]> Pileus Git - ~andy/linux/blob - mm/huge_memory.c
Merge branch 'qlcnic'
[~andy/linux] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81         struct hlist_node hash;
82         struct list_head mm_node;
83         struct mm_struct *mm;
84 };
85
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95         struct list_head mm_head;
96         struct mm_slot *mm_slot;
97         unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102
103
104 static int set_recommended_min_free_kbytes(void)
105 {
106         struct zone *zone;
107         int nr_zones = 0;
108         unsigned long recommended_min;
109
110         if (!khugepaged_enabled())
111                 return 0;
112
113         for_each_populated_zone(zone)
114                 nr_zones++;
115
116         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117         recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119         /*
120          * Make sure that on average at least two pageblocks are almost free
121          * of another type, one for a migratetype to fall back to and a
122          * second to avoid subsequent fallbacks of other types There are 3
123          * MIGRATE_TYPES we care about.
124          */
125         recommended_min += pageblock_nr_pages * nr_zones *
126                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128         /* don't ever allow to reserve more than 5% of the lowmem */
129         recommended_min = min(recommended_min,
130                               (unsigned long) nr_free_buffer_pages() / 20);
131         recommended_min <<= (PAGE_SHIFT-10);
132
133         if (recommended_min > min_free_kbytes)
134                 min_free_kbytes = recommended_min;
135         setup_per_zone_wmarks();
136         return 0;
137 }
138 late_initcall(set_recommended_min_free_kbytes);
139
140 static int start_khugepaged(void)
141 {
142         int err = 0;
143         if (khugepaged_enabled()) {
144                 if (!khugepaged_thread)
145                         khugepaged_thread = kthread_run(khugepaged, NULL,
146                                                         "khugepaged");
147                 if (unlikely(IS_ERR(khugepaged_thread))) {
148                         printk(KERN_ERR
149                                "khugepaged: kthread_run(khugepaged) failed\n");
150                         err = PTR_ERR(khugepaged_thread);
151                         khugepaged_thread = NULL;
152                 }
153
154                 if (!list_empty(&khugepaged_scan.mm_head))
155                         wake_up_interruptible(&khugepaged_wait);
156
157                 set_recommended_min_free_kbytes();
158         } else if (khugepaged_thread) {
159                 kthread_stop(khugepaged_thread);
160                 khugepaged_thread = NULL;
161         }
162
163         return err;
164 }
165
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
168
169 static inline bool is_huge_zero_page(struct page *page)
170 {
171         return ACCESS_ONCE(huge_zero_page) == page;
172 }
173
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 {
176         return is_huge_zero_page(pmd_page(pmd));
177 }
178
179 static struct page *get_huge_zero_page(void)
180 {
181         struct page *zero_page;
182 retry:
183         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184                 return ACCESS_ONCE(huge_zero_page);
185
186         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187                         HPAGE_PMD_ORDER);
188         if (!zero_page) {
189                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190                 return NULL;
191         }
192         count_vm_event(THP_ZERO_PAGE_ALLOC);
193         preempt_disable();
194         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195                 preempt_enable();
196                 __free_page(zero_page);
197                 goto retry;
198         }
199
200         /* We take additional reference here. It will be put back by shrinker */
201         atomic_set(&huge_zero_refcount, 2);
202         preempt_enable();
203         return ACCESS_ONCE(huge_zero_page);
204 }
205
206 static void put_huge_zero_page(void)
207 {
208         /*
209          * Counter should never go to zero here. Only shrinker can put
210          * last reference.
211          */
212         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213 }
214
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216                                         struct shrink_control *sc)
217 {
218         /* we can free zero page only if last reference remains */
219         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220 }
221
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223                                        struct shrink_control *sc)
224 {
225         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226                 struct page *zero_page = xchg(&huge_zero_page, NULL);
227                 BUG_ON(zero_page == NULL);
228                 __free_page(zero_page);
229                 return HPAGE_PMD_NR;
230         }
231
232         return 0;
233 }
234
235 static struct shrinker huge_zero_page_shrinker = {
236         .count_objects = shrink_huge_zero_page_count,
237         .scan_objects = shrink_huge_zero_page_scan,
238         .seeks = DEFAULT_SEEKS,
239 };
240
241 #ifdef CONFIG_SYSFS
242
243 static ssize_t double_flag_show(struct kobject *kobj,
244                                 struct kobj_attribute *attr, char *buf,
245                                 enum transparent_hugepage_flag enabled,
246                                 enum transparent_hugepage_flag req_madv)
247 {
248         if (test_bit(enabled, &transparent_hugepage_flags)) {
249                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250                 return sprintf(buf, "[always] madvise never\n");
251         } else if (test_bit(req_madv, &transparent_hugepage_flags))
252                 return sprintf(buf, "always [madvise] never\n");
253         else
254                 return sprintf(buf, "always madvise [never]\n");
255 }
256 static ssize_t double_flag_store(struct kobject *kobj,
257                                  struct kobj_attribute *attr,
258                                  const char *buf, size_t count,
259                                  enum transparent_hugepage_flag enabled,
260                                  enum transparent_hugepage_flag req_madv)
261 {
262         if (!memcmp("always", buf,
263                     min(sizeof("always")-1, count))) {
264                 set_bit(enabled, &transparent_hugepage_flags);
265                 clear_bit(req_madv, &transparent_hugepage_flags);
266         } else if (!memcmp("madvise", buf,
267                            min(sizeof("madvise")-1, count))) {
268                 clear_bit(enabled, &transparent_hugepage_flags);
269                 set_bit(req_madv, &transparent_hugepage_flags);
270         } else if (!memcmp("never", buf,
271                            min(sizeof("never")-1, count))) {
272                 clear_bit(enabled, &transparent_hugepage_flags);
273                 clear_bit(req_madv, &transparent_hugepage_flags);
274         } else
275                 return -EINVAL;
276
277         return count;
278 }
279
280 static ssize_t enabled_show(struct kobject *kobj,
281                             struct kobj_attribute *attr, char *buf)
282 {
283         return double_flag_show(kobj, attr, buf,
284                                 TRANSPARENT_HUGEPAGE_FLAG,
285                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286 }
287 static ssize_t enabled_store(struct kobject *kobj,
288                              struct kobj_attribute *attr,
289                              const char *buf, size_t count)
290 {
291         ssize_t ret;
292
293         ret = double_flag_store(kobj, attr, buf, count,
294                                 TRANSPARENT_HUGEPAGE_FLAG,
295                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296
297         if (ret > 0) {
298                 int err;
299
300                 mutex_lock(&khugepaged_mutex);
301                 err = start_khugepaged();
302                 mutex_unlock(&khugepaged_mutex);
303
304                 if (err)
305                         ret = err;
306         }
307
308         return ret;
309 }
310 static struct kobj_attribute enabled_attr =
311         __ATTR(enabled, 0644, enabled_show, enabled_store);
312
313 static ssize_t single_flag_show(struct kobject *kobj,
314                                 struct kobj_attribute *attr, char *buf,
315                                 enum transparent_hugepage_flag flag)
316 {
317         return sprintf(buf, "%d\n",
318                        !!test_bit(flag, &transparent_hugepage_flags));
319 }
320
321 static ssize_t single_flag_store(struct kobject *kobj,
322                                  struct kobj_attribute *attr,
323                                  const char *buf, size_t count,
324                                  enum transparent_hugepage_flag flag)
325 {
326         unsigned long value;
327         int ret;
328
329         ret = kstrtoul(buf, 10, &value);
330         if (ret < 0)
331                 return ret;
332         if (value > 1)
333                 return -EINVAL;
334
335         if (value)
336                 set_bit(flag, &transparent_hugepage_flags);
337         else
338                 clear_bit(flag, &transparent_hugepage_flags);
339
340         return count;
341 }
342
343 /*
344  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346  * memory just to allocate one more hugepage.
347  */
348 static ssize_t defrag_show(struct kobject *kobj,
349                            struct kobj_attribute *attr, char *buf)
350 {
351         return double_flag_show(kobj, attr, buf,
352                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354 }
355 static ssize_t defrag_store(struct kobject *kobj,
356                             struct kobj_attribute *attr,
357                             const char *buf, size_t count)
358 {
359         return double_flag_store(kobj, attr, buf, count,
360                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 }
363 static struct kobj_attribute defrag_attr =
364         __ATTR(defrag, 0644, defrag_show, defrag_store);
365
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367                 struct kobj_attribute *attr, char *buf)
368 {
369         return single_flag_show(kobj, attr, buf,
370                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 }
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373                 struct kobj_attribute *attr, const char *buf, size_t count)
374 {
375         return single_flag_store(kobj, attr, buf, count,
376                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static struct kobj_attribute use_zero_page_attr =
379         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382                                 struct kobj_attribute *attr, char *buf)
383 {
384         return single_flag_show(kobj, attr, buf,
385                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386 }
387 static ssize_t debug_cow_store(struct kobject *kobj,
388                                struct kobj_attribute *attr,
389                                const char *buf, size_t count)
390 {
391         return single_flag_store(kobj, attr, buf, count,
392                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static struct kobj_attribute debug_cow_attr =
395         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
397
398 static struct attribute *hugepage_attr[] = {
399         &enabled_attr.attr,
400         &defrag_attr.attr,
401         &use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403         &debug_cow_attr.attr,
404 #endif
405         NULL,
406 };
407
408 static struct attribute_group hugepage_attr_group = {
409         .attrs = hugepage_attr,
410 };
411
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413                                          struct kobj_attribute *attr,
414                                          char *buf)
415 {
416         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417 }
418
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420                                           struct kobj_attribute *attr,
421                                           const char *buf, size_t count)
422 {
423         unsigned long msecs;
424         int err;
425
426         err = kstrtoul(buf, 10, &msecs);
427         if (err || msecs > UINT_MAX)
428                 return -EINVAL;
429
430         khugepaged_scan_sleep_millisecs = msecs;
431         wake_up_interruptible(&khugepaged_wait);
432
433         return count;
434 }
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437                scan_sleep_millisecs_store);
438
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440                                           struct kobj_attribute *attr,
441                                           char *buf)
442 {
443         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444 }
445
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447                                            struct kobj_attribute *attr,
448                                            const char *buf, size_t count)
449 {
450         unsigned long msecs;
451         int err;
452
453         err = kstrtoul(buf, 10, &msecs);
454         if (err || msecs > UINT_MAX)
455                 return -EINVAL;
456
457         khugepaged_alloc_sleep_millisecs = msecs;
458         wake_up_interruptible(&khugepaged_wait);
459
460         return count;
461 }
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464                alloc_sleep_millisecs_store);
465
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467                                   struct kobj_attribute *attr,
468                                   char *buf)
469 {
470         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471 }
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473                                    struct kobj_attribute *attr,
474                                    const char *buf, size_t count)
475 {
476         int err;
477         unsigned long pages;
478
479         err = kstrtoul(buf, 10, &pages);
480         if (err || !pages || pages > UINT_MAX)
481                 return -EINVAL;
482
483         khugepaged_pages_to_scan = pages;
484
485         return count;
486 }
487 static struct kobj_attribute pages_to_scan_attr =
488         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489                pages_to_scan_store);
490
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492                                     struct kobj_attribute *attr,
493                                     char *buf)
494 {
495         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496 }
497 static struct kobj_attribute pages_collapsed_attr =
498         __ATTR_RO(pages_collapsed);
499
500 static ssize_t full_scans_show(struct kobject *kobj,
501                                struct kobj_attribute *attr,
502                                char *buf)
503 {
504         return sprintf(buf, "%u\n", khugepaged_full_scans);
505 }
506 static struct kobj_attribute full_scans_attr =
507         __ATTR_RO(full_scans);
508
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510                                       struct kobj_attribute *attr, char *buf)
511 {
512         return single_flag_show(kobj, attr, buf,
513                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514 }
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516                                        struct kobj_attribute *attr,
517                                        const char *buf, size_t count)
518 {
519         return single_flag_store(kobj, attr, buf, count,
520                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static struct kobj_attribute khugepaged_defrag_attr =
523         __ATTR(defrag, 0644, khugepaged_defrag_show,
524                khugepaged_defrag_store);
525
526 /*
527  * max_ptes_none controls if khugepaged should collapse hugepages over
528  * any unmapped ptes in turn potentially increasing the memory
529  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530  * reduce the available free memory in the system as it
531  * runs. Increasing max_ptes_none will instead potentially reduce the
532  * free memory in the system during the khugepaged scan.
533  */
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535                                              struct kobj_attribute *attr,
536                                              char *buf)
537 {
538         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539 }
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541                                               struct kobj_attribute *attr,
542                                               const char *buf, size_t count)
543 {
544         int err;
545         unsigned long max_ptes_none;
546
547         err = kstrtoul(buf, 10, &max_ptes_none);
548         if (err || max_ptes_none > HPAGE_PMD_NR-1)
549                 return -EINVAL;
550
551         khugepaged_max_ptes_none = max_ptes_none;
552
553         return count;
554 }
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557                khugepaged_max_ptes_none_store);
558
559 static struct attribute *khugepaged_attr[] = {
560         &khugepaged_defrag_attr.attr,
561         &khugepaged_max_ptes_none_attr.attr,
562         &pages_to_scan_attr.attr,
563         &pages_collapsed_attr.attr,
564         &full_scans_attr.attr,
565         &scan_sleep_millisecs_attr.attr,
566         &alloc_sleep_millisecs_attr.attr,
567         NULL,
568 };
569
570 static struct attribute_group khugepaged_attr_group = {
571         .attrs = khugepaged_attr,
572         .name = "khugepaged",
573 };
574
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
576 {
577         int err;
578
579         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580         if (unlikely(!*hugepage_kobj)) {
581                 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582                 return -ENOMEM;
583         }
584
585         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586         if (err) {
587                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588                 goto delete_obj;
589         }
590
591         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592         if (err) {
593                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594                 goto remove_hp_group;
595         }
596
597         return 0;
598
599 remove_hp_group:
600         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602         kobject_put(*hugepage_kobj);
603         return err;
604 }
605
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607 {
608         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610         kobject_put(hugepage_kobj);
611 }
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614 {
615         return 0;
616 }
617
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619 {
620 }
621 #endif /* CONFIG_SYSFS */
622
623 static int __init hugepage_init(void)
624 {
625         int err;
626         struct kobject *hugepage_kobj;
627
628         if (!has_transparent_hugepage()) {
629                 transparent_hugepage_flags = 0;
630                 return -EINVAL;
631         }
632
633         err = hugepage_init_sysfs(&hugepage_kobj);
634         if (err)
635                 return err;
636
637         err = khugepaged_slab_init();
638         if (err)
639                 goto out;
640
641         register_shrinker(&huge_zero_page_shrinker);
642
643         /*
644          * By default disable transparent hugepages on smaller systems,
645          * where the extra memory used could hurt more than TLB overhead
646          * is likely to save.  The admin can still enable it through /sys.
647          */
648         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649                 transparent_hugepage_flags = 0;
650
651         start_khugepaged();
652
653         return 0;
654 out:
655         hugepage_exit_sysfs(hugepage_kobj);
656         return err;
657 }
658 module_init(hugepage_init)
659
660 static int __init setup_transparent_hugepage(char *str)
661 {
662         int ret = 0;
663         if (!str)
664                 goto out;
665         if (!strcmp(str, "always")) {
666                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667                         &transparent_hugepage_flags);
668                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669                           &transparent_hugepage_flags);
670                 ret = 1;
671         } else if (!strcmp(str, "madvise")) {
672                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673                           &transparent_hugepage_flags);
674                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675                         &transparent_hugepage_flags);
676                 ret = 1;
677         } else if (!strcmp(str, "never")) {
678                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679                           &transparent_hugepage_flags);
680                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681                           &transparent_hugepage_flags);
682                 ret = 1;
683         }
684 out:
685         if (!ret)
686                 printk(KERN_WARNING
687                        "transparent_hugepage= cannot parse, ignored\n");
688         return ret;
689 }
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
691
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
693 {
694         if (likely(vma->vm_flags & VM_WRITE))
695                 pmd = pmd_mkwrite(pmd);
696         return pmd;
697 }
698
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
700 {
701         pmd_t entry;
702         entry = mk_pmd(page, prot);
703         entry = pmd_mkhuge(entry);
704         return entry;
705 }
706
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708                                         struct vm_area_struct *vma,
709                                         unsigned long haddr, pmd_t *pmd,
710                                         struct page *page)
711 {
712         pgtable_t pgtable;
713         spinlock_t *ptl;
714
715         VM_BUG_ON(!PageCompound(page));
716         pgtable = pte_alloc_one(mm, haddr);
717         if (unlikely(!pgtable))
718                 return VM_FAULT_OOM;
719
720         clear_huge_page(page, haddr, HPAGE_PMD_NR);
721         /*
722          * The memory barrier inside __SetPageUptodate makes sure that
723          * clear_huge_page writes become visible before the set_pmd_at()
724          * write.
725          */
726         __SetPageUptodate(page);
727
728         ptl = pmd_lock(mm, pmd);
729         if (unlikely(!pmd_none(*pmd))) {
730                 spin_unlock(ptl);
731                 mem_cgroup_uncharge_page(page);
732                 put_page(page);
733                 pte_free(mm, pgtable);
734         } else {
735                 pmd_t entry;
736                 entry = mk_huge_pmd(page, vma->vm_page_prot);
737                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
738                 page_add_new_anon_rmap(page, vma, haddr);
739                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
740                 set_pmd_at(mm, haddr, pmd, entry);
741                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
742                 atomic_long_inc(&mm->nr_ptes);
743                 spin_unlock(ptl);
744         }
745
746         return 0;
747 }
748
749 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
750 {
751         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
752 }
753
754 static inline struct page *alloc_hugepage_vma(int defrag,
755                                               struct vm_area_struct *vma,
756                                               unsigned long haddr, int nd,
757                                               gfp_t extra_gfp)
758 {
759         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
760                                HPAGE_PMD_ORDER, vma, haddr, nd);
761 }
762
763 /* Caller must hold page table lock. */
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766                 struct page *zero_page)
767 {
768         pmd_t entry;
769         if (!pmd_none(*pmd))
770                 return false;
771         entry = mk_pmd(zero_page, vma->vm_page_prot);
772         entry = pmd_wrprotect(entry);
773         entry = pmd_mkhuge(entry);
774         pgtable_trans_huge_deposit(mm, pmd, pgtable);
775         set_pmd_at(mm, haddr, pmd, entry);
776         atomic_long_inc(&mm->nr_ptes);
777         return true;
778 }
779
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781                                unsigned long address, pmd_t *pmd,
782                                unsigned int flags)
783 {
784         struct page *page;
785         unsigned long haddr = address & HPAGE_PMD_MASK;
786
787         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
788                 return VM_FAULT_FALLBACK;
789         if (unlikely(anon_vma_prepare(vma)))
790                 return VM_FAULT_OOM;
791         if (unlikely(khugepaged_enter(vma)))
792                 return VM_FAULT_OOM;
793         if (!(flags & FAULT_FLAG_WRITE) &&
794                         transparent_hugepage_use_zero_page()) {
795                 spinlock_t *ptl;
796                 pgtable_t pgtable;
797                 struct page *zero_page;
798                 bool set;
799                 pgtable = pte_alloc_one(mm, haddr);
800                 if (unlikely(!pgtable))
801                         return VM_FAULT_OOM;
802                 zero_page = get_huge_zero_page();
803                 if (unlikely(!zero_page)) {
804                         pte_free(mm, pgtable);
805                         count_vm_event(THP_FAULT_FALLBACK);
806                         return VM_FAULT_FALLBACK;
807                 }
808                 ptl = pmd_lock(mm, pmd);
809                 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810                                 zero_page);
811                 spin_unlock(ptl);
812                 if (!set) {
813                         pte_free(mm, pgtable);
814                         put_huge_zero_page();
815                 }
816                 return 0;
817         }
818         page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819                         vma, haddr, numa_node_id(), 0);
820         if (unlikely(!page)) {
821                 count_vm_event(THP_FAULT_FALLBACK);
822                 return VM_FAULT_FALLBACK;
823         }
824         if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825                 put_page(page);
826                 count_vm_event(THP_FAULT_FALLBACK);
827                 return VM_FAULT_FALLBACK;
828         }
829         if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830                 mem_cgroup_uncharge_page(page);
831                 put_page(page);
832                 count_vm_event(THP_FAULT_FALLBACK);
833                 return VM_FAULT_FALLBACK;
834         }
835
836         count_vm_event(THP_FAULT_ALLOC);
837         return 0;
838 }
839
840 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842                   struct vm_area_struct *vma)
843 {
844         spinlock_t *dst_ptl, *src_ptl;
845         struct page *src_page;
846         pmd_t pmd;
847         pgtable_t pgtable;
848         int ret;
849
850         ret = -ENOMEM;
851         pgtable = pte_alloc_one(dst_mm, addr);
852         if (unlikely(!pgtable))
853                 goto out;
854
855         dst_ptl = pmd_lock(dst_mm, dst_pmd);
856         src_ptl = pmd_lockptr(src_mm, src_pmd);
857         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
858
859         ret = -EAGAIN;
860         pmd = *src_pmd;
861         if (unlikely(!pmd_trans_huge(pmd))) {
862                 pte_free(dst_mm, pgtable);
863                 goto out_unlock;
864         }
865         /*
866          * When page table lock is held, the huge zero pmd should not be
867          * under splitting since we don't split the page itself, only pmd to
868          * a page table.
869          */
870         if (is_huge_zero_pmd(pmd)) {
871                 struct page *zero_page;
872                 bool set;
873                 /*
874                  * get_huge_zero_page() will never allocate a new page here,
875                  * since we already have a zero page to copy. It just takes a
876                  * reference.
877                  */
878                 zero_page = get_huge_zero_page();
879                 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
880                                 zero_page);
881                 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
882                 ret = 0;
883                 goto out_unlock;
884         }
885
886         /* mmap_sem prevents this happening but warn if that changes */
887         WARN_ON(pmd_trans_migrating(pmd));
888
889         if (unlikely(pmd_trans_splitting(pmd))) {
890                 /* split huge page running from under us */
891                 spin_unlock(src_ptl);
892                 spin_unlock(dst_ptl);
893                 pte_free(dst_mm, pgtable);
894
895                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
896                 goto out;
897         }
898         src_page = pmd_page(pmd);
899         VM_BUG_ON(!PageHead(src_page));
900         get_page(src_page);
901         page_dup_rmap(src_page);
902         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
903
904         pmdp_set_wrprotect(src_mm, addr, src_pmd);
905         pmd = pmd_mkold(pmd_wrprotect(pmd));
906         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
907         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
908         atomic_long_inc(&dst_mm->nr_ptes);
909
910         ret = 0;
911 out_unlock:
912         spin_unlock(src_ptl);
913         spin_unlock(dst_ptl);
914 out:
915         return ret;
916 }
917
918 void huge_pmd_set_accessed(struct mm_struct *mm,
919                            struct vm_area_struct *vma,
920                            unsigned long address,
921                            pmd_t *pmd, pmd_t orig_pmd,
922                            int dirty)
923 {
924         spinlock_t *ptl;
925         pmd_t entry;
926         unsigned long haddr;
927
928         ptl = pmd_lock(mm, pmd);
929         if (unlikely(!pmd_same(*pmd, orig_pmd)))
930                 goto unlock;
931
932         entry = pmd_mkyoung(orig_pmd);
933         haddr = address & HPAGE_PMD_MASK;
934         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
935                 update_mmu_cache_pmd(vma, address, pmd);
936
937 unlock:
938         spin_unlock(ptl);
939 }
940
941 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
942                 struct vm_area_struct *vma, unsigned long address,
943                 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
944 {
945         spinlock_t *ptl;
946         pgtable_t pgtable;
947         pmd_t _pmd;
948         struct page *page;
949         int i, ret = 0;
950         unsigned long mmun_start;       /* For mmu_notifiers */
951         unsigned long mmun_end;         /* For mmu_notifiers */
952
953         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
954         if (!page) {
955                 ret |= VM_FAULT_OOM;
956                 goto out;
957         }
958
959         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
960                 put_page(page);
961                 ret |= VM_FAULT_OOM;
962                 goto out;
963         }
964
965         clear_user_highpage(page, address);
966         __SetPageUptodate(page);
967
968         mmun_start = haddr;
969         mmun_end   = haddr + HPAGE_PMD_SIZE;
970         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
971
972         ptl = pmd_lock(mm, pmd);
973         if (unlikely(!pmd_same(*pmd, orig_pmd)))
974                 goto out_free_page;
975
976         pmdp_clear_flush(vma, haddr, pmd);
977         /* leave pmd empty until pte is filled */
978
979         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
980         pmd_populate(mm, &_pmd, pgtable);
981
982         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
983                 pte_t *pte, entry;
984                 if (haddr == (address & PAGE_MASK)) {
985                         entry = mk_pte(page, vma->vm_page_prot);
986                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
987                         page_add_new_anon_rmap(page, vma, haddr);
988                 } else {
989                         entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
990                         entry = pte_mkspecial(entry);
991                 }
992                 pte = pte_offset_map(&_pmd, haddr);
993                 VM_BUG_ON(!pte_none(*pte));
994                 set_pte_at(mm, haddr, pte, entry);
995                 pte_unmap(pte);
996         }
997         smp_wmb(); /* make pte visible before pmd */
998         pmd_populate(mm, pmd, pgtable);
999         spin_unlock(ptl);
1000         put_huge_zero_page();
1001         inc_mm_counter(mm, MM_ANONPAGES);
1002
1003         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1004
1005         ret |= VM_FAULT_WRITE;
1006 out:
1007         return ret;
1008 out_free_page:
1009         spin_unlock(ptl);
1010         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1011         mem_cgroup_uncharge_page(page);
1012         put_page(page);
1013         goto out;
1014 }
1015
1016 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1017                                         struct vm_area_struct *vma,
1018                                         unsigned long address,
1019                                         pmd_t *pmd, pmd_t orig_pmd,
1020                                         struct page *page,
1021                                         unsigned long haddr)
1022 {
1023         spinlock_t *ptl;
1024         pgtable_t pgtable;
1025         pmd_t _pmd;
1026         int ret = 0, i;
1027         struct page **pages;
1028         unsigned long mmun_start;       /* For mmu_notifiers */
1029         unsigned long mmun_end;         /* For mmu_notifiers */
1030
1031         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1032                         GFP_KERNEL);
1033         if (unlikely(!pages)) {
1034                 ret |= VM_FAULT_OOM;
1035                 goto out;
1036         }
1037
1038         for (i = 0; i < HPAGE_PMD_NR; i++) {
1039                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1040                                                __GFP_OTHER_NODE,
1041                                                vma, address, page_to_nid(page));
1042                 if (unlikely(!pages[i] ||
1043                              mem_cgroup_newpage_charge(pages[i], mm,
1044                                                        GFP_KERNEL))) {
1045                         if (pages[i])
1046                                 put_page(pages[i]);
1047                         mem_cgroup_uncharge_start();
1048                         while (--i >= 0) {
1049                                 mem_cgroup_uncharge_page(pages[i]);
1050                                 put_page(pages[i]);
1051                         }
1052                         mem_cgroup_uncharge_end();
1053                         kfree(pages);
1054                         ret |= VM_FAULT_OOM;
1055                         goto out;
1056                 }
1057         }
1058
1059         for (i = 0; i < HPAGE_PMD_NR; i++) {
1060                 copy_user_highpage(pages[i], page + i,
1061                                    haddr + PAGE_SIZE * i, vma);
1062                 __SetPageUptodate(pages[i]);
1063                 cond_resched();
1064         }
1065
1066         mmun_start = haddr;
1067         mmun_end   = haddr + HPAGE_PMD_SIZE;
1068         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1069
1070         ptl = pmd_lock(mm, pmd);
1071         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1072                 goto out_free_pages;
1073         VM_BUG_ON(!PageHead(page));
1074
1075         pmdp_clear_flush(vma, haddr, pmd);
1076         /* leave pmd empty until pte is filled */
1077
1078         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1079         pmd_populate(mm, &_pmd, pgtable);
1080
1081         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1082                 pte_t *pte, entry;
1083                 entry = mk_pte(pages[i], vma->vm_page_prot);
1084                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1085                 page_add_new_anon_rmap(pages[i], vma, haddr);
1086                 pte = pte_offset_map(&_pmd, haddr);
1087                 VM_BUG_ON(!pte_none(*pte));
1088                 set_pte_at(mm, haddr, pte, entry);
1089                 pte_unmap(pte);
1090         }
1091         kfree(pages);
1092
1093         smp_wmb(); /* make pte visible before pmd */
1094         pmd_populate(mm, pmd, pgtable);
1095         page_remove_rmap(page);
1096         spin_unlock(ptl);
1097
1098         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1099
1100         ret |= VM_FAULT_WRITE;
1101         put_page(page);
1102
1103 out:
1104         return ret;
1105
1106 out_free_pages:
1107         spin_unlock(ptl);
1108         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1109         mem_cgroup_uncharge_start();
1110         for (i = 0; i < HPAGE_PMD_NR; i++) {
1111                 mem_cgroup_uncharge_page(pages[i]);
1112                 put_page(pages[i]);
1113         }
1114         mem_cgroup_uncharge_end();
1115         kfree(pages);
1116         goto out;
1117 }
1118
1119 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1120                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1121 {
1122         spinlock_t *ptl;
1123         int ret = 0;
1124         struct page *page = NULL, *new_page;
1125         unsigned long haddr;
1126         unsigned long mmun_start;       /* For mmu_notifiers */
1127         unsigned long mmun_end;         /* For mmu_notifiers */
1128
1129         ptl = pmd_lockptr(mm, pmd);
1130         VM_BUG_ON(!vma->anon_vma);
1131         haddr = address & HPAGE_PMD_MASK;
1132         if (is_huge_zero_pmd(orig_pmd))
1133                 goto alloc;
1134         spin_lock(ptl);
1135         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1136                 goto out_unlock;
1137
1138         page = pmd_page(orig_pmd);
1139         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1140         if (page_mapcount(page) == 1) {
1141                 pmd_t entry;
1142                 entry = pmd_mkyoung(orig_pmd);
1143                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1144                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1145                         update_mmu_cache_pmd(vma, address, pmd);
1146                 ret |= VM_FAULT_WRITE;
1147                 goto out_unlock;
1148         }
1149         get_page(page);
1150         spin_unlock(ptl);
1151 alloc:
1152         if (transparent_hugepage_enabled(vma) &&
1153             !transparent_hugepage_debug_cow())
1154                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1155                                               vma, haddr, numa_node_id(), 0);
1156         else
1157                 new_page = NULL;
1158
1159         if (unlikely(!new_page)) {
1160                 if (is_huge_zero_pmd(orig_pmd)) {
1161                         ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1162                                         address, pmd, orig_pmd, haddr);
1163                 } else {
1164                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1165                                         pmd, orig_pmd, page, haddr);
1166                         if (ret & VM_FAULT_OOM)
1167                                 split_huge_page(page);
1168                         put_page(page);
1169                 }
1170                 count_vm_event(THP_FAULT_FALLBACK);
1171                 goto out;
1172         }
1173
1174         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1175                 put_page(new_page);
1176                 if (page) {
1177                         split_huge_page(page);
1178                         put_page(page);
1179                 }
1180                 count_vm_event(THP_FAULT_FALLBACK);
1181                 ret |= VM_FAULT_OOM;
1182                 goto out;
1183         }
1184
1185         count_vm_event(THP_FAULT_ALLOC);
1186
1187         if (is_huge_zero_pmd(orig_pmd))
1188                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1189         else
1190                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1191         __SetPageUptodate(new_page);
1192
1193         mmun_start = haddr;
1194         mmun_end   = haddr + HPAGE_PMD_SIZE;
1195         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1196
1197         spin_lock(ptl);
1198         if (page)
1199                 put_page(page);
1200         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1201                 spin_unlock(ptl);
1202                 mem_cgroup_uncharge_page(new_page);
1203                 put_page(new_page);
1204                 goto out_mn;
1205         } else {
1206                 pmd_t entry;
1207                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1208                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1209                 pmdp_clear_flush(vma, haddr, pmd);
1210                 page_add_new_anon_rmap(new_page, vma, haddr);
1211                 set_pmd_at(mm, haddr, pmd, entry);
1212                 update_mmu_cache_pmd(vma, address, pmd);
1213                 if (is_huge_zero_pmd(orig_pmd)) {
1214                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1215                         put_huge_zero_page();
1216                 } else {
1217                         VM_BUG_ON(!PageHead(page));
1218                         page_remove_rmap(page);
1219                         put_page(page);
1220                 }
1221                 ret |= VM_FAULT_WRITE;
1222         }
1223         spin_unlock(ptl);
1224 out_mn:
1225         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1226 out:
1227         return ret;
1228 out_unlock:
1229         spin_unlock(ptl);
1230         return ret;
1231 }
1232
1233 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1234                                    unsigned long addr,
1235                                    pmd_t *pmd,
1236                                    unsigned int flags)
1237 {
1238         struct mm_struct *mm = vma->vm_mm;
1239         struct page *page = NULL;
1240
1241         assert_spin_locked(pmd_lockptr(mm, pmd));
1242
1243         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1244                 goto out;
1245
1246         /* Avoid dumping huge zero page */
1247         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1248                 return ERR_PTR(-EFAULT);
1249
1250         /* Full NUMA hinting faults to serialise migration in fault paths */
1251         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1252                 goto out;
1253
1254         page = pmd_page(*pmd);
1255         VM_BUG_ON(!PageHead(page));
1256         if (flags & FOLL_TOUCH) {
1257                 pmd_t _pmd;
1258                 /*
1259                  * We should set the dirty bit only for FOLL_WRITE but
1260                  * for now the dirty bit in the pmd is meaningless.
1261                  * And if the dirty bit will become meaningful and
1262                  * we'll only set it with FOLL_WRITE, an atomic
1263                  * set_bit will be required on the pmd to set the
1264                  * young bit, instead of the current set_pmd_at.
1265                  */
1266                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1267                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1268                                           pmd, _pmd,  1))
1269                         update_mmu_cache_pmd(vma, addr, pmd);
1270         }
1271         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1272                 if (page->mapping && trylock_page(page)) {
1273                         lru_add_drain();
1274                         if (page->mapping)
1275                                 mlock_vma_page(page);
1276                         unlock_page(page);
1277                 }
1278         }
1279         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1280         VM_BUG_ON(!PageCompound(page));
1281         if (flags & FOLL_GET)
1282                 get_page_foll(page);
1283
1284 out:
1285         return page;
1286 }
1287
1288 /* NUMA hinting page fault entry point for trans huge pmds */
1289 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1290                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1291 {
1292         spinlock_t *ptl;
1293         struct anon_vma *anon_vma = NULL;
1294         struct page *page;
1295         unsigned long haddr = addr & HPAGE_PMD_MASK;
1296         int page_nid = -1, this_nid = numa_node_id();
1297         int target_nid, last_cpupid = -1;
1298         bool page_locked;
1299         bool migrated = false;
1300         int flags = 0;
1301
1302         ptl = pmd_lock(mm, pmdp);
1303         if (unlikely(!pmd_same(pmd, *pmdp)))
1304                 goto out_unlock;
1305
1306         /*
1307          * If there are potential migrations, wait for completion and retry
1308          * without disrupting NUMA hinting information. Do not relock and
1309          * check_same as the page may no longer be mapped.
1310          */
1311         if (unlikely(pmd_trans_migrating(*pmdp))) {
1312                 spin_unlock(ptl);
1313                 wait_migrate_huge_page(vma->anon_vma, pmdp);
1314                 goto out;
1315         }
1316
1317         page = pmd_page(pmd);
1318         BUG_ON(is_huge_zero_page(page));
1319         page_nid = page_to_nid(page);
1320         last_cpupid = page_cpupid_last(page);
1321         count_vm_numa_event(NUMA_HINT_FAULTS);
1322         if (page_nid == this_nid) {
1323                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1324                 flags |= TNF_FAULT_LOCAL;
1325         }
1326
1327         /*
1328          * Avoid grouping on DSO/COW pages in specific and RO pages
1329          * in general, RO pages shouldn't hurt as much anyway since
1330          * they can be in shared cache state.
1331          */
1332         if (!pmd_write(pmd))
1333                 flags |= TNF_NO_GROUP;
1334
1335         /*
1336          * Acquire the page lock to serialise THP migrations but avoid dropping
1337          * page_table_lock if at all possible
1338          */
1339         page_locked = trylock_page(page);
1340         target_nid = mpol_misplaced(page, vma, haddr);
1341         if (target_nid == -1) {
1342                 /* If the page was locked, there are no parallel migrations */
1343                 if (page_locked)
1344                         goto clear_pmdnuma;
1345         }
1346
1347         /* Migration could have started since the pmd_trans_migrating check */
1348         if (!page_locked) {
1349                 spin_unlock(ptl);
1350                 wait_on_page_locked(page);
1351                 page_nid = -1;
1352                 goto out;
1353         }
1354
1355         /*
1356          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1357          * to serialises splits
1358          */
1359         get_page(page);
1360         spin_unlock(ptl);
1361         anon_vma = page_lock_anon_vma_read(page);
1362
1363         /* Confirm the PMD did not change while page_table_lock was released */
1364         spin_lock(ptl);
1365         if (unlikely(!pmd_same(pmd, *pmdp))) {
1366                 unlock_page(page);
1367                 put_page(page);
1368                 page_nid = -1;
1369                 goto out_unlock;
1370         }
1371
1372         /* Bail if we fail to protect against THP splits for any reason */
1373         if (unlikely(!anon_vma)) {
1374                 put_page(page);
1375                 page_nid = -1;
1376                 goto clear_pmdnuma;
1377         }
1378
1379         /*
1380          * Migrate the THP to the requested node, returns with page unlocked
1381          * and pmd_numa cleared.
1382          */
1383         spin_unlock(ptl);
1384         migrated = migrate_misplaced_transhuge_page(mm, vma,
1385                                 pmdp, pmd, addr, page, target_nid);
1386         if (migrated) {
1387                 flags |= TNF_MIGRATED;
1388                 page_nid = target_nid;
1389         }
1390
1391         goto out;
1392 clear_pmdnuma:
1393         BUG_ON(!PageLocked(page));
1394         pmd = pmd_mknonnuma(pmd);
1395         set_pmd_at(mm, haddr, pmdp, pmd);
1396         VM_BUG_ON(pmd_numa(*pmdp));
1397         update_mmu_cache_pmd(vma, addr, pmdp);
1398         unlock_page(page);
1399 out_unlock:
1400         spin_unlock(ptl);
1401
1402 out:
1403         if (anon_vma)
1404                 page_unlock_anon_vma_read(anon_vma);
1405
1406         if (page_nid != -1)
1407                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1408
1409         return 0;
1410 }
1411
1412 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1413                  pmd_t *pmd, unsigned long addr)
1414 {
1415         spinlock_t *ptl;
1416         int ret = 0;
1417
1418         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1419                 struct page *page;
1420                 pgtable_t pgtable;
1421                 pmd_t orig_pmd;
1422                 /*
1423                  * For architectures like ppc64 we look at deposited pgtable
1424                  * when calling pmdp_get_and_clear. So do the
1425                  * pgtable_trans_huge_withdraw after finishing pmdp related
1426                  * operations.
1427                  */
1428                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1429                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1430                 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1431                 if (is_huge_zero_pmd(orig_pmd)) {
1432                         atomic_long_dec(&tlb->mm->nr_ptes);
1433                         spin_unlock(ptl);
1434                         put_huge_zero_page();
1435                 } else {
1436                         page = pmd_page(orig_pmd);
1437                         page_remove_rmap(page);
1438                         VM_BUG_ON(page_mapcount(page) < 0);
1439                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1440                         VM_BUG_ON(!PageHead(page));
1441                         atomic_long_dec(&tlb->mm->nr_ptes);
1442                         spin_unlock(ptl);
1443                         tlb_remove_page(tlb, page);
1444                 }
1445                 pte_free(tlb->mm, pgtable);
1446                 ret = 1;
1447         }
1448         return ret;
1449 }
1450
1451 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1452                 unsigned long addr, unsigned long end,
1453                 unsigned char *vec)
1454 {
1455         spinlock_t *ptl;
1456         int ret = 0;
1457
1458         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1459                 /*
1460                  * All logical pages in the range are present
1461                  * if backed by a huge page.
1462                  */
1463                 spin_unlock(ptl);
1464                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1465                 ret = 1;
1466         }
1467
1468         return ret;
1469 }
1470
1471 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1472                   unsigned long old_addr,
1473                   unsigned long new_addr, unsigned long old_end,
1474                   pmd_t *old_pmd, pmd_t *new_pmd)
1475 {
1476         spinlock_t *old_ptl, *new_ptl;
1477         int ret = 0;
1478         pmd_t pmd;
1479
1480         struct mm_struct *mm = vma->vm_mm;
1481
1482         if ((old_addr & ~HPAGE_PMD_MASK) ||
1483             (new_addr & ~HPAGE_PMD_MASK) ||
1484             old_end - old_addr < HPAGE_PMD_SIZE ||
1485             (new_vma->vm_flags & VM_NOHUGEPAGE))
1486                 goto out;
1487
1488         /*
1489          * The destination pmd shouldn't be established, free_pgtables()
1490          * should have release it.
1491          */
1492         if (WARN_ON(!pmd_none(*new_pmd))) {
1493                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1494                 goto out;
1495         }
1496
1497         /*
1498          * We don't have to worry about the ordering of src and dst
1499          * ptlocks because exclusive mmap_sem prevents deadlock.
1500          */
1501         ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1502         if (ret == 1) {
1503                 new_ptl = pmd_lockptr(mm, new_pmd);
1504                 if (new_ptl != old_ptl)
1505                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1506                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1507                 VM_BUG_ON(!pmd_none(*new_pmd));
1508                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1509                 if (new_ptl != old_ptl) {
1510                         pgtable_t pgtable;
1511
1512                         /*
1513                          * Move preallocated PTE page table if new_pmd is on
1514                          * different PMD page table.
1515                          */
1516                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1517                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1518
1519                         spin_unlock(new_ptl);
1520                 }
1521                 spin_unlock(old_ptl);
1522         }
1523 out:
1524         return ret;
1525 }
1526
1527 /*
1528  * Returns
1529  *  - 0 if PMD could not be locked
1530  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1531  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1532  */
1533 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1534                 unsigned long addr, pgprot_t newprot, int prot_numa)
1535 {
1536         struct mm_struct *mm = vma->vm_mm;
1537         spinlock_t *ptl;
1538         int ret = 0;
1539
1540         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1541                 pmd_t entry;
1542                 ret = 1;
1543                 if (!prot_numa) {
1544                         entry = pmdp_get_and_clear(mm, addr, pmd);
1545                         if (pmd_numa(entry))
1546                                 entry = pmd_mknonnuma(entry);
1547                         entry = pmd_modify(entry, newprot);
1548                         ret = HPAGE_PMD_NR;
1549                         BUG_ON(pmd_write(entry));
1550                 } else {
1551                         struct page *page = pmd_page(*pmd);
1552
1553                         /*
1554                          * Do not trap faults against the zero page. The
1555                          * read-only data is likely to be read-cached on the
1556                          * local CPU cache and it is less useful to know about
1557                          * local vs remote hits on the zero page.
1558                          */
1559                         if (!is_huge_zero_page(page) &&
1560                             !pmd_numa(*pmd)) {
1561                                 entry = *pmd;
1562                                 entry = pmd_mknuma(entry);
1563                                 ret = HPAGE_PMD_NR;
1564                         }
1565                 }
1566
1567                 /* Set PMD if cleared earlier */
1568                 if (ret == HPAGE_PMD_NR)
1569                         set_pmd_at(mm, addr, pmd, entry);
1570
1571                 spin_unlock(ptl);
1572         }
1573
1574         return ret;
1575 }
1576
1577 /*
1578  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1579  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1580  *
1581  * Note that if it returns 1, this routine returns without unlocking page
1582  * table locks. So callers must unlock them.
1583  */
1584 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1585                 spinlock_t **ptl)
1586 {
1587         *ptl = pmd_lock(vma->vm_mm, pmd);
1588         if (likely(pmd_trans_huge(*pmd))) {
1589                 if (unlikely(pmd_trans_splitting(*pmd))) {
1590                         spin_unlock(*ptl);
1591                         wait_split_huge_page(vma->anon_vma, pmd);
1592                         return -1;
1593                 } else {
1594                         /* Thp mapped by 'pmd' is stable, so we can
1595                          * handle it as it is. */
1596                         return 1;
1597                 }
1598         }
1599         spin_unlock(*ptl);
1600         return 0;
1601 }
1602
1603 /*
1604  * This function returns whether a given @page is mapped onto the @address
1605  * in the virtual space of @mm.
1606  *
1607  * When it's true, this function returns *pmd with holding the page table lock
1608  * and passing it back to the caller via @ptl.
1609  * If it's false, returns NULL without holding the page table lock.
1610  */
1611 pmd_t *page_check_address_pmd(struct page *page,
1612                               struct mm_struct *mm,
1613                               unsigned long address,
1614                               enum page_check_address_pmd_flag flag,
1615                               spinlock_t **ptl)
1616 {
1617         pmd_t *pmd;
1618
1619         if (address & ~HPAGE_PMD_MASK)
1620                 return NULL;
1621
1622         pmd = mm_find_pmd(mm, address);
1623         if (!pmd)
1624                 return NULL;
1625         *ptl = pmd_lock(mm, pmd);
1626         if (pmd_none(*pmd))
1627                 goto unlock;
1628         if (pmd_page(*pmd) != page)
1629                 goto unlock;
1630         /*
1631          * split_vma() may create temporary aliased mappings. There is
1632          * no risk as long as all huge pmd are found and have their
1633          * splitting bit set before __split_huge_page_refcount
1634          * runs. Finding the same huge pmd more than once during the
1635          * same rmap walk is not a problem.
1636          */
1637         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1638             pmd_trans_splitting(*pmd))
1639                 goto unlock;
1640         if (pmd_trans_huge(*pmd)) {
1641                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1642                           !pmd_trans_splitting(*pmd));
1643                 return pmd;
1644         }
1645 unlock:
1646         spin_unlock(*ptl);
1647         return NULL;
1648 }
1649
1650 static int __split_huge_page_splitting(struct page *page,
1651                                        struct vm_area_struct *vma,
1652                                        unsigned long address)
1653 {
1654         struct mm_struct *mm = vma->vm_mm;
1655         spinlock_t *ptl;
1656         pmd_t *pmd;
1657         int ret = 0;
1658         /* For mmu_notifiers */
1659         const unsigned long mmun_start = address;
1660         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1661
1662         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1663         pmd = page_check_address_pmd(page, mm, address,
1664                         PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1665         if (pmd) {
1666                 /*
1667                  * We can't temporarily set the pmd to null in order
1668                  * to split it, the pmd must remain marked huge at all
1669                  * times or the VM won't take the pmd_trans_huge paths
1670                  * and it won't wait on the anon_vma->root->rwsem to
1671                  * serialize against split_huge_page*.
1672                  */
1673                 pmdp_splitting_flush(vma, address, pmd);
1674                 ret = 1;
1675                 spin_unlock(ptl);
1676         }
1677         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1678
1679         return ret;
1680 }
1681
1682 static void __split_huge_page_refcount(struct page *page,
1683                                        struct list_head *list)
1684 {
1685         int i;
1686         struct zone *zone = page_zone(page);
1687         struct lruvec *lruvec;
1688         int tail_count = 0;
1689
1690         /* prevent PageLRU to go away from under us, and freeze lru stats */
1691         spin_lock_irq(&zone->lru_lock);
1692         lruvec = mem_cgroup_page_lruvec(page, zone);
1693
1694         compound_lock(page);
1695         /* complete memcg works before add pages to LRU */
1696         mem_cgroup_split_huge_fixup(page);
1697
1698         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1699                 struct page *page_tail = page + i;
1700
1701                 /* tail_page->_mapcount cannot change */
1702                 BUG_ON(page_mapcount(page_tail) < 0);
1703                 tail_count += page_mapcount(page_tail);
1704                 /* check for overflow */
1705                 BUG_ON(tail_count < 0);
1706                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1707                 /*
1708                  * tail_page->_count is zero and not changing from
1709                  * under us. But get_page_unless_zero() may be running
1710                  * from under us on the tail_page. If we used
1711                  * atomic_set() below instead of atomic_add(), we
1712                  * would then run atomic_set() concurrently with
1713                  * get_page_unless_zero(), and atomic_set() is
1714                  * implemented in C not using locked ops. spin_unlock
1715                  * on x86 sometime uses locked ops because of PPro
1716                  * errata 66, 92, so unless somebody can guarantee
1717                  * atomic_set() here would be safe on all archs (and
1718                  * not only on x86), it's safer to use atomic_add().
1719                  */
1720                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1721                            &page_tail->_count);
1722
1723                 /* after clearing PageTail the gup refcount can be released */
1724                 smp_mb();
1725
1726                 /*
1727                  * retain hwpoison flag of the poisoned tail page:
1728                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1729                  *   by the memory-failure.
1730                  */
1731                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1732                 page_tail->flags |= (page->flags &
1733                                      ((1L << PG_referenced) |
1734                                       (1L << PG_swapbacked) |
1735                                       (1L << PG_mlocked) |
1736                                       (1L << PG_uptodate) |
1737                                       (1L << PG_active) |
1738                                       (1L << PG_unevictable)));
1739                 page_tail->flags |= (1L << PG_dirty);
1740
1741                 /* clear PageTail before overwriting first_page */
1742                 smp_wmb();
1743
1744                 /*
1745                  * __split_huge_page_splitting() already set the
1746                  * splitting bit in all pmd that could map this
1747                  * hugepage, that will ensure no CPU can alter the
1748                  * mapcount on the head page. The mapcount is only
1749                  * accounted in the head page and it has to be
1750                  * transferred to all tail pages in the below code. So
1751                  * for this code to be safe, the split the mapcount
1752                  * can't change. But that doesn't mean userland can't
1753                  * keep changing and reading the page contents while
1754                  * we transfer the mapcount, so the pmd splitting
1755                  * status is achieved setting a reserved bit in the
1756                  * pmd, not by clearing the present bit.
1757                 */
1758                 page_tail->_mapcount = page->_mapcount;
1759
1760                 BUG_ON(page_tail->mapping);
1761                 page_tail->mapping = page->mapping;
1762
1763                 page_tail->index = page->index + i;
1764                 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1765
1766                 BUG_ON(!PageAnon(page_tail));
1767                 BUG_ON(!PageUptodate(page_tail));
1768                 BUG_ON(!PageDirty(page_tail));
1769                 BUG_ON(!PageSwapBacked(page_tail));
1770
1771                 lru_add_page_tail(page, page_tail, lruvec, list);
1772         }
1773         atomic_sub(tail_count, &page->_count);
1774         BUG_ON(atomic_read(&page->_count) <= 0);
1775
1776         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1777
1778         ClearPageCompound(page);
1779         compound_unlock(page);
1780         spin_unlock_irq(&zone->lru_lock);
1781
1782         for (i = 1; i < HPAGE_PMD_NR; i++) {
1783                 struct page *page_tail = page + i;
1784                 BUG_ON(page_count(page_tail) <= 0);
1785                 /*
1786                  * Tail pages may be freed if there wasn't any mapping
1787                  * like if add_to_swap() is running on a lru page that
1788                  * had its mapping zapped. And freeing these pages
1789                  * requires taking the lru_lock so we do the put_page
1790                  * of the tail pages after the split is complete.
1791                  */
1792                 put_page(page_tail);
1793         }
1794
1795         /*
1796          * Only the head page (now become a regular page) is required
1797          * to be pinned by the caller.
1798          */
1799         BUG_ON(page_count(page) <= 0);
1800 }
1801
1802 static int __split_huge_page_map(struct page *page,
1803                                  struct vm_area_struct *vma,
1804                                  unsigned long address)
1805 {
1806         struct mm_struct *mm = vma->vm_mm;
1807         spinlock_t *ptl;
1808         pmd_t *pmd, _pmd;
1809         int ret = 0, i;
1810         pgtable_t pgtable;
1811         unsigned long haddr;
1812
1813         pmd = page_check_address_pmd(page, mm, address,
1814                         PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1815         if (pmd) {
1816                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1817                 pmd_populate(mm, &_pmd, pgtable);
1818
1819                 haddr = address;
1820                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1821                         pte_t *pte, entry;
1822                         BUG_ON(PageCompound(page+i));
1823                         entry = mk_pte(page + i, vma->vm_page_prot);
1824                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1825                         if (!pmd_write(*pmd))
1826                                 entry = pte_wrprotect(entry);
1827                         else
1828                                 BUG_ON(page_mapcount(page) != 1);
1829                         if (!pmd_young(*pmd))
1830                                 entry = pte_mkold(entry);
1831                         if (pmd_numa(*pmd))
1832                                 entry = pte_mknuma(entry);
1833                         pte = pte_offset_map(&_pmd, haddr);
1834                         BUG_ON(!pte_none(*pte));
1835                         set_pte_at(mm, haddr, pte, entry);
1836                         pte_unmap(pte);
1837                 }
1838
1839                 smp_wmb(); /* make pte visible before pmd */
1840                 /*
1841                  * Up to this point the pmd is present and huge and
1842                  * userland has the whole access to the hugepage
1843                  * during the split (which happens in place). If we
1844                  * overwrite the pmd with the not-huge version
1845                  * pointing to the pte here (which of course we could
1846                  * if all CPUs were bug free), userland could trigger
1847                  * a small page size TLB miss on the small sized TLB
1848                  * while the hugepage TLB entry is still established
1849                  * in the huge TLB. Some CPU doesn't like that. See
1850                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1851                  * Erratum 383 on page 93. Intel should be safe but is
1852                  * also warns that it's only safe if the permission
1853                  * and cache attributes of the two entries loaded in
1854                  * the two TLB is identical (which should be the case
1855                  * here). But it is generally safer to never allow
1856                  * small and huge TLB entries for the same virtual
1857                  * address to be loaded simultaneously. So instead of
1858                  * doing "pmd_populate(); flush_tlb_range();" we first
1859                  * mark the current pmd notpresent (atomically because
1860                  * here the pmd_trans_huge and pmd_trans_splitting
1861                  * must remain set at all times on the pmd until the
1862                  * split is complete for this pmd), then we flush the
1863                  * SMP TLB and finally we write the non-huge version
1864                  * of the pmd entry with pmd_populate.
1865                  */
1866                 pmdp_invalidate(vma, address, pmd);
1867                 pmd_populate(mm, pmd, pgtable);
1868                 ret = 1;
1869                 spin_unlock(ptl);
1870         }
1871
1872         return ret;
1873 }
1874
1875 /* must be called with anon_vma->root->rwsem held */
1876 static void __split_huge_page(struct page *page,
1877                               struct anon_vma *anon_vma,
1878                               struct list_head *list)
1879 {
1880         int mapcount, mapcount2;
1881         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1882         struct anon_vma_chain *avc;
1883
1884         BUG_ON(!PageHead(page));
1885         BUG_ON(PageTail(page));
1886
1887         mapcount = 0;
1888         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1889                 struct vm_area_struct *vma = avc->vma;
1890                 unsigned long addr = vma_address(page, vma);
1891                 BUG_ON(is_vma_temporary_stack(vma));
1892                 mapcount += __split_huge_page_splitting(page, vma, addr);
1893         }
1894         /*
1895          * It is critical that new vmas are added to the tail of the
1896          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1897          * and establishes a child pmd before
1898          * __split_huge_page_splitting() freezes the parent pmd (so if
1899          * we fail to prevent copy_huge_pmd() from running until the
1900          * whole __split_huge_page() is complete), we will still see
1901          * the newly established pmd of the child later during the
1902          * walk, to be able to set it as pmd_trans_splitting too.
1903          */
1904         if (mapcount != page_mapcount(page))
1905                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1906                        mapcount, page_mapcount(page));
1907         BUG_ON(mapcount != page_mapcount(page));
1908
1909         __split_huge_page_refcount(page, list);
1910
1911         mapcount2 = 0;
1912         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1913                 struct vm_area_struct *vma = avc->vma;
1914                 unsigned long addr = vma_address(page, vma);
1915                 BUG_ON(is_vma_temporary_stack(vma));
1916                 mapcount2 += __split_huge_page_map(page, vma, addr);
1917         }
1918         if (mapcount != mapcount2)
1919                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1920                        mapcount, mapcount2, page_mapcount(page));
1921         BUG_ON(mapcount != mapcount2);
1922 }
1923
1924 /*
1925  * Split a hugepage into normal pages. This doesn't change the position of head
1926  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1927  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1928  * from the hugepage.
1929  * Return 0 if the hugepage is split successfully otherwise return 1.
1930  */
1931 int split_huge_page_to_list(struct page *page, struct list_head *list)
1932 {
1933         struct anon_vma *anon_vma;
1934         int ret = 1;
1935
1936         BUG_ON(is_huge_zero_page(page));
1937         BUG_ON(!PageAnon(page));
1938
1939         /*
1940          * The caller does not necessarily hold an mmap_sem that would prevent
1941          * the anon_vma disappearing so we first we take a reference to it
1942          * and then lock the anon_vma for write. This is similar to
1943          * page_lock_anon_vma_read except the write lock is taken to serialise
1944          * against parallel split or collapse operations.
1945          */
1946         anon_vma = page_get_anon_vma(page);
1947         if (!anon_vma)
1948                 goto out;
1949         anon_vma_lock_write(anon_vma);
1950
1951         ret = 0;
1952         if (!PageCompound(page))
1953                 goto out_unlock;
1954
1955         BUG_ON(!PageSwapBacked(page));
1956         __split_huge_page(page, anon_vma, list);
1957         count_vm_event(THP_SPLIT);
1958
1959         BUG_ON(PageCompound(page));
1960 out_unlock:
1961         anon_vma_unlock_write(anon_vma);
1962         put_anon_vma(anon_vma);
1963 out:
1964         return ret;
1965 }
1966
1967 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1968
1969 int hugepage_madvise(struct vm_area_struct *vma,
1970                      unsigned long *vm_flags, int advice)
1971 {
1972         struct mm_struct *mm = vma->vm_mm;
1973
1974         switch (advice) {
1975         case MADV_HUGEPAGE:
1976                 /*
1977                  * Be somewhat over-protective like KSM for now!
1978                  */
1979                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1980                         return -EINVAL;
1981                 if (mm->def_flags & VM_NOHUGEPAGE)
1982                         return -EINVAL;
1983                 *vm_flags &= ~VM_NOHUGEPAGE;
1984                 *vm_flags |= VM_HUGEPAGE;
1985                 /*
1986                  * If the vma become good for khugepaged to scan,
1987                  * register it here without waiting a page fault that
1988                  * may not happen any time soon.
1989                  */
1990                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1991                         return -ENOMEM;
1992                 break;
1993         case MADV_NOHUGEPAGE:
1994                 /*
1995                  * Be somewhat over-protective like KSM for now!
1996                  */
1997                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1998                         return -EINVAL;
1999                 *vm_flags &= ~VM_HUGEPAGE;
2000                 *vm_flags |= VM_NOHUGEPAGE;
2001                 /*
2002                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2003                  * this vma even if we leave the mm registered in khugepaged if
2004                  * it got registered before VM_NOHUGEPAGE was set.
2005                  */
2006                 break;
2007         }
2008
2009         return 0;
2010 }
2011
2012 static int __init khugepaged_slab_init(void)
2013 {
2014         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2015                                           sizeof(struct mm_slot),
2016                                           __alignof__(struct mm_slot), 0, NULL);
2017         if (!mm_slot_cache)
2018                 return -ENOMEM;
2019
2020         return 0;
2021 }
2022
2023 static inline struct mm_slot *alloc_mm_slot(void)
2024 {
2025         if (!mm_slot_cache)     /* initialization failed */
2026                 return NULL;
2027         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2028 }
2029
2030 static inline void free_mm_slot(struct mm_slot *mm_slot)
2031 {
2032         kmem_cache_free(mm_slot_cache, mm_slot);
2033 }
2034
2035 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2036 {
2037         struct mm_slot *mm_slot;
2038
2039         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2040                 if (mm == mm_slot->mm)
2041                         return mm_slot;
2042
2043         return NULL;
2044 }
2045
2046 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2047                                     struct mm_slot *mm_slot)
2048 {
2049         mm_slot->mm = mm;
2050         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2051 }
2052
2053 static inline int khugepaged_test_exit(struct mm_struct *mm)
2054 {
2055         return atomic_read(&mm->mm_users) == 0;
2056 }
2057
2058 int __khugepaged_enter(struct mm_struct *mm)
2059 {
2060         struct mm_slot *mm_slot;
2061         int wakeup;
2062
2063         mm_slot = alloc_mm_slot();
2064         if (!mm_slot)
2065                 return -ENOMEM;
2066
2067         /* __khugepaged_exit() must not run from under us */
2068         VM_BUG_ON(khugepaged_test_exit(mm));
2069         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2070                 free_mm_slot(mm_slot);
2071                 return 0;
2072         }
2073
2074         spin_lock(&khugepaged_mm_lock);
2075         insert_to_mm_slots_hash(mm, mm_slot);
2076         /*
2077          * Insert just behind the scanning cursor, to let the area settle
2078          * down a little.
2079          */
2080         wakeup = list_empty(&khugepaged_scan.mm_head);
2081         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2082         spin_unlock(&khugepaged_mm_lock);
2083
2084         atomic_inc(&mm->mm_count);
2085         if (wakeup)
2086                 wake_up_interruptible(&khugepaged_wait);
2087
2088         return 0;
2089 }
2090
2091 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2092 {
2093         unsigned long hstart, hend;
2094         if (!vma->anon_vma)
2095                 /*
2096                  * Not yet faulted in so we will register later in the
2097                  * page fault if needed.
2098                  */
2099                 return 0;
2100         if (vma->vm_ops)
2101                 /* khugepaged not yet working on file or special mappings */
2102                 return 0;
2103         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2104         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2105         hend = vma->vm_end & HPAGE_PMD_MASK;
2106         if (hstart < hend)
2107                 return khugepaged_enter(vma);
2108         return 0;
2109 }
2110
2111 void __khugepaged_exit(struct mm_struct *mm)
2112 {
2113         struct mm_slot *mm_slot;
2114         int free = 0;
2115
2116         spin_lock(&khugepaged_mm_lock);
2117         mm_slot = get_mm_slot(mm);
2118         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2119                 hash_del(&mm_slot->hash);
2120                 list_del(&mm_slot->mm_node);
2121                 free = 1;
2122         }
2123         spin_unlock(&khugepaged_mm_lock);
2124
2125         if (free) {
2126                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2127                 free_mm_slot(mm_slot);
2128                 mmdrop(mm);
2129         } else if (mm_slot) {
2130                 /*
2131                  * This is required to serialize against
2132                  * khugepaged_test_exit() (which is guaranteed to run
2133                  * under mmap sem read mode). Stop here (after we
2134                  * return all pagetables will be destroyed) until
2135                  * khugepaged has finished working on the pagetables
2136                  * under the mmap_sem.
2137                  */
2138                 down_write(&mm->mmap_sem);
2139                 up_write(&mm->mmap_sem);
2140         }
2141 }
2142
2143 static void release_pte_page(struct page *page)
2144 {
2145         /* 0 stands for page_is_file_cache(page) == false */
2146         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2147         unlock_page(page);
2148         putback_lru_page(page);
2149 }
2150
2151 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2152 {
2153         while (--_pte >= pte) {
2154                 pte_t pteval = *_pte;
2155                 if (!pte_none(pteval))
2156                         release_pte_page(pte_page(pteval));
2157         }
2158 }
2159
2160 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2161                                         unsigned long address,
2162                                         pte_t *pte)
2163 {
2164         struct page *page;
2165         pte_t *_pte;
2166         int referenced = 0, none = 0;
2167         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2168              _pte++, address += PAGE_SIZE) {
2169                 pte_t pteval = *_pte;
2170                 if (pte_none(pteval)) {
2171                         if (++none <= khugepaged_max_ptes_none)
2172                                 continue;
2173                         else
2174                                 goto out;
2175                 }
2176                 if (!pte_present(pteval) || !pte_write(pteval))
2177                         goto out;
2178                 page = vm_normal_page(vma, address, pteval);
2179                 if (unlikely(!page))
2180                         goto out;
2181
2182                 VM_BUG_ON(PageCompound(page));
2183                 BUG_ON(!PageAnon(page));
2184                 VM_BUG_ON(!PageSwapBacked(page));
2185
2186                 /* cannot use mapcount: can't collapse if there's a gup pin */
2187                 if (page_count(page) != 1)
2188                         goto out;
2189                 /*
2190                  * We can do it before isolate_lru_page because the
2191                  * page can't be freed from under us. NOTE: PG_lock
2192                  * is needed to serialize against split_huge_page
2193                  * when invoked from the VM.
2194                  */
2195                 if (!trylock_page(page))
2196                         goto out;
2197                 /*
2198                  * Isolate the page to avoid collapsing an hugepage
2199                  * currently in use by the VM.
2200                  */
2201                 if (isolate_lru_page(page)) {
2202                         unlock_page(page);
2203                         goto out;
2204                 }
2205                 /* 0 stands for page_is_file_cache(page) == false */
2206                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2207                 VM_BUG_ON(!PageLocked(page));
2208                 VM_BUG_ON(PageLRU(page));
2209
2210                 /* If there is no mapped pte young don't collapse the page */
2211                 if (pte_young(pteval) || PageReferenced(page) ||
2212                     mmu_notifier_test_young(vma->vm_mm, address))
2213                         referenced = 1;
2214         }
2215         if (likely(referenced))
2216                 return 1;
2217 out:
2218         release_pte_pages(pte, _pte);
2219         return 0;
2220 }
2221
2222 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2223                                       struct vm_area_struct *vma,
2224                                       unsigned long address,
2225                                       spinlock_t *ptl)
2226 {
2227         pte_t *_pte;
2228         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2229                 pte_t pteval = *_pte;
2230                 struct page *src_page;
2231
2232                 if (pte_none(pteval)) {
2233                         clear_user_highpage(page, address);
2234                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2235                 } else {
2236                         src_page = pte_page(pteval);
2237                         copy_user_highpage(page, src_page, address, vma);
2238                         VM_BUG_ON(page_mapcount(src_page) != 1);
2239                         release_pte_page(src_page);
2240                         /*
2241                          * ptl mostly unnecessary, but preempt has to
2242                          * be disabled to update the per-cpu stats
2243                          * inside page_remove_rmap().
2244                          */
2245                         spin_lock(ptl);
2246                         /*
2247                          * paravirt calls inside pte_clear here are
2248                          * superfluous.
2249                          */
2250                         pte_clear(vma->vm_mm, address, _pte);
2251                         page_remove_rmap(src_page);
2252                         spin_unlock(ptl);
2253                         free_page_and_swap_cache(src_page);
2254                 }
2255
2256                 address += PAGE_SIZE;
2257                 page++;
2258         }
2259 }
2260
2261 static void khugepaged_alloc_sleep(void)
2262 {
2263         wait_event_freezable_timeout(khugepaged_wait, false,
2264                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2265 }
2266
2267 static int khugepaged_node_load[MAX_NUMNODES];
2268
2269 #ifdef CONFIG_NUMA
2270 static int khugepaged_find_target_node(void)
2271 {
2272         static int last_khugepaged_target_node = NUMA_NO_NODE;
2273         int nid, target_node = 0, max_value = 0;
2274
2275         /* find first node with max normal pages hit */
2276         for (nid = 0; nid < MAX_NUMNODES; nid++)
2277                 if (khugepaged_node_load[nid] > max_value) {
2278                         max_value = khugepaged_node_load[nid];
2279                         target_node = nid;
2280                 }
2281
2282         /* do some balance if several nodes have the same hit record */
2283         if (target_node <= last_khugepaged_target_node)
2284                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2285                                 nid++)
2286                         if (max_value == khugepaged_node_load[nid]) {
2287                                 target_node = nid;
2288                                 break;
2289                         }
2290
2291         last_khugepaged_target_node = target_node;
2292         return target_node;
2293 }
2294
2295 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2296 {
2297         if (IS_ERR(*hpage)) {
2298                 if (!*wait)
2299                         return false;
2300
2301                 *wait = false;
2302                 *hpage = NULL;
2303                 khugepaged_alloc_sleep();
2304         } else if (*hpage) {
2305                 put_page(*hpage);
2306                 *hpage = NULL;
2307         }
2308
2309         return true;
2310 }
2311
2312 static struct page
2313 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2314                        struct vm_area_struct *vma, unsigned long address,
2315                        int node)
2316 {
2317         VM_BUG_ON(*hpage);
2318         /*
2319          * Allocate the page while the vma is still valid and under
2320          * the mmap_sem read mode so there is no memory allocation
2321          * later when we take the mmap_sem in write mode. This is more
2322          * friendly behavior (OTOH it may actually hide bugs) to
2323          * filesystems in userland with daemons allocating memory in
2324          * the userland I/O paths.  Allocating memory with the
2325          * mmap_sem in read mode is good idea also to allow greater
2326          * scalability.
2327          */
2328         *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2329                 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2330         /*
2331          * After allocating the hugepage, release the mmap_sem read lock in
2332          * preparation for taking it in write mode.
2333          */
2334         up_read(&mm->mmap_sem);
2335         if (unlikely(!*hpage)) {
2336                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2337                 *hpage = ERR_PTR(-ENOMEM);
2338                 return NULL;
2339         }
2340
2341         count_vm_event(THP_COLLAPSE_ALLOC);
2342         return *hpage;
2343 }
2344 #else
2345 static int khugepaged_find_target_node(void)
2346 {
2347         return 0;
2348 }
2349
2350 static inline struct page *alloc_hugepage(int defrag)
2351 {
2352         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2353                            HPAGE_PMD_ORDER);
2354 }
2355
2356 static struct page *khugepaged_alloc_hugepage(bool *wait)
2357 {
2358         struct page *hpage;
2359
2360         do {
2361                 hpage = alloc_hugepage(khugepaged_defrag());
2362                 if (!hpage) {
2363                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2364                         if (!*wait)
2365                                 return NULL;
2366
2367                         *wait = false;
2368                         khugepaged_alloc_sleep();
2369                 } else
2370                         count_vm_event(THP_COLLAPSE_ALLOC);
2371         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2372
2373         return hpage;
2374 }
2375
2376 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2377 {
2378         if (!*hpage)
2379                 *hpage = khugepaged_alloc_hugepage(wait);
2380
2381         if (unlikely(!*hpage))
2382                 return false;
2383
2384         return true;
2385 }
2386
2387 static struct page
2388 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2389                        struct vm_area_struct *vma, unsigned long address,
2390                        int node)
2391 {
2392         up_read(&mm->mmap_sem);
2393         VM_BUG_ON(!*hpage);
2394         return  *hpage;
2395 }
2396 #endif
2397
2398 static bool hugepage_vma_check(struct vm_area_struct *vma)
2399 {
2400         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2401             (vma->vm_flags & VM_NOHUGEPAGE))
2402                 return false;
2403
2404         if (!vma->anon_vma || vma->vm_ops)
2405                 return false;
2406         if (is_vma_temporary_stack(vma))
2407                 return false;
2408         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2409         return true;
2410 }
2411
2412 static void collapse_huge_page(struct mm_struct *mm,
2413                                    unsigned long address,
2414                                    struct page **hpage,
2415                                    struct vm_area_struct *vma,
2416                                    int node)
2417 {
2418         pmd_t *pmd, _pmd;
2419         pte_t *pte;
2420         pgtable_t pgtable;
2421         struct page *new_page;
2422         spinlock_t *pmd_ptl, *pte_ptl;
2423         int isolated;
2424         unsigned long hstart, hend;
2425         unsigned long mmun_start;       /* For mmu_notifiers */
2426         unsigned long mmun_end;         /* For mmu_notifiers */
2427
2428         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2429
2430         /* release the mmap_sem read lock. */
2431         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2432         if (!new_page)
2433                 return;
2434
2435         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2436                 return;
2437
2438         /*
2439          * Prevent all access to pagetables with the exception of
2440          * gup_fast later hanlded by the ptep_clear_flush and the VM
2441          * handled by the anon_vma lock + PG_lock.
2442          */
2443         down_write(&mm->mmap_sem);
2444         if (unlikely(khugepaged_test_exit(mm)))
2445                 goto out;
2446
2447         vma = find_vma(mm, address);
2448         if (!vma)
2449                 goto out;
2450         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2451         hend = vma->vm_end & HPAGE_PMD_MASK;
2452         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2453                 goto out;
2454         if (!hugepage_vma_check(vma))
2455                 goto out;
2456         pmd = mm_find_pmd(mm, address);
2457         if (!pmd)
2458                 goto out;
2459         if (pmd_trans_huge(*pmd))
2460                 goto out;
2461
2462         anon_vma_lock_write(vma->anon_vma);
2463
2464         pte = pte_offset_map(pmd, address);
2465         pte_ptl = pte_lockptr(mm, pmd);
2466
2467         mmun_start = address;
2468         mmun_end   = address + HPAGE_PMD_SIZE;
2469         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2470         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2471         /*
2472          * After this gup_fast can't run anymore. This also removes
2473          * any huge TLB entry from the CPU so we won't allow
2474          * huge and small TLB entries for the same virtual address
2475          * to avoid the risk of CPU bugs in that area.
2476          */
2477         _pmd = pmdp_clear_flush(vma, address, pmd);
2478         spin_unlock(pmd_ptl);
2479         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2480
2481         spin_lock(pte_ptl);
2482         isolated = __collapse_huge_page_isolate(vma, address, pte);
2483         spin_unlock(pte_ptl);
2484
2485         if (unlikely(!isolated)) {
2486                 pte_unmap(pte);
2487                 spin_lock(pmd_ptl);
2488                 BUG_ON(!pmd_none(*pmd));
2489                 /*
2490                  * We can only use set_pmd_at when establishing
2491                  * hugepmds and never for establishing regular pmds that
2492                  * points to regular pagetables. Use pmd_populate for that
2493                  */
2494                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2495                 spin_unlock(pmd_ptl);
2496                 anon_vma_unlock_write(vma->anon_vma);
2497                 goto out;
2498         }
2499
2500         /*
2501          * All pages are isolated and locked so anon_vma rmap
2502          * can't run anymore.
2503          */
2504         anon_vma_unlock_write(vma->anon_vma);
2505
2506         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2507         pte_unmap(pte);
2508         __SetPageUptodate(new_page);
2509         pgtable = pmd_pgtable(_pmd);
2510
2511         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2512         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2513
2514         /*
2515          * spin_lock() below is not the equivalent of smp_wmb(), so
2516          * this is needed to avoid the copy_huge_page writes to become
2517          * visible after the set_pmd_at() write.
2518          */
2519         smp_wmb();
2520
2521         spin_lock(pmd_ptl);
2522         BUG_ON(!pmd_none(*pmd));
2523         page_add_new_anon_rmap(new_page, vma, address);
2524         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2525         set_pmd_at(mm, address, pmd, _pmd);
2526         update_mmu_cache_pmd(vma, address, pmd);
2527         spin_unlock(pmd_ptl);
2528
2529         *hpage = NULL;
2530
2531         khugepaged_pages_collapsed++;
2532 out_up_write:
2533         up_write(&mm->mmap_sem);
2534         return;
2535
2536 out:
2537         mem_cgroup_uncharge_page(new_page);
2538         goto out_up_write;
2539 }
2540
2541 static int khugepaged_scan_pmd(struct mm_struct *mm,
2542                                struct vm_area_struct *vma,
2543                                unsigned long address,
2544                                struct page **hpage)
2545 {
2546         pmd_t *pmd;
2547         pte_t *pte, *_pte;
2548         int ret = 0, referenced = 0, none = 0;
2549         struct page *page;
2550         unsigned long _address;
2551         spinlock_t *ptl;
2552         int node = NUMA_NO_NODE;
2553
2554         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2555
2556         pmd = mm_find_pmd(mm, address);
2557         if (!pmd)
2558                 goto out;
2559         if (pmd_trans_huge(*pmd))
2560                 goto out;
2561
2562         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2563         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2564         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2565              _pte++, _address += PAGE_SIZE) {
2566                 pte_t pteval = *_pte;
2567                 if (pte_none(pteval)) {
2568                         if (++none <= khugepaged_max_ptes_none)
2569                                 continue;
2570                         else
2571                                 goto out_unmap;
2572                 }
2573                 if (!pte_present(pteval) || !pte_write(pteval))
2574                         goto out_unmap;
2575                 page = vm_normal_page(vma, _address, pteval);
2576                 if (unlikely(!page))
2577                         goto out_unmap;
2578                 /*
2579                  * Record which node the original page is from and save this
2580                  * information to khugepaged_node_load[].
2581                  * Khupaged will allocate hugepage from the node has the max
2582                  * hit record.
2583                  */
2584                 node = page_to_nid(page);
2585                 khugepaged_node_load[node]++;
2586                 VM_BUG_ON(PageCompound(page));
2587                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2588                         goto out_unmap;
2589                 /* cannot use mapcount: can't collapse if there's a gup pin */
2590                 if (page_count(page) != 1)
2591                         goto out_unmap;
2592                 if (pte_young(pteval) || PageReferenced(page) ||
2593                     mmu_notifier_test_young(vma->vm_mm, address))
2594                         referenced = 1;
2595         }
2596         if (referenced)
2597                 ret = 1;
2598 out_unmap:
2599         pte_unmap_unlock(pte, ptl);
2600         if (ret) {
2601                 node = khugepaged_find_target_node();
2602                 /* collapse_huge_page will return with the mmap_sem released */
2603                 collapse_huge_page(mm, address, hpage, vma, node);
2604         }
2605 out:
2606         return ret;
2607 }
2608
2609 static void collect_mm_slot(struct mm_slot *mm_slot)
2610 {
2611         struct mm_struct *mm = mm_slot->mm;
2612
2613         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2614
2615         if (khugepaged_test_exit(mm)) {
2616                 /* free mm_slot */
2617                 hash_del(&mm_slot->hash);
2618                 list_del(&mm_slot->mm_node);
2619
2620                 /*
2621                  * Not strictly needed because the mm exited already.
2622                  *
2623                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2624                  */
2625
2626                 /* khugepaged_mm_lock actually not necessary for the below */
2627                 free_mm_slot(mm_slot);
2628                 mmdrop(mm);
2629         }
2630 }
2631
2632 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2633                                             struct page **hpage)
2634         __releases(&khugepaged_mm_lock)
2635         __acquires(&khugepaged_mm_lock)
2636 {
2637         struct mm_slot *mm_slot;
2638         struct mm_struct *mm;
2639         struct vm_area_struct *vma;
2640         int progress = 0;
2641
2642         VM_BUG_ON(!pages);
2643         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2644
2645         if (khugepaged_scan.mm_slot)
2646                 mm_slot = khugepaged_scan.mm_slot;
2647         else {
2648                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2649                                      struct mm_slot, mm_node);
2650                 khugepaged_scan.address = 0;
2651                 khugepaged_scan.mm_slot = mm_slot;
2652         }
2653         spin_unlock(&khugepaged_mm_lock);
2654
2655         mm = mm_slot->mm;
2656         down_read(&mm->mmap_sem);
2657         if (unlikely(khugepaged_test_exit(mm)))
2658                 vma = NULL;
2659         else
2660                 vma = find_vma(mm, khugepaged_scan.address);
2661
2662         progress++;
2663         for (; vma; vma = vma->vm_next) {
2664                 unsigned long hstart, hend;
2665
2666                 cond_resched();
2667                 if (unlikely(khugepaged_test_exit(mm))) {
2668                         progress++;
2669                         break;
2670                 }
2671                 if (!hugepage_vma_check(vma)) {
2672 skip:
2673                         progress++;
2674                         continue;
2675                 }
2676                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2677                 hend = vma->vm_end & HPAGE_PMD_MASK;
2678                 if (hstart >= hend)
2679                         goto skip;
2680                 if (khugepaged_scan.address > hend)
2681                         goto skip;
2682                 if (khugepaged_scan.address < hstart)
2683                         khugepaged_scan.address = hstart;
2684                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2685
2686                 while (khugepaged_scan.address < hend) {
2687                         int ret;
2688                         cond_resched();
2689                         if (unlikely(khugepaged_test_exit(mm)))
2690                                 goto breakouterloop;
2691
2692                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2693                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2694                                   hend);
2695                         ret = khugepaged_scan_pmd(mm, vma,
2696                                                   khugepaged_scan.address,
2697                                                   hpage);
2698                         /* move to next address */
2699                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2700                         progress += HPAGE_PMD_NR;
2701                         if (ret)
2702                                 /* we released mmap_sem so break loop */
2703                                 goto breakouterloop_mmap_sem;
2704                         if (progress >= pages)
2705                                 goto breakouterloop;
2706                 }
2707         }
2708 breakouterloop:
2709         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2710 breakouterloop_mmap_sem:
2711
2712         spin_lock(&khugepaged_mm_lock);
2713         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2714         /*
2715          * Release the current mm_slot if this mm is about to die, or
2716          * if we scanned all vmas of this mm.
2717          */
2718         if (khugepaged_test_exit(mm) || !vma) {
2719                 /*
2720                  * Make sure that if mm_users is reaching zero while
2721                  * khugepaged runs here, khugepaged_exit will find
2722                  * mm_slot not pointing to the exiting mm.
2723                  */
2724                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2725                         khugepaged_scan.mm_slot = list_entry(
2726                                 mm_slot->mm_node.next,
2727                                 struct mm_slot, mm_node);
2728                         khugepaged_scan.address = 0;
2729                 } else {
2730                         khugepaged_scan.mm_slot = NULL;
2731                         khugepaged_full_scans++;
2732                 }
2733
2734                 collect_mm_slot(mm_slot);
2735         }
2736
2737         return progress;
2738 }
2739
2740 static int khugepaged_has_work(void)
2741 {
2742         return !list_empty(&khugepaged_scan.mm_head) &&
2743                 khugepaged_enabled();
2744 }
2745
2746 static int khugepaged_wait_event(void)
2747 {
2748         return !list_empty(&khugepaged_scan.mm_head) ||
2749                 kthread_should_stop();
2750 }
2751
2752 static void khugepaged_do_scan(void)
2753 {
2754         struct page *hpage = NULL;
2755         unsigned int progress = 0, pass_through_head = 0;
2756         unsigned int pages = khugepaged_pages_to_scan;
2757         bool wait = true;
2758
2759         barrier(); /* write khugepaged_pages_to_scan to local stack */
2760
2761         while (progress < pages) {
2762                 if (!khugepaged_prealloc_page(&hpage, &wait))
2763                         break;
2764
2765                 cond_resched();
2766
2767                 if (unlikely(kthread_should_stop() || freezing(current)))
2768                         break;
2769
2770                 spin_lock(&khugepaged_mm_lock);
2771                 if (!khugepaged_scan.mm_slot)
2772                         pass_through_head++;
2773                 if (khugepaged_has_work() &&
2774                     pass_through_head < 2)
2775                         progress += khugepaged_scan_mm_slot(pages - progress,
2776                                                             &hpage);
2777                 else
2778                         progress = pages;
2779                 spin_unlock(&khugepaged_mm_lock);
2780         }
2781
2782         if (!IS_ERR_OR_NULL(hpage))
2783                 put_page(hpage);
2784 }
2785
2786 static void khugepaged_wait_work(void)
2787 {
2788         try_to_freeze();
2789
2790         if (khugepaged_has_work()) {
2791                 if (!khugepaged_scan_sleep_millisecs)
2792                         return;
2793
2794                 wait_event_freezable_timeout(khugepaged_wait,
2795                                              kthread_should_stop(),
2796                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2797                 return;
2798         }
2799
2800         if (khugepaged_enabled())
2801                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2802 }
2803
2804 static int khugepaged(void *none)
2805 {
2806         struct mm_slot *mm_slot;
2807
2808         set_freezable();
2809         set_user_nice(current, 19);
2810
2811         while (!kthread_should_stop()) {
2812                 khugepaged_do_scan();
2813                 khugepaged_wait_work();
2814         }
2815
2816         spin_lock(&khugepaged_mm_lock);
2817         mm_slot = khugepaged_scan.mm_slot;
2818         khugepaged_scan.mm_slot = NULL;
2819         if (mm_slot)
2820                 collect_mm_slot(mm_slot);
2821         spin_unlock(&khugepaged_mm_lock);
2822         return 0;
2823 }
2824
2825 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2826                 unsigned long haddr, pmd_t *pmd)
2827 {
2828         struct mm_struct *mm = vma->vm_mm;
2829         pgtable_t pgtable;
2830         pmd_t _pmd;
2831         int i;
2832
2833         pmdp_clear_flush(vma, haddr, pmd);
2834         /* leave pmd empty until pte is filled */
2835
2836         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2837         pmd_populate(mm, &_pmd, pgtable);
2838
2839         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2840                 pte_t *pte, entry;
2841                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2842                 entry = pte_mkspecial(entry);
2843                 pte = pte_offset_map(&_pmd, haddr);
2844                 VM_BUG_ON(!pte_none(*pte));
2845                 set_pte_at(mm, haddr, pte, entry);
2846                 pte_unmap(pte);
2847         }
2848         smp_wmb(); /* make pte visible before pmd */
2849         pmd_populate(mm, pmd, pgtable);
2850         put_huge_zero_page();
2851 }
2852
2853 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2854                 pmd_t *pmd)
2855 {
2856         spinlock_t *ptl;
2857         struct page *page;
2858         struct mm_struct *mm = vma->vm_mm;
2859         unsigned long haddr = address & HPAGE_PMD_MASK;
2860         unsigned long mmun_start;       /* For mmu_notifiers */
2861         unsigned long mmun_end;         /* For mmu_notifiers */
2862
2863         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2864
2865         mmun_start = haddr;
2866         mmun_end   = haddr + HPAGE_PMD_SIZE;
2867 again:
2868         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2869         ptl = pmd_lock(mm, pmd);
2870         if (unlikely(!pmd_trans_huge(*pmd))) {
2871                 spin_unlock(ptl);
2872                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2873                 return;
2874         }
2875         if (is_huge_zero_pmd(*pmd)) {
2876                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2877                 spin_unlock(ptl);
2878                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2879                 return;
2880         }
2881         page = pmd_page(*pmd);
2882         VM_BUG_ON(!page_count(page));
2883         get_page(page);
2884         spin_unlock(ptl);
2885         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2886
2887         split_huge_page(page);
2888
2889         put_page(page);
2890
2891         /*
2892          * We don't always have down_write of mmap_sem here: a racing
2893          * do_huge_pmd_wp_page() might have copied-on-write to another
2894          * huge page before our split_huge_page() got the anon_vma lock.
2895          */
2896         if (unlikely(pmd_trans_huge(*pmd)))
2897                 goto again;
2898 }
2899
2900 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2901                 pmd_t *pmd)
2902 {
2903         struct vm_area_struct *vma;
2904
2905         vma = find_vma(mm, address);
2906         BUG_ON(vma == NULL);
2907         split_huge_page_pmd(vma, address, pmd);
2908 }
2909
2910 static void split_huge_page_address(struct mm_struct *mm,
2911                                     unsigned long address)
2912 {
2913         pmd_t *pmd;
2914
2915         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2916
2917         pmd = mm_find_pmd(mm, address);
2918         if (!pmd)
2919                 return;
2920         /*
2921          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2922          * materialize from under us.
2923          */
2924         split_huge_page_pmd_mm(mm, address, pmd);
2925 }
2926
2927 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2928                              unsigned long start,
2929                              unsigned long end,
2930                              long adjust_next)
2931 {
2932         /*
2933          * If the new start address isn't hpage aligned and it could
2934          * previously contain an hugepage: check if we need to split
2935          * an huge pmd.
2936          */
2937         if (start & ~HPAGE_PMD_MASK &&
2938             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2939             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2940                 split_huge_page_address(vma->vm_mm, start);
2941
2942         /*
2943          * If the new end address isn't hpage aligned and it could
2944          * previously contain an hugepage: check if we need to split
2945          * an huge pmd.
2946          */
2947         if (end & ~HPAGE_PMD_MASK &&
2948             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2949             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2950                 split_huge_page_address(vma->vm_mm, end);
2951
2952         /*
2953          * If we're also updating the vma->vm_next->vm_start, if the new
2954          * vm_next->vm_start isn't page aligned and it could previously
2955          * contain an hugepage: check if we need to split an huge pmd.
2956          */
2957         if (adjust_next > 0) {
2958                 struct vm_area_struct *next = vma->vm_next;
2959                 unsigned long nstart = next->vm_start;
2960                 nstart += adjust_next << PAGE_SHIFT;
2961                 if (nstart & ~HPAGE_PMD_MASK &&
2962                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2963                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2964                         split_huge_page_address(next->vm_mm, nstart);
2965         }
2966 }