nr_nodes = nodes_weight(*mask);                            \
817                 nr_nodes > 0 &&                                         \
818                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
819                 nr_nodes--)
820
821 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
822 {
823         struct page *page;
824         int nr_nodes, node;
825         int ret = 0;
826
827         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
828                 page = alloc_fresh_huge_page_node(h, node);
829                 if (page) {
830                         ret = 1;
831                         break;
832                 }
833         }
834
835         if (ret)
836                 count_vm_event(HTLB_BUDDY_PGALLOC);
837         else
838                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
839
840         return ret;
841 }
842
843 /*
844  * Free huge page from pool from next node to free.
845  * Attempt to keep persistent huge pages more or less
846  * balanced over allowed nodes.
847  * Called with hugetlb_lock locked.
848  */
849 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
850                                                          bool acct_surplus)
851 {
852         int nr_nodes, node;
853         int ret = 0;
854
855         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
856                 /*
857                  * If we're returning unused surplus pages, only examine
858                  * nodes with surplus pages.
859                  */
860                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
861                     !list_empty(&h->hugepage_freelists[node])) {
862                         struct page *page =
863                                 list_entry(h->hugepage_freelists[node].next,
864                                           struct page, lru);
865                         list_del(&page->lru);
866                         h->free_huge_pages--;
867                         h->free_huge_pages_node[node]--;
868                         if (acct_surplus) {
869                                 h->surplus_huge_pages--;
870                                 h->surplus_huge_pages_node[node]--;
871                         }
872                         update_and_free_page(h, page);
873                         ret = 1;
874                         break;
875                 }
876         }
877
878         return ret;
879 }
880
881 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
882 {
883         struct page *page;
884         unsigned int r_nid;
885
886         if (h->order >= MAX_ORDER)
887                 return NULL;
888
889         /*
890          * Assume we will successfully allocate the surplus page to
891          * prevent racing processes from causing the surplus to exceed
892          * overcommit
893          *
894          * This however introduces a different race, where a process B
895          * tries to grow the static hugepage pool while alloc_pages() is
896          * called by process A. B will only examine the per-node
897          * counters in determining if surplus huge pages can be
898          * converted to normal huge pages in adjust_pool_surplus(). A
899          * won't be able to increment the per-node counter, until the
900          * lock is dropped by B, but B doesn't drop hugetlb_lock until
901          * no more huge pages can be converted from surplus to normal
902          * state (and doesn't try to convert again). Thus, we have a
903          * case where a surplus huge page exists, the pool is grown, and
904          * the surplus huge page still exists after, even though it
905          * should just have been converted to a normal huge page. This
906          * does not leak memory, though, as the hugepage will be freed
907          * once it is out of use. It also does not allow the counters to
908          * go out of whack in adjust_pool_surplus() as we don't modify
909          * the node values until we've gotten the hugepage and only the
910          * per-node value is checked there.
911          */
912         spin_lock(&hugetlb_lock);
913         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
914                 spin_unlock(&hugetlb_lock);
915                 return NULL;
916         } else {
917                 h->nr_huge_pages++;
918                 h->surplus_huge_pages++;
919         }
920         spin_unlock(&hugetlb_lock);
921
922         if (nid == NUMA_NO_NODE)
923                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
924                                    __GFP_REPEAT|__GFP_NOWARN,
925                                    huge_page_order(h));
926         else
927                 page = alloc_pages_exact_node(nid,
928                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
929                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
930
931         if (page && arch_prepare_hugepage(page)) {
932                 __free_pages(page, huge_page_order(h));
933                 page = NULL;
934         }
935
936         spin_lock(&hugetlb_lock);
937         if (page) {
938                 INIT_LIST_HEAD(&page->lru);
939                 r_nid = page_to_nid(page);
940                 set_compound_page_dtor(page, free_huge_page);
941                 set_hugetlb_cgroup(page, NULL);
942                 /*
943                  * We incremented the global counters already
944                  */
945                 h->nr_huge_pages_node[r_nid]++;
946                 h->surplus_huge_pages_node[r_nid]++;
947                 __count_vm_event(HTLB_BUDDY_PGALLOC);
948         } else {
949                 h->nr_huge_pages--;
950                 h->surplus_huge_pages--;
951                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
952         }
953         spin_unlock(&hugetlb_lock);
954
955         return page;
956 }
957
958 /*
959  * This allocation function is useful in the context where vma is irrelevant.
960  * E.g. soft-offlining uses this function because it only cares physical
961  * address of error page.
962  */
963 struct page *alloc_huge_page_node(struct hstate *h, int nid)
964 {
965         struct page *page = NULL;
966
967         spin_lock(&hugetlb_lock);
968         if (h->free_huge_pages - h->resv_huge_pages > 0)
969                 page = dequeue_huge_page_node(h, nid);
970         spin_unlock(&hugetlb_lock);
971
972         if (!page)
973                 page = alloc_buddy_huge_page(h, nid);
974
975         return page;
976 }
977
978 /*
979  * Increase the hugetlb pool such that it can accommodate a reservation
980  * of size 'delta'.
981  */
982 static int gather_surplus_pages(struct hstate *h, int delta)
983 {
984         struct list_head surplus_list;
985         struct page *page, *tmp;
986         int ret, i;
987         int needed, allocated;
988         bool alloc_ok = true;
989
990         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
991         if (needed <= 0) {
992                 h->resv_huge_pages += delta;
993                 return 0;
994         }
995
996         allocated = 0;
997         INIT_LIST_HEAD(&surplus_list);
998
999         ret = -ENOMEM;
1000 retry:
1001         spin_unlock(&hugetlb_lock);
1002         for (i = 0; i < needed; i++) {
1003                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1004                 if (!page) {
1005                         alloc_ok = false;
1006                         break;
1007                 }
1008                 list_add(&page->lru, &surplus_list);
1009         }
1010         allocated += i;
1011
1012         /*
1013          * After retaking hugetlb_lock, we need to recalculate 'needed'
1014          * because either resv_huge_pages or free_huge_pages may have changed.
1015          */
1016         spin_lock(&hugetlb_lock);
1017         needed = (h->resv_huge_pages + delta) -
1018                         (h->free_huge_pages + allocated);
1019         if (needed > 0) {
1020                 if (alloc_ok)
1021                         goto retry;
1022                 /*
1023                  * We were not able to allocate enough pages to
1024                  * satisfy the entire reservation so we free what
1025                  * we've allocated so far.
1026                  */
1027                 goto free;
1028         }
1029         /*
1030          * The surplus_list now contains _at_least_ the number of extra pages
1031          * needed to accommodate the reservation.  Add the appropriate number
1032          * of pages to the hugetlb pool and free the extras back to the buddy
1033          * allocator.  Commit the entire reservation here to prevent another
1034          * process from stealing the pages as they are added to the pool but
1035          * before they are reserved.
1036          */
1037         needed += allocated;
1038         h->resv_huge_pages += delta;
1039         ret = 0;
1040
1041         /* Free the needed pages to the hugetlb pool */
1042         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1043                 if ((--needed) < 0)
1044                         break;
1045                 /*
1046                  * This page is now managed by the hugetlb allocator and has
1047                  * no users -- drop the buddy allocator's reference.
1048                  */
1049                 put_page_testzero(page);
1050                 VM_BUG_ON(page_count(page));
1051                 enqueue_huge_page(h, page);
1052         }
1053 free:
1054         spin_unlock(&hugetlb_lock);
1055
1056         /* Free unnecessary surplus pages to the buddy allocator */
1057         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1058                 put_page(page);
1059         spin_lock(&hugetlb_lock);
1060
1061         return ret;
1062 }
1063
1064 /*
1065  * When releasing a hugetlb pool reservation, any surplus pages that were
1066  * allocated to satisfy the reservation must be explicitly freed if they were
1067  * never used.
1068  * Called with hugetlb_lock held.
1069  */
1070 static void return_unused_surplus_pages(struct hstate *h,
1071                                         unsigned long unused_resv_pages)
1072 {
1073         unsigned long nr_pages;
1074
1075         /* Uncommit the reservation */
1076         h->resv_huge_pages -= unused_resv_pages;
1077
1078         /* Cannot return gigantic pages currently */
1079         if (h->order >= MAX_ORDER)
1080                 return;
1081
1082         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1083
1084         /*
1085          * We want to release as many surplus pages as possible, spread
1086          * evenly across all nodes with memory. Iterate across these nodes
1087          * until we can no longer free unreserved surplus pages. This occurs
1088          * when the nodes with surplus pages have no free pages.
1089          * free_pool_huge_page() will balance the the freed pages across the
1090          * on-line nodes with memory and will handle the hstate accounting.
1091          */
1092         while (nr_pages--) {
1093                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1094                         break;
1095         }
1096 }
1097
1098 /*
1099  * Determine if the huge page at addr within the vma has an associated
1100  * reservation.  Where it does not we will need to logically increase
1101  * reservation and actually increase subpool usage before an allocation
1102  * can occur.  Where any new reservation would be required the
1103  * reservation change is prepared, but not committed.  Once the page
1104  * has been allocated from the subpool and instantiated the change should
1105  * be committed via vma_commit_reservation.  No action is required on
1106  * failure.
1107  */
1108 static long vma_needs_reservation(struct hstate *h,
1109                         struct vm_area_struct *vma, unsigned long addr)
1110 {
1111         struct address_space *mapping = vma->vm_file->f_mapping;
1112         struct inode *inode = mapping->host;
1113
1114         if (vma->vm_flags & VM_MAYSHARE) {
1115                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1116                 return region_chg(&inode->i_mapping->private_list,
1117                                                         idx, idx + 1);
1118
1119         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1120                 return 1;
1121
1122         } else  {
1123                 long err;
1124                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125                 struct resv_map *resv = vma_resv_map(vma);
1126
1127                 err = region_chg(&resv->regions, idx, idx + 1);
1128                 if (err < 0)
1129                         return err;
1130                 return 0;
1131         }
1132 }
1133 static void vma_commit_reservation(struct hstate *h,
1134                         struct vm_area_struct *vma, unsigned long addr)
1135 {
1136         struct address_space *mapping = vma->vm_file->f_mapping;
1137         struct inode *inode = mapping->host;
1138
1139         if (vma->vm_flags & VM_MAYSHARE) {
1140                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1141                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1142
1143         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1144                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1145                 struct resv_map *resv = vma_resv_map(vma);
1146
1147                 /* Mark this page used in the map. */
1148                 region_add(&resv->regions, idx, idx + 1);
1149         }
1150 }
1151
1152 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1153                                     unsigned long addr, int avoid_reserve)
1154 {
1155         struct hugepage_subpool *spool = subpool_vma(vma);
1156         struct hstate *h = hstate_vma(vma);
1157         struct page *page;
1158         long chg;
1159         int ret, idx;
1160         struct hugetlb_cgroup *h_cg;
1161
1162         idx = hstate_index(h);
1163         /*
1164          * Processes that did not create the mapping will have no
1165          * reserves and will not have accounted against subpool
1166          * limit. Check that the subpool limit can be made before
1167          * satisfying the allocation MAP_NORESERVE mappings may also
1168          * need pages and subpool limit allocated allocated if no reserve
1169          * mapping overlaps.
1170          */
1171         chg = vma_needs_reservation(h, vma, addr);
1172         if (chg < 0)
1173                 return ERR_PTR(-ENOMEM);
1174         if (chg || avoid_reserve)
1175                 if (hugepage_subpool_get_pages(spool, 1))
1176                         return ERR_PTR(-ENOSPC);
1177
1178         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1179         if (ret) {
1180                 if (chg || avoid_reserve)
1181                         hugepage_subpool_put_pages(spool, 1);
1182                 return ERR_PTR(-ENOSPC);
1183         }
1184         spin_lock(&hugetlb_lock);
1185         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1186         if (!page) {
1187                 spin_unlock(&hugetlb_lock);
1188                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1189                 if (!page) {
1190                         hugetlb_cgroup_uncharge_cgroup(idx,
1191                                                        pages_per_huge_page(h),
1192                                                        h_cg);
1193                         if (chg || avoid_reserve)
1194                                 hugepage_subpool_put_pages(spool, 1);
1195                         return ERR_PTR(-ENOSPC);
1196                 }
1197                 spin_lock(&hugetlb_lock);
1198                 list_move(&page->lru, &h->hugepage_activelist);
1199                 /* Fall through */
1200         }
1201         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1202         spin_unlock(&hugetlb_lock);
1203
1204         set_page_private(page, (unsigned long)spool);
1205
1206         vma_commit_reservation(h, vma, addr);
1207         return page;
1208 }
1209
1210 /*
1211  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1212  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1213  * where no ERR_VALUE is expected to be returned.
1214  */
1215 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1216                                 unsigned long addr, int avoid_reserve)
1217 {
1218         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1219         if (IS_ERR(page))
1220                 page = NULL;
1221         return page;
1222 }
1223
1224 int __weak alloc_bootmem_huge_page(struct hstate *h)
1225 {
1226         struct huge_bootmem_page *m;
1227         int nr_nodes, node;
1228
1229         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1230                 void *addr;
1231
1232                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1233                                 huge_page_size(h), huge_page_size(h), 0);
1234
1235                 if (addr) {
1236                         /*
1237                          * Use the beginning of the huge page to store the
1238                          * huge_bootmem_page struct (until gather_bootmem
1239                          * puts them into the mem_map).
1240                          */
1241                         m = addr;
1242                         goto found;
1243                 }
1244         }
1245         return 0;
1246
1247 found:
1248         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1249         /* Put them into a private list first because mem_map is not up yet */
1250         list_add(&m->list, &huge_boot_pages);
1251         m->hstate = h;
1252         return 1;
1253 }
1254
1255 static void prep_compound_huge_page(struct page *page, int order)
1256 {
1257         if (unlikely(order > (MAX_ORDER - 1)))
1258                 prep_compound_gigantic_page(page, order);
1259         else
1260                 prep_compound_page(page, order);
1261 }
1262
1263 /* Put bootmem huge pages into the standard lists after mem_map is up */
1264 static void __init gather_bootmem_prealloc(void)
1265 {
1266         struct huge_bootmem_page *m;
1267
1268         list_for_each_entry(m, &huge_boot_pages, list) {
1269                 struct hstate *h = m->hstate;
1270                 struct page *page;
1271
1272 #ifdef CONFIG_HIGHMEM
1273                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1274                 free_bootmem_late((unsigned long)m,
1275                                   sizeof(struct huge_bootmem_page));
1276 #else
1277                 page = virt_to_page(m);
1278 #endif
1279                 __ClearPageReserved(page);
1280                 WARN_ON(page_count(page) != 1);
1281                 prep_compound_huge_page(page, h->order);
1282                 prep_new_huge_page(h, page, page_to_nid(page));
1283                 /*
1284                  * If we had gigantic hugepages allocated at boot time, we need
1285                  * to restore the 'stolen' pages to totalram_pages in order to
1286                  * fix confusing memory reports from free(1) and another
1287                  * side-effects, like CommitLimit going negative.
1288                  */
1289                 if (h->order > (MAX_ORDER - 1))
1290                         adjust_managed_page_count(page, 1 << h->order);
1291         }
1292 }
1293
1294 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1295 {
1296         unsigned long i;
1297
1298         for (i = 0; i < h->max_huge_pages; ++i) {
1299                 if (h->order >= MAX_ORDER) {
1300                         if (!alloc_bootmem_huge_page(h))
1301                                 break;
1302                 } else if (!alloc_fresh_huge_page(h,
1303                                          &node_states[N_MEMORY]))
1304                         break;
1305         }
1306         h->max_huge_pages = i;
1307 }
1308
1309 static void __init hugetlb_init_hstates(void)
1310 {
1311         struct hstate *h;
1312
1313         for_each_hstate(h) {
1314                 /* oversize hugepages were init'ed in early boot */
1315                 if (h->order < MAX_ORDER)
1316                         hugetlb_hstate_alloc_pages(h);
1317         }
1318 }
1319
1320 static char * __init memfmt(char *buf, unsigned long n)
1321 {
1322         if (n >= (1UL << 30))
1323                 sprintf(buf, "%lu GB", n >> 30);
1324         else if (n >= (1UL << 20))
1325                 sprintf(buf, "%lu MB", n >> 20);
1326         else
1327                 sprintf(buf, "%lu KB", n >> 10);
1328         return buf;
1329 }
1330
1331 static void __init report_hugepages(void)
1332 {
1333         struct hstate *h;
1334
1335         for_each_hstate(h) {
1336                 char buf[32];
1337                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1338                         memfmt(buf, huge_page_size(h)),
1339                         h->free_huge_pages);
1340         }
1341 }
1342
1343 #ifdef CONFIG_HIGHMEM
1344 static void try_to_free_low(struct hstate *h, unsigned long count,
1345                                                 nodemask_t *nodes_allowed)
1346 {
1347         int i;
1348
1349         if (h->order >= MAX_ORDER)
1350                 return;
1351
1352         for_each_node_mask(i, *nodes_allowed) {
1353                 struct page *page, *next;
1354                 struct list_head *freel = &h->hugepage_freelists[i];
1355                 list_for_each_entry_safe(page, next, freel, lru) {
1356                         if (count >= h->nr_huge_pages)
1357                                 return;
1358                         if (PageHighMem(page))
1359                                 continue;
1360                         list_del(&page->lru);
1361                         update_and_free_page(h, page);
1362                         h->free_huge_pages--;
1363                         h->free_huge_pages_node[page_to_nid(page)]--;
1364                 }
1365         }
1366 }
1367 #else
1368 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1369                                                 nodemask_t *nodes_allowed)
1370 {
1371 }
1372 #endif
1373
1374 /*
1375  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1376  * balanced by operating on them in a round-robin fashion.
1377  * Returns 1 if an adjustment was made.
1378  */
1379 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1380                                 int delta)
1381 {
1382         int nr_nodes, node;
1383
1384         VM_BUG_ON(delta != -1 && delta != 1);
1385
1386         if (delta < 0) {
1387                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388                         if (h->surplus_huge_pages_node[node])
1389                                 goto found;
1390                 }
1391         } else {
1392                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1393                         if (h->surplus_huge_pages_node[node] <
1394                                         h->nr_huge_pages_node[node])
1395                                 goto found;
1396                 }
1397         }
1398         return 0;
1399
1400 found:
1401         h->surplus_huge_pages += delta;
1402         h->surplus_huge_pages_node[node] += delta;
1403         return 1;
1404 }
1405
1406 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1407 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1408                                                 nodemask_t *nodes_allowed)
1409 {
1410         unsigned long min_count, ret;
1411
1412         if (h->order >= MAX_ORDER)
1413                 return h->max_huge_pages;
1414
1415         /*
1416          * Increase the pool size
1417          * First take pages out of surplus state.  Then make up the
1418          * remaining difference by allocating fresh huge pages.
1419          *
1420          * We might race with alloc_buddy_huge_page() here and be unable
1421          * to convert a surplus huge page to a normal huge page. That is
1422          * not critical, though, it just means the overall size of the
1423          * pool might be one hugepage larger than it needs to be, but
1424          * within all the constraints specified by the sysctls.
1425          */
1426         spin_lock(&hugetlb_lock);
1427         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1428                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1429                         break;
1430         }
1431
1432         while (count > persistent_huge_pages(h)) {
1433                 /*
1434                  * If this allocation races such that we no longer need the
1435                  * page, free_huge_page will handle it by freeing the page
1436                  * and reducing the surplus.
1437                  */
1438                 spin_unlock(&hugetlb_lock);
1439                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1440                 spin_lock(&hugetlb_lock);
1441                 if (!ret)
1442                         goto out;
1443
1444                 /* Bail for signals. Probably ctrl-c from user */
1445                 if (signal_pending(current))
1446                         goto out;
1447         }
1448
1449         /*
1450          * Decrease the pool size
1451          * First return free pages to the buddy allocator (being careful
1452          * to keep enough around to satisfy reservations).  Then place
1453          * pages into surplus state as needed so the pool will shrink
1454          * to the desired size as pages become free.
1455          *
1456          * By placing pages into the surplus state independent of the
1457          * overcommit value, we are allowing the surplus pool size to
1458          * exceed overcommit. There are few sane options here. Since
1459          * alloc_buddy_huge_page() is checking the global counter,
1460          * though, we'll note that we're not allowed to exceed surplus
1461          * and won't grow the pool anywhere else. Not until one of the
1462          * sysctls are changed, or the surplus pages go out of use.
1463          */
1464         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1465         min_count = max(count, min_count);
1466         try_to_free_low(h, min_count, nodes_allowed);
1467         while (min_count < persistent_huge_pages(h)) {
1468                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1469                         break;
1470         }
1471         while (count < persistent_huge_pages(h)) {
1472                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1473                         break;
1474         }
1475 out:
1476         ret = persistent_huge_pages(h);
1477         spin_unlock(&hugetlb_lock);
1478         return ret;
1479 }
1480
1481 #define HSTATE_ATTR_RO(_name) \
1482         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1483
1484 #define HSTATE_ATTR(_name) \
1485         static struct kobj_attribute _name##_attr = \
1486                 __ATTR(_name, 0644, _name##_show, _name##_store)
1487
1488 static struct kobject *hugepages_kobj;
1489 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1490
1491 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1492
1493 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1494 {
1495         int i;
1496
1497         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1498                 if (hstate_kobjs[i] == kobj) {
1499                         if (nidp)
1500                                 *nidp = NUMA_NO_NODE;
1501                         return &hstates[i];
1502                 }
1503
1504         return kobj_to_node_hstate(kobj, nidp);
1505 }
1506
1507 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1508                                         struct kobj_attribute *attr, char *buf)
1509 {
1510         struct hstate *h;
1511         unsigned long nr_huge_pages;
1512         int nid;
1513
1514         h = kobj_to_hstate(kobj, &nid);
1515         if (nid == NUMA_NO_NODE)
1516                 nr_huge_pages = h->nr_huge_pages;
1517         else
1518                 nr_huge_pages = h->nr_huge_pages_node[nid];
1519
1520         return sprintf(buf, "%lu\n", nr_huge_pages);
1521 }
1522
1523 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1524                         struct kobject *kobj, struct kobj_attribute *attr,
1525                         const char *buf, size_t len)
1526 {
1527         int err;
1528         int nid;
1529         unsigned long count;
1530         struct hstate *h;
1531         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1532
1533         err = kstrtoul(buf, 10, &count);
1534         if (err)
1535                 goto out;
1536
1537         h = kobj_to_hstate(kobj, &nid);
1538         if (h->order >= MAX_ORDER) {
1539                 err = -EINVAL;
1540                 goto out;
1541         }
1542
1543         if (nid == NUMA_NO_NODE) {
1544                 /*
1545                  * global hstate attribute
1546                  */
1547                 if (!(obey_mempolicy &&
1548                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1549                         NODEMASK_FREE(nodes_allowed);
1550                         nodes_allowed = &node_states[N_MEMORY];
1551                 }
1552         } else if (nodes_allowed) {
1553                 /*
1554                  * per node hstate attribute: adjust count to global,
1555                  * but restrict alloc/free to the specified node.
1556                  */
1557                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1558                 init_nodemask_of_node(nodes_allowed, nid);
1559         } else
1560                 nodes_allowed = &node_states[N_MEMORY];
1561
1562         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1563
1564         if (nodes_allowed != &node_states[N_MEMORY])
1565                 NODEMASK_FREE(nodes_allowed);
1566
1567         return len;
1568 out:
1569         NODEMASK_FREE(nodes_allowed);
1570         return err;
1571 }
1572
1573 static ssize_t nr_hugepages_show(struct kobject *kobj,
1574                                        struct kobj_attribute *attr, char *buf)
1575 {
1576         return nr_hugepages_show_common(kobj, attr, buf);
1577 }
1578
1579 static ssize_t nr_hugepages_store(struct kobject *kobj,
1580                struct kobj_attribute *attr, const char *buf, size_t len)
1581 {
1582         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1583 }
1584 HSTATE_ATTR(nr_hugepages);
1585
1586 #ifdef CONFIG_NUMA
1587
1588 /*
1589  * hstate attribute for optionally mempolicy-based constraint on persistent
1590  * huge page alloc/free.
1591  */
1592 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1593                                        struct kobj_attribute *attr, char *buf)
1594 {
1595         return nr_hugepages_show_common(kobj, attr, buf);
1596 }
1597
1598 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1599                struct kobj_attribute *attr, const char *buf, size_t len)
1600 {
1601         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1602 }
1603 HSTATE_ATTR(nr_hugepages_mempolicy);
1604 #endif
1605
1606
1607 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1608                                         struct kobj_attribute *attr, char *buf)
1609 {
1610         struct hstate *h = kobj_to_hstate(kobj, NULL);
1611         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1612 }
1613
1614 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1615                 struct kobj_attribute *attr, const char *buf, size_t count)
1616 {
1617         int err;
1618         unsigned long input;
1619         struct hstate *h = kobj_to_hstate(kobj, NULL);
1620
1621         if (h->order >= MAX_ORDER)
1622                 return -EINVAL;
1623
1624         err = kstrtoul(buf, 10, &input);
1625         if (err)
1626                 return err;
1627
1628         spin_lock(&hugetlb_lock);
1629         h->nr_overcommit_huge_pages = input;
1630         spin_unlock(&hugetlb_lock);
1631
1632         return count;
1633 }
1634 HSTATE_ATTR(nr_overcommit_hugepages);
1635
1636 static ssize_t free_hugepages_show(struct kobject *kobj,
1637                                         struct kobj_attribute *attr, char *buf)
1638 {
1639         struct hstate *h;
1640         unsigned long free_huge_pages;
1641         int nid;
1642
1643         h = kobj_to_hstate(kobj, &nid);
1644         if (nid == NUMA_NO_NODE)
1645                 free_huge_pages = h->free_huge_pages;
1646         else
1647                 free_huge_pages = h->free_huge_pages_node[nid];
1648
1649         return sprintf(buf, "%lu\n", free_huge_pages);
1650 }
1651 HSTATE_ATTR_RO(free_hugepages);
1652
1653 static ssize_t resv_hugepages_show(struct kobject *kobj,
1654                                         struct kobj_attribute *attr, char *buf)
1655 {
1656         struct hstate *h = kobj_to_hstate(kobj, NULL);
1657         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1658 }
1659 HSTATE_ATTR_RO(resv_hugepages);
1660
1661 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1662                                         struct kobj_attribute *attr, char *buf)
1663 {
1664         struct hstate *h;
1665         unsigned long surplus_huge_pages;
1666         int nid;
1667
1668         h = kobj_to_hstate(kobj, &nid);
1669         if (nid == NUMA_NO_NODE)
1670                 surplus_huge_pages = h->surplus_huge_pages;
1671         else
1672                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1673
1674         return sprintf(buf, "%lu\n", surplus_huge_pages);
1675 }
1676 HSTATE_ATTR_RO(surplus_hugepages);
1677
1678 static struct attribute *hstate_attrs[] = {
1679         &nr_hugepages_attr.attr,
1680         &nr_overcommit_hugepages_attr.attr,
1681         &free_hugepages_attr.attr,
1682         &resv_hugepages_attr.attr,
1683         &surplus_hugepages_attr.attr,
1684 #ifdef CONFIG_NUMA
1685         &nr_hugepages_mempolicy_attr.attr,
1686 #endif
1687         NULL,
1688 };
1689
1690 static struct attribute_group hstate_attr_group = {
1691         .attrs = hstate_attrs,
1692 };
1693
1694 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1695                                     struct kobject **hstate_kobjs,
1696                                     struct attribute_group *hstate_attr_group)
1697 {
1698         int retval;
1699         int hi = hstate_index(h);
1700
1701         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1702         if (!hstate_kobjs[hi])
1703                 return -ENOMEM;
1704
1705         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1706         if (retval)
1707                 kobject_put(hstate_kobjs[hi]);
1708
1709         return retval;
1710 }
1711
1712 static void __init hugetlb_sysfs_init(void)
1713 {
1714         struct hstate *h;
1715         int err;
1716
1717         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1718         if (!hugepages_kobj)
1719                 return;
1720
1721         for_each_hstate(h) {
1722                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1723                                          hstate_kobjs, &hstate_attr_group);
1724                 if (err)
1725                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1726         }
1727 }
1728
1729 #ifdef CONFIG_NUMA
1730
1731 /*
1732  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1733  * with node devices in node_devices[] using a parallel array.  The array
1734  * index of a node device or _hstate == node id.
1735  * This is here to avoid any static dependency of the node device driver, in
1736  * the base kernel, on the hugetlb module.
1737  */
1738 struct node_hstate {
1739         struct kobject          *hugepages_kobj;
1740         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1741 };
1742 struct node_hstate node_hstates[MAX_NUMNODES];
1743
1744 /*
1745  * A subset of global hstate attributes for node devices
1746  */
1747 static struct attribute *per_node_hstate_attrs[] = {
1748         &nr_hugepages_attr.attr,
1749         &free_hugepages_attr.attr,
1750         &surplus_hugepages_attr.attr,
1751         NULL,
1752 };
1753
1754 static struct attribute_group per_node_hstate_attr_group = {
1755         .attrs = per_node_hstate_attrs,
1756 };
1757
1758 /*
1759  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1760  * Returns node id via non-NULL nidp.
1761  */
1762 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1763 {
1764         int nid;
1765
1766         for (nid = 0; nid < nr_node_ids; nid++) {
1767                 struct node_hstate *nhs = &node_hstates[nid];
1768                 int i;
1769                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1770                         if (nhs->hstate_kobjs[i] == kobj) {
1771                                 if (nidp)
1772                                         *nidp = nid;
1773                                 return &hstates[i];
1774                         }
1775         }
1776
1777         BUG();
1778         return NULL;
1779 }
1780
1781 /*
1782  * Unregister hstate attributes from a single node device.
1783  * No-op if no hstate attributes attached.
1784  */
1785 static void hugetlb_unregister_node(struct node *node)
1786 {
1787         struct hstate *h;
1788         struct node_hstate *nhs = &node_hstates[node->dev.id];
1789
1790         if (!nhs->hugepages_kobj)
1791                 return;         /* no hstate attributes */
1792
1793         for_each_hstate(h) {
1794                 int idx = hstate_index(h);
1795                 if (nhs->hstate_kobjs[idx]) {
1796                         kobject_put(nhs->hstate_kobjs[idx]);
1797                         nhs->hstate_kobjs[idx] = NULL;
1798                 }
1799         }
1800
1801         kobject_put(nhs->hugepages_kobj);
1802         nhs->hugepages_kobj = NULL;
1803 }
1804
1805 /*
1806  * hugetlb module exit:  unregister hstate attributes from node devices
1807  * that have them.
1808  */
1809 static void hugetlb_unregister_all_nodes(void)
1810 {
1811         int nid;
1812
1813         /*
1814          * disable node device registrations.
1815          */
1816         register_hugetlbfs_with_node(NULL, NULL);
1817
1818         /*
1819          * remove hstate attributes from any nodes that have them.
1820          */
1821         for (nid = 0; nid < nr_node_ids; nid++)
1822                 hugetlb_unregister_node(node_devices[nid]);
1823 }
1824
1825 /*
1826  * Register hstate attributes for a single node device.
1827  * No-op if attributes already registered.
1828  */
1829 static void hugetlb_register_node(struct node *node)
1830 {
1831         struct hstate *h;
1832         struct node_hstate *nhs = &node_hstates[node->dev.id];
1833         int err;
1834
1835         if (nhs->hugepages_kobj)
1836                 return;         /* already allocated */
1837
1838         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1839                                                         &node->dev.kobj);
1840         if (!nhs->hugepages_kobj)
1841                 return;
1842
1843         for_each_hstate(h) {
1844                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1845                                                 nhs->hstate_kobjs,
1846                                                 &per_node_hstate_attr_group);
1847                 if (err) {
1848                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1849                                 h->name, node->dev.id);
1850                         hugetlb_unregister_node(node);
1851                         break;
1852                 }
1853         }
1854 }
1855
1856 /*
1857  * hugetlb init time:  register hstate attributes for all registered node
1858  * devices of nodes that have memory.  All on-line nodes should have
1859  * registered their associated device by this time.
1860  */
1861 static void hugetlb_register_all_nodes(void)
1862 {
1863         int nid;
1864
1865         for_each_node_state(nid, N_MEMORY) {
1866                 struct node *node = node_devices[nid];
1867                 if (node->dev.id == nid)
1868                         hugetlb_register_node(node);
1869         }
1870
1871         /*
1872          * Let the node device driver know we're here so it can
1873          * [un]register hstate attributes on node hotplug.
1874          */
1875         register_hugetlbfs_with_node(hugetlb_register_node,
1876                                      hugetlb_unregister_node);
1877 }
1878 #else   /* !CONFIG_NUMA */
1879
1880 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1881 {
1882         BUG();
1883         if (nidp)
1884                 *nidp = -1;
1885         return NULL;
1886 }
1887
1888 static void hugetlb_unregister_all_nodes(void) { }
1889
1890 static void hugetlb_register_all_nodes(void) { }
1891
1892 #endif
1893
1894 static void __exit hugetlb_exit(void)
1895 {
1896         struct hstate *h;
1897
1898         hugetlb_unregister_all_nodes();
1899
1900         for_each_hstate(h) {
1901                 kobject_put(hstate_kobjs[hstate_index(h)]);
1902         }
1903
1904         kobject_put(hugepages_kobj);
1905 }
1906 module_exit(hugetlb_exit);
1907
1908 static int __init hugetlb_init(void)
1909 {
1910         /* Some platform decide whether they support huge pages at boot
1911          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1912          * there is no such support
1913          */
1914         if (HPAGE_SHIFT == 0)
1915                 return 0;
1916
1917         if (!size_to_hstate(default_hstate_size)) {
1918                 default_hstate_size = HPAGE_SIZE;
1919                 if (!size_to_hstate(default_hstate_size))
1920                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1921         }
1922         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1923         if (default_hstate_max_huge_pages)
1924                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1925
1926         hugetlb_init_hstates();
1927         gather_bootmem_prealloc();
1928         report_hugepages();
1929
1930         hugetlb_sysfs_init();
1931         hugetlb_register_all_nodes();
1932         hugetlb_cgroup_file_init();
1933
1934         return 0;
1935 }
1936 module_init(hugetlb_init);
1937
1938 /* Should be called on processing a hugepagesz=... option */
1939 void __init hugetlb_add_hstate(unsigned order)
1940 {
1941         struct hstate *h;
1942         unsigned long i;
1943
1944         if (size_to_hstate(PAGE_SIZE << order)) {
1945                 pr_warning("hugepagesz= specified twice, ignoring\n");
1946                 return;
1947         }
1948         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1949         BUG_ON(order == 0);
1950         h = &hstates[hugetlb_max_hstate++];
1951         h->order = order;
1952         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1953         h->nr_huge_pages = 0;
1954         h->free_huge_pages = 0;
1955         for (i = 0; i < MAX_NUMNODES; ++i)
1956                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1957         INIT_LIST_HEAD(&h->hugepage_activelist);
1958         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1959         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1960         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1961                                         huge_page_size(h)/1024);
1962
1963         parsed_hstate = h;
1964 }
1965
1966 static int __init hugetlb_nrpages_setup(char *s)
1967 {
1968         unsigned long *mhp;
1969         static unsigned long *last_mhp;
1970
1971         /*
1972          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1973          * so this hugepages= parameter goes to the "default hstate".
1974          */
1975         if (!hugetlb_max_hstate)
1976                 mhp = &default_hstate_max_huge_pages;
1977         else
1978                 mhp = &parsed_hstate->max_huge_pages;
1979
1980         if (mhp == last_mhp) {
1981                 pr_warning("hugepages= specified twice without "
1982                            "interleaving hugepagesz=, ignoring\n");
1983                 return 1;
1984         }
1985
1986         if (sscanf(s, "%lu", mhp) <= 0)
1987                 *mhp = 0;
1988
1989         /*
1990          * Global state is always initialized later in hugetlb_init.
1991          * But we need to allocate >= MAX_ORDER hstates here early to still
1992          * use the bootmem allocator.
1993          */
1994         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1995                 hugetlb_hstate_alloc_pages(parsed_hstate);
1996
1997         last_mhp = mhp;
1998
1999         return 1;
2000 }
2001 __setup("hugepages=", hugetlb_nrpages_setup);
2002
2003 static int __init hugetlb_default_setup(char *s)
2004 {
2005         default_hstate_size = memparse(s, &s);
2006         return 1;
2007 }
2008 __setup("default_hugepagesz=", hugetlb_default_setup);
2009
2010 static unsigned int cpuset_mems_nr(unsigned int *array)
2011 {
2012         int node;
2013         unsigned int nr = 0;
2014
2015         for_each_node_mask(node, cpuset_current_mems_allowed)
2016                 nr += array[node];
2017
2018         return nr;
2019 }
2020
2021 #ifdef CONFIG_SYSCTL
2022 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2023                          struct ctl_table *table, int write,
2024                          void __user *buffer, size_t *length, loff_t *ppos)
2025 {
2026         struct hstate *h = &default_hstate;
2027         unsigned long tmp;
2028         int ret;
2029
2030         tmp = h->max_huge_pages;
2031
2032         if (write && h->order >= MAX_ORDER)
2033                 return -EINVAL;
2034
2035         table->data = &tmp;
2036         table->maxlen = sizeof(unsigned long);
2037         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2038         if (ret)
2039                 goto out;
2040
2041         if (write) {
2042                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2043                                                 GFP_KERNEL | __GFP_NORETRY);
2044                 if (!(obey_mempolicy &&
2045                                init_nodemask_of_mempolicy(nodes_allowed))) {
2046                         NODEMASK_FREE(nodes_allowed);
2047                         nodes_allowed = &node_states[N_MEMORY];
2048                 }
2049                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2050
2051                 if (nodes_allowed != &node_states[N_MEMORY])
2052                         NODEMASK_FREE(nodes_allowed);
2053         }
2054 out:
2055         return ret;
2056 }
2057
2058 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2059                           void __user *buffer, size_t *length, loff_t *ppos)
2060 {
2061
2062         return hugetlb_sysctl_handler_common(false, table, write,
2063                                                         buffer, length, ppos);
2064 }
2065
2066 #ifdef CONFIG_NUMA
2067 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2068                           void __user *buffer, size_t *length, loff_t *ppos)
2069 {
2070         return hugetlb_sysctl_handler_common(true, table, write,
2071                                                         buffer, length, ppos);
2072 }
2073 #endif /* CONFIG_NUMA */
2074
2075 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2076                         void __user *buffer,
2077                         size_t *length, loff_t *ppos)
2078 {
2079         proc_dointvec(table, write, buffer, length, ppos);
2080         if (hugepages_treat_as_movable)
2081                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2082         else
2083                 htlb_alloc_mask = GFP_HIGHUSER;
2084         return 0;
2085 }
2086
2087 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2088                         void __user *buffer,
2089                         size_t *length, loff_t *ppos)
2090 {
2091         struct hstate *h = &default_hstate;
2092         unsigned long tmp;
2093         int ret;
2094
2095         tmp = h->nr_overcommit_huge_pages;
2096
2097         if (write && h->order >= MAX_ORDER)
2098                 return -EINVAL;
2099
2100         table->data = &tmp;
2101         table->maxlen = sizeof(unsigned long);
2102         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2103         if (ret)
2104                 goto out;
2105
2106         if (write) {
2107                 spin_lock(&hugetlb_lock);
2108                 h->nr_overcommit_huge_pages = tmp;
2109                 spin_unlock(&hugetlb_lock);
2110         }
2111 out:
2112         return ret;
2113 }
2114
2115 #endif /* CONFIG_SYSCTL */
2116
2117 void hugetlb_report_meminfo(struct seq_file *m)
2118 {
2119         struct hstate *h = &default_hstate;
2120         seq_printf(m,
2121                         "HugePages_Total:   %5lu\n"
2122                         "HugePages_Free:    %5lu\n"
2123                         "HugePages_Rsvd:    %5lu\n"
2124                         "HugePages_Surp:    %5lu\n"
2125                         "Hugepagesize:   %8lu kB\n",
2126                         h->nr_huge_pages,
2127                         h->free_huge_pages,
2128                         h->resv_huge_pages,
2129                         h->surplus_huge_pages,
2130                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2131 }
2132
2133 int hugetlb_report_node_meminfo(int nid, char *buf)
2134 {
2135         struct hstate *h = &default_hstate;
2136         return sprintf(buf,
2137                 "Node %d HugePages_Total: %5u\n"
2138                 "Node %d HugePages_Free:  %5u\n"
2139                 "Node %d HugePages_Surp:  %5u\n",
2140                 nid, h->nr_huge_pages_node[nid],
2141                 nid, h->free_huge_pages_node[nid],
2142                 nid, h->surplus_huge_pages_node[nid]);
2143 }
2144
2145 void hugetlb_show_meminfo(void)
2146 {
2147         struct hstate *h;
2148         int nid;
2149
2150         for_each_node_state(nid, N_MEMORY)
2151                 for_each_hstate(h)
2152                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2153                                 nid,
2154                                 h->nr_huge_pages_node[nid],
2155                                 h->free_huge_pages_node[nid],
2156                                 h->surplus_huge_pages_node[nid],
2157                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2158 }
2159
2160 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2161 unsigned long hugetlb_total_pages(void)
2162 {
2163         struct hstate *h;
2164         unsigned long nr_total_pages = 0;
2165
2166         for_each_hstate(h)
2167                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2168         return nr_total_pages;
2169 }
2170
2171 static int hugetlb_acct_memory(struct hstate *h, long delta)
2172 {
2173         int ret = -ENOMEM;
2174
2175         spin_lock(&hugetlb_lock);
2176         /*
2177          * When cpuset is configured, it breaks the strict hugetlb page
2178          * reservation as the accounting is done on a global variable. Such
2179          * reservation is completely rubbish in the presence of cpuset because
2180          * the reservation is not checked against page availability for the
2181          * current cpuset. Application can still potentially OOM'ed by kernel
2182          * with lack of free htlb page in cpuset that the task is in.
2183          * Attempt to enforce strict accounting with cpuset is almost
2184          * impossible (or too ugly) because cpuset is too fluid that
2185          * task or memory node can be dynamically moved between cpusets.
2186          *
2187          * The change of semantics for shared hugetlb mapping with cpuset is
2188          * undesirable. However, in order to preserve some of the semantics,
2189          * we fall back to check against current free page availability as
2190          * a best attempt and hopefully to minimize the impact of changing
2191          * semantics that cpuset has.
2192          */
2193         if (delta > 0) {
2194                 if (gather_surplus_pages(h, delta) < 0)
2195                         goto out;
2196
2197                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2198                         return_unused_surplus_pages(h, delta);
2199                         goto out;
2200                 }
2201         }
2202
2203         ret = 0;
2204         if (delta < 0)
2205                 return_unused_surplus_pages(h, (unsigned long) -delta);
2206
2207 out:
2208         spin_unlock(&hugetlb_lock);
2209         return ret;
2210 }
2211
2212 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2213 {
2214         struct resv_map *resv = vma_resv_map(vma);
2215
2216         /*
2217          * This new VMA should share its siblings reservation map if present.
2218          * The VMA will only ever have a valid reservation map pointer where
2219          * it is being copied for another still existing VMA.  As that VMA
2220          * has a reference to the reservation map it cannot disappear until
2221          * after this open call completes.  It is therefore safe to take a
2222          * new reference here without additional locking.
2223          */
2224         if (resv)
2225                 kref_get(&resv->refs);
2226 }
2227
2228 static void resv_map_put(struct vm_area_struct *vma)
2229 {
2230         struct resv_map *resv = vma_resv_map(vma);
2231
2232         if (!resv)
2233                 return;
2234         kref_put(&resv->refs, resv_map_release);
2235 }
2236
2237 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2238 {
2239         struct hstate *h = hstate_vma(vma);
2240         struct resv_map *resv = vma_resv_map(vma);
2241         struct hugepage_subpool *spool = subpool_vma(vma);
2242         unsigned long reserve;
2243         unsigned long start;
2244         unsigned long end;
2245
2246         if (resv) {
2247                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2248                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2249
2250                 reserve = (end - start) -
2251                         region_count(&resv->regions, start, end);
2252
2253                 resv_map_put(vma);
2254
2255                 if (reserve) {
2256                         hugetlb_acct_memory(h, -reserve);
2257                         hugepage_subpool_put_pages(spool, reserve);
2258                 }
2259         }
2260 }
2261
2262 /*
2263  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2264  * handle_mm_fault() to try to instantiate regular-sized pages in the
2265  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2266  * this far.
2267  */
2268 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2269 {
2270         BUG();
2271         return 0;
2272 }
2273
2274 const struct vm_operations_struct hugetlb_vm_ops = {
2275         .fault = hugetlb_vm_op_fault,
2276         .open = hugetlb_vm_op_open,
2277         .close = hugetlb_vm_op_close,
2278 };
2279
2280 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2281                                 int writable)
2282 {
2283         pte_t entry;
2284
2285         if (writable) {
2286                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2287                                          vma->vm_page_prot)));
2288         } else {
2289                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2290                                            vma->vm_page_prot));
2291         }
2292         entry = pte_mkyoung(entry);
2293         entry = pte_mkhuge(entry);
2294         entry = arch_make_huge_pte(entry, vma, page, writable);
2295
2296         return entry;
2297 }
2298
2299 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2300                                    unsigned long address, pte_t *ptep)
2301 {
2302         pte_t entry;
2303
2304         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2305         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2306                 update_mmu_cache(vma, address, ptep);
2307 }
2308
2309
2310 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2311                             struct vm_area_struct *vma)
2312 {
2313         pte_t *src_pte, *dst_pte, entry;
2314         struct page *ptepage;
2315         unsigned long addr;
2316         int cow;
2317         struct hstate *h = hstate_vma(vma);
2318         unsigned long sz = huge_page_size(h);
2319
2320         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2321
2322         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2323                 src_pte = huge_pte_offset(src, addr);
2324                 if (!src_pte)
2325                         continue;
2326                 dst_pte = huge_pte_alloc(dst, addr, sz);
2327                 if (!dst_pte)
2328                         goto nomem;
2329
2330                 /* If the pagetables are shared don't copy or take references */
2331                 if (dst_pte == src_pte)
2332                         continue;
2333
2334                 spin_lock(&dst->page_table_lock);
2335                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2336                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2337                         if (cow)
2338                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2339                         entry = huge_ptep_get(src_pte);
2340                         ptepage = pte_page(entry);
2341                         get_page(ptepage);
2342                         page_dup_rmap(ptepage);
2343                         set_huge_pte_at(dst, addr, dst_pte, entry);
2344                 }
2345                 spin_unlock(&src->page_table_lock);
2346                 spin_unlock(&dst->page_table_lock);
2347         }
2348         return 0;
2349
2350 nomem:
2351         return -ENOMEM;
2352 }
2353
2354 static int is_hugetlb_entry_migration(pte_t pte)
2355 {
2356         swp_entry_t swp;
2357
2358         if (huge_pte_none(pte) || pte_present(pte))
2359                 return 0;
2360         swp = pte_to_swp_entry(pte);
2361         if (non_swap_entry(swp) && is_migration_entry(swp))
2362                 return 1;
2363         else
2364                 return 0;
2365 }
2366
2367 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2368 {
2369         swp_entry_t swp;
2370
2371         if (huge_pte_none(pte) || pte_present(pte))
2372                 return 0;
2373         swp = pte_to_swp_entry(pte);
2374         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2375                 return 1;
2376         else
2377                 return 0;
2378 }
2379
2380 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2381                             unsigned long start, unsigned long end,
2382                             struct page *ref_page)
2383 {
2384         int force_flush = 0;
2385         struct mm_struct *mm = vma->vm_mm;
2386         unsigned long address;
2387         pte_t *ptep;
2388         pte_t pte;
2389         struct page *page;
2390         struct hstate *h = hstate_vma(vma);
2391         unsigned long sz = huge_page_size(h);
2392         const unsigned long mmun_start = start; /* For mmu_notifiers */
2393         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2394
2395         WARN_ON(!is_vm_hugetlb_page(vma));
2396         BUG_ON(start & ~huge_page_mask(h));
2397         BUG_ON(end & ~huge_page_mask(h));
2398
2399         tlb_start_vma(tlb, vma);
2400         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2401 again:
2402         spin_lock(&mm->page_table_lock);
2403         for (address = start; address < end; address += sz) {
2404                 ptep = huge_pte_offset(mm, address);
2405                 if (!ptep)
2406                         continue;
2407
2408                 if (huge_pmd_unshare(mm, &address, ptep))
2409                         continue;
2410
2411                 pte = huge_ptep_get(ptep);
2412                 if (huge_pte_none(pte))
2413                         continue;
2414
2415                 /*
2416                  * HWPoisoned hugepage is already unmapped and dropped reference
2417                  */
2418                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2419                         huge_pte_clear(mm, address, ptep);
2420                         continue;
2421                 }
2422
2423                 page = pte_page(pte);
2424                 /*
2425                  * If a reference page is supplied, it is because a specific
2426                  * page is being unmapped, not a range. Ensure the page we
2427                  * are about to unmap is the actual page of interest.
2428                  */
2429                 if (ref_page) {
2430                         if (page != ref_page)
2431                                 continue;
2432
2433                         /*
2434                          * Mark the VMA as having unmapped its page so that
2435                          * future faults in this VMA will fail rather than
2436                          * looking like data was lost
2437                          */
2438                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2439                 }
2440
2441                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2442                 tlb_remove_tlb_entry(tlb, ptep, address);
2443                 if (huge_pte_dirty(pte))
2444                         set_page_dirty(page);
2445
2446                 page_remove_rmap(page);
2447                 force_flush = !__tlb_remove_page(tlb, page);
2448                 if (force_flush)
2449                         break;
2450                 /* Bail out after unmapping reference page if supplied */
2451                 if (ref_page)
2452                         break;
2453         }
2454         spin_unlock(&mm->page_table_lock);
2455         /*
2456          * mmu_gather ran out of room to batch pages, we break out of
2457          * the PTE lock to avoid doing the potential expensive TLB invalidate
2458          * and page-free while holding it.
2459          */
2460         if (force_flush) {
2461                 force_flush = 0;
2462                 tlb_flush_mmu(tlb);
2463                 if (address < end && !ref_page)
2464                         goto again;
2465         }
2466         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2467         tlb_end_vma(tlb, vma);
2468 }
2469
2470 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2471                           struct vm_area_struct *vma, unsigned long start,
2472                           unsigned long end, struct page *ref_page)
2473 {
2474         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2475
2476         /*
2477          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2478          * test will fail on a vma being torn down, and not grab a page table
2479          * on its way out.  We're lucky that the flag has such an appropriate
2480          * name, and can in fact be safely cleared here. We could clear it
2481          * before the __unmap_hugepage_range above, but all that's necessary
2482          * is to clear it before releasing the i_mmap_mutex. This works
2483          * because in the context this is called, the VMA is about to be
2484          * destroyed and the i_mmap_mutex is held.
2485          */
2486         vma->vm_flags &= ~VM_MAYSHARE;
2487 }
2488
2489 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2490                           unsigned long end, struct page *ref_page)
2491 {
2492         struct mm_struct *mm;
2493         struct mmu_gather tlb;
2494
2495         mm = vma->vm_mm;
2496
2497         tlb_gather_mmu(&tlb, mm, start, end);
2498         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2499         tlb_finish_mmu(&tlb, start, end);
2500 }
2501
2502 /*
2503  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2504  * mappping it owns the reserve page for. The intention is to unmap the page
2505  * from other VMAs and let the children be SIGKILLed if they are faulting the
2506  * same region.
2507  */
2508 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2509                                 struct page *page, unsigned long address)
2510 {
2511         struct hstate *h = hstate_vma(vma);
2512         struct vm_area_struct *iter_vma;
2513         struct address_space *mapping;
2514         pgoff_t pgoff;
2515
2516         /*
2517          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2518          * from page cache lookup which is in HPAGE_SIZE units.
2519          */
2520         address = address & huge_page_mask(h);
2521         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2522                         vma->vm_pgoff;
2523         mapping = file_inode(vma->vm_file)->i_mapping;
2524
2525         /*
2526          * Take the mapping lock for the duration of the table walk. As
2527          * this mapping should be shared between all the VMAs,
2528          * __unmap_hugepage_range() is called as the lock is already held
2529          */
2530         mutex_lock(&mapping->i_mmap_mutex);
2531         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2532                 /* Do not unmap the current VMA */
2533                 if (iter_vma == vma)
2534                         continue;
2535
2536                 /*
2537                  * Unmap the page from other VMAs without their own reserves.
2538                  * They get marked to be SIGKILLed if they fault in these
2539                  * areas. This is because a future no-page fault on this VMA
2540                  * could insert a zeroed page instead of the data existing
2541                  * from the time of fork. This would look like data corruption
2542                  */
2543                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2544                         unmap_hugepage_range(iter_vma, address,
2545                                              address + huge_page_size(h), page);
2546         }
2547         mutex_unlock(&mapping->i_mmap_mutex);
2548
2549         return 1;
2550 }
2551
2552 /*
2553  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2554  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2555  * cannot race with other handlers or page migration.
2556  * Keep the pte_same checks anyway to make transition from the mutex easier.
2557  */
2558 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2559                         unsigned long address, pte_t *ptep, pte_t pte,
2560                         struct page *pagecache_page)
2561 {
2562         struct hstate *h = hstate_vma(vma);
2563         struct page *old_page, *new_page;
2564         int outside_reserve = 0;
2565         unsigned long mmun_start;       /* For mmu_notifiers */
2566         unsigned long mmun_end;         /* For mmu_notifiers */
2567
2568         old_page = pte_page(pte);
2569
2570 retry_avoidcopy:
2571         /* If no-one else is actually using this page, avoid the copy
2572          * and just make the page writable */
2573         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2574                 page_move_anon_rmap(old_page, vma, address);
2575                 set_huge_ptep_writable(vma, address, ptep);
2576                 return 0;
2577         }
2578
2579         /*
2580          * If the process that created a MAP_PRIVATE mapping is about to
2581          * perform a COW due to a shared page count, attempt to satisfy
2582          * the allocation without using the existing reserves. The pagecache
2583          * page is used to determine if the reserve at this address was
2584          * consumed or not. If reserves were used, a partial faulted mapping
2585          * at the time of fork() could consume its reserves on COW instead
2586          * of the full address range.
2587          */
2588         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2589                         old_page != pagecache_page)
2590                 outside_reserve = 1;
2591
2592         page_cache_get(old_page);
2593
2594         /* Drop page_table_lock as buddy allocator may be called */
2595         spin_unlock(&mm->page_table_lock);
2596         new_page = alloc_huge_page(vma, address, outside_reserve);
2597
2598         if (IS_ERR(new_page)) {
2599                 long err = PTR_ERR(new_page);
2600                 page_cache_release(old_page);
2601
2602                 /*
2603                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2604                  * it is due to references held by a child and an insufficient
2605                  * huge page pool. To guarantee the original mappers
2606                  * reliability, unmap the page from child processes. The child
2607                  * may get SIGKILLed if it later faults.
2608                  */
2609                 if (outside_reserve) {
2610                         BUG_ON(huge_pte_none(pte));
2611                         if (unmap_ref_private(mm, vma, old_page, address)) {
2612                                 BUG_ON(huge_pte_none(pte));
2613                                 spin_lock(&mm->page_table_lock);
2614                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2615                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2616                                         goto retry_avoidcopy;
2617                                 /*
2618                                  * race occurs while re-acquiring page_table_lock, and
2619                                  * our job is done.
2620                                  */
2621                                 return 0;
2622                         }
2623                         WARN_ON_ONCE(1);
2624                 }
2625
2626                 /* Caller expects lock to be held */
2627                 spin_lock(&mm->page_table_lock);
2628                 if (err == -ENOMEM)
2629                         return VM_FAULT_OOM;
2630                 else
2631                         return VM_FAULT_SIGBUS;
2632         }
2633
2634         /*
2635          * When the original hugepage is shared one, it does not have
2636          * anon_vma prepared.
2637          */
2638         if (unlikely(anon_vma_prepare(vma))) {
2639                 page_cache_release(new_page);
2640                 page_cache_release(old_page);
2641                 /* Caller expects lock to be held */
2642                 spin_lock(&mm->page_table_lock);
2643                 return VM_FAULT_OOM;
2644         }
2645
2646         copy_user_huge_page(new_page, old_page, address, vma,
2647                             pages_per_huge_page(h));
2648         __SetPageUptodate(new_page);
2649
2650         mmun_start = address & huge_page_mask(h);
2651         mmun_end = mmun_start + huge_page_size(h);
2652         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2653         /*
2654          * Retake the page_table_lock to check for racing updates
2655          * before the page tables are altered
2656          */
2657         spin_lock(&mm->page_table_lock);
2658         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2659         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2660                 ClearPagePrivate(new_page);
2661
2662                 /* Break COW */
2663                 huge_ptep_clear_flush(vma, address, ptep);
2664                 set_huge_pte_at(mm, address, ptep,
2665                                 make_huge_pte(vma, new_page, 1));
2666                 page_remove_rmap(old_page);
2667                 hugepage_add_new_anon_rmap(new_page, vma, address);
2668                 /* Make the old page be freed below */
2669                 new_page = old_page;
2670         }
2671         spin_unlock(&mm->page_table_lock);
2672         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2673         page_cache_release(new_page);
2674         page_cache_release(old_page);
2675
2676         /* Caller expects lock to be held */
2677         spin_lock(&mm->page_table_lock);
2678         return 0;
2679 }
2680
2681 /* Return the pagecache page at a given address within a VMA */
2682 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2683                         struct vm_area_struct *vma, unsigned long address)
2684 {
2685         struct address_space *mapping;
2686         pgoff_t idx;
2687
2688         mapping = vma->vm_file->f_mapping;
2689         idx = vma_hugecache_offset(h, vma, address);
2690
2691         return find_lock_page(mapping, idx);
2692 }
2693
2694 /*
2695  * Return whether there is a pagecache page to back given address within VMA.
2696  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2697  */
2698 static bool hugetlbfs_pagecache_present(struct hstate *h,
2699                         struct vm_area_struct *vma, unsigned long address)
2700 {
2701         struct address_space *mapping;
2702         pgoff_t idx;
2703         struct page *page;
2704
2705         mapping = vma->vm_file->f_mapping;
2706         idx = vma_hugecache_offset(h, vma, address);
2707
2708         page = find_get_page(mapping, idx);
2709         if (page)
2710                 put_page(page);
2711         return page != NULL;
2712 }
2713
2714 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2715                         unsigned long address, pte_t *ptep, unsigned int flags)
2716 {
2717         struct hstate *h = hstate_vma(vma);
2718         int ret = VM_FAULT_SIGBUS;
2719         int anon_rmap = 0;
2720         pgoff_t idx;
2721         unsigned long size;
2722         struct page *page;
2723         struct address_space *mapping;
2724         pte_t new_pte;
2725
2726         /*
2727          * Currently, we are forced to kill the process in the event the
2728          * original mapper has unmapped pages from the child due to a failed
2729          * COW. Warn that such a situation has occurred as it may not be obvious
2730          */
2731         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2732                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2733                            current->pid);
2734                 return ret;
2735         }
2736
2737         mapping = vma->vm_file->f_mapping;
2738         idx = vma_hugecache_offset(h, vma, address);
2739
2740         /*
2741          * Use page lock to guard against racing truncation
2742          * before we get page_table_lock.
2743          */
2744 retry:
2745         page = find_lock_page(mapping, idx);
2746         if (!page) {
2747                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2748                 if (idx >= size)
2749                         goto out;
2750                 page = alloc_huge_page(vma, address, 0);
2751                 if (IS_ERR(page)) {
2752                         ret = PTR_ERR(page);
2753                         if (ret == -ENOMEM)
2754                                 ret = VM_FAULT_OOM;
2755                         else
2756                                 ret = VM_FAULT_SIGBUS;
2757                         goto out;
2758                 }
2759                 clear_huge_page(page, address, pages_per_huge_page(h));
2760                 __SetPageUptodate(page);
2761
2762                 if (vma->vm_flags & VM_MAYSHARE) {
2763                         int err;
2764                         struct inode *inode = mapping->host;
2765
2766                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2767                         if (err) {
2768                                 put_page(page);
2769                                 if (err == -EEXIST)
2770                                         goto retry;
2771                                 goto out;
2772                         }
2773                         ClearPagePrivate(page);
2774
2775                         spin_lock(&inode->i_lock);
2776                         inode->i_blocks += blocks_per_huge_page(h);
2777                         spin_unlock(&inode->i_lock);
2778                 } else {
2779                         lock_page(page);
2780                         if (unlikely(anon_vma_prepare(vma))) {
2781                                 ret = VM_FAULT_OOM;
2782                                 goto backout_unlocked;
2783                         }
2784                         anon_rmap = 1;
2785                 }
2786         } else {
2787                 /*
2788                  * If memory error occurs between mmap() and fault, some process
2789                  * don't have hwpoisoned swap entry for errored virtual address.
2790                  * So we need to block hugepage fault by PG_hwpoison bit check.
2791                  */
2792                 if (unlikely(PageHWPoison(page))) {
2793                         ret = VM_FAULT_HWPOISON |
2794                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2795                         goto backout_unlocked;
2796                 }
2797         }
2798
2799         /*
2800          * If we are going to COW a private mapping later, we examine the
2801          * pending reservations for this page now. This will ensure that
2802          * any allocations necessary to record that reservation occur outside
2803          * the spinlock.
2804          */
2805         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2806                 if (vma_needs_reservation(h, vma, address) < 0) {
2807                         ret = VM_FAULT_OOM;
2808                         goto backout_unlocked;
2809                 }
2810
2811         spin_lock(&mm->page_table_lock);
2812         size = i_size_read(mapping->host) >> huge_page_shift(h);
2813         if (idx >= size)
2814                 goto backout;
2815
2816         ret = 0;
2817         if (!huge_pte_none(huge_ptep_get(ptep)))
2818                 goto backout;
2819
2820         if (anon_rmap) {
2821                 ClearPagePrivate(page);
2822                 hugepage_add_new_anon_rmap(page, vma, address);
2823         }
2824         else
2825                 page_dup_rmap(page);
2826         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2827                                 && (vma->vm_flags & VM_SHARED)));
2828         set_huge_pte_at(mm, address, ptep, new_pte);
2829
2830         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2831                 /* Optimization, do the COW without a second fault */
2832                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2833         }
2834
2835         spin_unlock(&mm->page_table_lock);
2836         unlock_page(page);
2837 out:
2838         return ret;
2839
2840 backout:
2841         spin_unlock(&mm->page_table_lock);
2842 backout_unlocked:
2843         unlock_page(page);
2844         put_page(page);
2845         goto out;
2846 }
2847
2848 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2849                         unsigned long address, unsigned int flags)
2850 {
2851         pte_t *ptep;
2852         pte_t entry;
2853         int ret;
2854         struct page *page = NULL;
2855         struct page *pagecache_page = NULL;
2856         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2857         struct hstate *h = hstate_vma(vma);
2858
2859         address &= huge_page_mask(h);
2860
2861         ptep = huge_pte_offset(mm, address);
2862         if (ptep) {
2863                 entry = huge_ptep_get(ptep);
2864                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2865                         migration_entry_wait_huge(mm, ptep);
2866                         return 0;
2867                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2868                         return VM_FAULT_HWPOISON_LARGE |
2869                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2870         }
2871
2872         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2873         if (!ptep)
2874                 return VM_FAULT_OOM;
2875
2876         /*
2877          * Serialize hugepage allocation and instantiation, so that we don't
2878          * get spurious allocation failures if two CPUs race to instantiate
2879          * the same page in the page cache.
2880          */
2881         mutex_lock(&hugetlb_instantiation_mutex);
2882         entry = huge_ptep_get(ptep);
2883         if (huge_pte_none(entry)) {
2884                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2885                 goto out_mutex;
2886         }
2887
2888         ret = 0;
2889
2890         /*
2891          * If we are going to COW the mapping later, we examine the pending
2892          * reservations for this page now. This will ensure that any
2893          * allocations necessary to record that reservation occur outside the
2894          * spinlock. For private mappings, we also lookup the pagecache
2895          * page now as it is used to determine if a reservation has been
2896          * consumed.
2897          */
2898         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2899                 if (vma_needs_reservation(h, vma, address) < 0) {
2900                         ret = VM_FAULT_OOM;
2901                         goto out_mutex;
2902                 }
2903
2904                 if (!(vma->vm_flags & VM_MAYSHARE))
2905                         pagecache_page = hugetlbfs_pagecache_page(h,
2906                                                                 vma, address);
2907         }
2908
2909         /*
2910          * hugetlb_cow() requires page locks of pte_page(entry) and
2911          * pagecache_page, so here we need take the former one
2912          * when page != pagecache_page or !pagecache_page.
2913          * Note that locking order is always pagecache_page -> page,
2914          * so no worry about deadlock.
2915          */
2916         page = pte_page(entry);
2917         get_page(page);
2918         if (page != pagecache_page)
2919                 lock_page(page);
2920
2921         spin_lock(&mm->page_table_lock);
2922         /* Check for a racing update before calling hugetlb_cow */
2923         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2924                 goto out_page_table_lock;
2925
2926
2927         if (flags & FAULT_FLAG_WRITE) {
2928                 if (!huge_pte_write(entry)) {
2929                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2930                                                         pagecache_page);
2931                         goto out_page_table_lock;
2932                 }
2933                 entry = huge_pte_mkdirty(entry);
2934         }
2935         entry = pte_mkyoung(entry);
2936         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2937                                                 flags & FAULT_FLAG_WRITE))
2938                 update_mmu_cache(vma, address, ptep);
2939
2940 out_page_table_lock:
2941         spin_unlock(&mm->page_table_lock);
2942
2943         if (pagecache_page) {
2944                 unlock_page(pagecache_page);
2945                 put_page(pagecache_page);
2946         }
2947         if (page != pagecache_page)
2948                 unlock_page(page);
2949         put_page(page);
2950
2951 out_mutex:
2952         mutex_unlock(&hugetlb_instantiation_mutex);
2953
2954         return ret;
2955 }
2956
2957 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2958                          struct page **pages, struct vm_area_struct **vmas,
2959                          unsigned long *position, unsigned long *nr_pages,
2960                          long i, unsigned int flags)
2961 {
2962         unsigned long pfn_offset;
2963         unsigned long vaddr = *position;
2964         unsigned long remainder = *nr_pages;
2965         struct hstate *h = hstate_vma(vma);
2966
2967         spin_lock(&mm->page_table_lock);
2968         while (vaddr < vma->vm_end && remainder) {
2969                 pte_t *pte;
2970                 int absent;
2971                 struct page *page;
2972
2973                 /*
2974                  * Some archs (sparc64, sh*) have multiple pte_ts to
2975                  * each hugepage.  We have to make sure we get the
2976                  * first, for the page indexing below to work.
2977                  */
2978                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2979                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2980
2981                 /*
2982                  * When coredumping, it suits get_dump_page if we just return
2983                  * an error where there's an empty slot with no huge pagecache
2984                  * to back it.  This way, we avoid allocating a hugepage, and
2985                  * the sparse dumpfile avoids allocating disk blocks, but its
2986                  * huge holes still show up with zeroes where they need to be.
2987                  */
2988                 if (absent && (flags & FOLL_DUMP) &&
2989                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2990                         remainder = 0;
2991                         break;
2992                 }
2993
2994                 /*
2995                  * We need call hugetlb_fault for both hugepages under migration
2996                  * (in which case hugetlb_fault waits for the migration,) and
2997                  * hwpoisoned hugepages (in which case we need to prevent the
2998                  * caller from accessing to them.) In order to do this, we use
2999                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3000                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3001                  * both cases, and because we can't follow correct pages
3002                  * directly from any kind of swap entries.
3003                  */
3004                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3005                     ((flags & FOLL_WRITE) &&
3006                       !huge_pte_write(huge_ptep_get(pte)))) {
3007                         int ret;
3008
3009                         spin_unlock(&mm->page_table_lock);
3010                         ret = hugetlb_fault(mm, vma, vaddr,
3011                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3012                         spin_lock(&mm->page_table_lock);
3013                         if (!(ret & VM_FAULT_ERROR))
3014                                 continue;
3015
3016                         remainder = 0;
3017                         break;
3018                 }
3019
3020                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3021                 page = pte_page(huge_ptep_get(pte));
3022 same_page:
3023                 if (pages) {
3024                         pages[i] = mem_map_offset(page, pfn_offset);
3025                         get_page(pages[i]);
3026                 }
3027
3028                 if (vmas)
3029                         vmas[i] = vma;
3030
3031                 vaddr += PAGE_SIZE;
3032                 ++pfn_offset;
3033                 --remainder;
3034                 ++i;
3035                 if (vaddr < vma->vm_end && remainder &&
3036                                 pfn_offset < pages_per_huge_page(h)) {
3037                         /*
3038                          * We use pfn_offset to avoid touching the pageframes
3039                          * of this compound page.
3040                          */
3041                         goto same_page;
3042                 }
3043         }
3044         spin_unlock(&mm->page_table_lock);
3045         *nr_pages = remainder;
3046         *position = vaddr;
3047
3048         return i ? i : -EFAULT;
3049 }
3050
3051 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3052                 unsigned long address, unsigned long end, pgprot_t newprot)
3053 {
3054         struct mm_struct *mm = vma->vm_mm;
3055         unsigned long start = address;
3056         pte_t *ptep;
3057         pte_t pte;
3058         struct hstate *h = hstate_vma(vma);
3059         unsigned long pages = 0;
3060
3061         BUG_ON(address >= end);
3062         flush_cache_range(vma, address, end);
3063
3064         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3065         spin_lock(&mm->page_table_lock);
3066         for (; address < end; address += huge_page_size(h)) {
3067                 ptep = huge_pte_offset(mm, address);
3068                 if (!ptep)
3069                         continue;
3070                 if (huge_pmd_unshare(mm, &address, ptep)) {
3071                         pages++;
3072                         continue;
3073                 }
3074                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3075                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3076                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3077                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3078                         set_huge_pte_at(mm, address, ptep, pte);
3079                         pages++;
3080                 }
3081         }
3082         spin_unlock(&mm->page_table_lock);
3083         /*
3084          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3085          * may have cleared our pud entry and done put_page on the page table:
3086          * once we release i_mmap_mutex, another task can do the final put_page
3087          * and that page table be reused and filled with junk.
3088          */
3089         flush_tlb_range(vma, start, end);
3090         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3091
3092         return pages << h->order;
3093 }
3094
3095 int hugetlb_reserve_pages(struct inode *inode,
3096                                         long from, long to,
3097                                         struct vm_area_struct *vma,
3098                                         vm_flags_t vm_flags)
3099 {
3100         long ret, chg;
3101         struct hstate *h = hstate_inode(inode);
3102         struct hugepage_subpool *spool = subpool_inode(inode);
3103
3104         /*
3105          * Only apply hugepage reservation if asked. At fault time, an
3106          * attempt will be made for VM_NORESERVE to allocate a page
3107          * without using reserves
3108          */
3109         if (vm_flags & VM_NORESERVE)
3110                 return 0;
3111
3112         /*
3113          * Shared mappings base their reservation on the number of pages that
3114          * are already allocated on behalf of the file. Private mappings need
3115          * to reserve the full area even if read-only as mprotect() may be
3116          * called to make the mapping read-write. Assume !vma is a shm mapping
3117          */
3118         if (!vma || vma->vm_flags & VM_MAYSHARE)
3119                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3120         else {
3121                 struct resv_map *resv_map = resv_map_alloc();
3122                 if (!resv_map)
3123                         return -ENOMEM;
3124
3125                 chg = to - from;
3126
3127                 set_vma_resv_map(vma, resv_map);
3128                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3129         }
3130
3131         if (chg < 0) {
3132                 ret = chg;
3133                 goto out_err;
3134         }
3135
3136         /* There must be enough pages in the subpool for the mapping */
3137         if (hugepage_subpool_get_pages(spool, chg)) {
3138                 ret = -ENOSPC;
3139                 goto out_err;
3140         }
3141
3142         /*
3143          * Check enough hugepages are available for the reservation.
3144          * Hand the pages back to the subpool if there are not
3145          */
3146         ret = hugetlb_acct_memory(h, chg);
3147         if (ret < 0) {
3148                 hugepage_subpool_put_pages(spool, chg);
3149                 goto out_err;
3150         }
3151
3152         /*
3153          * Account for the reservations made. Shared mappings record regions
3154          * that have reservations as they are shared by multiple VMAs.
3155          * When the last VMA disappears, the region map says how much
3156          * the reservation was and the page cache tells how much of
3157          * the reservation was consumed. Private mappings are per-VMA and
3158          * only the consumed reservations are tracked. When the VMA
3159          * disappears, the original reservation is the VMA size and the
3160          * consumed reservations are stored in the map. Hence, nothing
3161          * else has to be done for private mappings here
3162          */
3163         if (!vma || vma->vm_flags & VM_MAYSHARE)
3164                 region_add(&inode->i_mapping->private_list, from, to);
3165         return 0;
3166 out_err:
3167         if (vma)
3168                 resv_map_put(vma);
3169         return ret;
3170 }
3171
3172 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3173 {
3174         struct hstate *h = hstate_inode(inode);
3175         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3176         struct hugepage_subpool *spool = subpool_inode(inode);
3177
3178         spin_lock(&inode->i_lock);
3179         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3180         spin_unlock(&inode->i_lock);
3181
3182         hugepage_subpool_put_pages(spool, (chg - freed));
3183         hugetlb_acct_memory(h, -(chg - freed));
3184 }
3185
3186 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3187 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3188                                 struct vm_area_struct *vma,
3189                                 unsigned long addr, pgoff_t idx)
3190 {
3191         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3192                                 svma->vm_start;
3193         unsigned long sbase = saddr & PUD_MASK;
3194         unsigned long s_end = sbase + PUD_SIZE;
3195
3196         /* Allow segments to share if only one is marked locked */
3197         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3198         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3199
3200         /*
3201          * match the virtual addresses, permission and the alignment of the
3202          * page table page.
3203          */
3204         if (pmd_index(addr) != pmd_index(saddr) ||
3205             vm_flags != svm_flags ||
3206             sbase < svma->vm_start || svma->vm_end < s_end)
3207                 return 0;
3208
3209         return saddr;
3210 }
3211
3212 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3213 {
3214         unsigned long base = addr & PUD_MASK;
3215         unsigned long end = base + PUD_SIZE;
3216
3217         /*
3218          * check on proper vm_flags and page table alignment
3219          */
3220         if (vma->vm_flags & VM_MAYSHARE &&
3221             vma->vm_start <= base && end <= vma->vm_end)
3222                 return 1;
3223         return 0;
3224 }
3225
3226 /*
3227  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3228  * and returns the corresponding pte. While this is not necessary for the
3229  * !shared pmd case because we can allocate the pmd later as well, it makes the
3230  * code much cleaner. pmd allocation is essential for the shared case because
3231  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3232  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3233  * bad pmd for sharing.
3234  */
3235 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3236 {
3237         struct vm_area_struct *vma = find_vma(mm, addr);
3238         struct address_space *mapping = vma->vm_file->f_mapping;
3239         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3240                         vma->vm_pgoff;
3241         struct vm_area_struct *svma;
3242         unsigned long saddr;
3243         pte_t *spte = NULL;
3244         pte_t *pte;
3245
3246         if (!vma_shareable(vma, addr))
3247                 return (pte_t *)pmd_alloc(mm, pud, addr);
3248
3249         mutex_lock(&mapping->i_mmap_mutex);
3250         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3251                 if (svma == vma)
3252                         continue;
3253
3254                 saddr = page_table_shareable(svma, vma, addr, idx);
3255                 if (saddr) {
3256                         spte = huge_pte_offset(svma->vm_mm, saddr);
3257                         if (spte) {
3258                                 get_page(virt_to_page(spte));
3259                                 break;
3260                         }
3261                 }
3262         }
3263
3264         if (!spte)
3265                 goto out;
3266
3267         spin_lock(&mm->page_table_lock);
3268         if (pud_none(*pud))
3269                 pud_populate(mm, pud,
3270                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3271         else
3272                 put_page(virt_to_page(spte));
3273         spin_unlock(&mm->page_table_lock);
3274 out:
3275         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3276         mutex_unlock(&mapping->i_mmap_mutex);
3277         return pte;
3278 }
3279
3280 /*
3281  * unmap huge page backed by shared pte.
3282  *
3283  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3284  * indicated by page_count > 1, unmap is achieved by clearing pud and
3285  * decrementing the ref count. If count == 1, the pte page is not shared.
3286  *
3287  * called with vma->vm_mm->page_table_lock held.
3288  *
3289  * returns: 1 successfully unmapped a shared pte page
3290  *          0 the underlying pte page is not shared, or it is the last user
3291  */
3292 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3293 {
3294         pgd_t *pgd = pgd_offset(mm, *addr);
3295         pud_t *pud = pud_offset(pgd, *addr);
3296
3297         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3298         if (page_count(virt_to_page(ptep)) == 1)
3299                 return 0;
3300
3301         pud_clear(pud);
3302         put_page(virt_to_page(ptep));
3303         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3304         return 1;
3305 }
3306 #define want_pmd_share()        (1)
3307 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3308 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3309 {
3310         return NULL;
3311 }
3312 #define want_pmd_share()        (0)
3313 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3314
3315 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3316 pte_t *huge_pte_alloc(struct mm_struct *mm,
3317                         unsigned long addr, unsigned long sz)
3318 {
3319         pgd_t *pgd;
3320         pud_t *pud;
3321         pte_t *pte = NULL;
3322
3323         pgd = pgd_offset(mm, addr);
3324         pud = pud_alloc(mm, pgd, addr);
3325         if (pud) {
3326                 if (sz == PUD_SIZE) {
3327                         pte = (pte_t *)pud;
3328                 } else {
3329                         BUG_ON(sz != PMD_SIZE);
3330                         if (want_pmd_share() && pud_none(*pud))
3331                                 pte = huge_pmd_share(mm, addr, pud);
3332                         else
3333                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3334                 }
3335         }
3336         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3337
3338         return pte;
3339 }
3340
3341 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3342 {
3343         pgd_t *pgd;
3344         pud_t *pud;
3345         pmd_t *pmd = NULL;
3346
3347         pgd = pgd_offset(mm, addr);
3348         if (pgd_present(*pgd)) {
3349                 pud = pud_offset(pgd, addr);
3350                 if (pud_present(*pud)) {
3351                         if (pud_huge(*pud))
3352                                 return (pte_t *)pud;
3353                         pmd = pmd_offset(pud, addr);
3354                 }
3355         }
3356         return (pte_t *) pmd;
3357 }
3358
3359 struct page *
3360 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3361                 pmd_t *pmd, int write)
3362 {
3363         struct page *page;
3364
3365         page = pte_page(*(pte_t *)pmd);
3366         if (page)
3367                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3368         return page;
3369 }
3370
3371 struct page *
3372 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3373                 pud_t *pud, int write)
3374 {
3375         struct page *page;
3376
3377         page = pte_page(*(pte_t *)pud);
3378         if (page)
3379                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3380         return page;
3381 }
3382
3383 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3384
3385 /* Can be overriden by architectures */
3386 __attribute__((weak)) struct page *
3387 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3388                pud_t *pud, int write)
3389 {
3390         BUG();
3391         return NULL;
3392 }
3393
3394 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3395
3396 #ifdef CONFIG_MEMORY_FAILURE
3397
3398 /* Should be called in hugetlb_lock */
3399 static int is_hugepage_on_freelist(struct page *hpage)
3400 {
3401         struct page *page;
3402         struct page *tmp;
3403         struct hstate *h = page_hstate(hpage);
3404         int nid = page_to_nid(hpage);
3405
3406         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3407                 if (page == hpage)
3408                         return 1;
3409         return 0;
3410 }
3411
3412 /*
3413  * This function is called from memory failure code.
3414  * Assume the caller holds page lock of the head page.
3415  */
3416 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3417 {
3418         struct hstate *h = page_hstate(hpage);
3419         int nid = page_to_nid(hpage);
3420         int ret = -EBUSY;
3421
3422         spin_lock(&hugetlb_lock);
3423         if (is_hugepage_on_freelist(hpage)) {
3424                 /*
3425                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3426                  * but dangling hpage->lru can trigger list-debug warnings
3427                  * (this happens when we call unpoison_memory() on it),
3428                  * so let it point to itself with list_del_init().
3429                  */
3430                 list_del_init(&hpage->lru);
3431                 set_page_refcounted(hpage);
3432                 h->free_huge_pages--;
3433                 h->free_huge_pages_node[nid]--;
3434                 ret = 0;
3435         }
3436         spin_unlock(&hugetlb_lock);
3437         return ret;
3438 }
3439 #endif
3440
3441 bool isolate_huge_page(struct page *page, struct list_head *list)
3442 {
3443         VM_BUG_ON(!PageHead(page));
3444         if (!get_page_unless_zero(page))
3445                 return false;
3446         spin_lock(&hugetlb_lock);
3447         list_move_tail(&page->lru, list);
3448         spin_unlock(&hugetlb_lock);
3449         return true;
3450 }
3451
3452 void putback_active_hugepage(struct page *page)
3453 {
3454         VM_BUG_ON(!PageHead(page));
3455         spin_lock(&hugetlb_lock);
3456         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3457         spin_unlock(&hugetlb_lock);
3458         put_page(page);
3459 }