]> Pileus Git - ~andy/linux/blob - mm/filemap.c
mm: add replace_page_cache_page() function
[~andy/linux] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock               (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock                 (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (zap_pte_range->set_page_dirty)
103  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  (code doesn't rely on that order, so you could switch it around)
106  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107  *    ->i_mmap_lock
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123         if (PageSwapBacked(page))
124                 __dec_zone_page_state(page, NR_SHMEM);
125         BUG_ON(page_mapped(page));
126
127         /*
128          * Some filesystems seem to re-dirty the page even after
129          * the VM has canceled the dirty bit (eg ext3 journaling).
130          *
131          * Fix it up by doing a final dirty accounting check after
132          * having removed the page entirely.
133          */
134         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135                 dec_zone_page_state(page, NR_FILE_DIRTY);
136                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137         }
138 }
139
140 void remove_from_page_cache(struct page *page)
141 {
142         struct address_space *mapping = page->mapping;
143         void (*freepage)(struct page *);
144
145         BUG_ON(!PageLocked(page));
146
147         freepage = mapping->a_ops->freepage;
148         spin_lock_irq(&mapping->tree_lock);
149         __remove_from_page_cache(page);
150         spin_unlock_irq(&mapping->tree_lock);
151         mem_cgroup_uncharge_cache_page(page);
152
153         if (freepage)
154                 freepage(page);
155 }
156 EXPORT_SYMBOL(remove_from_page_cache);
157
158 static int sync_page(void *word)
159 {
160         struct address_space *mapping;
161         struct page *page;
162
163         page = container_of((unsigned long *)word, struct page, flags);
164
165         /*
166          * page_mapping() is being called without PG_locked held.
167          * Some knowledge of the state and use of the page is used to
168          * reduce the requirements down to a memory barrier.
169          * The danger here is of a stale page_mapping() return value
170          * indicating a struct address_space different from the one it's
171          * associated with when it is associated with one.
172          * After smp_mb(), it's either the correct page_mapping() for
173          * the page, or an old page_mapping() and the page's own
174          * page_mapping() has gone NULL.
175          * The ->sync_page() address_space operation must tolerate
176          * page_mapping() going NULL. By an amazing coincidence,
177          * this comes about because none of the users of the page
178          * in the ->sync_page() methods make essential use of the
179          * page_mapping(), merely passing the page down to the backing
180          * device's unplug functions when it's non-NULL, which in turn
181          * ignore it for all cases but swap, where only page_private(page) is
182          * of interest. When page_mapping() does go NULL, the entire
183          * call stack gracefully ignores the page and returns.
184          * -- wli
185          */
186         smp_mb();
187         mapping = page_mapping(page);
188         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
189                 mapping->a_ops->sync_page(page);
190         io_schedule();
191         return 0;
192 }
193
194 static int sync_page_killable(void *word)
195 {
196         sync_page(word);
197         return fatal_signal_pending(current) ? -EINTR : 0;
198 }
199
200 /**
201  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
202  * @mapping:    address space structure to write
203  * @start:      offset in bytes where the range starts
204  * @end:        offset in bytes where the range ends (inclusive)
205  * @sync_mode:  enable synchronous operation
206  *
207  * Start writeback against all of a mapping's dirty pages that lie
208  * within the byte offsets <start, end> inclusive.
209  *
210  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
211  * opposed to a regular memory cleansing writeback.  The difference between
212  * these two operations is that if a dirty page/buffer is encountered, it must
213  * be waited upon, and not just skipped over.
214  */
215 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216                                 loff_t end, int sync_mode)
217 {
218         int ret;
219         struct writeback_control wbc = {
220                 .sync_mode = sync_mode,
221                 .nr_to_write = LONG_MAX,
222                 .range_start = start,
223                 .range_end = end,
224         };
225
226         if (!mapping_cap_writeback_dirty(mapping))
227                 return 0;
228
229         ret = do_writepages(mapping, &wbc);
230         return ret;
231 }
232
233 static inline int __filemap_fdatawrite(struct address_space *mapping,
234         int sync_mode)
235 {
236         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
237 }
238
239 int filemap_fdatawrite(struct address_space *mapping)
240 {
241         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
242 }
243 EXPORT_SYMBOL(filemap_fdatawrite);
244
245 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
246                                 loff_t end)
247 {
248         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
249 }
250 EXPORT_SYMBOL(filemap_fdatawrite_range);
251
252 /**
253  * filemap_flush - mostly a non-blocking flush
254  * @mapping:    target address_space
255  *
256  * This is a mostly non-blocking flush.  Not suitable for data-integrity
257  * purposes - I/O may not be started against all dirty pages.
258  */
259 int filemap_flush(struct address_space *mapping)
260 {
261         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
262 }
263 EXPORT_SYMBOL(filemap_flush);
264
265 /**
266  * filemap_fdatawait_range - wait for writeback to complete
267  * @mapping:            address space structure to wait for
268  * @start_byte:         offset in bytes where the range starts
269  * @end_byte:           offset in bytes where the range ends (inclusive)
270  *
271  * Walk the list of under-writeback pages of the given address space
272  * in the given range and wait for all of them.
273  */
274 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
275                             loff_t end_byte)
276 {
277         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
278         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
279         struct pagevec pvec;
280         int nr_pages;
281         int ret = 0;
282
283         if (end_byte < start_byte)
284                 return 0;
285
286         pagevec_init(&pvec, 0);
287         while ((index <= end) &&
288                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
289                         PAGECACHE_TAG_WRITEBACK,
290                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
291                 unsigned i;
292
293                 for (i = 0; i < nr_pages; i++) {
294                         struct page *page = pvec.pages[i];
295
296                         /* until radix tree lookup accepts end_index */
297                         if (page->index > end)
298                                 continue;
299
300                         wait_on_page_writeback(page);
301                         if (TestClearPageError(page))
302                                 ret = -EIO;
303                 }
304                 pagevec_release(&pvec);
305                 cond_resched();
306         }
307
308         /* Check for outstanding write errors */
309         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310                 ret = -ENOSPC;
311         if (test_and_clear_bit(AS_EIO, &mapping->flags))
312                 ret = -EIO;
313
314         return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327         loff_t i_size = i_size_read(mapping->host);
328
329         if (i_size == 0)
330                 return 0;
331
332         return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338         int err = 0;
339
340         if (mapping->nrpages) {
341                 err = filemap_fdatawrite(mapping);
342                 /*
343                  * Even if the above returned error, the pages may be
344                  * written partially (e.g. -ENOSPC), so we wait for it.
345                  * But the -EIO is special case, it may indicate the worst
346                  * thing (e.g. bug) happened, so we avoid waiting for it.
347                  */
348                 if (err != -EIO) {
349                         int err2 = filemap_fdatawait(mapping);
350                         if (!err)
351                                 err = err2;
352                 }
353         }
354         return err;
355 }
356 EXPORT_SYMBOL(filemap_write_and_wait);
357
358 /**
359  * filemap_write_and_wait_range - write out & wait on a file range
360  * @mapping:    the address_space for the pages
361  * @lstart:     offset in bytes where the range starts
362  * @lend:       offset in bytes where the range ends (inclusive)
363  *
364  * Write out and wait upon file offsets lstart->lend, inclusive.
365  *
366  * Note that `lend' is inclusive (describes the last byte to be written) so
367  * that this function can be used to write to the very end-of-file (end = -1).
368  */
369 int filemap_write_and_wait_range(struct address_space *mapping,
370                                  loff_t lstart, loff_t lend)
371 {
372         int err = 0;
373
374         if (mapping->nrpages) {
375                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
376                                                  WB_SYNC_ALL);
377                 /* See comment of filemap_write_and_wait() */
378                 if (err != -EIO) {
379                         int err2 = filemap_fdatawait_range(mapping,
380                                                 lstart, lend);
381                         if (!err)
382                                 err = err2;
383                 }
384         }
385         return err;
386 }
387 EXPORT_SYMBOL(filemap_write_and_wait_range);
388
389 /**
390  * replace_page_cache_page - replace a pagecache page with a new one
391  * @old:        page to be replaced
392  * @new:        page to replace with
393  * @gfp_mask:   allocation mode
394  *
395  * This function replaces a page in the pagecache with a new one.  On
396  * success it acquires the pagecache reference for the new page and
397  * drops it for the old page.  Both the old and new pages must be
398  * locked.  This function does not add the new page to the LRU, the
399  * caller must do that.
400  *
401  * The remove + add is atomic.  The only way this function can fail is
402  * memory allocation failure.
403  */
404 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
405 {
406         int error;
407         struct mem_cgroup *memcg = NULL;
408
409         VM_BUG_ON(!PageLocked(old));
410         VM_BUG_ON(!PageLocked(new));
411         VM_BUG_ON(new->mapping);
412
413         /*
414          * This is not page migration, but prepare_migration and
415          * end_migration does enough work for charge replacement.
416          *
417          * In the longer term we probably want a specialized function
418          * for moving the charge from old to new in a more efficient
419          * manner.
420          */
421         error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
422         if (error)
423                 return error;
424
425         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
426         if (!error) {
427                 struct address_space *mapping = old->mapping;
428                 void (*freepage)(struct page *);
429
430                 pgoff_t offset = old->index;
431                 freepage = mapping->a_ops->freepage;
432
433                 page_cache_get(new);
434                 new->mapping = mapping;
435                 new->index = offset;
436
437                 spin_lock_irq(&mapping->tree_lock);
438                 __remove_from_page_cache(old);
439                 error = radix_tree_insert(&mapping->page_tree, offset, new);
440                 BUG_ON(error);
441                 mapping->nrpages++;
442                 __inc_zone_page_state(new, NR_FILE_PAGES);
443                 if (PageSwapBacked(new))
444                         __inc_zone_page_state(new, NR_SHMEM);
445                 spin_unlock_irq(&mapping->tree_lock);
446                 radix_tree_preload_end();
447                 if (freepage)
448                         freepage(old);
449                 page_cache_release(old);
450                 mem_cgroup_end_migration(memcg, old, new, true);
451         } else {
452                 mem_cgroup_end_migration(memcg, old, new, false);
453         }
454
455         return error;
456 }
457 EXPORT_SYMBOL_GPL(replace_page_cache_page);
458
459 /**
460  * add_to_page_cache_locked - add a locked page to the pagecache
461  * @page:       page to add
462  * @mapping:    the page's address_space
463  * @offset:     page index
464  * @gfp_mask:   page allocation mode
465  *
466  * This function is used to add a page to the pagecache. It must be locked.
467  * This function does not add the page to the LRU.  The caller must do that.
468  */
469 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
470                 pgoff_t offset, gfp_t gfp_mask)
471 {
472         int error;
473
474         VM_BUG_ON(!PageLocked(page));
475
476         error = mem_cgroup_cache_charge(page, current->mm,
477                                         gfp_mask & GFP_RECLAIM_MASK);
478         if (error)
479                 goto out;
480
481         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
482         if (error == 0) {
483                 page_cache_get(page);
484                 page->mapping = mapping;
485                 page->index = offset;
486
487                 spin_lock_irq(&mapping->tree_lock);
488                 error = radix_tree_insert(&mapping->page_tree, offset, page);
489                 if (likely(!error)) {
490                         mapping->nrpages++;
491                         __inc_zone_page_state(page, NR_FILE_PAGES);
492                         if (PageSwapBacked(page))
493                                 __inc_zone_page_state(page, NR_SHMEM);
494                         spin_unlock_irq(&mapping->tree_lock);
495                 } else {
496                         page->mapping = NULL;
497                         spin_unlock_irq(&mapping->tree_lock);
498                         mem_cgroup_uncharge_cache_page(page);
499                         page_cache_release(page);
500                 }
501                 radix_tree_preload_end();
502         } else
503                 mem_cgroup_uncharge_cache_page(page);
504 out:
505         return error;
506 }
507 EXPORT_SYMBOL(add_to_page_cache_locked);
508
509 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
510                                 pgoff_t offset, gfp_t gfp_mask)
511 {
512         int ret;
513
514         /*
515          * Splice_read and readahead add shmem/tmpfs pages into the page cache
516          * before shmem_readpage has a chance to mark them as SwapBacked: they
517          * need to go on the anon lru below, and mem_cgroup_cache_charge
518          * (called in add_to_page_cache) needs to know where they're going too.
519          */
520         if (mapping_cap_swap_backed(mapping))
521                 SetPageSwapBacked(page);
522
523         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
524         if (ret == 0) {
525                 if (page_is_file_cache(page))
526                         lru_cache_add_file(page);
527                 else
528                         lru_cache_add_anon(page);
529         }
530         return ret;
531 }
532 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
533
534 #ifdef CONFIG_NUMA
535 struct page *__page_cache_alloc(gfp_t gfp)
536 {
537         int n;
538         struct page *page;
539
540         if (cpuset_do_page_mem_spread()) {
541                 get_mems_allowed();
542                 n = cpuset_mem_spread_node();
543                 page = alloc_pages_exact_node(n, gfp, 0);
544                 put_mems_allowed();
545                 return page;
546         }
547         return alloc_pages(gfp, 0);
548 }
549 EXPORT_SYMBOL(__page_cache_alloc);
550 #endif
551
552 static int __sleep_on_page_lock(void *word)
553 {
554         io_schedule();
555         return 0;
556 }
557
558 /*
559  * In order to wait for pages to become available there must be
560  * waitqueues associated with pages. By using a hash table of
561  * waitqueues where the bucket discipline is to maintain all
562  * waiters on the same queue and wake all when any of the pages
563  * become available, and for the woken contexts to check to be
564  * sure the appropriate page became available, this saves space
565  * at a cost of "thundering herd" phenomena during rare hash
566  * collisions.
567  */
568 static wait_queue_head_t *page_waitqueue(struct page *page)
569 {
570         const struct zone *zone = page_zone(page);
571
572         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
573 }
574
575 static inline void wake_up_page(struct page *page, int bit)
576 {
577         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
578 }
579
580 void wait_on_page_bit(struct page *page, int bit_nr)
581 {
582         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
583
584         if (test_bit(bit_nr, &page->flags))
585                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
586                                                         TASK_UNINTERRUPTIBLE);
587 }
588 EXPORT_SYMBOL(wait_on_page_bit);
589
590 /**
591  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
592  * @page: Page defining the wait queue of interest
593  * @waiter: Waiter to add to the queue
594  *
595  * Add an arbitrary @waiter to the wait queue for the nominated @page.
596  */
597 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
598 {
599         wait_queue_head_t *q = page_waitqueue(page);
600         unsigned long flags;
601
602         spin_lock_irqsave(&q->lock, flags);
603         __add_wait_queue(q, waiter);
604         spin_unlock_irqrestore(&q->lock, flags);
605 }
606 EXPORT_SYMBOL_GPL(add_page_wait_queue);
607
608 /**
609  * unlock_page - unlock a locked page
610  * @page: the page
611  *
612  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
613  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
614  * mechananism between PageLocked pages and PageWriteback pages is shared.
615  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
616  *
617  * The mb is necessary to enforce ordering between the clear_bit and the read
618  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
619  */
620 void unlock_page(struct page *page)
621 {
622         VM_BUG_ON(!PageLocked(page));
623         clear_bit_unlock(PG_locked, &page->flags);
624         smp_mb__after_clear_bit();
625         wake_up_page(page, PG_locked);
626 }
627 EXPORT_SYMBOL(unlock_page);
628
629 /**
630  * end_page_writeback - end writeback against a page
631  * @page: the page
632  */
633 void end_page_writeback(struct page *page)
634 {
635         if (TestClearPageReclaim(page))
636                 rotate_reclaimable_page(page);
637
638         if (!test_clear_page_writeback(page))
639                 BUG();
640
641         smp_mb__after_clear_bit();
642         wake_up_page(page, PG_writeback);
643 }
644 EXPORT_SYMBOL(end_page_writeback);
645
646 /**
647  * __lock_page - get a lock on the page, assuming we need to sleep to get it
648  * @page: the page to lock
649  *
650  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
651  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
652  * chances are that on the second loop, the block layer's plug list is empty,
653  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
654  */
655 void __lock_page(struct page *page)
656 {
657         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
658
659         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
660                                                         TASK_UNINTERRUPTIBLE);
661 }
662 EXPORT_SYMBOL(__lock_page);
663
664 int __lock_page_killable(struct page *page)
665 {
666         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
667
668         return __wait_on_bit_lock(page_waitqueue(page), &wait,
669                                         sync_page_killable, TASK_KILLABLE);
670 }
671 EXPORT_SYMBOL_GPL(__lock_page_killable);
672
673 /**
674  * __lock_page_nosync - get a lock on the page, without calling sync_page()
675  * @page: the page to lock
676  *
677  * Variant of lock_page that does not require the caller to hold a reference
678  * on the page's mapping.
679  */
680 void __lock_page_nosync(struct page *page)
681 {
682         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
683         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
684                                                         TASK_UNINTERRUPTIBLE);
685 }
686
687 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
688                          unsigned int flags)
689 {
690         if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
691                 __lock_page(page);
692                 return 1;
693         } else {
694                 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
695                         up_read(&mm->mmap_sem);
696                         wait_on_page_locked(page);
697                 }
698                 return 0;
699         }
700 }
701
702 /**
703  * find_get_page - find and get a page reference
704  * @mapping: the address_space to search
705  * @offset: the page index
706  *
707  * Is there a pagecache struct page at the given (mapping, offset) tuple?
708  * If yes, increment its refcount and return it; if no, return NULL.
709  */
710 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
711 {
712         void **pagep;
713         struct page *page;
714
715         rcu_read_lock();
716 repeat:
717         page = NULL;
718         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
719         if (pagep) {
720                 page = radix_tree_deref_slot(pagep);
721                 if (unlikely(!page))
722                         goto out;
723                 if (radix_tree_deref_retry(page))
724                         goto repeat;
725
726                 if (!page_cache_get_speculative(page))
727                         goto repeat;
728
729                 /*
730                  * Has the page moved?
731                  * This is part of the lockless pagecache protocol. See
732                  * include/linux/pagemap.h for details.
733                  */
734                 if (unlikely(page != *pagep)) {
735                         page_cache_release(page);
736                         goto repeat;
737                 }
738         }
739 out:
740         rcu_read_unlock();
741
742         return page;
743 }
744 EXPORT_SYMBOL(find_get_page);
745
746 /**
747  * find_lock_page - locate, pin and lock a pagecache page
748  * @mapping: the address_space to search
749  * @offset: the page index
750  *
751  * Locates the desired pagecache page, locks it, increments its reference
752  * count and returns its address.
753  *
754  * Returns zero if the page was not present. find_lock_page() may sleep.
755  */
756 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
757 {
758         struct page *page;
759
760 repeat:
761         page = find_get_page(mapping, offset);
762         if (page) {
763                 lock_page(page);
764                 /* Has the page been truncated? */
765                 if (unlikely(page->mapping != mapping)) {
766                         unlock_page(page);
767                         page_cache_release(page);
768                         goto repeat;
769                 }
770                 VM_BUG_ON(page->index != offset);
771         }
772         return page;
773 }
774 EXPORT_SYMBOL(find_lock_page);
775
776 /**
777  * find_or_create_page - locate or add a pagecache page
778  * @mapping: the page's address_space
779  * @index: the page's index into the mapping
780  * @gfp_mask: page allocation mode
781  *
782  * Locates a page in the pagecache.  If the page is not present, a new page
783  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
784  * LRU list.  The returned page is locked and has its reference count
785  * incremented.
786  *
787  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
788  * allocation!
789  *
790  * find_or_create_page() returns the desired page's address, or zero on
791  * memory exhaustion.
792  */
793 struct page *find_or_create_page(struct address_space *mapping,
794                 pgoff_t index, gfp_t gfp_mask)
795 {
796         struct page *page;
797         int err;
798 repeat:
799         page = find_lock_page(mapping, index);
800         if (!page) {
801                 page = __page_cache_alloc(gfp_mask);
802                 if (!page)
803                         return NULL;
804                 /*
805                  * We want a regular kernel memory (not highmem or DMA etc)
806                  * allocation for the radix tree nodes, but we need to honour
807                  * the context-specific requirements the caller has asked for.
808                  * GFP_RECLAIM_MASK collects those requirements.
809                  */
810                 err = add_to_page_cache_lru(page, mapping, index,
811                         (gfp_mask & GFP_RECLAIM_MASK));
812                 if (unlikely(err)) {
813                         page_cache_release(page);
814                         page = NULL;
815                         if (err == -EEXIST)
816                                 goto repeat;
817                 }
818         }
819         return page;
820 }
821 EXPORT_SYMBOL(find_or_create_page);
822
823 /**
824  * find_get_pages - gang pagecache lookup
825  * @mapping:    The address_space to search
826  * @start:      The starting page index
827  * @nr_pages:   The maximum number of pages
828  * @pages:      Where the resulting pages are placed
829  *
830  * find_get_pages() will search for and return a group of up to
831  * @nr_pages pages in the mapping.  The pages are placed at @pages.
832  * find_get_pages() takes a reference against the returned pages.
833  *
834  * The search returns a group of mapping-contiguous pages with ascending
835  * indexes.  There may be holes in the indices due to not-present pages.
836  *
837  * find_get_pages() returns the number of pages which were found.
838  */
839 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
840                             unsigned int nr_pages, struct page **pages)
841 {
842         unsigned int i;
843         unsigned int ret;
844         unsigned int nr_found;
845
846         rcu_read_lock();
847 restart:
848         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
849                                 (void ***)pages, start, nr_pages);
850         ret = 0;
851         for (i = 0; i < nr_found; i++) {
852                 struct page *page;
853 repeat:
854                 page = radix_tree_deref_slot((void **)pages[i]);
855                 if (unlikely(!page))
856                         continue;
857                 if (radix_tree_deref_retry(page)) {
858                         if (ret)
859                                 start = pages[ret-1]->index;
860                         goto restart;
861                 }
862
863                 if (!page_cache_get_speculative(page))
864                         goto repeat;
865
866                 /* Has the page moved? */
867                 if (unlikely(page != *((void **)pages[i]))) {
868                         page_cache_release(page);
869                         goto repeat;
870                 }
871
872                 pages[ret] = page;
873                 ret++;
874         }
875         rcu_read_unlock();
876         return ret;
877 }
878
879 /**
880  * find_get_pages_contig - gang contiguous pagecache lookup
881  * @mapping:    The address_space to search
882  * @index:      The starting page index
883  * @nr_pages:   The maximum number of pages
884  * @pages:      Where the resulting pages are placed
885  *
886  * find_get_pages_contig() works exactly like find_get_pages(), except
887  * that the returned number of pages are guaranteed to be contiguous.
888  *
889  * find_get_pages_contig() returns the number of pages which were found.
890  */
891 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
892                                unsigned int nr_pages, struct page **pages)
893 {
894         unsigned int i;
895         unsigned int ret;
896         unsigned int nr_found;
897
898         rcu_read_lock();
899 restart:
900         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
901                                 (void ***)pages, index, nr_pages);
902         ret = 0;
903         for (i = 0; i < nr_found; i++) {
904                 struct page *page;
905 repeat:
906                 page = radix_tree_deref_slot((void **)pages[i]);
907                 if (unlikely(!page))
908                         continue;
909                 if (radix_tree_deref_retry(page))
910                         goto restart;
911
912                 if (!page_cache_get_speculative(page))
913                         goto repeat;
914
915                 /* Has the page moved? */
916                 if (unlikely(page != *((void **)pages[i]))) {
917                         page_cache_release(page);
918                         goto repeat;
919                 }
920
921                 /*
922                  * must check mapping and index after taking the ref.
923                  * otherwise we can get both false positives and false
924                  * negatives, which is just confusing to the caller.
925                  */
926                 if (page->mapping == NULL || page->index != index) {
927                         page_cache_release(page);
928                         break;
929                 }
930
931                 pages[ret] = page;
932                 ret++;
933                 index++;
934         }
935         rcu_read_unlock();
936         return ret;
937 }
938 EXPORT_SYMBOL(find_get_pages_contig);
939
940 /**
941  * find_get_pages_tag - find and return pages that match @tag
942  * @mapping:    the address_space to search
943  * @index:      the starting page index
944  * @tag:        the tag index
945  * @nr_pages:   the maximum number of pages
946  * @pages:      where the resulting pages are placed
947  *
948  * Like find_get_pages, except we only return pages which are tagged with
949  * @tag.   We update @index to index the next page for the traversal.
950  */
951 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
952                         int tag, unsigned int nr_pages, struct page **pages)
953 {
954         unsigned int i;
955         unsigned int ret;
956         unsigned int nr_found;
957
958         rcu_read_lock();
959 restart:
960         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
961                                 (void ***)pages, *index, nr_pages, tag);
962         ret = 0;
963         for (i = 0; i < nr_found; i++) {
964                 struct page *page;
965 repeat:
966                 page = radix_tree_deref_slot((void **)pages[i]);
967                 if (unlikely(!page))
968                         continue;
969                 if (radix_tree_deref_retry(page))
970                         goto restart;
971
972                 if (!page_cache_get_speculative(page))
973                         goto repeat;
974
975                 /* Has the page moved? */
976                 if (unlikely(page != *((void **)pages[i]))) {
977                         page_cache_release(page);
978                         goto repeat;
979                 }
980
981                 pages[ret] = page;
982                 ret++;
983         }
984         rcu_read_unlock();
985
986         if (ret)
987                 *index = pages[ret - 1]->index + 1;
988
989         return ret;
990 }
991 EXPORT_SYMBOL(find_get_pages_tag);
992
993 /**
994  * grab_cache_page_nowait - returns locked page at given index in given cache
995  * @mapping: target address_space
996  * @index: the page index
997  *
998  * Same as grab_cache_page(), but do not wait if the page is unavailable.
999  * This is intended for speculative data generators, where the data can
1000  * be regenerated if the page couldn't be grabbed.  This routine should
1001  * be safe to call while holding the lock for another page.
1002  *
1003  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1004  * and deadlock against the caller's locked page.
1005  */
1006 struct page *
1007 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1008 {
1009         struct page *page = find_get_page(mapping, index);
1010
1011         if (page) {
1012                 if (trylock_page(page))
1013                         return page;
1014                 page_cache_release(page);
1015                 return NULL;
1016         }
1017         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1018         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1019                 page_cache_release(page);
1020                 page = NULL;
1021         }
1022         return page;
1023 }
1024 EXPORT_SYMBOL(grab_cache_page_nowait);
1025
1026 /*
1027  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1028  * a _large_ part of the i/o request. Imagine the worst scenario:
1029  *
1030  *      ---R__________________________________________B__________
1031  *         ^ reading here                             ^ bad block(assume 4k)
1032  *
1033  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1034  * => failing the whole request => read(R) => read(R+1) =>
1035  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1036  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1037  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1038  *
1039  * It is going insane. Fix it by quickly scaling down the readahead size.
1040  */
1041 static void shrink_readahead_size_eio(struct file *filp,
1042                                         struct file_ra_state *ra)
1043 {
1044         ra->ra_pages /= 4;
1045 }
1046
1047 /**
1048  * do_generic_file_read - generic file read routine
1049  * @filp:       the file to read
1050  * @ppos:       current file position
1051  * @desc:       read_descriptor
1052  * @actor:      read method
1053  *
1054  * This is a generic file read routine, and uses the
1055  * mapping->a_ops->readpage() function for the actual low-level stuff.
1056  *
1057  * This is really ugly. But the goto's actually try to clarify some
1058  * of the logic when it comes to error handling etc.
1059  */
1060 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1061                 read_descriptor_t *desc, read_actor_t actor)
1062 {
1063         struct address_space *mapping = filp->f_mapping;
1064         struct inode *inode = mapping->host;
1065         struct file_ra_state *ra = &filp->f_ra;
1066         pgoff_t index;
1067         pgoff_t last_index;
1068         pgoff_t prev_index;
1069         unsigned long offset;      /* offset into pagecache page */
1070         unsigned int prev_offset;
1071         int error;
1072
1073         index = *ppos >> PAGE_CACHE_SHIFT;
1074         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1075         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1076         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1077         offset = *ppos & ~PAGE_CACHE_MASK;
1078
1079         for (;;) {
1080                 struct page *page;
1081                 pgoff_t end_index;
1082                 loff_t isize;
1083                 unsigned long nr, ret;
1084
1085                 cond_resched();
1086 find_page:
1087                 page = find_get_page(mapping, index);
1088                 if (!page) {
1089                         page_cache_sync_readahead(mapping,
1090                                         ra, filp,
1091                                         index, last_index - index);
1092                         page = find_get_page(mapping, index);
1093                         if (unlikely(page == NULL))
1094                                 goto no_cached_page;
1095                 }
1096                 if (PageReadahead(page)) {
1097                         page_cache_async_readahead(mapping,
1098                                         ra, filp, page,
1099                                         index, last_index - index);
1100                 }
1101                 if (!PageUptodate(page)) {
1102                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1103                                         !mapping->a_ops->is_partially_uptodate)
1104                                 goto page_not_up_to_date;
1105                         if (!trylock_page(page))
1106                                 goto page_not_up_to_date;
1107                         /* Did it get truncated before we got the lock? */
1108                         if (!page->mapping)
1109                                 goto page_not_up_to_date_locked;
1110                         if (!mapping->a_ops->is_partially_uptodate(page,
1111                                                                 desc, offset))
1112                                 goto page_not_up_to_date_locked;
1113                         unlock_page(page);
1114                 }
1115 page_ok:
1116                 /*
1117                  * i_size must be checked after we know the page is Uptodate.
1118                  *
1119                  * Checking i_size after the check allows us to calculate
1120                  * the correct value for "nr", which means the zero-filled
1121                  * part of the page is not copied back to userspace (unless
1122                  * another truncate extends the file - this is desired though).
1123                  */
1124
1125                 isize = i_size_read(inode);
1126                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1127                 if (unlikely(!isize || index > end_index)) {
1128                         page_cache_release(page);
1129                         goto out;
1130                 }
1131
1132                 /* nr is the maximum number of bytes to copy from this page */
1133                 nr = PAGE_CACHE_SIZE;
1134                 if (index == end_index) {
1135                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1136                         if (nr <= offset) {
1137                                 page_cache_release(page);
1138                                 goto out;
1139                         }
1140                 }
1141                 nr = nr - offset;
1142
1143                 /* If users can be writing to this page using arbitrary
1144                  * virtual addresses, take care about potential aliasing
1145                  * before reading the page on the kernel side.
1146                  */
1147                 if (mapping_writably_mapped(mapping))
1148                         flush_dcache_page(page);
1149
1150                 /*
1151                  * When a sequential read accesses a page several times,
1152                  * only mark it as accessed the first time.
1153                  */
1154                 if (prev_index != index || offset != prev_offset)
1155                         mark_page_accessed(page);
1156                 prev_index = index;
1157
1158                 /*
1159                  * Ok, we have the page, and it's up-to-date, so
1160                  * now we can copy it to user space...
1161                  *
1162                  * The actor routine returns how many bytes were actually used..
1163                  * NOTE! This may not be the same as how much of a user buffer
1164                  * we filled up (we may be padding etc), so we can only update
1165                  * "pos" here (the actor routine has to update the user buffer
1166                  * pointers and the remaining count).
1167                  */
1168                 ret = actor(desc, page, offset, nr);
1169                 offset += ret;
1170                 index += offset >> PAGE_CACHE_SHIFT;
1171                 offset &= ~PAGE_CACHE_MASK;
1172                 prev_offset = offset;
1173
1174                 page_cache_release(page);
1175                 if (ret == nr && desc->count)
1176                         continue;
1177                 goto out;
1178
1179 page_not_up_to_date:
1180                 /* Get exclusive access to the page ... */
1181                 error = lock_page_killable(page);
1182                 if (unlikely(error))
1183                         goto readpage_error;
1184
1185 page_not_up_to_date_locked:
1186                 /* Did it get truncated before we got the lock? */
1187                 if (!page->mapping) {
1188                         unlock_page(page);
1189                         page_cache_release(page);
1190                         continue;
1191                 }
1192
1193                 /* Did somebody else fill it already? */
1194                 if (PageUptodate(page)) {
1195                         unlock_page(page);
1196                         goto page_ok;
1197                 }
1198
1199 readpage:
1200                 /*
1201                  * A previous I/O error may have been due to temporary
1202                  * failures, eg. multipath errors.
1203                  * PG_error will be set again if readpage fails.
1204                  */
1205                 ClearPageError(page);
1206                 /* Start the actual read. The read will unlock the page. */
1207                 error = mapping->a_ops->readpage(filp, page);
1208
1209                 if (unlikely(error)) {
1210                         if (error == AOP_TRUNCATED_PAGE) {
1211                                 page_cache_release(page);
1212                                 goto find_page;
1213                         }
1214                         goto readpage_error;
1215                 }
1216
1217                 if (!PageUptodate(page)) {
1218                         error = lock_page_killable(page);
1219                         if (unlikely(error))
1220                                 goto readpage_error;
1221                         if (!PageUptodate(page)) {
1222                                 if (page->mapping == NULL) {
1223                                         /*
1224                                          * invalidate_mapping_pages got it
1225                                          */
1226                                         unlock_page(page);
1227                                         page_cache_release(page);
1228                                         goto find_page;
1229                                 }
1230                                 unlock_page(page);
1231                                 shrink_readahead_size_eio(filp, ra);
1232                                 error = -EIO;
1233                                 goto readpage_error;
1234                         }
1235                         unlock_page(page);
1236                 }
1237
1238                 goto page_ok;
1239
1240 readpage_error:
1241                 /* UHHUH! A synchronous read error occurred. Report it */
1242                 desc->error = error;
1243                 page_cache_release(page);
1244                 goto out;
1245
1246 no_cached_page:
1247                 /*
1248                  * Ok, it wasn't cached, so we need to create a new
1249                  * page..
1250                  */
1251                 page = page_cache_alloc_cold(mapping);
1252                 if (!page) {
1253                         desc->error = -ENOMEM;
1254                         goto out;
1255                 }
1256                 error = add_to_page_cache_lru(page, mapping,
1257                                                 index, GFP_KERNEL);
1258                 if (error) {
1259                         page_cache_release(page);
1260                         if (error == -EEXIST)
1261                                 goto find_page;
1262                         desc->error = error;
1263                         goto out;
1264                 }
1265                 goto readpage;
1266         }
1267
1268 out:
1269         ra->prev_pos = prev_index;
1270         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1271         ra->prev_pos |= prev_offset;
1272
1273         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1274         file_accessed(filp);
1275 }
1276
1277 int file_read_actor(read_descriptor_t *desc, struct page *page,
1278                         unsigned long offset, unsigned long size)
1279 {
1280         char *kaddr;
1281         unsigned long left, count = desc->count;
1282
1283         if (size > count)
1284                 size = count;
1285
1286         /*
1287          * Faults on the destination of a read are common, so do it before
1288          * taking the kmap.
1289          */
1290         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1291                 kaddr = kmap_atomic(page, KM_USER0);
1292                 left = __copy_to_user_inatomic(desc->arg.buf,
1293                                                 kaddr + offset, size);
1294                 kunmap_atomic(kaddr, KM_USER0);
1295                 if (left == 0)
1296                         goto success;
1297         }
1298
1299         /* Do it the slow way */
1300         kaddr = kmap(page);
1301         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1302         kunmap(page);
1303
1304         if (left) {
1305                 size -= left;
1306                 desc->error = -EFAULT;
1307         }
1308 success:
1309         desc->count = count - size;
1310         desc->written += size;
1311         desc->arg.buf += size;
1312         return size;
1313 }
1314
1315 /*
1316  * Performs necessary checks before doing a write
1317  * @iov:        io vector request
1318  * @nr_segs:    number of segments in the iovec
1319  * @count:      number of bytes to write
1320  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1321  *
1322  * Adjust number of segments and amount of bytes to write (nr_segs should be
1323  * properly initialized first). Returns appropriate error code that caller
1324  * should return or zero in case that write should be allowed.
1325  */
1326 int generic_segment_checks(const struct iovec *iov,
1327                         unsigned long *nr_segs, size_t *count, int access_flags)
1328 {
1329         unsigned long   seg;
1330         size_t cnt = 0;
1331         for (seg = 0; seg < *nr_segs; seg++) {
1332                 const struct iovec *iv = &iov[seg];
1333
1334                 /*
1335                  * If any segment has a negative length, or the cumulative
1336                  * length ever wraps negative then return -EINVAL.
1337                  */
1338                 cnt += iv->iov_len;
1339                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1340                         return -EINVAL;
1341                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1342                         continue;
1343                 if (seg == 0)
1344                         return -EFAULT;
1345                 *nr_segs = seg;
1346                 cnt -= iv->iov_len;     /* This segment is no good */
1347                 break;
1348         }
1349         *count = cnt;
1350         return 0;
1351 }
1352 EXPORT_SYMBOL(generic_segment_checks);
1353
1354 /**
1355  * generic_file_aio_read - generic filesystem read routine
1356  * @iocb:       kernel I/O control block
1357  * @iov:        io vector request
1358  * @nr_segs:    number of segments in the iovec
1359  * @pos:        current file position
1360  *
1361  * This is the "read()" routine for all filesystems
1362  * that can use the page cache directly.
1363  */
1364 ssize_t
1365 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1366                 unsigned long nr_segs, loff_t pos)
1367 {
1368         struct file *filp = iocb->ki_filp;
1369         ssize_t retval;
1370         unsigned long seg = 0;
1371         size_t count;
1372         loff_t *ppos = &iocb->ki_pos;
1373
1374         count = 0;
1375         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1376         if (retval)
1377                 return retval;
1378
1379         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1380         if (filp->f_flags & O_DIRECT) {
1381                 loff_t size;
1382                 struct address_space *mapping;
1383                 struct inode *inode;
1384
1385                 mapping = filp->f_mapping;
1386                 inode = mapping->host;
1387                 if (!count)
1388                         goto out; /* skip atime */
1389                 size = i_size_read(inode);
1390                 if (pos < size) {
1391                         retval = filemap_write_and_wait_range(mapping, pos,
1392                                         pos + iov_length(iov, nr_segs) - 1);
1393                         if (!retval) {
1394                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1395                                                         iov, pos, nr_segs);
1396                         }
1397                         if (retval > 0) {
1398                                 *ppos = pos + retval;
1399                                 count -= retval;
1400                         }
1401
1402                         /*
1403                          * Btrfs can have a short DIO read if we encounter
1404                          * compressed extents, so if there was an error, or if
1405                          * we've already read everything we wanted to, or if
1406                          * there was a short read because we hit EOF, go ahead
1407                          * and return.  Otherwise fallthrough to buffered io for
1408                          * the rest of the read.
1409                          */
1410                         if (retval < 0 || !count || *ppos >= size) {
1411                                 file_accessed(filp);
1412                                 goto out;
1413                         }
1414                 }
1415         }
1416
1417         count = retval;
1418         for (seg = 0; seg < nr_segs; seg++) {
1419                 read_descriptor_t desc;
1420                 loff_t offset = 0;
1421
1422                 /*
1423                  * If we did a short DIO read we need to skip the section of the
1424                  * iov that we've already read data into.
1425                  */
1426                 if (count) {
1427                         if (count > iov[seg].iov_len) {
1428                                 count -= iov[seg].iov_len;
1429                                 continue;
1430                         }
1431                         offset = count;
1432                         count = 0;
1433                 }
1434
1435                 desc.written = 0;
1436                 desc.arg.buf = iov[seg].iov_base + offset;
1437                 desc.count = iov[seg].iov_len - offset;
1438                 if (desc.count == 0)
1439                         continue;
1440                 desc.error = 0;
1441                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1442                 retval += desc.written;
1443                 if (desc.error) {
1444                         retval = retval ?: desc.error;
1445                         break;
1446                 }
1447                 if (desc.count > 0)
1448                         break;
1449         }
1450 out:
1451         return retval;
1452 }
1453 EXPORT_SYMBOL(generic_file_aio_read);
1454
1455 static ssize_t
1456 do_readahead(struct address_space *mapping, struct file *filp,
1457              pgoff_t index, unsigned long nr)
1458 {
1459         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1460                 return -EINVAL;
1461
1462         force_page_cache_readahead(mapping, filp, index, nr);
1463         return 0;
1464 }
1465
1466 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1467 {
1468         ssize_t ret;
1469         struct file *file;
1470
1471         ret = -EBADF;
1472         file = fget(fd);
1473         if (file) {
1474                 if (file->f_mode & FMODE_READ) {
1475                         struct address_space *mapping = file->f_mapping;
1476                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1477                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1478                         unsigned long len = end - start + 1;
1479                         ret = do_readahead(mapping, file, start, len);
1480                 }
1481                 fput(file);
1482         }
1483         return ret;
1484 }
1485 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1486 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1487 {
1488         return SYSC_readahead((int) fd, offset, (size_t) count);
1489 }
1490 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1491 #endif
1492
1493 #ifdef CONFIG_MMU
1494 /**
1495  * page_cache_read - adds requested page to the page cache if not already there
1496  * @file:       file to read
1497  * @offset:     page index
1498  *
1499  * This adds the requested page to the page cache if it isn't already there,
1500  * and schedules an I/O to read in its contents from disk.
1501  */
1502 static int page_cache_read(struct file *file, pgoff_t offset)
1503 {
1504         struct address_space *mapping = file->f_mapping;
1505         struct page *page; 
1506         int ret;
1507
1508         do {
1509                 page = page_cache_alloc_cold(mapping);
1510                 if (!page)
1511                         return -ENOMEM;
1512
1513                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1514                 if (ret == 0)
1515                         ret = mapping->a_ops->readpage(file, page);
1516                 else if (ret == -EEXIST)
1517                         ret = 0; /* losing race to add is OK */
1518
1519                 page_cache_release(page);
1520
1521         } while (ret == AOP_TRUNCATED_PAGE);
1522                 
1523         return ret;
1524 }
1525
1526 #define MMAP_LOTSAMISS  (100)
1527
1528 /*
1529  * Synchronous readahead happens when we don't even find
1530  * a page in the page cache at all.
1531  */
1532 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1533                                    struct file_ra_state *ra,
1534                                    struct file *file,
1535                                    pgoff_t offset)
1536 {
1537         unsigned long ra_pages;
1538         struct address_space *mapping = file->f_mapping;
1539
1540         /* If we don't want any read-ahead, don't bother */
1541         if (VM_RandomReadHint(vma))
1542                 return;
1543
1544         if (VM_SequentialReadHint(vma) ||
1545                         offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1546                 page_cache_sync_readahead(mapping, ra, file, offset,
1547                                           ra->ra_pages);
1548                 return;
1549         }
1550
1551         if (ra->mmap_miss < INT_MAX)
1552                 ra->mmap_miss++;
1553
1554         /*
1555          * Do we miss much more than hit in this file? If so,
1556          * stop bothering with read-ahead. It will only hurt.
1557          */
1558         if (ra->mmap_miss > MMAP_LOTSAMISS)
1559                 return;
1560
1561         /*
1562          * mmap read-around
1563          */
1564         ra_pages = max_sane_readahead(ra->ra_pages);
1565         if (ra_pages) {
1566                 ra->start = max_t(long, 0, offset - ra_pages/2);
1567                 ra->size = ra_pages;
1568                 ra->async_size = 0;
1569                 ra_submit(ra, mapping, file);
1570         }
1571 }
1572
1573 /*
1574  * Asynchronous readahead happens when we find the page and PG_readahead,
1575  * so we want to possibly extend the readahead further..
1576  */
1577 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1578                                     struct file_ra_state *ra,
1579                                     struct file *file,
1580                                     struct page *page,
1581                                     pgoff_t offset)
1582 {
1583         struct address_space *mapping = file->f_mapping;
1584
1585         /* If we don't want any read-ahead, don't bother */
1586         if (VM_RandomReadHint(vma))
1587                 return;
1588         if (ra->mmap_miss > 0)
1589                 ra->mmap_miss--;
1590         if (PageReadahead(page))
1591                 page_cache_async_readahead(mapping, ra, file,
1592                                            page, offset, ra->ra_pages);
1593 }
1594
1595 /**
1596  * filemap_fault - read in file data for page fault handling
1597  * @vma:        vma in which the fault was taken
1598  * @vmf:        struct vm_fault containing details of the fault
1599  *
1600  * filemap_fault() is invoked via the vma operations vector for a
1601  * mapped memory region to read in file data during a page fault.
1602  *
1603  * The goto's are kind of ugly, but this streamlines the normal case of having
1604  * it in the page cache, and handles the special cases reasonably without
1605  * having a lot of duplicated code.
1606  */
1607 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1608 {
1609         int error;
1610         struct file *file = vma->vm_file;
1611         struct address_space *mapping = file->f_mapping;
1612         struct file_ra_state *ra = &file->f_ra;
1613         struct inode *inode = mapping->host;
1614         pgoff_t offset = vmf->pgoff;
1615         struct page *page;
1616         pgoff_t size;
1617         int ret = 0;
1618
1619         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1620         if (offset >= size)
1621                 return VM_FAULT_SIGBUS;
1622
1623         /*
1624          * Do we have something in the page cache already?
1625          */
1626         page = find_get_page(mapping, offset);
1627         if (likely(page)) {
1628                 /*
1629                  * We found the page, so try async readahead before
1630                  * waiting for the lock.
1631                  */
1632                 do_async_mmap_readahead(vma, ra, file, page, offset);
1633         } else {
1634                 /* No page in the page cache at all */
1635                 do_sync_mmap_readahead(vma, ra, file, offset);
1636                 count_vm_event(PGMAJFAULT);
1637                 ret = VM_FAULT_MAJOR;
1638 retry_find:
1639                 page = find_get_page(mapping, offset);
1640                 if (!page)
1641                         goto no_cached_page;
1642         }
1643
1644         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1645                 page_cache_release(page);
1646                 return ret | VM_FAULT_RETRY;
1647         }
1648
1649         /* Did it get truncated? */
1650         if (unlikely(page->mapping != mapping)) {
1651                 unlock_page(page);
1652                 put_page(page);
1653                 goto retry_find;
1654         }
1655         VM_BUG_ON(page->index != offset);
1656
1657         /*
1658          * We have a locked page in the page cache, now we need to check
1659          * that it's up-to-date. If not, it is going to be due to an error.
1660          */
1661         if (unlikely(!PageUptodate(page)))
1662                 goto page_not_uptodate;
1663
1664         /*
1665          * Found the page and have a reference on it.
1666          * We must recheck i_size under page lock.
1667          */
1668         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1669         if (unlikely(offset >= size)) {
1670                 unlock_page(page);
1671                 page_cache_release(page);
1672                 return VM_FAULT_SIGBUS;
1673         }
1674
1675         ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1676         vmf->page = page;
1677         return ret | VM_FAULT_LOCKED;
1678
1679 no_cached_page:
1680         /*
1681          * We're only likely to ever get here if MADV_RANDOM is in
1682          * effect.
1683          */
1684         error = page_cache_read(file, offset);
1685
1686         /*
1687          * The page we want has now been added to the page cache.
1688          * In the unlikely event that someone removed it in the
1689          * meantime, we'll just come back here and read it again.
1690          */
1691         if (error >= 0)
1692                 goto retry_find;
1693
1694         /*
1695          * An error return from page_cache_read can result if the
1696          * system is low on memory, or a problem occurs while trying
1697          * to schedule I/O.
1698          */
1699         if (error == -ENOMEM)
1700                 return VM_FAULT_OOM;
1701         return VM_FAULT_SIGBUS;
1702
1703 page_not_uptodate:
1704         /*
1705          * Umm, take care of errors if the page isn't up-to-date.
1706          * Try to re-read it _once_. We do this synchronously,
1707          * because there really aren't any performance issues here
1708          * and we need to check for errors.
1709          */
1710         ClearPageError(page);
1711         error = mapping->a_ops->readpage(file, page);
1712         if (!error) {
1713                 wait_on_page_locked(page);
1714                 if (!PageUptodate(page))
1715                         error = -EIO;
1716         }
1717         page_cache_release(page);
1718
1719         if (!error || error == AOP_TRUNCATED_PAGE)
1720                 goto retry_find;
1721
1722         /* Things didn't work out. Return zero to tell the mm layer so. */
1723         shrink_readahead_size_eio(file, ra);
1724         return VM_FAULT_SIGBUS;
1725 }
1726 EXPORT_SYMBOL(filemap_fault);
1727
1728 const struct vm_operations_struct generic_file_vm_ops = {
1729         .fault          = filemap_fault,
1730 };
1731
1732 /* This is used for a general mmap of a disk file */
1733
1734 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1735 {
1736         struct address_space *mapping = file->f_mapping;
1737
1738         if (!mapping->a_ops->readpage)
1739                 return -ENOEXEC;
1740         file_accessed(file);
1741         vma->vm_ops = &generic_file_vm_ops;
1742         vma->vm_flags |= VM_CAN_NONLINEAR;
1743         return 0;
1744 }
1745
1746 /*
1747  * This is for filesystems which do not implement ->writepage.
1748  */
1749 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1750 {
1751         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1752                 return -EINVAL;
1753         return generic_file_mmap(file, vma);
1754 }
1755 #else
1756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1757 {
1758         return -ENOSYS;
1759 }
1760 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1761 {
1762         return -ENOSYS;
1763 }
1764 #endif /* CONFIG_MMU */
1765
1766 EXPORT_SYMBOL(generic_file_mmap);
1767 EXPORT_SYMBOL(generic_file_readonly_mmap);
1768
1769 static struct page *__read_cache_page(struct address_space *mapping,
1770                                 pgoff_t index,
1771                                 int (*filler)(void *,struct page*),
1772                                 void *data,
1773                                 gfp_t gfp)
1774 {
1775         struct page *page;
1776         int err;
1777 repeat:
1778         page = find_get_page(mapping, index);
1779         if (!page) {
1780                 page = __page_cache_alloc(gfp | __GFP_COLD);
1781                 if (!page)
1782                         return ERR_PTR(-ENOMEM);
1783                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1784                 if (unlikely(err)) {
1785                         page_cache_release(page);
1786                         if (err == -EEXIST)
1787                                 goto repeat;
1788                         /* Presumably ENOMEM for radix tree node */
1789                         return ERR_PTR(err);
1790                 }
1791                 err = filler(data, page);
1792                 if (err < 0) {
1793                         page_cache_release(page);
1794                         page = ERR_PTR(err);
1795                 }
1796         }
1797         return page;
1798 }
1799
1800 static struct page *do_read_cache_page(struct address_space *mapping,
1801                                 pgoff_t index,
1802                                 int (*filler)(void *,struct page*),
1803                                 void *data,
1804                                 gfp_t gfp)
1805
1806 {
1807         struct page *page;
1808         int err;
1809
1810 retry:
1811         page = __read_cache_page(mapping, index, filler, data, gfp);
1812         if (IS_ERR(page))
1813                 return page;
1814         if (PageUptodate(page))
1815                 goto out;
1816
1817         lock_page(page);
1818         if (!page->mapping) {
1819                 unlock_page(page);
1820                 page_cache_release(page);
1821                 goto retry;
1822         }
1823         if (PageUptodate(page)) {
1824                 unlock_page(page);
1825                 goto out;
1826         }
1827         err = filler(data, page);
1828         if (err < 0) {
1829                 page_cache_release(page);
1830                 return ERR_PTR(err);
1831         }
1832 out:
1833         mark_page_accessed(page);
1834         return page;
1835 }
1836
1837 /**
1838  * read_cache_page_async - read into page cache, fill it if needed
1839  * @mapping:    the page's address_space
1840  * @index:      the page index
1841  * @filler:     function to perform the read
1842  * @data:       destination for read data
1843  *
1844  * Same as read_cache_page, but don't wait for page to become unlocked
1845  * after submitting it to the filler.
1846  *
1847  * Read into the page cache. If a page already exists, and PageUptodate() is
1848  * not set, try to fill the page but don't wait for it to become unlocked.
1849  *
1850  * If the page does not get brought uptodate, return -EIO.
1851  */
1852 struct page *read_cache_page_async(struct address_space *mapping,
1853                                 pgoff_t index,
1854                                 int (*filler)(void *,struct page*),
1855                                 void *data)
1856 {
1857         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1858 }
1859 EXPORT_SYMBOL(read_cache_page_async);
1860
1861 static struct page *wait_on_page_read(struct page *page)
1862 {
1863         if (!IS_ERR(page)) {
1864                 wait_on_page_locked(page);
1865                 if (!PageUptodate(page)) {
1866                         page_cache_release(page);
1867                         page = ERR_PTR(-EIO);
1868                 }
1869         }
1870         return page;
1871 }
1872
1873 /**
1874  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1875  * @mapping:    the page's address_space
1876  * @index:      the page index
1877  * @gfp:        the page allocator flags to use if allocating
1878  *
1879  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1880  * any new page allocations done using the specified allocation flags. Note
1881  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1882  * expect to do this atomically or anything like that - but you can pass in
1883  * other page requirements.
1884  *
1885  * If the page does not get brought uptodate, return -EIO.
1886  */
1887 struct page *read_cache_page_gfp(struct address_space *mapping,
1888                                 pgoff_t index,
1889                                 gfp_t gfp)
1890 {
1891         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1892
1893         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1894 }
1895 EXPORT_SYMBOL(read_cache_page_gfp);
1896
1897 /**
1898  * read_cache_page - read into page cache, fill it if needed
1899  * @mapping:    the page's address_space
1900  * @index:      the page index
1901  * @filler:     function to perform the read
1902  * @data:       destination for read data
1903  *
1904  * Read into the page cache. If a page already exists, and PageUptodate() is
1905  * not set, try to fill the page then wait for it to become unlocked.
1906  *
1907  * If the page does not get brought uptodate, return -EIO.
1908  */
1909 struct page *read_cache_page(struct address_space *mapping,
1910                                 pgoff_t index,
1911                                 int (*filler)(void *,struct page*),
1912                                 void *data)
1913 {
1914         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1915 }
1916 EXPORT_SYMBOL(read_cache_page);
1917
1918 /*
1919  * The logic we want is
1920  *
1921  *      if suid or (sgid and xgrp)
1922  *              remove privs
1923  */
1924 int should_remove_suid(struct dentry *dentry)
1925 {
1926         mode_t mode = dentry->d_inode->i_mode;
1927         int kill = 0;
1928
1929         /* suid always must be killed */
1930         if (unlikely(mode & S_ISUID))
1931                 kill = ATTR_KILL_SUID;
1932
1933         /*
1934          * sgid without any exec bits is just a mandatory locking mark; leave
1935          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1936          */
1937         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1938                 kill |= ATTR_KILL_SGID;
1939
1940         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1941                 return kill;
1942
1943         return 0;
1944 }
1945 EXPORT_SYMBOL(should_remove_suid);
1946
1947 static int __remove_suid(struct dentry *dentry, int kill)
1948 {
1949         struct iattr newattrs;
1950
1951         newattrs.ia_valid = ATTR_FORCE | kill;
1952         return notify_change(dentry, &newattrs);
1953 }
1954
1955 int file_remove_suid(struct file *file)
1956 {
1957         struct dentry *dentry = file->f_path.dentry;
1958         int killsuid = should_remove_suid(dentry);
1959         int killpriv = security_inode_need_killpriv(dentry);
1960         int error = 0;
1961
1962         if (killpriv < 0)
1963                 return killpriv;
1964         if (killpriv)
1965                 error = security_inode_killpriv(dentry);
1966         if (!error && killsuid)
1967                 error = __remove_suid(dentry, killsuid);
1968
1969         return error;
1970 }
1971 EXPORT_SYMBOL(file_remove_suid);
1972
1973 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1974                         const struct iovec *iov, size_t base, size_t bytes)
1975 {
1976         size_t copied = 0, left = 0;
1977
1978         while (bytes) {
1979                 char __user *buf = iov->iov_base + base;
1980                 int copy = min(bytes, iov->iov_len - base);
1981
1982                 base = 0;
1983                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1984                 copied += copy;
1985                 bytes -= copy;
1986                 vaddr += copy;
1987                 iov++;
1988
1989                 if (unlikely(left))
1990                         break;
1991         }
1992         return copied - left;
1993 }
1994
1995 /*
1996  * Copy as much as we can into the page and return the number of bytes which
1997  * were successfully copied.  If a fault is encountered then return the number of
1998  * bytes which were copied.
1999  */
2000 size_t iov_iter_copy_from_user_atomic(struct page *page,
2001                 struct iov_iter *i, unsigned long offset, size_t bytes)
2002 {
2003         char *kaddr;
2004         size_t copied;
2005
2006         BUG_ON(!in_atomic());
2007         kaddr = kmap_atomic(page, KM_USER0);
2008         if (likely(i->nr_segs == 1)) {
2009                 int left;
2010                 char __user *buf = i->iov->iov_base + i->iov_offset;
2011                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2012                 copied = bytes - left;
2013         } else {
2014                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2015                                                 i->iov, i->iov_offset, bytes);
2016         }
2017         kunmap_atomic(kaddr, KM_USER0);
2018
2019         return copied;
2020 }
2021 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2022
2023 /*
2024  * This has the same sideeffects and return value as
2025  * iov_iter_copy_from_user_atomic().
2026  * The difference is that it attempts to resolve faults.
2027  * Page must not be locked.
2028  */
2029 size_t iov_iter_copy_from_user(struct page *page,
2030                 struct iov_iter *i, unsigned long offset, size_t bytes)
2031 {
2032         char *kaddr;
2033         size_t copied;
2034
2035         kaddr = kmap(page);
2036         if (likely(i->nr_segs == 1)) {
2037                 int left;
2038                 char __user *buf = i->iov->iov_base + i->iov_offset;
2039                 left = __copy_from_user(kaddr + offset, buf, bytes);
2040                 copied = bytes - left;
2041         } else {
2042                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2043                                                 i->iov, i->iov_offset, bytes);
2044         }
2045         kunmap(page);
2046         return copied;
2047 }
2048 EXPORT_SYMBOL(iov_iter_copy_from_user);
2049
2050 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2051 {
2052         BUG_ON(i->count < bytes);
2053
2054         if (likely(i->nr_segs == 1)) {
2055                 i->iov_offset += bytes;
2056                 i->count -= bytes;
2057         } else {
2058                 const struct iovec *iov = i->iov;
2059                 size_t base = i->iov_offset;
2060
2061                 /*
2062                  * The !iov->iov_len check ensures we skip over unlikely
2063                  * zero-length segments (without overruning the iovec).
2064                  */
2065                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2066                         int copy;
2067
2068                         copy = min(bytes, iov->iov_len - base);
2069                         BUG_ON(!i->count || i->count < copy);
2070                         i->count -= copy;
2071                         bytes -= copy;
2072                         base += copy;
2073                         if (iov->iov_len == base) {
2074                                 iov++;
2075                                 base = 0;
2076                         }
2077                 }
2078                 i->iov = iov;
2079                 i->iov_offset = base;
2080         }
2081 }
2082 EXPORT_SYMBOL(iov_iter_advance);
2083
2084 /*
2085  * Fault in the first iovec of the given iov_iter, to a maximum length
2086  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2087  * accessed (ie. because it is an invalid address).
2088  *
2089  * writev-intensive code may want this to prefault several iovecs -- that
2090  * would be possible (callers must not rely on the fact that _only_ the
2091  * first iovec will be faulted with the current implementation).
2092  */
2093 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2094 {
2095         char __user *buf = i->iov->iov_base + i->iov_offset;
2096         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2097         return fault_in_pages_readable(buf, bytes);
2098 }
2099 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2100
2101 /*
2102  * Return the count of just the current iov_iter segment.
2103  */
2104 size_t iov_iter_single_seg_count(struct iov_iter *i)
2105 {
2106         const struct iovec *iov = i->iov;
2107         if (i->nr_segs == 1)
2108                 return i->count;
2109         else
2110                 return min(i->count, iov->iov_len - i->iov_offset);
2111 }
2112 EXPORT_SYMBOL(iov_iter_single_seg_count);
2113
2114 /*
2115  * Performs necessary checks before doing a write
2116  *
2117  * Can adjust writing position or amount of bytes to write.
2118  * Returns appropriate error code that caller should return or
2119  * zero in case that write should be allowed.
2120  */
2121 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2122 {
2123         struct inode *inode = file->f_mapping->host;
2124         unsigned long limit = rlimit(RLIMIT_FSIZE);
2125
2126         if (unlikely(*pos < 0))
2127                 return -EINVAL;
2128
2129         if (!isblk) {
2130                 /* FIXME: this is for backwards compatibility with 2.4 */
2131                 if (file->f_flags & O_APPEND)
2132                         *pos = i_size_read(inode);
2133
2134                 if (limit != RLIM_INFINITY) {
2135                         if (*pos >= limit) {
2136                                 send_sig(SIGXFSZ, current, 0);
2137                                 return -EFBIG;
2138                         }
2139                         if (*count > limit - (typeof(limit))*pos) {
2140                                 *count = limit - (typeof(limit))*pos;
2141                         }
2142                 }
2143         }
2144
2145         /*
2146          * LFS rule
2147          */
2148         if (unlikely(*pos + *count > MAX_NON_LFS &&
2149                                 !(file->f_flags & O_LARGEFILE))) {
2150                 if (*pos >= MAX_NON_LFS) {
2151                         return -EFBIG;
2152                 }
2153                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2154                         *count = MAX_NON_LFS - (unsigned long)*pos;
2155                 }
2156         }
2157
2158         /*
2159          * Are we about to exceed the fs block limit ?
2160          *
2161          * If we have written data it becomes a short write.  If we have
2162          * exceeded without writing data we send a signal and return EFBIG.
2163          * Linus frestrict idea will clean these up nicely..
2164          */
2165         if (likely(!isblk)) {
2166                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2167                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2168                                 return -EFBIG;
2169                         }
2170                         /* zero-length writes at ->s_maxbytes are OK */
2171                 }
2172
2173                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2174                         *count = inode->i_sb->s_maxbytes - *pos;
2175         } else {
2176 #ifdef CONFIG_BLOCK
2177                 loff_t isize;
2178                 if (bdev_read_only(I_BDEV(inode)))
2179                         return -EPERM;
2180                 isize = i_size_read(inode);
2181                 if (*pos >= isize) {
2182                         if (*count || *pos > isize)
2183                                 return -ENOSPC;
2184                 }
2185
2186                 if (*pos + *count > isize)
2187                         *count = isize - *pos;
2188 #else
2189                 return -EPERM;
2190 #endif
2191         }
2192         return 0;
2193 }
2194 EXPORT_SYMBOL(generic_write_checks);
2195
2196 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2197                                 loff_t pos, unsigned len, unsigned flags,
2198                                 struct page **pagep, void **fsdata)
2199 {
2200         const struct address_space_operations *aops = mapping->a_ops;
2201
2202         return aops->write_begin(file, mapping, pos, len, flags,
2203                                                         pagep, fsdata);
2204 }
2205 EXPORT_SYMBOL(pagecache_write_begin);
2206
2207 int pagecache_write_end(struct file *file, struct address_space *mapping,
2208                                 loff_t pos, unsigned len, unsigned copied,
2209                                 struct page *page, void *fsdata)
2210 {
2211         const struct address_space_operations *aops = mapping->a_ops;
2212
2213         mark_page_accessed(page);
2214         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2215 }
2216 EXPORT_SYMBOL(pagecache_write_end);
2217
2218 ssize_t
2219 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2220                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2221                 size_t count, size_t ocount)
2222 {
2223         struct file     *file = iocb->ki_filp;
2224         struct address_space *mapping = file->f_mapping;
2225         struct inode    *inode = mapping->host;
2226         ssize_t         written;
2227         size_t          write_len;
2228         pgoff_t         end;
2229
2230         if (count != ocount)
2231                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2232
2233         write_len = iov_length(iov, *nr_segs);
2234         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2235
2236         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2237         if (written)
2238                 goto out;
2239
2240         /*
2241          * After a write we want buffered reads to be sure to go to disk to get
2242          * the new data.  We invalidate clean cached page from the region we're
2243          * about to write.  We do this *before* the write so that we can return
2244          * without clobbering -EIOCBQUEUED from ->direct_IO().
2245          */
2246         if (mapping->nrpages) {
2247                 written = invalidate_inode_pages2_range(mapping,
2248                                         pos >> PAGE_CACHE_SHIFT, end);
2249                 /*
2250                  * If a page can not be invalidated, return 0 to fall back
2251                  * to buffered write.
2252                  */
2253                 if (written) {
2254                         if (written == -EBUSY)
2255                                 return 0;
2256                         goto out;
2257                 }
2258         }
2259
2260         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2261
2262         /*
2263          * Finally, try again to invalidate clean pages which might have been
2264          * cached by non-direct readahead, or faulted in by get_user_pages()
2265          * if the source of the write was an mmap'ed region of the file
2266          * we're writing.  Either one is a pretty crazy thing to do,
2267          * so we don't support it 100%.  If this invalidation
2268          * fails, tough, the write still worked...
2269          */
2270         if (mapping->nrpages) {
2271                 invalidate_inode_pages2_range(mapping,
2272                                               pos >> PAGE_CACHE_SHIFT, end);
2273         }
2274
2275         if (written > 0) {
2276                 pos += written;
2277                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2278                         i_size_write(inode, pos);
2279                         mark_inode_dirty(inode);
2280                 }
2281                 *ppos = pos;
2282         }
2283 out:
2284         return written;
2285 }
2286 EXPORT_SYMBOL(generic_file_direct_write);
2287
2288 /*
2289  * Find or create a page at the given pagecache position. Return the locked
2290  * page. This function is specifically for buffered writes.
2291  */
2292 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2293                                         pgoff_t index, unsigned flags)
2294 {
2295         int status;
2296         struct page *page;
2297         gfp_t gfp_notmask = 0;
2298         if (flags & AOP_FLAG_NOFS)
2299                 gfp_notmask = __GFP_FS;
2300 repeat:
2301         page = find_lock_page(mapping, index);
2302         if (page)
2303                 return page;
2304
2305         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2306         if (!page)
2307                 return NULL;
2308         status = add_to_page_cache_lru(page, mapping, index,
2309                                                 GFP_KERNEL & ~gfp_notmask);
2310         if (unlikely(status)) {
2311                 page_cache_release(page);
2312                 if (status == -EEXIST)
2313                         goto repeat;
2314                 return NULL;
2315         }
2316         return page;
2317 }
2318 EXPORT_SYMBOL(grab_cache_page_write_begin);
2319
2320 static ssize_t generic_perform_write(struct file *file,
2321                                 struct iov_iter *i, loff_t pos)
2322 {
2323         struct address_space *mapping = file->f_mapping;
2324         const struct address_space_operations *a_ops = mapping->a_ops;
2325         long status = 0;
2326         ssize_t written = 0;
2327         unsigned int flags = 0;
2328
2329         /*
2330          * Copies from kernel address space cannot fail (NFSD is a big user).
2331          */
2332         if (segment_eq(get_fs(), KERNEL_DS))
2333                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2334
2335         do {
2336                 struct page *page;
2337                 unsigned long offset;   /* Offset into pagecache page */
2338                 unsigned long bytes;    /* Bytes to write to page */
2339                 size_t copied;          /* Bytes copied from user */
2340                 void *fsdata;
2341
2342                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2343                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2344                                                 iov_iter_count(i));
2345
2346 again:
2347
2348                 /*
2349                  * Bring in the user page that we will copy from _first_.
2350                  * Otherwise there's a nasty deadlock on copying from the
2351                  * same page as we're writing to, without it being marked
2352                  * up-to-date.
2353                  *
2354                  * Not only is this an optimisation, but it is also required
2355                  * to check that the address is actually valid, when atomic
2356                  * usercopies are used, below.
2357                  */
2358                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2359                         status = -EFAULT;
2360                         break;
2361                 }
2362
2363                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2364                                                 &page, &fsdata);
2365                 if (unlikely(status))
2366                         break;
2367
2368                 if (mapping_writably_mapped(mapping))
2369                         flush_dcache_page(page);
2370
2371                 pagefault_disable();
2372                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2373                 pagefault_enable();
2374                 flush_dcache_page(page);
2375
2376                 mark_page_accessed(page);
2377                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2378                                                 page, fsdata);
2379                 if (unlikely(status < 0))
2380                         break;
2381                 copied = status;
2382
2383                 cond_resched();
2384
2385                 iov_iter_advance(i, copied);
2386                 if (unlikely(copied == 0)) {
2387                         /*
2388                          * If we were unable to copy any data at all, we must
2389                          * fall back to a single segment length write.
2390                          *
2391                          * If we didn't fallback here, we could livelock
2392                          * because not all segments in the iov can be copied at
2393                          * once without a pagefault.
2394                          */
2395                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2396                                                 iov_iter_single_seg_count(i));
2397                         goto again;
2398                 }
2399                 pos += copied;
2400                 written += copied;
2401
2402                 balance_dirty_pages_ratelimited(mapping);
2403
2404         } while (iov_iter_count(i));
2405
2406         return written ? written : status;
2407 }
2408
2409 ssize_t
2410 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2411                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2412                 size_t count, ssize_t written)
2413 {
2414         struct file *file = iocb->ki_filp;
2415         ssize_t status;
2416         struct iov_iter i;
2417
2418         iov_iter_init(&i, iov, nr_segs, count, written);
2419         status = generic_perform_write(file, &i, pos);
2420
2421         if (likely(status >= 0)) {
2422                 written += status;
2423                 *ppos = pos + status;
2424         }
2425         
2426         return written ? written : status;
2427 }
2428 EXPORT_SYMBOL(generic_file_buffered_write);
2429
2430 /**
2431  * __generic_file_aio_write - write data to a file
2432  * @iocb:       IO state structure (file, offset, etc.)
2433  * @iov:        vector with data to write
2434  * @nr_segs:    number of segments in the vector
2435  * @ppos:       position where to write
2436  *
2437  * This function does all the work needed for actually writing data to a
2438  * file. It does all basic checks, removes SUID from the file, updates
2439  * modification times and calls proper subroutines depending on whether we
2440  * do direct IO or a standard buffered write.
2441  *
2442  * It expects i_mutex to be grabbed unless we work on a block device or similar
2443  * object which does not need locking at all.
2444  *
2445  * This function does *not* take care of syncing data in case of O_SYNC write.
2446  * A caller has to handle it. This is mainly due to the fact that we want to
2447  * avoid syncing under i_mutex.
2448  */
2449 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2450                                  unsigned long nr_segs, loff_t *ppos)
2451 {
2452         struct file *file = iocb->ki_filp;
2453         struct address_space * mapping = file->f_mapping;
2454         size_t ocount;          /* original count */
2455         size_t count;           /* after file limit checks */
2456         struct inode    *inode = mapping->host;
2457         loff_t          pos;
2458         ssize_t         written;
2459         ssize_t         err;
2460
2461         ocount = 0;
2462         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2463         if (err)
2464                 return err;
2465
2466         count = ocount;
2467         pos = *ppos;
2468
2469         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2470
2471         /* We can write back this queue in page reclaim */
2472         current->backing_dev_info = mapping->backing_dev_info;
2473         written = 0;
2474
2475         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2476         if (err)
2477                 goto out;
2478
2479         if (count == 0)
2480                 goto out;
2481
2482         err = file_remove_suid(file);
2483         if (err)
2484                 goto out;
2485
2486         file_update_time(file);
2487
2488         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2489         if (unlikely(file->f_flags & O_DIRECT)) {
2490                 loff_t endbyte;
2491                 ssize_t written_buffered;
2492
2493                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2494                                                         ppos, count, ocount);
2495                 if (written < 0 || written == count)
2496                         goto out;
2497                 /*
2498                  * direct-io write to a hole: fall through to buffered I/O
2499                  * for completing the rest of the request.
2500                  */
2501                 pos += written;
2502                 count -= written;
2503                 written_buffered = generic_file_buffered_write(iocb, iov,
2504                                                 nr_segs, pos, ppos, count,
2505                                                 written);
2506                 /*
2507                  * If generic_file_buffered_write() retuned a synchronous error
2508                  * then we want to return the number of bytes which were
2509                  * direct-written, or the error code if that was zero.  Note
2510                  * that this differs from normal direct-io semantics, which
2511                  * will return -EFOO even if some bytes were written.
2512                  */
2513                 if (written_buffered < 0) {
2514                         err = written_buffered;
2515                         goto out;
2516                 }
2517
2518                 /*
2519                  * We need to ensure that the page cache pages are written to
2520                  * disk and invalidated to preserve the expected O_DIRECT
2521                  * semantics.
2522                  */
2523                 endbyte = pos + written_buffered - written - 1;
2524                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2525                 if (err == 0) {
2526                         written = written_buffered;
2527                         invalidate_mapping_pages(mapping,
2528                                                  pos >> PAGE_CACHE_SHIFT,
2529                                                  endbyte >> PAGE_CACHE_SHIFT);
2530                 } else {
2531                         /*
2532                          * We don't know how much we wrote, so just return
2533                          * the number of bytes which were direct-written
2534                          */
2535                 }
2536         } else {
2537                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2538                                 pos, ppos, count, written);
2539         }
2540 out:
2541         current->backing_dev_info = NULL;
2542         return written ? written : err;
2543 }
2544 EXPORT_SYMBOL(__generic_file_aio_write);
2545
2546 /**
2547  * generic_file_aio_write - write data to a file
2548  * @iocb:       IO state structure
2549  * @iov:        vector with data to write
2550  * @nr_segs:    number of segments in the vector
2551  * @pos:        position in file where to write
2552  *
2553  * This is a wrapper around __generic_file_aio_write() to be used by most
2554  * filesystems. It takes care of syncing the file in case of O_SYNC file
2555  * and acquires i_mutex as needed.
2556  */
2557 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2558                 unsigned long nr_segs, loff_t pos)
2559 {
2560         struct file *file = iocb->ki_filp;
2561         struct inode *inode = file->f_mapping->host;
2562         ssize_t ret;
2563
2564         BUG_ON(iocb->ki_pos != pos);
2565
2566         mutex_lock(&inode->i_mutex);
2567         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2568         mutex_unlock(&inode->i_mutex);
2569
2570         if (ret > 0 || ret == -EIOCBQUEUED) {
2571                 ssize_t err;
2572
2573                 err = generic_write_sync(file, pos, ret);
2574                 if (err < 0 && ret > 0)
2575                         ret = err;
2576         }
2577         return ret;
2578 }
2579 EXPORT_SYMBOL(generic_file_aio_write);
2580
2581 /**
2582  * try_to_release_page() - release old fs-specific metadata on a page
2583  *
2584  * @page: the page which the kernel is trying to free
2585  * @gfp_mask: memory allocation flags (and I/O mode)
2586  *
2587  * The address_space is to try to release any data against the page
2588  * (presumably at page->private).  If the release was successful, return `1'.
2589  * Otherwise return zero.
2590  *
2591  * This may also be called if PG_fscache is set on a page, indicating that the
2592  * page is known to the local caching routines.
2593  *
2594  * The @gfp_mask argument specifies whether I/O may be performed to release
2595  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2596  *
2597  */
2598 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2599 {
2600         struct address_space * const mapping = page->mapping;
2601
2602         BUG_ON(!PageLocked(page));
2603         if (PageWriteback(page))
2604                 return 0;
2605
2606         if (mapping && mapping->a_ops->releasepage)
2607                 return mapping->a_ops->releasepage(page, gfp_mask);
2608         return try_to_free_buffers(page);
2609 }
2610
2611 EXPORT_SYMBOL(try_to_release_page);