]> Pileus Git - ~andy/linux/blob - mm/huge_memory.c
Merge branches 'for-3.9/logitech', 'for-3.9/multitouch', 'for-3.9/ntrig', 'for-3...
[~andy/linux] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23
24 #include <asm/tlb.h>
25 #include <asm/pgalloc.h>
26 #include "internal.h"
27
28 /*
29  * By default transparent hugepage support is enabled for all mappings
30  * and khugepaged scans all mappings. Defrag is only invoked by
31  * khugepaged hugepage allocations and by page faults inside
32  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
33  * allocations.
34  */
35 unsigned long transparent_hugepage_flags __read_mostly =
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
37         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
38 #endif
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
40         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
41 #endif
42         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
43         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
44         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
45
46 /* default scan 8*512 pte (or vmas) every 30 second */
47 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
48 static unsigned int khugepaged_pages_collapsed;
49 static unsigned int khugepaged_full_scans;
50 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
51 /* during fragmentation poll the hugepage allocator once every minute */
52 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
53 static struct task_struct *khugepaged_thread __read_mostly;
54 static DEFINE_MUTEX(khugepaged_mutex);
55 static DEFINE_SPINLOCK(khugepaged_mm_lock);
56 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
57 /*
58  * default collapse hugepages if there is at least one pte mapped like
59  * it would have happened if the vma was large enough during page
60  * fault.
61  */
62 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
63
64 static int khugepaged(void *none);
65 static int mm_slots_hash_init(void);
66 static int khugepaged_slab_init(void);
67 static void khugepaged_slab_free(void);
68
69 #define MM_SLOTS_HASH_HEADS 1024
70 static struct hlist_head *mm_slots_hash __read_mostly;
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72
73 /**
74  * struct mm_slot - hash lookup from mm to mm_slot
75  * @hash: hash collision list
76  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77  * @mm: the mm that this information is valid for
78  */
79 struct mm_slot {
80         struct hlist_node hash;
81         struct list_head mm_node;
82         struct mm_struct *mm;
83 };
84
85 /**
86  * struct khugepaged_scan - cursor for scanning
87  * @mm_head: the head of the mm list to scan
88  * @mm_slot: the current mm_slot we are scanning
89  * @address: the next address inside that to be scanned
90  *
91  * There is only the one khugepaged_scan instance of this cursor structure.
92  */
93 struct khugepaged_scan {
94         struct list_head mm_head;
95         struct mm_slot *mm_slot;
96         unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101
102
103 static int set_recommended_min_free_kbytes(void)
104 {
105         struct zone *zone;
106         int nr_zones = 0;
107         unsigned long recommended_min;
108         extern int min_free_kbytes;
109
110         if (!khugepaged_enabled())
111                 return 0;
112
113         for_each_populated_zone(zone)
114                 nr_zones++;
115
116         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117         recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119         /*
120          * Make sure that on average at least two pageblocks are almost free
121          * of another type, one for a migratetype to fall back to and a
122          * second to avoid subsequent fallbacks of other types There are 3
123          * MIGRATE_TYPES we care about.
124          */
125         recommended_min += pageblock_nr_pages * nr_zones *
126                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128         /* don't ever allow to reserve more than 5% of the lowmem */
129         recommended_min = min(recommended_min,
130                               (unsigned long) nr_free_buffer_pages() / 20);
131         recommended_min <<= (PAGE_SHIFT-10);
132
133         if (recommended_min > min_free_kbytes)
134                 min_free_kbytes = recommended_min;
135         setup_per_zone_wmarks();
136         return 0;
137 }
138 late_initcall(set_recommended_min_free_kbytes);
139
140 static int start_khugepaged(void)
141 {
142         int err = 0;
143         if (khugepaged_enabled()) {
144                 if (!khugepaged_thread)
145                         khugepaged_thread = kthread_run(khugepaged, NULL,
146                                                         "khugepaged");
147                 if (unlikely(IS_ERR(khugepaged_thread))) {
148                         printk(KERN_ERR
149                                "khugepaged: kthread_run(khugepaged) failed\n");
150                         err = PTR_ERR(khugepaged_thread);
151                         khugepaged_thread = NULL;
152                 }
153
154                 if (!list_empty(&khugepaged_scan.mm_head))
155                         wake_up_interruptible(&khugepaged_wait);
156
157                 set_recommended_min_free_kbytes();
158         } else if (khugepaged_thread) {
159                 kthread_stop(khugepaged_thread);
160                 khugepaged_thread = NULL;
161         }
162
163         return err;
164 }
165
166 static atomic_t huge_zero_refcount;
167 static unsigned long huge_zero_pfn __read_mostly;
168
169 static inline bool is_huge_zero_pfn(unsigned long pfn)
170 {
171         unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
172         return zero_pfn && pfn == zero_pfn;
173 }
174
175 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 {
177         return is_huge_zero_pfn(pmd_pfn(pmd));
178 }
179
180 static unsigned long get_huge_zero_page(void)
181 {
182         struct page *zero_page;
183 retry:
184         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
185                 return ACCESS_ONCE(huge_zero_pfn);
186
187         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
188                         HPAGE_PMD_ORDER);
189         if (!zero_page) {
190                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
191                 return 0;
192         }
193         count_vm_event(THP_ZERO_PAGE_ALLOC);
194         preempt_disable();
195         if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
196                 preempt_enable();
197                 __free_page(zero_page);
198                 goto retry;
199         }
200
201         /* We take additional reference here. It will be put back by shrinker */
202         atomic_set(&huge_zero_refcount, 2);
203         preempt_enable();
204         return ACCESS_ONCE(huge_zero_pfn);
205 }
206
207 static void put_huge_zero_page(void)
208 {
209         /*
210          * Counter should never go to zero here. Only shrinker can put
211          * last reference.
212          */
213         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
214 }
215
216 static int shrink_huge_zero_page(struct shrinker *shrink,
217                 struct shrink_control *sc)
218 {
219         if (!sc->nr_to_scan)
220                 /* we can free zero page only if last reference remains */
221                 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222
223         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
224                 unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
225                 BUG_ON(zero_pfn == 0);
226                 __free_page(__pfn_to_page(zero_pfn));
227         }
228
229         return 0;
230 }
231
232 static struct shrinker huge_zero_page_shrinker = {
233         .shrink = shrink_huge_zero_page,
234         .seeks = DEFAULT_SEEKS,
235 };
236
237 #ifdef CONFIG_SYSFS
238
239 static ssize_t double_flag_show(struct kobject *kobj,
240                                 struct kobj_attribute *attr, char *buf,
241                                 enum transparent_hugepage_flag enabled,
242                                 enum transparent_hugepage_flag req_madv)
243 {
244         if (test_bit(enabled, &transparent_hugepage_flags)) {
245                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
246                 return sprintf(buf, "[always] madvise never\n");
247         } else if (test_bit(req_madv, &transparent_hugepage_flags))
248                 return sprintf(buf, "always [madvise] never\n");
249         else
250                 return sprintf(buf, "always madvise [never]\n");
251 }
252 static ssize_t double_flag_store(struct kobject *kobj,
253                                  struct kobj_attribute *attr,
254                                  const char *buf, size_t count,
255                                  enum transparent_hugepage_flag enabled,
256                                  enum transparent_hugepage_flag req_madv)
257 {
258         if (!memcmp("always", buf,
259                     min(sizeof("always")-1, count))) {
260                 set_bit(enabled, &transparent_hugepage_flags);
261                 clear_bit(req_madv, &transparent_hugepage_flags);
262         } else if (!memcmp("madvise", buf,
263                            min(sizeof("madvise")-1, count))) {
264                 clear_bit(enabled, &transparent_hugepage_flags);
265                 set_bit(req_madv, &transparent_hugepage_flags);
266         } else if (!memcmp("never", buf,
267                            min(sizeof("never")-1, count))) {
268                 clear_bit(enabled, &transparent_hugepage_flags);
269                 clear_bit(req_madv, &transparent_hugepage_flags);
270         } else
271                 return -EINVAL;
272
273         return count;
274 }
275
276 static ssize_t enabled_show(struct kobject *kobj,
277                             struct kobj_attribute *attr, char *buf)
278 {
279         return double_flag_show(kobj, attr, buf,
280                                 TRANSPARENT_HUGEPAGE_FLAG,
281                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
282 }
283 static ssize_t enabled_store(struct kobject *kobj,
284                              struct kobj_attribute *attr,
285                              const char *buf, size_t count)
286 {
287         ssize_t ret;
288
289         ret = double_flag_store(kobj, attr, buf, count,
290                                 TRANSPARENT_HUGEPAGE_FLAG,
291                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292
293         if (ret > 0) {
294                 int err;
295
296                 mutex_lock(&khugepaged_mutex);
297                 err = start_khugepaged();
298                 mutex_unlock(&khugepaged_mutex);
299
300                 if (err)
301                         ret = err;
302         }
303
304         return ret;
305 }
306 static struct kobj_attribute enabled_attr =
307         __ATTR(enabled, 0644, enabled_show, enabled_store);
308
309 static ssize_t single_flag_show(struct kobject *kobj,
310                                 struct kobj_attribute *attr, char *buf,
311                                 enum transparent_hugepage_flag flag)
312 {
313         return sprintf(buf, "%d\n",
314                        !!test_bit(flag, &transparent_hugepage_flags));
315 }
316
317 static ssize_t single_flag_store(struct kobject *kobj,
318                                  struct kobj_attribute *attr,
319                                  const char *buf, size_t count,
320                                  enum transparent_hugepage_flag flag)
321 {
322         unsigned long value;
323         int ret;
324
325         ret = kstrtoul(buf, 10, &value);
326         if (ret < 0)
327                 return ret;
328         if (value > 1)
329                 return -EINVAL;
330
331         if (value)
332                 set_bit(flag, &transparent_hugepage_flags);
333         else
334                 clear_bit(flag, &transparent_hugepage_flags);
335
336         return count;
337 }
338
339 /*
340  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
341  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
342  * memory just to allocate one more hugepage.
343  */
344 static ssize_t defrag_show(struct kobject *kobj,
345                            struct kobj_attribute *attr, char *buf)
346 {
347         return double_flag_show(kobj, attr, buf,
348                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
349                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
350 }
351 static ssize_t defrag_store(struct kobject *kobj,
352                             struct kobj_attribute *attr,
353                             const char *buf, size_t count)
354 {
355         return double_flag_store(kobj, attr, buf, count,
356                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
357                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
358 }
359 static struct kobj_attribute defrag_attr =
360         __ATTR(defrag, 0644, defrag_show, defrag_store);
361
362 static ssize_t use_zero_page_show(struct kobject *kobj,
363                 struct kobj_attribute *attr, char *buf)
364 {
365         return single_flag_show(kobj, attr, buf,
366                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
367 }
368 static ssize_t use_zero_page_store(struct kobject *kobj,
369                 struct kobj_attribute *attr, const char *buf, size_t count)
370 {
371         return single_flag_store(kobj, attr, buf, count,
372                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 }
374 static struct kobj_attribute use_zero_page_attr =
375         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
376 #ifdef CONFIG_DEBUG_VM
377 static ssize_t debug_cow_show(struct kobject *kobj,
378                                 struct kobj_attribute *attr, char *buf)
379 {
380         return single_flag_show(kobj, attr, buf,
381                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
382 }
383 static ssize_t debug_cow_store(struct kobject *kobj,
384                                struct kobj_attribute *attr,
385                                const char *buf, size_t count)
386 {
387         return single_flag_store(kobj, attr, buf, count,
388                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
389 }
390 static struct kobj_attribute debug_cow_attr =
391         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
392 #endif /* CONFIG_DEBUG_VM */
393
394 static struct attribute *hugepage_attr[] = {
395         &enabled_attr.attr,
396         &defrag_attr.attr,
397         &use_zero_page_attr.attr,
398 #ifdef CONFIG_DEBUG_VM
399         &debug_cow_attr.attr,
400 #endif
401         NULL,
402 };
403
404 static struct attribute_group hugepage_attr_group = {
405         .attrs = hugepage_attr,
406 };
407
408 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
409                                          struct kobj_attribute *attr,
410                                          char *buf)
411 {
412         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
413 }
414
415 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
416                                           struct kobj_attribute *attr,
417                                           const char *buf, size_t count)
418 {
419         unsigned long msecs;
420         int err;
421
422         err = strict_strtoul(buf, 10, &msecs);
423         if (err || msecs > UINT_MAX)
424                 return -EINVAL;
425
426         khugepaged_scan_sleep_millisecs = msecs;
427         wake_up_interruptible(&khugepaged_wait);
428
429         return count;
430 }
431 static struct kobj_attribute scan_sleep_millisecs_attr =
432         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
433                scan_sleep_millisecs_store);
434
435 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
436                                           struct kobj_attribute *attr,
437                                           char *buf)
438 {
439         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
440 }
441
442 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
443                                            struct kobj_attribute *attr,
444                                            const char *buf, size_t count)
445 {
446         unsigned long msecs;
447         int err;
448
449         err = strict_strtoul(buf, 10, &msecs);
450         if (err || msecs > UINT_MAX)
451                 return -EINVAL;
452
453         khugepaged_alloc_sleep_millisecs = msecs;
454         wake_up_interruptible(&khugepaged_wait);
455
456         return count;
457 }
458 static struct kobj_attribute alloc_sleep_millisecs_attr =
459         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
460                alloc_sleep_millisecs_store);
461
462 static ssize_t pages_to_scan_show(struct kobject *kobj,
463                                   struct kobj_attribute *attr,
464                                   char *buf)
465 {
466         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
467 }
468 static ssize_t pages_to_scan_store(struct kobject *kobj,
469                                    struct kobj_attribute *attr,
470                                    const char *buf, size_t count)
471 {
472         int err;
473         unsigned long pages;
474
475         err = strict_strtoul(buf, 10, &pages);
476         if (err || !pages || pages > UINT_MAX)
477                 return -EINVAL;
478
479         khugepaged_pages_to_scan = pages;
480
481         return count;
482 }
483 static struct kobj_attribute pages_to_scan_attr =
484         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
485                pages_to_scan_store);
486
487 static ssize_t pages_collapsed_show(struct kobject *kobj,
488                                     struct kobj_attribute *attr,
489                                     char *buf)
490 {
491         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
492 }
493 static struct kobj_attribute pages_collapsed_attr =
494         __ATTR_RO(pages_collapsed);
495
496 static ssize_t full_scans_show(struct kobject *kobj,
497                                struct kobj_attribute *attr,
498                                char *buf)
499 {
500         return sprintf(buf, "%u\n", khugepaged_full_scans);
501 }
502 static struct kobj_attribute full_scans_attr =
503         __ATTR_RO(full_scans);
504
505 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
506                                       struct kobj_attribute *attr, char *buf)
507 {
508         return single_flag_show(kobj, attr, buf,
509                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
510 }
511 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
512                                        struct kobj_attribute *attr,
513                                        const char *buf, size_t count)
514 {
515         return single_flag_store(kobj, attr, buf, count,
516                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
517 }
518 static struct kobj_attribute khugepaged_defrag_attr =
519         __ATTR(defrag, 0644, khugepaged_defrag_show,
520                khugepaged_defrag_store);
521
522 /*
523  * max_ptes_none controls if khugepaged should collapse hugepages over
524  * any unmapped ptes in turn potentially increasing the memory
525  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
526  * reduce the available free memory in the system as it
527  * runs. Increasing max_ptes_none will instead potentially reduce the
528  * free memory in the system during the khugepaged scan.
529  */
530 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
531                                              struct kobj_attribute *attr,
532                                              char *buf)
533 {
534         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
535 }
536 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
537                                               struct kobj_attribute *attr,
538                                               const char *buf, size_t count)
539 {
540         int err;
541         unsigned long max_ptes_none;
542
543         err = strict_strtoul(buf, 10, &max_ptes_none);
544         if (err || max_ptes_none > HPAGE_PMD_NR-1)
545                 return -EINVAL;
546
547         khugepaged_max_ptes_none = max_ptes_none;
548
549         return count;
550 }
551 static struct kobj_attribute khugepaged_max_ptes_none_attr =
552         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
553                khugepaged_max_ptes_none_store);
554
555 static struct attribute *khugepaged_attr[] = {
556         &khugepaged_defrag_attr.attr,
557         &khugepaged_max_ptes_none_attr.attr,
558         &pages_to_scan_attr.attr,
559         &pages_collapsed_attr.attr,
560         &full_scans_attr.attr,
561         &scan_sleep_millisecs_attr.attr,
562         &alloc_sleep_millisecs_attr.attr,
563         NULL,
564 };
565
566 static struct attribute_group khugepaged_attr_group = {
567         .attrs = khugepaged_attr,
568         .name = "khugepaged",
569 };
570
571 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
572 {
573         int err;
574
575         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
576         if (unlikely(!*hugepage_kobj)) {
577                 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
578                 return -ENOMEM;
579         }
580
581         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
582         if (err) {
583                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
584                 goto delete_obj;
585         }
586
587         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
588         if (err) {
589                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
590                 goto remove_hp_group;
591         }
592
593         return 0;
594
595 remove_hp_group:
596         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
597 delete_obj:
598         kobject_put(*hugepage_kobj);
599         return err;
600 }
601
602 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
603 {
604         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
605         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
606         kobject_put(hugepage_kobj);
607 }
608 #else
609 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
610 {
611         return 0;
612 }
613
614 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
615 {
616 }
617 #endif /* CONFIG_SYSFS */
618
619 static int __init hugepage_init(void)
620 {
621         int err;
622         struct kobject *hugepage_kobj;
623
624         if (!has_transparent_hugepage()) {
625                 transparent_hugepage_flags = 0;
626                 return -EINVAL;
627         }
628
629         err = hugepage_init_sysfs(&hugepage_kobj);
630         if (err)
631                 return err;
632
633         err = khugepaged_slab_init();
634         if (err)
635                 goto out;
636
637         err = mm_slots_hash_init();
638         if (err) {
639                 khugepaged_slab_free();
640                 goto out;
641         }
642
643         register_shrinker(&huge_zero_page_shrinker);
644
645         /*
646          * By default disable transparent hugepages on smaller systems,
647          * where the extra memory used could hurt more than TLB overhead
648          * is likely to save.  The admin can still enable it through /sys.
649          */
650         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651                 transparent_hugepage_flags = 0;
652
653         start_khugepaged();
654
655         return 0;
656 out:
657         hugepage_exit_sysfs(hugepage_kobj);
658         return err;
659 }
660 module_init(hugepage_init)
661
662 static int __init setup_transparent_hugepage(char *str)
663 {
664         int ret = 0;
665         if (!str)
666                 goto out;
667         if (!strcmp(str, "always")) {
668                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669                         &transparent_hugepage_flags);
670                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671                           &transparent_hugepage_flags);
672                 ret = 1;
673         } else if (!strcmp(str, "madvise")) {
674                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675                           &transparent_hugepage_flags);
676                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677                         &transparent_hugepage_flags);
678                 ret = 1;
679         } else if (!strcmp(str, "never")) {
680                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681                           &transparent_hugepage_flags);
682                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683                           &transparent_hugepage_flags);
684                 ret = 1;
685         }
686 out:
687         if (!ret)
688                 printk(KERN_WARNING
689                        "transparent_hugepage= cannot parse, ignored\n");
690         return ret;
691 }
692 __setup("transparent_hugepage=", setup_transparent_hugepage);
693
694 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
695 {
696         if (likely(vma->vm_flags & VM_WRITE))
697                 pmd = pmd_mkwrite(pmd);
698         return pmd;
699 }
700
701 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
702 {
703         pmd_t entry;
704         entry = mk_pmd(page, vma->vm_page_prot);
705         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706         entry = pmd_mkhuge(entry);
707         return entry;
708 }
709
710 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
711                                         struct vm_area_struct *vma,
712                                         unsigned long haddr, pmd_t *pmd,
713                                         struct page *page)
714 {
715         pgtable_t pgtable;
716
717         VM_BUG_ON(!PageCompound(page));
718         pgtable = pte_alloc_one(mm, haddr);
719         if (unlikely(!pgtable))
720                 return VM_FAULT_OOM;
721
722         clear_huge_page(page, haddr, HPAGE_PMD_NR);
723         __SetPageUptodate(page);
724
725         spin_lock(&mm->page_table_lock);
726         if (unlikely(!pmd_none(*pmd))) {
727                 spin_unlock(&mm->page_table_lock);
728                 mem_cgroup_uncharge_page(page);
729                 put_page(page);
730                 pte_free(mm, pgtable);
731         } else {
732                 pmd_t entry;
733                 entry = mk_huge_pmd(page, vma);
734                 /*
735                  * The spinlocking to take the lru_lock inside
736                  * page_add_new_anon_rmap() acts as a full memory
737                  * barrier to be sure clear_huge_page writes become
738                  * visible after the set_pmd_at() write.
739                  */
740                 page_add_new_anon_rmap(page, vma, haddr);
741                 set_pmd_at(mm, haddr, pmd, entry);
742                 pgtable_trans_huge_deposit(mm, pgtable);
743                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
744                 mm->nr_ptes++;
745                 spin_unlock(&mm->page_table_lock);
746         }
747
748         return 0;
749 }
750
751 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
752 {
753         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
754 }
755
756 static inline struct page *alloc_hugepage_vma(int defrag,
757                                               struct vm_area_struct *vma,
758                                               unsigned long haddr, int nd,
759                                               gfp_t extra_gfp)
760 {
761         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
762                                HPAGE_PMD_ORDER, vma, haddr, nd);
763 }
764
765 #ifndef CONFIG_NUMA
766 static inline struct page *alloc_hugepage(int defrag)
767 {
768         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
769                            HPAGE_PMD_ORDER);
770 }
771 #endif
772
773 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
774                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
775                 unsigned long zero_pfn)
776 {
777         pmd_t entry;
778         if (!pmd_none(*pmd))
779                 return false;
780         entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
781         entry = pmd_wrprotect(entry);
782         entry = pmd_mkhuge(entry);
783         set_pmd_at(mm, haddr, pmd, entry);
784         pgtable_trans_huge_deposit(mm, pgtable);
785         mm->nr_ptes++;
786         return true;
787 }
788
789 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
790                                unsigned long address, pmd_t *pmd,
791                                unsigned int flags)
792 {
793         struct page *page;
794         unsigned long haddr = address & HPAGE_PMD_MASK;
795         pte_t *pte;
796
797         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
798                 if (unlikely(anon_vma_prepare(vma)))
799                         return VM_FAULT_OOM;
800                 if (unlikely(khugepaged_enter(vma)))
801                         return VM_FAULT_OOM;
802                 if (!(flags & FAULT_FLAG_WRITE) &&
803                                 transparent_hugepage_use_zero_page()) {
804                         pgtable_t pgtable;
805                         unsigned long zero_pfn;
806                         bool set;
807                         pgtable = pte_alloc_one(mm, haddr);
808                         if (unlikely(!pgtable))
809                                 return VM_FAULT_OOM;
810                         zero_pfn = get_huge_zero_page();
811                         if (unlikely(!zero_pfn)) {
812                                 pte_free(mm, pgtable);
813                                 count_vm_event(THP_FAULT_FALLBACK);
814                                 goto out;
815                         }
816                         spin_lock(&mm->page_table_lock);
817                         set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
818                                         zero_pfn);
819                         spin_unlock(&mm->page_table_lock);
820                         if (!set) {
821                                 pte_free(mm, pgtable);
822                                 put_huge_zero_page();
823                         }
824                         return 0;
825                 }
826                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
827                                           vma, haddr, numa_node_id(), 0);
828                 if (unlikely(!page)) {
829                         count_vm_event(THP_FAULT_FALLBACK);
830                         goto out;
831                 }
832                 count_vm_event(THP_FAULT_ALLOC);
833                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
834                         put_page(page);
835                         goto out;
836                 }
837                 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
838                                                           page))) {
839                         mem_cgroup_uncharge_page(page);
840                         put_page(page);
841                         goto out;
842                 }
843
844                 return 0;
845         }
846 out:
847         /*
848          * Use __pte_alloc instead of pte_alloc_map, because we can't
849          * run pte_offset_map on the pmd, if an huge pmd could
850          * materialize from under us from a different thread.
851          */
852         if (unlikely(pmd_none(*pmd)) &&
853             unlikely(__pte_alloc(mm, vma, pmd, address)))
854                 return VM_FAULT_OOM;
855         /* if an huge pmd materialized from under us just retry later */
856         if (unlikely(pmd_trans_huge(*pmd)))
857                 return 0;
858         /*
859          * A regular pmd is established and it can't morph into a huge pmd
860          * from under us anymore at this point because we hold the mmap_sem
861          * read mode and khugepaged takes it in write mode. So now it's
862          * safe to run pte_offset_map().
863          */
864         pte = pte_offset_map(pmd, address);
865         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
866 }
867
868 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
869                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
870                   struct vm_area_struct *vma)
871 {
872         struct page *src_page;
873         pmd_t pmd;
874         pgtable_t pgtable;
875         int ret;
876
877         ret = -ENOMEM;
878         pgtable = pte_alloc_one(dst_mm, addr);
879         if (unlikely(!pgtable))
880                 goto out;
881
882         spin_lock(&dst_mm->page_table_lock);
883         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
884
885         ret = -EAGAIN;
886         pmd = *src_pmd;
887         if (unlikely(!pmd_trans_huge(pmd))) {
888                 pte_free(dst_mm, pgtable);
889                 goto out_unlock;
890         }
891         /*
892          * mm->page_table_lock is enough to be sure that huge zero pmd is not
893          * under splitting since we don't split the page itself, only pmd to
894          * a page table.
895          */
896         if (is_huge_zero_pmd(pmd)) {
897                 unsigned long zero_pfn;
898                 bool set;
899                 /*
900                  * get_huge_zero_page() will never allocate a new page here,
901                  * since we already have a zero page to copy. It just takes a
902                  * reference.
903                  */
904                 zero_pfn = get_huge_zero_page();
905                 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
906                                 zero_pfn);
907                 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
908                 ret = 0;
909                 goto out_unlock;
910         }
911         if (unlikely(pmd_trans_splitting(pmd))) {
912                 /* split huge page running from under us */
913                 spin_unlock(&src_mm->page_table_lock);
914                 spin_unlock(&dst_mm->page_table_lock);
915                 pte_free(dst_mm, pgtable);
916
917                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
918                 goto out;
919         }
920         src_page = pmd_page(pmd);
921         VM_BUG_ON(!PageHead(src_page));
922         get_page(src_page);
923         page_dup_rmap(src_page);
924         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
925
926         pmdp_set_wrprotect(src_mm, addr, src_pmd);
927         pmd = pmd_mkold(pmd_wrprotect(pmd));
928         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
929         pgtable_trans_huge_deposit(dst_mm, pgtable);
930         dst_mm->nr_ptes++;
931
932         ret = 0;
933 out_unlock:
934         spin_unlock(&src_mm->page_table_lock);
935         spin_unlock(&dst_mm->page_table_lock);
936 out:
937         return ret;
938 }
939
940 void huge_pmd_set_accessed(struct mm_struct *mm,
941                            struct vm_area_struct *vma,
942                            unsigned long address,
943                            pmd_t *pmd, pmd_t orig_pmd,
944                            int dirty)
945 {
946         pmd_t entry;
947         unsigned long haddr;
948
949         spin_lock(&mm->page_table_lock);
950         if (unlikely(!pmd_same(*pmd, orig_pmd)))
951                 goto unlock;
952
953         entry = pmd_mkyoung(orig_pmd);
954         haddr = address & HPAGE_PMD_MASK;
955         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
956                 update_mmu_cache_pmd(vma, address, pmd);
957
958 unlock:
959         spin_unlock(&mm->page_table_lock);
960 }
961
962 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
963                 struct vm_area_struct *vma, unsigned long address,
964                 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
965 {
966         pgtable_t pgtable;
967         pmd_t _pmd;
968         struct page *page;
969         int i, ret = 0;
970         unsigned long mmun_start;       /* For mmu_notifiers */
971         unsigned long mmun_end;         /* For mmu_notifiers */
972
973         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
974         if (!page) {
975                 ret |= VM_FAULT_OOM;
976                 goto out;
977         }
978
979         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
980                 put_page(page);
981                 ret |= VM_FAULT_OOM;
982                 goto out;
983         }
984
985         clear_user_highpage(page, address);
986         __SetPageUptodate(page);
987
988         mmun_start = haddr;
989         mmun_end   = haddr + HPAGE_PMD_SIZE;
990         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
991
992         spin_lock(&mm->page_table_lock);
993         if (unlikely(!pmd_same(*pmd, orig_pmd)))
994                 goto out_free_page;
995
996         pmdp_clear_flush(vma, haddr, pmd);
997         /* leave pmd empty until pte is filled */
998
999         pgtable = pgtable_trans_huge_withdraw(mm);
1000         pmd_populate(mm, &_pmd, pgtable);
1001
1002         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1003                 pte_t *pte, entry;
1004                 if (haddr == (address & PAGE_MASK)) {
1005                         entry = mk_pte(page, vma->vm_page_prot);
1006                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1007                         page_add_new_anon_rmap(page, vma, haddr);
1008                 } else {
1009                         entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1010                         entry = pte_mkspecial(entry);
1011                 }
1012                 pte = pte_offset_map(&_pmd, haddr);
1013                 VM_BUG_ON(!pte_none(*pte));
1014                 set_pte_at(mm, haddr, pte, entry);
1015                 pte_unmap(pte);
1016         }
1017         smp_wmb(); /* make pte visible before pmd */
1018         pmd_populate(mm, pmd, pgtable);
1019         spin_unlock(&mm->page_table_lock);
1020         put_huge_zero_page();
1021         inc_mm_counter(mm, MM_ANONPAGES);
1022
1023         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1024
1025         ret |= VM_FAULT_WRITE;
1026 out:
1027         return ret;
1028 out_free_page:
1029         spin_unlock(&mm->page_table_lock);
1030         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1031         mem_cgroup_uncharge_page(page);
1032         put_page(page);
1033         goto out;
1034 }
1035
1036 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1037                                         struct vm_area_struct *vma,
1038                                         unsigned long address,
1039                                         pmd_t *pmd, pmd_t orig_pmd,
1040                                         struct page *page,
1041                                         unsigned long haddr)
1042 {
1043         pgtable_t pgtable;
1044         pmd_t _pmd;
1045         int ret = 0, i;
1046         struct page **pages;
1047         unsigned long mmun_start;       /* For mmu_notifiers */
1048         unsigned long mmun_end;         /* For mmu_notifiers */
1049
1050         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1051                         GFP_KERNEL);
1052         if (unlikely(!pages)) {
1053                 ret |= VM_FAULT_OOM;
1054                 goto out;
1055         }
1056
1057         for (i = 0; i < HPAGE_PMD_NR; i++) {
1058                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1059                                                __GFP_OTHER_NODE,
1060                                                vma, address, page_to_nid(page));
1061                 if (unlikely(!pages[i] ||
1062                              mem_cgroup_newpage_charge(pages[i], mm,
1063                                                        GFP_KERNEL))) {
1064                         if (pages[i])
1065                                 put_page(pages[i]);
1066                         mem_cgroup_uncharge_start();
1067                         while (--i >= 0) {
1068                                 mem_cgroup_uncharge_page(pages[i]);
1069                                 put_page(pages[i]);
1070                         }
1071                         mem_cgroup_uncharge_end();
1072                         kfree(pages);
1073                         ret |= VM_FAULT_OOM;
1074                         goto out;
1075                 }
1076         }
1077
1078         for (i = 0; i < HPAGE_PMD_NR; i++) {
1079                 copy_user_highpage(pages[i], page + i,
1080                                    haddr + PAGE_SIZE * i, vma);
1081                 __SetPageUptodate(pages[i]);
1082                 cond_resched();
1083         }
1084
1085         mmun_start = haddr;
1086         mmun_end   = haddr + HPAGE_PMD_SIZE;
1087         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1088
1089         spin_lock(&mm->page_table_lock);
1090         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091                 goto out_free_pages;
1092         VM_BUG_ON(!PageHead(page));
1093
1094         pmdp_clear_flush(vma, haddr, pmd);
1095         /* leave pmd empty until pte is filled */
1096
1097         pgtable = pgtable_trans_huge_withdraw(mm);
1098         pmd_populate(mm, &_pmd, pgtable);
1099
1100         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1101                 pte_t *pte, entry;
1102                 entry = mk_pte(pages[i], vma->vm_page_prot);
1103                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1104                 page_add_new_anon_rmap(pages[i], vma, haddr);
1105                 pte = pte_offset_map(&_pmd, haddr);
1106                 VM_BUG_ON(!pte_none(*pte));
1107                 set_pte_at(mm, haddr, pte, entry);
1108                 pte_unmap(pte);
1109         }
1110         kfree(pages);
1111
1112         smp_wmb(); /* make pte visible before pmd */
1113         pmd_populate(mm, pmd, pgtable);
1114         page_remove_rmap(page);
1115         spin_unlock(&mm->page_table_lock);
1116
1117         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1118
1119         ret |= VM_FAULT_WRITE;
1120         put_page(page);
1121
1122 out:
1123         return ret;
1124
1125 out_free_pages:
1126         spin_unlock(&mm->page_table_lock);
1127         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1128         mem_cgroup_uncharge_start();
1129         for (i = 0; i < HPAGE_PMD_NR; i++) {
1130                 mem_cgroup_uncharge_page(pages[i]);
1131                 put_page(pages[i]);
1132         }
1133         mem_cgroup_uncharge_end();
1134         kfree(pages);
1135         goto out;
1136 }
1137
1138 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1139                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1140 {
1141         int ret = 0;
1142         struct page *page = NULL, *new_page;
1143         unsigned long haddr;
1144         unsigned long mmun_start;       /* For mmu_notifiers */
1145         unsigned long mmun_end;         /* For mmu_notifiers */
1146
1147         VM_BUG_ON(!vma->anon_vma);
1148         haddr = address & HPAGE_PMD_MASK;
1149         if (is_huge_zero_pmd(orig_pmd))
1150                 goto alloc;
1151         spin_lock(&mm->page_table_lock);
1152         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1153                 goto out_unlock;
1154
1155         page = pmd_page(orig_pmd);
1156         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1157         if (page_mapcount(page) == 1) {
1158                 pmd_t entry;
1159                 entry = pmd_mkyoung(orig_pmd);
1160                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1161                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1162                         update_mmu_cache_pmd(vma, address, pmd);
1163                 ret |= VM_FAULT_WRITE;
1164                 goto out_unlock;
1165         }
1166         get_page(page);
1167         spin_unlock(&mm->page_table_lock);
1168 alloc:
1169         if (transparent_hugepage_enabled(vma) &&
1170             !transparent_hugepage_debug_cow())
1171                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1172                                               vma, haddr, numa_node_id(), 0);
1173         else
1174                 new_page = NULL;
1175
1176         if (unlikely(!new_page)) {
1177                 count_vm_event(THP_FAULT_FALLBACK);
1178                 if (is_huge_zero_pmd(orig_pmd)) {
1179                         ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1180                                         address, pmd, orig_pmd, haddr);
1181                 } else {
1182                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1183                                         pmd, orig_pmd, page, haddr);
1184                         if (ret & VM_FAULT_OOM)
1185                                 split_huge_page(page);
1186                         put_page(page);
1187                 }
1188                 goto out;
1189         }
1190         count_vm_event(THP_FAULT_ALLOC);
1191
1192         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1193                 put_page(new_page);
1194                 if (page) {
1195                         split_huge_page(page);
1196                         put_page(page);
1197                 }
1198                 ret |= VM_FAULT_OOM;
1199                 goto out;
1200         }
1201
1202         if (is_huge_zero_pmd(orig_pmd))
1203                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1204         else
1205                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1206         __SetPageUptodate(new_page);
1207
1208         mmun_start = haddr;
1209         mmun_end   = haddr + HPAGE_PMD_SIZE;
1210         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1211
1212         spin_lock(&mm->page_table_lock);
1213         if (page)
1214                 put_page(page);
1215         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1216                 spin_unlock(&mm->page_table_lock);
1217                 mem_cgroup_uncharge_page(new_page);
1218                 put_page(new_page);
1219                 goto out_mn;
1220         } else {
1221                 pmd_t entry;
1222                 entry = mk_huge_pmd(new_page, vma);
1223                 pmdp_clear_flush(vma, haddr, pmd);
1224                 page_add_new_anon_rmap(new_page, vma, haddr);
1225                 set_pmd_at(mm, haddr, pmd, entry);
1226                 update_mmu_cache_pmd(vma, address, pmd);
1227                 if (is_huge_zero_pmd(orig_pmd)) {
1228                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1229                         put_huge_zero_page();
1230                 } else {
1231                         VM_BUG_ON(!PageHead(page));
1232                         page_remove_rmap(page);
1233                         put_page(page);
1234                 }
1235                 ret |= VM_FAULT_WRITE;
1236         }
1237         spin_unlock(&mm->page_table_lock);
1238 out_mn:
1239         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1240 out:
1241         return ret;
1242 out_unlock:
1243         spin_unlock(&mm->page_table_lock);
1244         return ret;
1245 }
1246
1247 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1248                                    unsigned long addr,
1249                                    pmd_t *pmd,
1250                                    unsigned int flags)
1251 {
1252         struct mm_struct *mm = vma->vm_mm;
1253         struct page *page = NULL;
1254
1255         assert_spin_locked(&mm->page_table_lock);
1256
1257         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1258                 goto out;
1259
1260         page = pmd_page(*pmd);
1261         VM_BUG_ON(!PageHead(page));
1262         if (flags & FOLL_TOUCH) {
1263                 pmd_t _pmd;
1264                 /*
1265                  * We should set the dirty bit only for FOLL_WRITE but
1266                  * for now the dirty bit in the pmd is meaningless.
1267                  * And if the dirty bit will become meaningful and
1268                  * we'll only set it with FOLL_WRITE, an atomic
1269                  * set_bit will be required on the pmd to set the
1270                  * young bit, instead of the current set_pmd_at.
1271                  */
1272                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1273                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1274         }
1275         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1276                 if (page->mapping && trylock_page(page)) {
1277                         lru_add_drain();
1278                         if (page->mapping)
1279                                 mlock_vma_page(page);
1280                         unlock_page(page);
1281                 }
1282         }
1283         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1284         VM_BUG_ON(!PageCompound(page));
1285         if (flags & FOLL_GET)
1286                 get_page_foll(page);
1287
1288 out:
1289         return page;
1290 }
1291
1292 /* NUMA hinting page fault entry point for trans huge pmds */
1293 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1294                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1295 {
1296         struct page *page;
1297         unsigned long haddr = addr & HPAGE_PMD_MASK;
1298         int target_nid;
1299         int current_nid = -1;
1300         bool migrated;
1301         bool page_locked = false;
1302
1303         spin_lock(&mm->page_table_lock);
1304         if (unlikely(!pmd_same(pmd, *pmdp)))
1305                 goto out_unlock;
1306
1307         page = pmd_page(pmd);
1308         get_page(page);
1309         current_nid = page_to_nid(page);
1310         count_vm_numa_event(NUMA_HINT_FAULTS);
1311         if (current_nid == numa_node_id())
1312                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1313
1314         target_nid = mpol_misplaced(page, vma, haddr);
1315         if (target_nid == -1) {
1316                 put_page(page);
1317                 goto clear_pmdnuma;
1318         }
1319
1320         /* Acquire the page lock to serialise THP migrations */
1321         spin_unlock(&mm->page_table_lock);
1322         lock_page(page);
1323         page_locked = true;
1324
1325         /* Confirm the PTE did not while locked */
1326         spin_lock(&mm->page_table_lock);
1327         if (unlikely(!pmd_same(pmd, *pmdp))) {
1328                 unlock_page(page);
1329                 put_page(page);
1330                 goto out_unlock;
1331         }
1332         spin_unlock(&mm->page_table_lock);
1333
1334         /* Migrate the THP to the requested node */
1335         migrated = migrate_misplaced_transhuge_page(mm, vma,
1336                                 pmdp, pmd, addr,
1337                                 page, target_nid);
1338         if (migrated)
1339                 current_nid = target_nid;
1340         else {
1341                 spin_lock(&mm->page_table_lock);
1342                 if (unlikely(!pmd_same(pmd, *pmdp))) {
1343                         unlock_page(page);
1344                         goto out_unlock;
1345                 }
1346                 goto clear_pmdnuma;
1347         }
1348
1349         task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
1350         return 0;
1351
1352 clear_pmdnuma:
1353         pmd = pmd_mknonnuma(pmd);
1354         set_pmd_at(mm, haddr, pmdp, pmd);
1355         VM_BUG_ON(pmd_numa(*pmdp));
1356         update_mmu_cache_pmd(vma, addr, pmdp);
1357         if (page_locked)
1358                 unlock_page(page);
1359
1360 out_unlock:
1361         spin_unlock(&mm->page_table_lock);
1362         if (current_nid != -1)
1363                 task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
1364         return 0;
1365 }
1366
1367 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1368                  pmd_t *pmd, unsigned long addr)
1369 {
1370         int ret = 0;
1371
1372         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1373                 struct page *page;
1374                 pgtable_t pgtable;
1375                 pmd_t orig_pmd;
1376                 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1377                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1378                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1379                 if (is_huge_zero_pmd(orig_pmd)) {
1380                         tlb->mm->nr_ptes--;
1381                         spin_unlock(&tlb->mm->page_table_lock);
1382                         put_huge_zero_page();
1383                 } else {
1384                         page = pmd_page(orig_pmd);
1385                         page_remove_rmap(page);
1386                         VM_BUG_ON(page_mapcount(page) < 0);
1387                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1388                         VM_BUG_ON(!PageHead(page));
1389                         tlb->mm->nr_ptes--;
1390                         spin_unlock(&tlb->mm->page_table_lock);
1391                         tlb_remove_page(tlb, page);
1392                 }
1393                 pte_free(tlb->mm, pgtable);
1394                 ret = 1;
1395         }
1396         return ret;
1397 }
1398
1399 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1400                 unsigned long addr, unsigned long end,
1401                 unsigned char *vec)
1402 {
1403         int ret = 0;
1404
1405         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1406                 /*
1407                  * All logical pages in the range are present
1408                  * if backed by a huge page.
1409                  */
1410                 spin_unlock(&vma->vm_mm->page_table_lock);
1411                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1412                 ret = 1;
1413         }
1414
1415         return ret;
1416 }
1417
1418 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1419                   unsigned long old_addr,
1420                   unsigned long new_addr, unsigned long old_end,
1421                   pmd_t *old_pmd, pmd_t *new_pmd)
1422 {
1423         int ret = 0;
1424         pmd_t pmd;
1425
1426         struct mm_struct *mm = vma->vm_mm;
1427
1428         if ((old_addr & ~HPAGE_PMD_MASK) ||
1429             (new_addr & ~HPAGE_PMD_MASK) ||
1430             old_end - old_addr < HPAGE_PMD_SIZE ||
1431             (new_vma->vm_flags & VM_NOHUGEPAGE))
1432                 goto out;
1433
1434         /*
1435          * The destination pmd shouldn't be established, free_pgtables()
1436          * should have release it.
1437          */
1438         if (WARN_ON(!pmd_none(*new_pmd))) {
1439                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1440                 goto out;
1441         }
1442
1443         ret = __pmd_trans_huge_lock(old_pmd, vma);
1444         if (ret == 1) {
1445                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1446                 VM_BUG_ON(!pmd_none(*new_pmd));
1447                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1448                 spin_unlock(&mm->page_table_lock);
1449         }
1450 out:
1451         return ret;
1452 }
1453
1454 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1455                 unsigned long addr, pgprot_t newprot, int prot_numa)
1456 {
1457         struct mm_struct *mm = vma->vm_mm;
1458         int ret = 0;
1459
1460         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1461                 pmd_t entry;
1462                 entry = pmdp_get_and_clear(mm, addr, pmd);
1463                 if (!prot_numa) {
1464                         entry = pmd_modify(entry, newprot);
1465                         BUG_ON(pmd_write(entry));
1466                 } else {
1467                         struct page *page = pmd_page(*pmd);
1468
1469                         /* only check non-shared pages */
1470                         if (page_mapcount(page) == 1 &&
1471                             !pmd_numa(*pmd)) {
1472                                 entry = pmd_mknuma(entry);
1473                         }
1474                 }
1475                 set_pmd_at(mm, addr, pmd, entry);
1476                 spin_unlock(&vma->vm_mm->page_table_lock);
1477                 ret = 1;
1478         }
1479
1480         return ret;
1481 }
1482
1483 /*
1484  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1485  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1486  *
1487  * Note that if it returns 1, this routine returns without unlocking page
1488  * table locks. So callers must unlock them.
1489  */
1490 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1491 {
1492         spin_lock(&vma->vm_mm->page_table_lock);
1493         if (likely(pmd_trans_huge(*pmd))) {
1494                 if (unlikely(pmd_trans_splitting(*pmd))) {
1495                         spin_unlock(&vma->vm_mm->page_table_lock);
1496                         wait_split_huge_page(vma->anon_vma, pmd);
1497                         return -1;
1498                 } else {
1499                         /* Thp mapped by 'pmd' is stable, so we can
1500                          * handle it as it is. */
1501                         return 1;
1502                 }
1503         }
1504         spin_unlock(&vma->vm_mm->page_table_lock);
1505         return 0;
1506 }
1507
1508 pmd_t *page_check_address_pmd(struct page *page,
1509                               struct mm_struct *mm,
1510                               unsigned long address,
1511                               enum page_check_address_pmd_flag flag)
1512 {
1513         pmd_t *pmd, *ret = NULL;
1514
1515         if (address & ~HPAGE_PMD_MASK)
1516                 goto out;
1517
1518         pmd = mm_find_pmd(mm, address);
1519         if (!pmd)
1520                 goto out;
1521         if (pmd_none(*pmd))
1522                 goto out;
1523         if (pmd_page(*pmd) != page)
1524                 goto out;
1525         /*
1526          * split_vma() may create temporary aliased mappings. There is
1527          * no risk as long as all huge pmd are found and have their
1528          * splitting bit set before __split_huge_page_refcount
1529          * runs. Finding the same huge pmd more than once during the
1530          * same rmap walk is not a problem.
1531          */
1532         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1533             pmd_trans_splitting(*pmd))
1534                 goto out;
1535         if (pmd_trans_huge(*pmd)) {
1536                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1537                           !pmd_trans_splitting(*pmd));
1538                 ret = pmd;
1539         }
1540 out:
1541         return ret;
1542 }
1543
1544 static int __split_huge_page_splitting(struct page *page,
1545                                        struct vm_area_struct *vma,
1546                                        unsigned long address)
1547 {
1548         struct mm_struct *mm = vma->vm_mm;
1549         pmd_t *pmd;
1550         int ret = 0;
1551         /* For mmu_notifiers */
1552         const unsigned long mmun_start = address;
1553         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1554
1555         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1556         spin_lock(&mm->page_table_lock);
1557         pmd = page_check_address_pmd(page, mm, address,
1558                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1559         if (pmd) {
1560                 /*
1561                  * We can't temporarily set the pmd to null in order
1562                  * to split it, the pmd must remain marked huge at all
1563                  * times or the VM won't take the pmd_trans_huge paths
1564                  * and it won't wait on the anon_vma->root->rwsem to
1565                  * serialize against split_huge_page*.
1566                  */
1567                 pmdp_splitting_flush(vma, address, pmd);
1568                 ret = 1;
1569         }
1570         spin_unlock(&mm->page_table_lock);
1571         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1572
1573         return ret;
1574 }
1575
1576 static void __split_huge_page_refcount(struct page *page)
1577 {
1578         int i;
1579         struct zone *zone = page_zone(page);
1580         struct lruvec *lruvec;
1581         int tail_count = 0;
1582
1583         /* prevent PageLRU to go away from under us, and freeze lru stats */
1584         spin_lock_irq(&zone->lru_lock);
1585         lruvec = mem_cgroup_page_lruvec(page, zone);
1586
1587         compound_lock(page);
1588         /* complete memcg works before add pages to LRU */
1589         mem_cgroup_split_huge_fixup(page);
1590
1591         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1592                 struct page *page_tail = page + i;
1593
1594                 /* tail_page->_mapcount cannot change */
1595                 BUG_ON(page_mapcount(page_tail) < 0);
1596                 tail_count += page_mapcount(page_tail);
1597                 /* check for overflow */
1598                 BUG_ON(tail_count < 0);
1599                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1600                 /*
1601                  * tail_page->_count is zero and not changing from
1602                  * under us. But get_page_unless_zero() may be running
1603                  * from under us on the tail_page. If we used
1604                  * atomic_set() below instead of atomic_add(), we
1605                  * would then run atomic_set() concurrently with
1606                  * get_page_unless_zero(), and atomic_set() is
1607                  * implemented in C not using locked ops. spin_unlock
1608                  * on x86 sometime uses locked ops because of PPro
1609                  * errata 66, 92, so unless somebody can guarantee
1610                  * atomic_set() here would be safe on all archs (and
1611                  * not only on x86), it's safer to use atomic_add().
1612                  */
1613                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1614                            &page_tail->_count);
1615
1616                 /* after clearing PageTail the gup refcount can be released */
1617                 smp_mb();
1618
1619                 /*
1620                  * retain hwpoison flag of the poisoned tail page:
1621                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1622                  *   by the memory-failure.
1623                  */
1624                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1625                 page_tail->flags |= (page->flags &
1626                                      ((1L << PG_referenced) |
1627                                       (1L << PG_swapbacked) |
1628                                       (1L << PG_mlocked) |
1629                                       (1L << PG_uptodate)));
1630                 page_tail->flags |= (1L << PG_dirty);
1631
1632                 /* clear PageTail before overwriting first_page */
1633                 smp_wmb();
1634
1635                 /*
1636                  * __split_huge_page_splitting() already set the
1637                  * splitting bit in all pmd that could map this
1638                  * hugepage, that will ensure no CPU can alter the
1639                  * mapcount on the head page. The mapcount is only
1640                  * accounted in the head page and it has to be
1641                  * transferred to all tail pages in the below code. So
1642                  * for this code to be safe, the split the mapcount
1643                  * can't change. But that doesn't mean userland can't
1644                  * keep changing and reading the page contents while
1645                  * we transfer the mapcount, so the pmd splitting
1646                  * status is achieved setting a reserved bit in the
1647                  * pmd, not by clearing the present bit.
1648                 */
1649                 page_tail->_mapcount = page->_mapcount;
1650
1651                 BUG_ON(page_tail->mapping);
1652                 page_tail->mapping = page->mapping;
1653
1654                 page_tail->index = page->index + i;
1655                 page_xchg_last_nid(page_tail, page_last_nid(page));
1656
1657                 BUG_ON(!PageAnon(page_tail));
1658                 BUG_ON(!PageUptodate(page_tail));
1659                 BUG_ON(!PageDirty(page_tail));
1660                 BUG_ON(!PageSwapBacked(page_tail));
1661
1662                 lru_add_page_tail(page, page_tail, lruvec);
1663         }
1664         atomic_sub(tail_count, &page->_count);
1665         BUG_ON(atomic_read(&page->_count) <= 0);
1666
1667         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1668         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1669
1670         ClearPageCompound(page);
1671         compound_unlock(page);
1672         spin_unlock_irq(&zone->lru_lock);
1673
1674         for (i = 1; i < HPAGE_PMD_NR; i++) {
1675                 struct page *page_tail = page + i;
1676                 BUG_ON(page_count(page_tail) <= 0);
1677                 /*
1678                  * Tail pages may be freed if there wasn't any mapping
1679                  * like if add_to_swap() is running on a lru page that
1680                  * had its mapping zapped. And freeing these pages
1681                  * requires taking the lru_lock so we do the put_page
1682                  * of the tail pages after the split is complete.
1683                  */
1684                 put_page(page_tail);
1685         }
1686
1687         /*
1688          * Only the head page (now become a regular page) is required
1689          * to be pinned by the caller.
1690          */
1691         BUG_ON(page_count(page) <= 0);
1692 }
1693
1694 static int __split_huge_page_map(struct page *page,
1695                                  struct vm_area_struct *vma,
1696                                  unsigned long address)
1697 {
1698         struct mm_struct *mm = vma->vm_mm;
1699         pmd_t *pmd, _pmd;
1700         int ret = 0, i;
1701         pgtable_t pgtable;
1702         unsigned long haddr;
1703
1704         spin_lock(&mm->page_table_lock);
1705         pmd = page_check_address_pmd(page, mm, address,
1706                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1707         if (pmd) {
1708                 pgtable = pgtable_trans_huge_withdraw(mm);
1709                 pmd_populate(mm, &_pmd, pgtable);
1710
1711                 haddr = address;
1712                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1713                         pte_t *pte, entry;
1714                         BUG_ON(PageCompound(page+i));
1715                         entry = mk_pte(page + i, vma->vm_page_prot);
1716                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1717                         if (!pmd_write(*pmd))
1718                                 entry = pte_wrprotect(entry);
1719                         else
1720                                 BUG_ON(page_mapcount(page) != 1);
1721                         if (!pmd_young(*pmd))
1722                                 entry = pte_mkold(entry);
1723                         if (pmd_numa(*pmd))
1724                                 entry = pte_mknuma(entry);
1725                         pte = pte_offset_map(&_pmd, haddr);
1726                         BUG_ON(!pte_none(*pte));
1727                         set_pte_at(mm, haddr, pte, entry);
1728                         pte_unmap(pte);
1729                 }
1730
1731                 smp_wmb(); /* make pte visible before pmd */
1732                 /*
1733                  * Up to this point the pmd is present and huge and
1734                  * userland has the whole access to the hugepage
1735                  * during the split (which happens in place). If we
1736                  * overwrite the pmd with the not-huge version
1737                  * pointing to the pte here (which of course we could
1738                  * if all CPUs were bug free), userland could trigger
1739                  * a small page size TLB miss on the small sized TLB
1740                  * while the hugepage TLB entry is still established
1741                  * in the huge TLB. Some CPU doesn't like that. See
1742                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1743                  * Erratum 383 on page 93. Intel should be safe but is
1744                  * also warns that it's only safe if the permission
1745                  * and cache attributes of the two entries loaded in
1746                  * the two TLB is identical (which should be the case
1747                  * here). But it is generally safer to never allow
1748                  * small and huge TLB entries for the same virtual
1749                  * address to be loaded simultaneously. So instead of
1750                  * doing "pmd_populate(); flush_tlb_range();" we first
1751                  * mark the current pmd notpresent (atomically because
1752                  * here the pmd_trans_huge and pmd_trans_splitting
1753                  * must remain set at all times on the pmd until the
1754                  * split is complete for this pmd), then we flush the
1755                  * SMP TLB and finally we write the non-huge version
1756                  * of the pmd entry with pmd_populate.
1757                  */
1758                 pmdp_invalidate(vma, address, pmd);
1759                 pmd_populate(mm, pmd, pgtable);
1760                 ret = 1;
1761         }
1762         spin_unlock(&mm->page_table_lock);
1763
1764         return ret;
1765 }
1766
1767 /* must be called with anon_vma->root->rwsem held */
1768 static void __split_huge_page(struct page *page,
1769                               struct anon_vma *anon_vma)
1770 {
1771         int mapcount, mapcount2;
1772         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1773         struct anon_vma_chain *avc;
1774
1775         BUG_ON(!PageHead(page));
1776         BUG_ON(PageTail(page));
1777
1778         mapcount = 0;
1779         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1780                 struct vm_area_struct *vma = avc->vma;
1781                 unsigned long addr = vma_address(page, vma);
1782                 BUG_ON(is_vma_temporary_stack(vma));
1783                 mapcount += __split_huge_page_splitting(page, vma, addr);
1784         }
1785         /*
1786          * It is critical that new vmas are added to the tail of the
1787          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1788          * and establishes a child pmd before
1789          * __split_huge_page_splitting() freezes the parent pmd (so if
1790          * we fail to prevent copy_huge_pmd() from running until the
1791          * whole __split_huge_page() is complete), we will still see
1792          * the newly established pmd of the child later during the
1793          * walk, to be able to set it as pmd_trans_splitting too.
1794          */
1795         if (mapcount != page_mapcount(page))
1796                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1797                        mapcount, page_mapcount(page));
1798         BUG_ON(mapcount != page_mapcount(page));
1799
1800         __split_huge_page_refcount(page);
1801
1802         mapcount2 = 0;
1803         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1804                 struct vm_area_struct *vma = avc->vma;
1805                 unsigned long addr = vma_address(page, vma);
1806                 BUG_ON(is_vma_temporary_stack(vma));
1807                 mapcount2 += __split_huge_page_map(page, vma, addr);
1808         }
1809         if (mapcount != mapcount2)
1810                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1811                        mapcount, mapcount2, page_mapcount(page));
1812         BUG_ON(mapcount != mapcount2);
1813 }
1814
1815 int split_huge_page(struct page *page)
1816 {
1817         struct anon_vma *anon_vma;
1818         int ret = 1;
1819
1820         BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
1821         BUG_ON(!PageAnon(page));
1822
1823         /*
1824          * The caller does not necessarily hold an mmap_sem that would prevent
1825          * the anon_vma disappearing so we first we take a reference to it
1826          * and then lock the anon_vma for write. This is similar to
1827          * page_lock_anon_vma_read except the write lock is taken to serialise
1828          * against parallel split or collapse operations.
1829          */
1830         anon_vma = page_get_anon_vma(page);
1831         if (!anon_vma)
1832                 goto out;
1833         anon_vma_lock_write(anon_vma);
1834
1835         ret = 0;
1836         if (!PageCompound(page))
1837                 goto out_unlock;
1838
1839         BUG_ON(!PageSwapBacked(page));
1840         __split_huge_page(page, anon_vma);
1841         count_vm_event(THP_SPLIT);
1842
1843         BUG_ON(PageCompound(page));
1844 out_unlock:
1845         anon_vma_unlock(anon_vma);
1846         put_anon_vma(anon_vma);
1847 out:
1848         return ret;
1849 }
1850
1851 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1852
1853 int hugepage_madvise(struct vm_area_struct *vma,
1854                      unsigned long *vm_flags, int advice)
1855 {
1856         struct mm_struct *mm = vma->vm_mm;
1857
1858         switch (advice) {
1859         case MADV_HUGEPAGE:
1860                 /*
1861                  * Be somewhat over-protective like KSM for now!
1862                  */
1863                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1864                         return -EINVAL;
1865                 if (mm->def_flags & VM_NOHUGEPAGE)
1866                         return -EINVAL;
1867                 *vm_flags &= ~VM_NOHUGEPAGE;
1868                 *vm_flags |= VM_HUGEPAGE;
1869                 /*
1870                  * If the vma become good for khugepaged to scan,
1871                  * register it here without waiting a page fault that
1872                  * may not happen any time soon.
1873                  */
1874                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1875                         return -ENOMEM;
1876                 break;
1877         case MADV_NOHUGEPAGE:
1878                 /*
1879                  * Be somewhat over-protective like KSM for now!
1880                  */
1881                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1882                         return -EINVAL;
1883                 *vm_flags &= ~VM_HUGEPAGE;
1884                 *vm_flags |= VM_NOHUGEPAGE;
1885                 /*
1886                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1887                  * this vma even if we leave the mm registered in khugepaged if
1888                  * it got registered before VM_NOHUGEPAGE was set.
1889                  */
1890                 break;
1891         }
1892
1893         return 0;
1894 }
1895
1896 static int __init khugepaged_slab_init(void)
1897 {
1898         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1899                                           sizeof(struct mm_slot),
1900                                           __alignof__(struct mm_slot), 0, NULL);
1901         if (!mm_slot_cache)
1902                 return -ENOMEM;
1903
1904         return 0;
1905 }
1906
1907 static void __init khugepaged_slab_free(void)
1908 {
1909         kmem_cache_destroy(mm_slot_cache);
1910         mm_slot_cache = NULL;
1911 }
1912
1913 static inline struct mm_slot *alloc_mm_slot(void)
1914 {
1915         if (!mm_slot_cache)     /* initialization failed */
1916                 return NULL;
1917         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1918 }
1919
1920 static inline void free_mm_slot(struct mm_slot *mm_slot)
1921 {
1922         kmem_cache_free(mm_slot_cache, mm_slot);
1923 }
1924
1925 static int __init mm_slots_hash_init(void)
1926 {
1927         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1928                                 GFP_KERNEL);
1929         if (!mm_slots_hash)
1930                 return -ENOMEM;
1931         return 0;
1932 }
1933
1934 #if 0
1935 static void __init mm_slots_hash_free(void)
1936 {
1937         kfree(mm_slots_hash);
1938         mm_slots_hash = NULL;
1939 }
1940 #endif
1941
1942 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1943 {
1944         struct mm_slot *mm_slot;
1945         struct hlist_head *bucket;
1946         struct hlist_node *node;
1947
1948         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1949                                 % MM_SLOTS_HASH_HEADS];
1950         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1951                 if (mm == mm_slot->mm)
1952                         return mm_slot;
1953         }
1954         return NULL;
1955 }
1956
1957 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1958                                     struct mm_slot *mm_slot)
1959 {
1960         struct hlist_head *bucket;
1961
1962         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1963                                 % MM_SLOTS_HASH_HEADS];
1964         mm_slot->mm = mm;
1965         hlist_add_head(&mm_slot->hash, bucket);
1966 }
1967
1968 static inline int khugepaged_test_exit(struct mm_struct *mm)
1969 {
1970         return atomic_read(&mm->mm_users) == 0;
1971 }
1972
1973 int __khugepaged_enter(struct mm_struct *mm)
1974 {
1975         struct mm_slot *mm_slot;
1976         int wakeup;
1977
1978         mm_slot = alloc_mm_slot();
1979         if (!mm_slot)
1980                 return -ENOMEM;
1981
1982         /* __khugepaged_exit() must not run from under us */
1983         VM_BUG_ON(khugepaged_test_exit(mm));
1984         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1985                 free_mm_slot(mm_slot);
1986                 return 0;
1987         }
1988
1989         spin_lock(&khugepaged_mm_lock);
1990         insert_to_mm_slots_hash(mm, mm_slot);
1991         /*
1992          * Insert just behind the scanning cursor, to let the area settle
1993          * down a little.
1994          */
1995         wakeup = list_empty(&khugepaged_scan.mm_head);
1996         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1997         spin_unlock(&khugepaged_mm_lock);
1998
1999         atomic_inc(&mm->mm_count);
2000         if (wakeup)
2001                 wake_up_interruptible(&khugepaged_wait);
2002
2003         return 0;
2004 }
2005
2006 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2007 {
2008         unsigned long hstart, hend;
2009         if (!vma->anon_vma)
2010                 /*
2011                  * Not yet faulted in so we will register later in the
2012                  * page fault if needed.
2013                  */
2014                 return 0;
2015         if (vma->vm_ops)
2016                 /* khugepaged not yet working on file or special mappings */
2017                 return 0;
2018         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2019         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2020         hend = vma->vm_end & HPAGE_PMD_MASK;
2021         if (hstart < hend)
2022                 return khugepaged_enter(vma);
2023         return 0;
2024 }
2025
2026 void __khugepaged_exit(struct mm_struct *mm)
2027 {
2028         struct mm_slot *mm_slot;
2029         int free = 0;
2030
2031         spin_lock(&khugepaged_mm_lock);
2032         mm_slot = get_mm_slot(mm);
2033         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2034                 hlist_del(&mm_slot->hash);
2035                 list_del(&mm_slot->mm_node);
2036                 free = 1;
2037         }
2038         spin_unlock(&khugepaged_mm_lock);
2039
2040         if (free) {
2041                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2042                 free_mm_slot(mm_slot);
2043                 mmdrop(mm);
2044         } else if (mm_slot) {
2045                 /*
2046                  * This is required to serialize against
2047                  * khugepaged_test_exit() (which is guaranteed to run
2048                  * under mmap sem read mode). Stop here (after we
2049                  * return all pagetables will be destroyed) until
2050                  * khugepaged has finished working on the pagetables
2051                  * under the mmap_sem.
2052                  */
2053                 down_write(&mm->mmap_sem);
2054                 up_write(&mm->mmap_sem);
2055         }
2056 }
2057
2058 static void release_pte_page(struct page *page)
2059 {
2060         /* 0 stands for page_is_file_cache(page) == false */
2061         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2062         unlock_page(page);
2063         putback_lru_page(page);
2064 }
2065
2066 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2067 {
2068         while (--_pte >= pte) {
2069                 pte_t pteval = *_pte;
2070                 if (!pte_none(pteval))
2071                         release_pte_page(pte_page(pteval));
2072         }
2073 }
2074
2075 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2076                                         unsigned long address,
2077                                         pte_t *pte)
2078 {
2079         struct page *page;
2080         pte_t *_pte;
2081         int referenced = 0, none = 0;
2082         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2083              _pte++, address += PAGE_SIZE) {
2084                 pte_t pteval = *_pte;
2085                 if (pte_none(pteval)) {
2086                         if (++none <= khugepaged_max_ptes_none)
2087                                 continue;
2088                         else
2089                                 goto out;
2090                 }
2091                 if (!pte_present(pteval) || !pte_write(pteval))
2092                         goto out;
2093                 page = vm_normal_page(vma, address, pteval);
2094                 if (unlikely(!page))
2095                         goto out;
2096
2097                 VM_BUG_ON(PageCompound(page));
2098                 BUG_ON(!PageAnon(page));
2099                 VM_BUG_ON(!PageSwapBacked(page));
2100
2101                 /* cannot use mapcount: can't collapse if there's a gup pin */
2102                 if (page_count(page) != 1)
2103                         goto out;
2104                 /*
2105                  * We can do it before isolate_lru_page because the
2106                  * page can't be freed from under us. NOTE: PG_lock
2107                  * is needed to serialize against split_huge_page
2108                  * when invoked from the VM.
2109                  */
2110                 if (!trylock_page(page))
2111                         goto out;
2112                 /*
2113                  * Isolate the page to avoid collapsing an hugepage
2114                  * currently in use by the VM.
2115                  */
2116                 if (isolate_lru_page(page)) {
2117                         unlock_page(page);
2118                         goto out;
2119                 }
2120                 /* 0 stands for page_is_file_cache(page) == false */
2121                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2122                 VM_BUG_ON(!PageLocked(page));
2123                 VM_BUG_ON(PageLRU(page));
2124
2125                 /* If there is no mapped pte young don't collapse the page */
2126                 if (pte_young(pteval) || PageReferenced(page) ||
2127                     mmu_notifier_test_young(vma->vm_mm, address))
2128                         referenced = 1;
2129         }
2130         if (likely(referenced))
2131                 return 1;
2132 out:
2133         release_pte_pages(pte, _pte);
2134         return 0;
2135 }
2136
2137 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2138                                       struct vm_area_struct *vma,
2139                                       unsigned long address,
2140                                       spinlock_t *ptl)
2141 {
2142         pte_t *_pte;
2143         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2144                 pte_t pteval = *_pte;
2145                 struct page *src_page;
2146
2147                 if (pte_none(pteval)) {
2148                         clear_user_highpage(page, address);
2149                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2150                 } else {
2151                         src_page = pte_page(pteval);
2152                         copy_user_highpage(page, src_page, address, vma);
2153                         VM_BUG_ON(page_mapcount(src_page) != 1);
2154                         release_pte_page(src_page);
2155                         /*
2156                          * ptl mostly unnecessary, but preempt has to
2157                          * be disabled to update the per-cpu stats
2158                          * inside page_remove_rmap().
2159                          */
2160                         spin_lock(ptl);
2161                         /*
2162                          * paravirt calls inside pte_clear here are
2163                          * superfluous.
2164                          */
2165                         pte_clear(vma->vm_mm, address, _pte);
2166                         page_remove_rmap(src_page);
2167                         spin_unlock(ptl);
2168                         free_page_and_swap_cache(src_page);
2169                 }
2170
2171                 address += PAGE_SIZE;
2172                 page++;
2173         }
2174 }
2175
2176 static void khugepaged_alloc_sleep(void)
2177 {
2178         wait_event_freezable_timeout(khugepaged_wait, false,
2179                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2180 }
2181
2182 #ifdef CONFIG_NUMA
2183 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2184 {
2185         if (IS_ERR(*hpage)) {
2186                 if (!*wait)
2187                         return false;
2188
2189                 *wait = false;
2190                 *hpage = NULL;
2191                 khugepaged_alloc_sleep();
2192         } else if (*hpage) {
2193                 put_page(*hpage);
2194                 *hpage = NULL;
2195         }
2196
2197         return true;
2198 }
2199
2200 static struct page
2201 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2202                        struct vm_area_struct *vma, unsigned long address,
2203                        int node)
2204 {
2205         VM_BUG_ON(*hpage);
2206         /*
2207          * Allocate the page while the vma is still valid and under
2208          * the mmap_sem read mode so there is no memory allocation
2209          * later when we take the mmap_sem in write mode. This is more
2210          * friendly behavior (OTOH it may actually hide bugs) to
2211          * filesystems in userland with daemons allocating memory in
2212          * the userland I/O paths.  Allocating memory with the
2213          * mmap_sem in read mode is good idea also to allow greater
2214          * scalability.
2215          */
2216         *hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2217                                       node, __GFP_OTHER_NODE);
2218
2219         /*
2220          * After allocating the hugepage, release the mmap_sem read lock in
2221          * preparation for taking it in write mode.
2222          */
2223         up_read(&mm->mmap_sem);
2224         if (unlikely(!*hpage)) {
2225                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2226                 *hpage = ERR_PTR(-ENOMEM);
2227                 return NULL;
2228         }
2229
2230         count_vm_event(THP_COLLAPSE_ALLOC);
2231         return *hpage;
2232 }
2233 #else
2234 static struct page *khugepaged_alloc_hugepage(bool *wait)
2235 {
2236         struct page *hpage;
2237
2238         do {
2239                 hpage = alloc_hugepage(khugepaged_defrag());
2240                 if (!hpage) {
2241                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2242                         if (!*wait)
2243                                 return NULL;
2244
2245                         *wait = false;
2246                         khugepaged_alloc_sleep();
2247                 } else
2248                         count_vm_event(THP_COLLAPSE_ALLOC);
2249         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2250
2251         return hpage;
2252 }
2253
2254 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2255 {
2256         if (!*hpage)
2257                 *hpage = khugepaged_alloc_hugepage(wait);
2258
2259         if (unlikely(!*hpage))
2260                 return false;
2261
2262         return true;
2263 }
2264
2265 static struct page
2266 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2267                        struct vm_area_struct *vma, unsigned long address,
2268                        int node)
2269 {
2270         up_read(&mm->mmap_sem);
2271         VM_BUG_ON(!*hpage);
2272         return  *hpage;
2273 }
2274 #endif
2275
2276 static bool hugepage_vma_check(struct vm_area_struct *vma)
2277 {
2278         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2279             (vma->vm_flags & VM_NOHUGEPAGE))
2280                 return false;
2281
2282         if (!vma->anon_vma || vma->vm_ops)
2283                 return false;
2284         if (is_vma_temporary_stack(vma))
2285                 return false;
2286         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2287         return true;
2288 }
2289
2290 static void collapse_huge_page(struct mm_struct *mm,
2291                                    unsigned long address,
2292                                    struct page **hpage,
2293                                    struct vm_area_struct *vma,
2294                                    int node)
2295 {
2296         pmd_t *pmd, _pmd;
2297         pte_t *pte;
2298         pgtable_t pgtable;
2299         struct page *new_page;
2300         spinlock_t *ptl;
2301         int isolated;
2302         unsigned long hstart, hend;
2303         unsigned long mmun_start;       /* For mmu_notifiers */
2304         unsigned long mmun_end;         /* For mmu_notifiers */
2305
2306         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2307
2308         /* release the mmap_sem read lock. */
2309         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2310         if (!new_page)
2311                 return;
2312
2313         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2314                 return;
2315
2316         /*
2317          * Prevent all access to pagetables with the exception of
2318          * gup_fast later hanlded by the ptep_clear_flush and the VM
2319          * handled by the anon_vma lock + PG_lock.
2320          */
2321         down_write(&mm->mmap_sem);
2322         if (unlikely(khugepaged_test_exit(mm)))
2323                 goto out;
2324
2325         vma = find_vma(mm, address);
2326         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2327         hend = vma->vm_end & HPAGE_PMD_MASK;
2328         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2329                 goto out;
2330         if (!hugepage_vma_check(vma))
2331                 goto out;
2332         pmd = mm_find_pmd(mm, address);
2333         if (!pmd)
2334                 goto out;
2335         if (pmd_trans_huge(*pmd))
2336                 goto out;
2337
2338         anon_vma_lock_write(vma->anon_vma);
2339
2340         pte = pte_offset_map(pmd, address);
2341         ptl = pte_lockptr(mm, pmd);
2342
2343         mmun_start = address;
2344         mmun_end   = address + HPAGE_PMD_SIZE;
2345         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2346         spin_lock(&mm->page_table_lock); /* probably unnecessary */
2347         /*
2348          * After this gup_fast can't run anymore. This also removes
2349          * any huge TLB entry from the CPU so we won't allow
2350          * huge and small TLB entries for the same virtual address
2351          * to avoid the risk of CPU bugs in that area.
2352          */
2353         _pmd = pmdp_clear_flush(vma, address, pmd);
2354         spin_unlock(&mm->page_table_lock);
2355         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2356
2357         spin_lock(ptl);
2358         isolated = __collapse_huge_page_isolate(vma, address, pte);
2359         spin_unlock(ptl);
2360
2361         if (unlikely(!isolated)) {
2362                 pte_unmap(pte);
2363                 spin_lock(&mm->page_table_lock);
2364                 BUG_ON(!pmd_none(*pmd));
2365                 set_pmd_at(mm, address, pmd, _pmd);
2366                 spin_unlock(&mm->page_table_lock);
2367                 anon_vma_unlock(vma->anon_vma);
2368                 goto out;
2369         }
2370
2371         /*
2372          * All pages are isolated and locked so anon_vma rmap
2373          * can't run anymore.
2374          */
2375         anon_vma_unlock(vma->anon_vma);
2376
2377         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2378         pte_unmap(pte);
2379         __SetPageUptodate(new_page);
2380         pgtable = pmd_pgtable(_pmd);
2381
2382         _pmd = mk_huge_pmd(new_page, vma);
2383
2384         /*
2385          * spin_lock() below is not the equivalent of smp_wmb(), so
2386          * this is needed to avoid the copy_huge_page writes to become
2387          * visible after the set_pmd_at() write.
2388          */
2389         smp_wmb();
2390
2391         spin_lock(&mm->page_table_lock);
2392         BUG_ON(!pmd_none(*pmd));
2393         page_add_new_anon_rmap(new_page, vma, address);
2394         set_pmd_at(mm, address, pmd, _pmd);
2395         update_mmu_cache_pmd(vma, address, pmd);
2396         pgtable_trans_huge_deposit(mm, pgtable);
2397         spin_unlock(&mm->page_table_lock);
2398
2399         *hpage = NULL;
2400
2401         khugepaged_pages_collapsed++;
2402 out_up_write:
2403         up_write(&mm->mmap_sem);
2404         return;
2405
2406 out:
2407         mem_cgroup_uncharge_page(new_page);
2408         goto out_up_write;
2409 }
2410
2411 static int khugepaged_scan_pmd(struct mm_struct *mm,
2412                                struct vm_area_struct *vma,
2413                                unsigned long address,
2414                                struct page **hpage)
2415 {
2416         pmd_t *pmd;
2417         pte_t *pte, *_pte;
2418         int ret = 0, referenced = 0, none = 0;
2419         struct page *page;
2420         unsigned long _address;
2421         spinlock_t *ptl;
2422         int node = -1;
2423
2424         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2425
2426         pmd = mm_find_pmd(mm, address);
2427         if (!pmd)
2428                 goto out;
2429         if (pmd_trans_huge(*pmd))
2430                 goto out;
2431
2432         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2433         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2434              _pte++, _address += PAGE_SIZE) {
2435                 pte_t pteval = *_pte;
2436                 if (pte_none(pteval)) {
2437                         if (++none <= khugepaged_max_ptes_none)
2438                                 continue;
2439                         else
2440                                 goto out_unmap;
2441                 }
2442                 if (!pte_present(pteval) || !pte_write(pteval))
2443                         goto out_unmap;
2444                 page = vm_normal_page(vma, _address, pteval);
2445                 if (unlikely(!page))
2446                         goto out_unmap;
2447                 /*
2448                  * Chose the node of the first page. This could
2449                  * be more sophisticated and look at more pages,
2450                  * but isn't for now.
2451                  */
2452                 if (node == -1)
2453                         node = page_to_nid(page);
2454                 VM_BUG_ON(PageCompound(page));
2455                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2456                         goto out_unmap;
2457                 /* cannot use mapcount: can't collapse if there's a gup pin */
2458                 if (page_count(page) != 1)
2459                         goto out_unmap;
2460                 if (pte_young(pteval) || PageReferenced(page) ||
2461                     mmu_notifier_test_young(vma->vm_mm, address))
2462                         referenced = 1;
2463         }
2464         if (referenced)
2465                 ret = 1;
2466 out_unmap:
2467         pte_unmap_unlock(pte, ptl);
2468         if (ret)
2469                 /* collapse_huge_page will return with the mmap_sem released */
2470                 collapse_huge_page(mm, address, hpage, vma, node);
2471 out:
2472         return ret;
2473 }
2474
2475 static void collect_mm_slot(struct mm_slot *mm_slot)
2476 {
2477         struct mm_struct *mm = mm_slot->mm;
2478
2479         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2480
2481         if (khugepaged_test_exit(mm)) {
2482                 /* free mm_slot */
2483                 hlist_del(&mm_slot->hash);
2484                 list_del(&mm_slot->mm_node);
2485
2486                 /*
2487                  * Not strictly needed because the mm exited already.
2488                  *
2489                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2490                  */
2491
2492                 /* khugepaged_mm_lock actually not necessary for the below */
2493                 free_mm_slot(mm_slot);
2494                 mmdrop(mm);
2495         }
2496 }
2497
2498 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2499                                             struct page **hpage)
2500         __releases(&khugepaged_mm_lock)
2501         __acquires(&khugepaged_mm_lock)
2502 {
2503         struct mm_slot *mm_slot;
2504         struct mm_struct *mm;
2505         struct vm_area_struct *vma;
2506         int progress = 0;
2507
2508         VM_BUG_ON(!pages);
2509         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2510
2511         if (khugepaged_scan.mm_slot)
2512                 mm_slot = khugepaged_scan.mm_slot;
2513         else {
2514                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2515                                      struct mm_slot, mm_node);
2516                 khugepaged_scan.address = 0;
2517                 khugepaged_scan.mm_slot = mm_slot;
2518         }
2519         spin_unlock(&khugepaged_mm_lock);
2520
2521         mm = mm_slot->mm;
2522         down_read(&mm->mmap_sem);
2523         if (unlikely(khugepaged_test_exit(mm)))
2524                 vma = NULL;
2525         else
2526                 vma = find_vma(mm, khugepaged_scan.address);
2527
2528         progress++;
2529         for (; vma; vma = vma->vm_next) {
2530                 unsigned long hstart, hend;
2531
2532                 cond_resched();
2533                 if (unlikely(khugepaged_test_exit(mm))) {
2534                         progress++;
2535                         break;
2536                 }
2537                 if (!hugepage_vma_check(vma)) {
2538 skip:
2539                         progress++;
2540                         continue;
2541                 }
2542                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2543                 hend = vma->vm_end & HPAGE_PMD_MASK;
2544                 if (hstart >= hend)
2545                         goto skip;
2546                 if (khugepaged_scan.address > hend)
2547                         goto skip;
2548                 if (khugepaged_scan.address < hstart)
2549                         khugepaged_scan.address = hstart;
2550                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2551
2552                 while (khugepaged_scan.address < hend) {
2553                         int ret;
2554                         cond_resched();
2555                         if (unlikely(khugepaged_test_exit(mm)))
2556                                 goto breakouterloop;
2557
2558                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2559                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2560                                   hend);
2561                         ret = khugepaged_scan_pmd(mm, vma,
2562                                                   khugepaged_scan.address,
2563                                                   hpage);
2564                         /* move to next address */
2565                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2566                         progress += HPAGE_PMD_NR;
2567                         if (ret)
2568                                 /* we released mmap_sem so break loop */
2569                                 goto breakouterloop_mmap_sem;
2570                         if (progress >= pages)
2571                                 goto breakouterloop;
2572                 }
2573         }
2574 breakouterloop:
2575         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2576 breakouterloop_mmap_sem:
2577
2578         spin_lock(&khugepaged_mm_lock);
2579         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2580         /*
2581          * Release the current mm_slot if this mm is about to die, or
2582          * if we scanned all vmas of this mm.
2583          */
2584         if (khugepaged_test_exit(mm) || !vma) {
2585                 /*
2586                  * Make sure that if mm_users is reaching zero while
2587                  * khugepaged runs here, khugepaged_exit will find
2588                  * mm_slot not pointing to the exiting mm.
2589                  */
2590                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2591                         khugepaged_scan.mm_slot = list_entry(
2592                                 mm_slot->mm_node.next,
2593                                 struct mm_slot, mm_node);
2594                         khugepaged_scan.address = 0;
2595                 } else {
2596                         khugepaged_scan.mm_slot = NULL;
2597                         khugepaged_full_scans++;
2598                 }
2599
2600                 collect_mm_slot(mm_slot);
2601         }
2602
2603         return progress;
2604 }
2605
2606 static int khugepaged_has_work(void)
2607 {
2608         return !list_empty(&khugepaged_scan.mm_head) &&
2609                 khugepaged_enabled();
2610 }
2611
2612 static int khugepaged_wait_event(void)
2613 {
2614         return !list_empty(&khugepaged_scan.mm_head) ||
2615                 kthread_should_stop();
2616 }
2617
2618 static void khugepaged_do_scan(void)
2619 {
2620         struct page *hpage = NULL;
2621         unsigned int progress = 0, pass_through_head = 0;
2622         unsigned int pages = khugepaged_pages_to_scan;
2623         bool wait = true;
2624
2625         barrier(); /* write khugepaged_pages_to_scan to local stack */
2626
2627         while (progress < pages) {
2628                 if (!khugepaged_prealloc_page(&hpage, &wait))
2629                         break;
2630
2631                 cond_resched();
2632
2633                 if (unlikely(kthread_should_stop() || freezing(current)))
2634                         break;
2635
2636                 spin_lock(&khugepaged_mm_lock);
2637                 if (!khugepaged_scan.mm_slot)
2638                         pass_through_head++;
2639                 if (khugepaged_has_work() &&
2640                     pass_through_head < 2)
2641                         progress += khugepaged_scan_mm_slot(pages - progress,
2642                                                             &hpage);
2643                 else
2644                         progress = pages;
2645                 spin_unlock(&khugepaged_mm_lock);
2646         }
2647
2648         if (!IS_ERR_OR_NULL(hpage))
2649                 put_page(hpage);
2650 }
2651
2652 static void khugepaged_wait_work(void)
2653 {
2654         try_to_freeze();
2655
2656         if (khugepaged_has_work()) {
2657                 if (!khugepaged_scan_sleep_millisecs)
2658                         return;
2659
2660                 wait_event_freezable_timeout(khugepaged_wait,
2661                                              kthread_should_stop(),
2662                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2663                 return;
2664         }
2665
2666         if (khugepaged_enabled())
2667                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2668 }
2669
2670 static int khugepaged(void *none)
2671 {
2672         struct mm_slot *mm_slot;
2673
2674         set_freezable();
2675         set_user_nice(current, 19);
2676
2677         while (!kthread_should_stop()) {
2678                 khugepaged_do_scan();
2679                 khugepaged_wait_work();
2680         }
2681
2682         spin_lock(&khugepaged_mm_lock);
2683         mm_slot = khugepaged_scan.mm_slot;
2684         khugepaged_scan.mm_slot = NULL;
2685         if (mm_slot)
2686                 collect_mm_slot(mm_slot);
2687         spin_unlock(&khugepaged_mm_lock);
2688         return 0;
2689 }
2690
2691 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2692                 unsigned long haddr, pmd_t *pmd)
2693 {
2694         struct mm_struct *mm = vma->vm_mm;
2695         pgtable_t pgtable;
2696         pmd_t _pmd;
2697         int i;
2698
2699         pmdp_clear_flush(vma, haddr, pmd);
2700         /* leave pmd empty until pte is filled */
2701
2702         pgtable = pgtable_trans_huge_withdraw(mm);
2703         pmd_populate(mm, &_pmd, pgtable);
2704
2705         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2706                 pte_t *pte, entry;
2707                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2708                 entry = pte_mkspecial(entry);
2709                 pte = pte_offset_map(&_pmd, haddr);
2710                 VM_BUG_ON(!pte_none(*pte));
2711                 set_pte_at(mm, haddr, pte, entry);
2712                 pte_unmap(pte);
2713         }
2714         smp_wmb(); /* make pte visible before pmd */
2715         pmd_populate(mm, pmd, pgtable);
2716         put_huge_zero_page();
2717 }
2718
2719 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2720                 pmd_t *pmd)
2721 {
2722         struct page *page;
2723         struct mm_struct *mm = vma->vm_mm;
2724         unsigned long haddr = address & HPAGE_PMD_MASK;
2725         unsigned long mmun_start;       /* For mmu_notifiers */
2726         unsigned long mmun_end;         /* For mmu_notifiers */
2727
2728         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2729
2730         mmun_start = haddr;
2731         mmun_end   = haddr + HPAGE_PMD_SIZE;
2732         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2733         spin_lock(&mm->page_table_lock);
2734         if (unlikely(!pmd_trans_huge(*pmd))) {
2735                 spin_unlock(&mm->page_table_lock);
2736                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2737                 return;
2738         }
2739         if (is_huge_zero_pmd(*pmd)) {
2740                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2741                 spin_unlock(&mm->page_table_lock);
2742                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2743                 return;
2744         }
2745         page = pmd_page(*pmd);
2746         VM_BUG_ON(!page_count(page));
2747         get_page(page);
2748         spin_unlock(&mm->page_table_lock);
2749         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2750
2751         split_huge_page(page);
2752
2753         put_page(page);
2754         BUG_ON(pmd_trans_huge(*pmd));
2755 }
2756
2757 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2758                 pmd_t *pmd)
2759 {
2760         struct vm_area_struct *vma;
2761
2762         vma = find_vma(mm, address);
2763         BUG_ON(vma == NULL);
2764         split_huge_page_pmd(vma, address, pmd);
2765 }
2766
2767 static void split_huge_page_address(struct mm_struct *mm,
2768                                     unsigned long address)
2769 {
2770         pmd_t *pmd;
2771
2772         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2773
2774         pmd = mm_find_pmd(mm, address);
2775         if (!pmd)
2776                 return;
2777         /*
2778          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2779          * materialize from under us.
2780          */
2781         split_huge_page_pmd_mm(mm, address, pmd);
2782 }
2783
2784 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2785                              unsigned long start,
2786                              unsigned long end,
2787                              long adjust_next)
2788 {
2789         /*
2790          * If the new start address isn't hpage aligned and it could
2791          * previously contain an hugepage: check if we need to split
2792          * an huge pmd.
2793          */
2794         if (start & ~HPAGE_PMD_MASK &&
2795             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2796             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2797                 split_huge_page_address(vma->vm_mm, start);
2798
2799         /*
2800          * If the new end address isn't hpage aligned and it could
2801          * previously contain an hugepage: check if we need to split
2802          * an huge pmd.
2803          */
2804         if (end & ~HPAGE_PMD_MASK &&
2805             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2806             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2807                 split_huge_page_address(vma->vm_mm, end);
2808
2809         /*
2810          * If we're also updating the vma->vm_next->vm_start, if the new
2811          * vm_next->vm_start isn't page aligned and it could previously
2812          * contain an hugepage: check if we need to split an huge pmd.
2813          */
2814         if (adjust_next > 0) {
2815                 struct vm_area_struct *next = vma->vm_next;
2816                 unsigned long nstart = next->vm_start;
2817                 nstart += adjust_next << PAGE_SHIFT;
2818                 if (nstart & ~HPAGE_PMD_MASK &&
2819                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2820                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2821                         split_huge_page_address(next->vm_mm, nstart);
2822         }
2823 }