]> Pileus Git - ~andy/linux/blob - mm/filemap.c
mm: introduce delete_from_page_cache()
[~andy/linux] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock               (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock                 (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (zap_pte_range->set_page_dirty)
103  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  (code doesn't rely on that order, so you could switch it around)
106  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107  *    ->i_mmap_lock
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123         if (PageSwapBacked(page))
124                 __dec_zone_page_state(page, NR_SHMEM);
125         BUG_ON(page_mapped(page));
126
127         /*
128          * Some filesystems seem to re-dirty the page even after
129          * the VM has canceled the dirty bit (eg ext3 journaling).
130          *
131          * Fix it up by doing a final dirty accounting check after
132          * having removed the page entirely.
133          */
134         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135                 dec_zone_page_state(page, NR_FILE_DIRTY);
136                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137         }
138 }
139
140 void remove_from_page_cache(struct page *page)
141 {
142         struct address_space *mapping = page->mapping;
143         void (*freepage)(struct page *);
144
145         BUG_ON(!PageLocked(page));
146
147         freepage = mapping->a_ops->freepage;
148         spin_lock_irq(&mapping->tree_lock);
149         __remove_from_page_cache(page);
150         spin_unlock_irq(&mapping->tree_lock);
151         mem_cgroup_uncharge_cache_page(page);
152
153         if (freepage)
154                 freepage(page);
155 }
156 EXPORT_SYMBOL(remove_from_page_cache);
157
158 /**
159  * delete_from_page_cache - delete page from page cache
160  * @page: the page which the kernel is trying to remove from page cache
161  *
162  * This must be called only on pages that have
163  * been verified to be in the page cache and locked.
164  * It will never put the page into the free list,
165  * the caller has a reference on the page.
166  */
167 void delete_from_page_cache(struct page *page)
168 {
169         remove_from_page_cache(page);
170         page_cache_release(page);
171 }
172 EXPORT_SYMBOL(delete_from_page_cache);
173
174 static int sync_page(void *word)
175 {
176         struct address_space *mapping;
177         struct page *page;
178
179         page = container_of((unsigned long *)word, struct page, flags);
180
181         /*
182          * page_mapping() is being called without PG_locked held.
183          * Some knowledge of the state and use of the page is used to
184          * reduce the requirements down to a memory barrier.
185          * The danger here is of a stale page_mapping() return value
186          * indicating a struct address_space different from the one it's
187          * associated with when it is associated with one.
188          * After smp_mb(), it's either the correct page_mapping() for
189          * the page, or an old page_mapping() and the page's own
190          * page_mapping() has gone NULL.
191          * The ->sync_page() address_space operation must tolerate
192          * page_mapping() going NULL. By an amazing coincidence,
193          * this comes about because none of the users of the page
194          * in the ->sync_page() methods make essential use of the
195          * page_mapping(), merely passing the page down to the backing
196          * device's unplug functions when it's non-NULL, which in turn
197          * ignore it for all cases but swap, where only page_private(page) is
198          * of interest. When page_mapping() does go NULL, the entire
199          * call stack gracefully ignores the page and returns.
200          * -- wli
201          */
202         smp_mb();
203         mapping = page_mapping(page);
204         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
205                 mapping->a_ops->sync_page(page);
206         io_schedule();
207         return 0;
208 }
209
210 static int sync_page_killable(void *word)
211 {
212         sync_page(word);
213         return fatal_signal_pending(current) ? -EINTR : 0;
214 }
215
216 /**
217  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
218  * @mapping:    address space structure to write
219  * @start:      offset in bytes where the range starts
220  * @end:        offset in bytes where the range ends (inclusive)
221  * @sync_mode:  enable synchronous operation
222  *
223  * Start writeback against all of a mapping's dirty pages that lie
224  * within the byte offsets <start, end> inclusive.
225  *
226  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
227  * opposed to a regular memory cleansing writeback.  The difference between
228  * these two operations is that if a dirty page/buffer is encountered, it must
229  * be waited upon, and not just skipped over.
230  */
231 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
232                                 loff_t end, int sync_mode)
233 {
234         int ret;
235         struct writeback_control wbc = {
236                 .sync_mode = sync_mode,
237                 .nr_to_write = LONG_MAX,
238                 .range_start = start,
239                 .range_end = end,
240         };
241
242         if (!mapping_cap_writeback_dirty(mapping))
243                 return 0;
244
245         ret = do_writepages(mapping, &wbc);
246         return ret;
247 }
248
249 static inline int __filemap_fdatawrite(struct address_space *mapping,
250         int sync_mode)
251 {
252         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
253 }
254
255 int filemap_fdatawrite(struct address_space *mapping)
256 {
257         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
258 }
259 EXPORT_SYMBOL(filemap_fdatawrite);
260
261 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
262                                 loff_t end)
263 {
264         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
265 }
266 EXPORT_SYMBOL(filemap_fdatawrite_range);
267
268 /**
269  * filemap_flush - mostly a non-blocking flush
270  * @mapping:    target address_space
271  *
272  * This is a mostly non-blocking flush.  Not suitable for data-integrity
273  * purposes - I/O may not be started against all dirty pages.
274  */
275 int filemap_flush(struct address_space *mapping)
276 {
277         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
278 }
279 EXPORT_SYMBOL(filemap_flush);
280
281 /**
282  * filemap_fdatawait_range - wait for writeback to complete
283  * @mapping:            address space structure to wait for
284  * @start_byte:         offset in bytes where the range starts
285  * @end_byte:           offset in bytes where the range ends (inclusive)
286  *
287  * Walk the list of under-writeback pages of the given address space
288  * in the given range and wait for all of them.
289  */
290 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
291                             loff_t end_byte)
292 {
293         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
294         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
295         struct pagevec pvec;
296         int nr_pages;
297         int ret = 0;
298
299         if (end_byte < start_byte)
300                 return 0;
301
302         pagevec_init(&pvec, 0);
303         while ((index <= end) &&
304                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
305                         PAGECACHE_TAG_WRITEBACK,
306                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
307                 unsigned i;
308
309                 for (i = 0; i < nr_pages; i++) {
310                         struct page *page = pvec.pages[i];
311
312                         /* until radix tree lookup accepts end_index */
313                         if (page->index > end)
314                                 continue;
315
316                         wait_on_page_writeback(page);
317                         if (TestClearPageError(page))
318                                 ret = -EIO;
319                 }
320                 pagevec_release(&pvec);
321                 cond_resched();
322         }
323
324         /* Check for outstanding write errors */
325         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
326                 ret = -ENOSPC;
327         if (test_and_clear_bit(AS_EIO, &mapping->flags))
328                 ret = -EIO;
329
330         return ret;
331 }
332 EXPORT_SYMBOL(filemap_fdatawait_range);
333
334 /**
335  * filemap_fdatawait - wait for all under-writeback pages to complete
336  * @mapping: address space structure to wait for
337  *
338  * Walk the list of under-writeback pages of the given address space
339  * and wait for all of them.
340  */
341 int filemap_fdatawait(struct address_space *mapping)
342 {
343         loff_t i_size = i_size_read(mapping->host);
344
345         if (i_size == 0)
346                 return 0;
347
348         return filemap_fdatawait_range(mapping, 0, i_size - 1);
349 }
350 EXPORT_SYMBOL(filemap_fdatawait);
351
352 int filemap_write_and_wait(struct address_space *mapping)
353 {
354         int err = 0;
355
356         if (mapping->nrpages) {
357                 err = filemap_fdatawrite(mapping);
358                 /*
359                  * Even if the above returned error, the pages may be
360                  * written partially (e.g. -ENOSPC), so we wait for it.
361                  * But the -EIO is special case, it may indicate the worst
362                  * thing (e.g. bug) happened, so we avoid waiting for it.
363                  */
364                 if (err != -EIO) {
365                         int err2 = filemap_fdatawait(mapping);
366                         if (!err)
367                                 err = err2;
368                 }
369         }
370         return err;
371 }
372 EXPORT_SYMBOL(filemap_write_and_wait);
373
374 /**
375  * filemap_write_and_wait_range - write out & wait on a file range
376  * @mapping:    the address_space for the pages
377  * @lstart:     offset in bytes where the range starts
378  * @lend:       offset in bytes where the range ends (inclusive)
379  *
380  * Write out and wait upon file offsets lstart->lend, inclusive.
381  *
382  * Note that `lend' is inclusive (describes the last byte to be written) so
383  * that this function can be used to write to the very end-of-file (end = -1).
384  */
385 int filemap_write_and_wait_range(struct address_space *mapping,
386                                  loff_t lstart, loff_t lend)
387 {
388         int err = 0;
389
390         if (mapping->nrpages) {
391                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
392                                                  WB_SYNC_ALL);
393                 /* See comment of filemap_write_and_wait() */
394                 if (err != -EIO) {
395                         int err2 = filemap_fdatawait_range(mapping,
396                                                 lstart, lend);
397                         if (!err)
398                                 err = err2;
399                 }
400         }
401         return err;
402 }
403 EXPORT_SYMBOL(filemap_write_and_wait_range);
404
405 /**
406  * replace_page_cache_page - replace a pagecache page with a new one
407  * @old:        page to be replaced
408  * @new:        page to replace with
409  * @gfp_mask:   allocation mode
410  *
411  * This function replaces a page in the pagecache with a new one.  On
412  * success it acquires the pagecache reference for the new page and
413  * drops it for the old page.  Both the old and new pages must be
414  * locked.  This function does not add the new page to the LRU, the
415  * caller must do that.
416  *
417  * The remove + add is atomic.  The only way this function can fail is
418  * memory allocation failure.
419  */
420 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
421 {
422         int error;
423         struct mem_cgroup *memcg = NULL;
424
425         VM_BUG_ON(!PageLocked(old));
426         VM_BUG_ON(!PageLocked(new));
427         VM_BUG_ON(new->mapping);
428
429         /*
430          * This is not page migration, but prepare_migration and
431          * end_migration does enough work for charge replacement.
432          *
433          * In the longer term we probably want a specialized function
434          * for moving the charge from old to new in a more efficient
435          * manner.
436          */
437         error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
438         if (error)
439                 return error;
440
441         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442         if (!error) {
443                 struct address_space *mapping = old->mapping;
444                 void (*freepage)(struct page *);
445
446                 pgoff_t offset = old->index;
447                 freepage = mapping->a_ops->freepage;
448
449                 page_cache_get(new);
450                 new->mapping = mapping;
451                 new->index = offset;
452
453                 spin_lock_irq(&mapping->tree_lock);
454                 __remove_from_page_cache(old);
455                 error = radix_tree_insert(&mapping->page_tree, offset, new);
456                 BUG_ON(error);
457                 mapping->nrpages++;
458                 __inc_zone_page_state(new, NR_FILE_PAGES);
459                 if (PageSwapBacked(new))
460                         __inc_zone_page_state(new, NR_SHMEM);
461                 spin_unlock_irq(&mapping->tree_lock);
462                 radix_tree_preload_end();
463                 if (freepage)
464                         freepage(old);
465                 page_cache_release(old);
466                 mem_cgroup_end_migration(memcg, old, new, true);
467         } else {
468                 mem_cgroup_end_migration(memcg, old, new, false);
469         }
470
471         return error;
472 }
473 EXPORT_SYMBOL_GPL(replace_page_cache_page);
474
475 /**
476  * add_to_page_cache_locked - add a locked page to the pagecache
477  * @page:       page to add
478  * @mapping:    the page's address_space
479  * @offset:     page index
480  * @gfp_mask:   page allocation mode
481  *
482  * This function is used to add a page to the pagecache. It must be locked.
483  * This function does not add the page to the LRU.  The caller must do that.
484  */
485 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
486                 pgoff_t offset, gfp_t gfp_mask)
487 {
488         int error;
489
490         VM_BUG_ON(!PageLocked(page));
491
492         error = mem_cgroup_cache_charge(page, current->mm,
493                                         gfp_mask & GFP_RECLAIM_MASK);
494         if (error)
495                 goto out;
496
497         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
498         if (error == 0) {
499                 page_cache_get(page);
500                 page->mapping = mapping;
501                 page->index = offset;
502
503                 spin_lock_irq(&mapping->tree_lock);
504                 error = radix_tree_insert(&mapping->page_tree, offset, page);
505                 if (likely(!error)) {
506                         mapping->nrpages++;
507                         __inc_zone_page_state(page, NR_FILE_PAGES);
508                         if (PageSwapBacked(page))
509                                 __inc_zone_page_state(page, NR_SHMEM);
510                         spin_unlock_irq(&mapping->tree_lock);
511                 } else {
512                         page->mapping = NULL;
513                         spin_unlock_irq(&mapping->tree_lock);
514                         mem_cgroup_uncharge_cache_page(page);
515                         page_cache_release(page);
516                 }
517                 radix_tree_preload_end();
518         } else
519                 mem_cgroup_uncharge_cache_page(page);
520 out:
521         return error;
522 }
523 EXPORT_SYMBOL(add_to_page_cache_locked);
524
525 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
526                                 pgoff_t offset, gfp_t gfp_mask)
527 {
528         int ret;
529
530         /*
531          * Splice_read and readahead add shmem/tmpfs pages into the page cache
532          * before shmem_readpage has a chance to mark them as SwapBacked: they
533          * need to go on the anon lru below, and mem_cgroup_cache_charge
534          * (called in add_to_page_cache) needs to know where they're going too.
535          */
536         if (mapping_cap_swap_backed(mapping))
537                 SetPageSwapBacked(page);
538
539         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
540         if (ret == 0) {
541                 if (page_is_file_cache(page))
542                         lru_cache_add_file(page);
543                 else
544                         lru_cache_add_anon(page);
545         }
546         return ret;
547 }
548 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
549
550 #ifdef CONFIG_NUMA
551 struct page *__page_cache_alloc(gfp_t gfp)
552 {
553         int n;
554         struct page *page;
555
556         if (cpuset_do_page_mem_spread()) {
557                 get_mems_allowed();
558                 n = cpuset_mem_spread_node();
559                 page = alloc_pages_exact_node(n, gfp, 0);
560                 put_mems_allowed();
561                 return page;
562         }
563         return alloc_pages(gfp, 0);
564 }
565 EXPORT_SYMBOL(__page_cache_alloc);
566 #endif
567
568 static int __sleep_on_page_lock(void *word)
569 {
570         io_schedule();
571         return 0;
572 }
573
574 /*
575  * In order to wait for pages to become available there must be
576  * waitqueues associated with pages. By using a hash table of
577  * waitqueues where the bucket discipline is to maintain all
578  * waiters on the same queue and wake all when any of the pages
579  * become available, and for the woken contexts to check to be
580  * sure the appropriate page became available, this saves space
581  * at a cost of "thundering herd" phenomena during rare hash
582  * collisions.
583  */
584 static wait_queue_head_t *page_waitqueue(struct page *page)
585 {
586         const struct zone *zone = page_zone(page);
587
588         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
589 }
590
591 static inline void wake_up_page(struct page *page, int bit)
592 {
593         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
594 }
595
596 void wait_on_page_bit(struct page *page, int bit_nr)
597 {
598         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
599
600         if (test_bit(bit_nr, &page->flags))
601                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
602                                                         TASK_UNINTERRUPTIBLE);
603 }
604 EXPORT_SYMBOL(wait_on_page_bit);
605
606 /**
607  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
608  * @page: Page defining the wait queue of interest
609  * @waiter: Waiter to add to the queue
610  *
611  * Add an arbitrary @waiter to the wait queue for the nominated @page.
612  */
613 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
614 {
615         wait_queue_head_t *q = page_waitqueue(page);
616         unsigned long flags;
617
618         spin_lock_irqsave(&q->lock, flags);
619         __add_wait_queue(q, waiter);
620         spin_unlock_irqrestore(&q->lock, flags);
621 }
622 EXPORT_SYMBOL_GPL(add_page_wait_queue);
623
624 /**
625  * unlock_page - unlock a locked page
626  * @page: the page
627  *
628  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
629  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
630  * mechananism between PageLocked pages and PageWriteback pages is shared.
631  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
632  *
633  * The mb is necessary to enforce ordering between the clear_bit and the read
634  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
635  */
636 void unlock_page(struct page *page)
637 {
638         VM_BUG_ON(!PageLocked(page));
639         clear_bit_unlock(PG_locked, &page->flags);
640         smp_mb__after_clear_bit();
641         wake_up_page(page, PG_locked);
642 }
643 EXPORT_SYMBOL(unlock_page);
644
645 /**
646  * end_page_writeback - end writeback against a page
647  * @page: the page
648  */
649 void end_page_writeback(struct page *page)
650 {
651         if (TestClearPageReclaim(page))
652                 rotate_reclaimable_page(page);
653
654         if (!test_clear_page_writeback(page))
655                 BUG();
656
657         smp_mb__after_clear_bit();
658         wake_up_page(page, PG_writeback);
659 }
660 EXPORT_SYMBOL(end_page_writeback);
661
662 /**
663  * __lock_page - get a lock on the page, assuming we need to sleep to get it
664  * @page: the page to lock
665  *
666  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
667  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
668  * chances are that on the second loop, the block layer's plug list is empty,
669  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
670  */
671 void __lock_page(struct page *page)
672 {
673         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
674
675         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
676                                                         TASK_UNINTERRUPTIBLE);
677 }
678 EXPORT_SYMBOL(__lock_page);
679
680 int __lock_page_killable(struct page *page)
681 {
682         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
683
684         return __wait_on_bit_lock(page_waitqueue(page), &wait,
685                                         sync_page_killable, TASK_KILLABLE);
686 }
687 EXPORT_SYMBOL_GPL(__lock_page_killable);
688
689 /**
690  * __lock_page_nosync - get a lock on the page, without calling sync_page()
691  * @page: the page to lock
692  *
693  * Variant of lock_page that does not require the caller to hold a reference
694  * on the page's mapping.
695  */
696 void __lock_page_nosync(struct page *page)
697 {
698         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
699         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
700                                                         TASK_UNINTERRUPTIBLE);
701 }
702
703 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
704                          unsigned int flags)
705 {
706         if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
707                 __lock_page(page);
708                 return 1;
709         } else {
710                 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
711                         up_read(&mm->mmap_sem);
712                         wait_on_page_locked(page);
713                 }
714                 return 0;
715         }
716 }
717
718 /**
719  * find_get_page - find and get a page reference
720  * @mapping: the address_space to search
721  * @offset: the page index
722  *
723  * Is there a pagecache struct page at the given (mapping, offset) tuple?
724  * If yes, increment its refcount and return it; if no, return NULL.
725  */
726 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
727 {
728         void **pagep;
729         struct page *page;
730
731         rcu_read_lock();
732 repeat:
733         page = NULL;
734         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
735         if (pagep) {
736                 page = radix_tree_deref_slot(pagep);
737                 if (unlikely(!page))
738                         goto out;
739                 if (radix_tree_deref_retry(page))
740                         goto repeat;
741
742                 if (!page_cache_get_speculative(page))
743                         goto repeat;
744
745                 /*
746                  * Has the page moved?
747                  * This is part of the lockless pagecache protocol. See
748                  * include/linux/pagemap.h for details.
749                  */
750                 if (unlikely(page != *pagep)) {
751                         page_cache_release(page);
752                         goto repeat;
753                 }
754         }
755 out:
756         rcu_read_unlock();
757
758         return page;
759 }
760 EXPORT_SYMBOL(find_get_page);
761
762 /**
763  * find_lock_page - locate, pin and lock a pagecache page
764  * @mapping: the address_space to search
765  * @offset: the page index
766  *
767  * Locates the desired pagecache page, locks it, increments its reference
768  * count and returns its address.
769  *
770  * Returns zero if the page was not present. find_lock_page() may sleep.
771  */
772 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
773 {
774         struct page *page;
775
776 repeat:
777         page = find_get_page(mapping, offset);
778         if (page) {
779                 lock_page(page);
780                 /* Has the page been truncated? */
781                 if (unlikely(page->mapping != mapping)) {
782                         unlock_page(page);
783                         page_cache_release(page);
784                         goto repeat;
785                 }
786                 VM_BUG_ON(page->index != offset);
787         }
788         return page;
789 }
790 EXPORT_SYMBOL(find_lock_page);
791
792 /**
793  * find_or_create_page - locate or add a pagecache page
794  * @mapping: the page's address_space
795  * @index: the page's index into the mapping
796  * @gfp_mask: page allocation mode
797  *
798  * Locates a page in the pagecache.  If the page is not present, a new page
799  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
800  * LRU list.  The returned page is locked and has its reference count
801  * incremented.
802  *
803  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
804  * allocation!
805  *
806  * find_or_create_page() returns the desired page's address, or zero on
807  * memory exhaustion.
808  */
809 struct page *find_or_create_page(struct address_space *mapping,
810                 pgoff_t index, gfp_t gfp_mask)
811 {
812         struct page *page;
813         int err;
814 repeat:
815         page = find_lock_page(mapping, index);
816         if (!page) {
817                 page = __page_cache_alloc(gfp_mask);
818                 if (!page)
819                         return NULL;
820                 /*
821                  * We want a regular kernel memory (not highmem or DMA etc)
822                  * allocation for the radix tree nodes, but we need to honour
823                  * the context-specific requirements the caller has asked for.
824                  * GFP_RECLAIM_MASK collects those requirements.
825                  */
826                 err = add_to_page_cache_lru(page, mapping, index,
827                         (gfp_mask & GFP_RECLAIM_MASK));
828                 if (unlikely(err)) {
829                         page_cache_release(page);
830                         page = NULL;
831                         if (err == -EEXIST)
832                                 goto repeat;
833                 }
834         }
835         return page;
836 }
837 EXPORT_SYMBOL(find_or_create_page);
838
839 /**
840  * find_get_pages - gang pagecache lookup
841  * @mapping:    The address_space to search
842  * @start:      The starting page index
843  * @nr_pages:   The maximum number of pages
844  * @pages:      Where the resulting pages are placed
845  *
846  * find_get_pages() will search for and return a group of up to
847  * @nr_pages pages in the mapping.  The pages are placed at @pages.
848  * find_get_pages() takes a reference against the returned pages.
849  *
850  * The search returns a group of mapping-contiguous pages with ascending
851  * indexes.  There may be holes in the indices due to not-present pages.
852  *
853  * find_get_pages() returns the number of pages which were found.
854  */
855 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
856                             unsigned int nr_pages, struct page **pages)
857 {
858         unsigned int i;
859         unsigned int ret;
860         unsigned int nr_found;
861
862         rcu_read_lock();
863 restart:
864         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
865                                 (void ***)pages, start, nr_pages);
866         ret = 0;
867         for (i = 0; i < nr_found; i++) {
868                 struct page *page;
869 repeat:
870                 page = radix_tree_deref_slot((void **)pages[i]);
871                 if (unlikely(!page))
872                         continue;
873                 if (radix_tree_deref_retry(page)) {
874                         if (ret)
875                                 start = pages[ret-1]->index;
876                         goto restart;
877                 }
878
879                 if (!page_cache_get_speculative(page))
880                         goto repeat;
881
882                 /* Has the page moved? */
883                 if (unlikely(page != *((void **)pages[i]))) {
884                         page_cache_release(page);
885                         goto repeat;
886                 }
887
888                 pages[ret] = page;
889                 ret++;
890         }
891         rcu_read_unlock();
892         return ret;
893 }
894
895 /**
896  * find_get_pages_contig - gang contiguous pagecache lookup
897  * @mapping:    The address_space to search
898  * @index:      The starting page index
899  * @nr_pages:   The maximum number of pages
900  * @pages:      Where the resulting pages are placed
901  *
902  * find_get_pages_contig() works exactly like find_get_pages(), except
903  * that the returned number of pages are guaranteed to be contiguous.
904  *
905  * find_get_pages_contig() returns the number of pages which were found.
906  */
907 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
908                                unsigned int nr_pages, struct page **pages)
909 {
910         unsigned int i;
911         unsigned int ret;
912         unsigned int nr_found;
913
914         rcu_read_lock();
915 restart:
916         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
917                                 (void ***)pages, index, nr_pages);
918         ret = 0;
919         for (i = 0; i < nr_found; i++) {
920                 struct page *page;
921 repeat:
922                 page = radix_tree_deref_slot((void **)pages[i]);
923                 if (unlikely(!page))
924                         continue;
925                 if (radix_tree_deref_retry(page))
926                         goto restart;
927
928                 if (!page_cache_get_speculative(page))
929                         goto repeat;
930
931                 /* Has the page moved? */
932                 if (unlikely(page != *((void **)pages[i]))) {
933                         page_cache_release(page);
934                         goto repeat;
935                 }
936
937                 /*
938                  * must check mapping and index after taking the ref.
939                  * otherwise we can get both false positives and false
940                  * negatives, which is just confusing to the caller.
941                  */
942                 if (page->mapping == NULL || page->index != index) {
943                         page_cache_release(page);
944                         break;
945                 }
946
947                 pages[ret] = page;
948                 ret++;
949                 index++;
950         }
951         rcu_read_unlock();
952         return ret;
953 }
954 EXPORT_SYMBOL(find_get_pages_contig);
955
956 /**
957  * find_get_pages_tag - find and return pages that match @tag
958  * @mapping:    the address_space to search
959  * @index:      the starting page index
960  * @tag:        the tag index
961  * @nr_pages:   the maximum number of pages
962  * @pages:      where the resulting pages are placed
963  *
964  * Like find_get_pages, except we only return pages which are tagged with
965  * @tag.   We update @index to index the next page for the traversal.
966  */
967 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
968                         int tag, unsigned int nr_pages, struct page **pages)
969 {
970         unsigned int i;
971         unsigned int ret;
972         unsigned int nr_found;
973
974         rcu_read_lock();
975 restart:
976         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
977                                 (void ***)pages, *index, nr_pages, tag);
978         ret = 0;
979         for (i = 0; i < nr_found; i++) {
980                 struct page *page;
981 repeat:
982                 page = radix_tree_deref_slot((void **)pages[i]);
983                 if (unlikely(!page))
984                         continue;
985                 if (radix_tree_deref_retry(page))
986                         goto restart;
987
988                 if (!page_cache_get_speculative(page))
989                         goto repeat;
990
991                 /* Has the page moved? */
992                 if (unlikely(page != *((void **)pages[i]))) {
993                         page_cache_release(page);
994                         goto repeat;
995                 }
996
997                 pages[ret] = page;
998                 ret++;
999         }
1000         rcu_read_unlock();
1001
1002         if (ret)
1003                 *index = pages[ret - 1]->index + 1;
1004
1005         return ret;
1006 }
1007 EXPORT_SYMBOL(find_get_pages_tag);
1008
1009 /**
1010  * grab_cache_page_nowait - returns locked page at given index in given cache
1011  * @mapping: target address_space
1012  * @index: the page index
1013  *
1014  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1015  * This is intended for speculative data generators, where the data can
1016  * be regenerated if the page couldn't be grabbed.  This routine should
1017  * be safe to call while holding the lock for another page.
1018  *
1019  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1020  * and deadlock against the caller's locked page.
1021  */
1022 struct page *
1023 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1024 {
1025         struct page *page = find_get_page(mapping, index);
1026
1027         if (page) {
1028                 if (trylock_page(page))
1029                         return page;
1030                 page_cache_release(page);
1031                 return NULL;
1032         }
1033         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1034         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1035                 page_cache_release(page);
1036                 page = NULL;
1037         }
1038         return page;
1039 }
1040 EXPORT_SYMBOL(grab_cache_page_nowait);
1041
1042 /*
1043  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1044  * a _large_ part of the i/o request. Imagine the worst scenario:
1045  *
1046  *      ---R__________________________________________B__________
1047  *         ^ reading here                             ^ bad block(assume 4k)
1048  *
1049  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1050  * => failing the whole request => read(R) => read(R+1) =>
1051  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1052  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1053  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1054  *
1055  * It is going insane. Fix it by quickly scaling down the readahead size.
1056  */
1057 static void shrink_readahead_size_eio(struct file *filp,
1058                                         struct file_ra_state *ra)
1059 {
1060         ra->ra_pages /= 4;
1061 }
1062
1063 /**
1064  * do_generic_file_read - generic file read routine
1065  * @filp:       the file to read
1066  * @ppos:       current file position
1067  * @desc:       read_descriptor
1068  * @actor:      read method
1069  *
1070  * This is a generic file read routine, and uses the
1071  * mapping->a_ops->readpage() function for the actual low-level stuff.
1072  *
1073  * This is really ugly. But the goto's actually try to clarify some
1074  * of the logic when it comes to error handling etc.
1075  */
1076 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1077                 read_descriptor_t *desc, read_actor_t actor)
1078 {
1079         struct address_space *mapping = filp->f_mapping;
1080         struct inode *inode = mapping->host;
1081         struct file_ra_state *ra = &filp->f_ra;
1082         pgoff_t index;
1083         pgoff_t last_index;
1084         pgoff_t prev_index;
1085         unsigned long offset;      /* offset into pagecache page */
1086         unsigned int prev_offset;
1087         int error;
1088
1089         index = *ppos >> PAGE_CACHE_SHIFT;
1090         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1091         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1092         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1093         offset = *ppos & ~PAGE_CACHE_MASK;
1094
1095         for (;;) {
1096                 struct page *page;
1097                 pgoff_t end_index;
1098                 loff_t isize;
1099                 unsigned long nr, ret;
1100
1101                 cond_resched();
1102 find_page:
1103                 page = find_get_page(mapping, index);
1104                 if (!page) {
1105                         page_cache_sync_readahead(mapping,
1106                                         ra, filp,
1107                                         index, last_index - index);
1108                         page = find_get_page(mapping, index);
1109                         if (unlikely(page == NULL))
1110                                 goto no_cached_page;
1111                 }
1112                 if (PageReadahead(page)) {
1113                         page_cache_async_readahead(mapping,
1114                                         ra, filp, page,
1115                                         index, last_index - index);
1116                 }
1117                 if (!PageUptodate(page)) {
1118                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1119                                         !mapping->a_ops->is_partially_uptodate)
1120                                 goto page_not_up_to_date;
1121                         if (!trylock_page(page))
1122                                 goto page_not_up_to_date;
1123                         /* Did it get truncated before we got the lock? */
1124                         if (!page->mapping)
1125                                 goto page_not_up_to_date_locked;
1126                         if (!mapping->a_ops->is_partially_uptodate(page,
1127                                                                 desc, offset))
1128                                 goto page_not_up_to_date_locked;
1129                         unlock_page(page);
1130                 }
1131 page_ok:
1132                 /*
1133                  * i_size must be checked after we know the page is Uptodate.
1134                  *
1135                  * Checking i_size after the check allows us to calculate
1136                  * the correct value for "nr", which means the zero-filled
1137                  * part of the page is not copied back to userspace (unless
1138                  * another truncate extends the file - this is desired though).
1139                  */
1140
1141                 isize = i_size_read(inode);
1142                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1143                 if (unlikely(!isize || index > end_index)) {
1144                         page_cache_release(page);
1145                         goto out;
1146                 }
1147
1148                 /* nr is the maximum number of bytes to copy from this page */
1149                 nr = PAGE_CACHE_SIZE;
1150                 if (index == end_index) {
1151                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1152                         if (nr <= offset) {
1153                                 page_cache_release(page);
1154                                 goto out;
1155                         }
1156                 }
1157                 nr = nr - offset;
1158
1159                 /* If users can be writing to this page using arbitrary
1160                  * virtual addresses, take care about potential aliasing
1161                  * before reading the page on the kernel side.
1162                  */
1163                 if (mapping_writably_mapped(mapping))
1164                         flush_dcache_page(page);
1165
1166                 /*
1167                  * When a sequential read accesses a page several times,
1168                  * only mark it as accessed the first time.
1169                  */
1170                 if (prev_index != index || offset != prev_offset)
1171                         mark_page_accessed(page);
1172                 prev_index = index;
1173
1174                 /*
1175                  * Ok, we have the page, and it's up-to-date, so
1176                  * now we can copy it to user space...
1177                  *
1178                  * The actor routine returns how many bytes were actually used..
1179                  * NOTE! This may not be the same as how much of a user buffer
1180                  * we filled up (we may be padding etc), so we can only update
1181                  * "pos" here (the actor routine has to update the user buffer
1182                  * pointers and the remaining count).
1183                  */
1184                 ret = actor(desc, page, offset, nr);
1185                 offset += ret;
1186                 index += offset >> PAGE_CACHE_SHIFT;
1187                 offset &= ~PAGE_CACHE_MASK;
1188                 prev_offset = offset;
1189
1190                 page_cache_release(page);
1191                 if (ret == nr && desc->count)
1192                         continue;
1193                 goto out;
1194
1195 page_not_up_to_date:
1196                 /* Get exclusive access to the page ... */
1197                 error = lock_page_killable(page);
1198                 if (unlikely(error))
1199                         goto readpage_error;
1200
1201 page_not_up_to_date_locked:
1202                 /* Did it get truncated before we got the lock? */
1203                 if (!page->mapping) {
1204                         unlock_page(page);
1205                         page_cache_release(page);
1206                         continue;
1207                 }
1208
1209                 /* Did somebody else fill it already? */
1210                 if (PageUptodate(page)) {
1211                         unlock_page(page);
1212                         goto page_ok;
1213                 }
1214
1215 readpage:
1216                 /*
1217                  * A previous I/O error may have been due to temporary
1218                  * failures, eg. multipath errors.
1219                  * PG_error will be set again if readpage fails.
1220                  */
1221                 ClearPageError(page);
1222                 /* Start the actual read. The read will unlock the page. */
1223                 error = mapping->a_ops->readpage(filp, page);
1224
1225                 if (unlikely(error)) {
1226                         if (error == AOP_TRUNCATED_PAGE) {
1227                                 page_cache_release(page);
1228                                 goto find_page;
1229                         }
1230                         goto readpage_error;
1231                 }
1232
1233                 if (!PageUptodate(page)) {
1234                         error = lock_page_killable(page);
1235                         if (unlikely(error))
1236                                 goto readpage_error;
1237                         if (!PageUptodate(page)) {
1238                                 if (page->mapping == NULL) {
1239                                         /*
1240                                          * invalidate_mapping_pages got it
1241                                          */
1242                                         unlock_page(page);
1243                                         page_cache_release(page);
1244                                         goto find_page;
1245                                 }
1246                                 unlock_page(page);
1247                                 shrink_readahead_size_eio(filp, ra);
1248                                 error = -EIO;
1249                                 goto readpage_error;
1250                         }
1251                         unlock_page(page);
1252                 }
1253
1254                 goto page_ok;
1255
1256 readpage_error:
1257                 /* UHHUH! A synchronous read error occurred. Report it */
1258                 desc->error = error;
1259                 page_cache_release(page);
1260                 goto out;
1261
1262 no_cached_page:
1263                 /*
1264                  * Ok, it wasn't cached, so we need to create a new
1265                  * page..
1266                  */
1267                 page = page_cache_alloc_cold(mapping);
1268                 if (!page) {
1269                         desc->error = -ENOMEM;
1270                         goto out;
1271                 }
1272                 error = add_to_page_cache_lru(page, mapping,
1273                                                 index, GFP_KERNEL);
1274                 if (error) {
1275                         page_cache_release(page);
1276                         if (error == -EEXIST)
1277                                 goto find_page;
1278                         desc->error = error;
1279                         goto out;
1280                 }
1281                 goto readpage;
1282         }
1283
1284 out:
1285         ra->prev_pos = prev_index;
1286         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1287         ra->prev_pos |= prev_offset;
1288
1289         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1290         file_accessed(filp);
1291 }
1292
1293 int file_read_actor(read_descriptor_t *desc, struct page *page,
1294                         unsigned long offset, unsigned long size)
1295 {
1296         char *kaddr;
1297         unsigned long left, count = desc->count;
1298
1299         if (size > count)
1300                 size = count;
1301
1302         /*
1303          * Faults on the destination of a read are common, so do it before
1304          * taking the kmap.
1305          */
1306         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1307                 kaddr = kmap_atomic(page, KM_USER0);
1308                 left = __copy_to_user_inatomic(desc->arg.buf,
1309                                                 kaddr + offset, size);
1310                 kunmap_atomic(kaddr, KM_USER0);
1311                 if (left == 0)
1312                         goto success;
1313         }
1314
1315         /* Do it the slow way */
1316         kaddr = kmap(page);
1317         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1318         kunmap(page);
1319
1320         if (left) {
1321                 size -= left;
1322                 desc->error = -EFAULT;
1323         }
1324 success:
1325         desc->count = count - size;
1326         desc->written += size;
1327         desc->arg.buf += size;
1328         return size;
1329 }
1330
1331 /*
1332  * Performs necessary checks before doing a write
1333  * @iov:        io vector request
1334  * @nr_segs:    number of segments in the iovec
1335  * @count:      number of bytes to write
1336  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1337  *
1338  * Adjust number of segments and amount of bytes to write (nr_segs should be
1339  * properly initialized first). Returns appropriate error code that caller
1340  * should return or zero in case that write should be allowed.
1341  */
1342 int generic_segment_checks(const struct iovec *iov,
1343                         unsigned long *nr_segs, size_t *count, int access_flags)
1344 {
1345         unsigned long   seg;
1346         size_t cnt = 0;
1347         for (seg = 0; seg < *nr_segs; seg++) {
1348                 const struct iovec *iv = &iov[seg];
1349
1350                 /*
1351                  * If any segment has a negative length, or the cumulative
1352                  * length ever wraps negative then return -EINVAL.
1353                  */
1354                 cnt += iv->iov_len;
1355                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1356                         return -EINVAL;
1357                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1358                         continue;
1359                 if (seg == 0)
1360                         return -EFAULT;
1361                 *nr_segs = seg;
1362                 cnt -= iv->iov_len;     /* This segment is no good */
1363                 break;
1364         }
1365         *count = cnt;
1366         return 0;
1367 }
1368 EXPORT_SYMBOL(generic_segment_checks);
1369
1370 /**
1371  * generic_file_aio_read - generic filesystem read routine
1372  * @iocb:       kernel I/O control block
1373  * @iov:        io vector request
1374  * @nr_segs:    number of segments in the iovec
1375  * @pos:        current file position
1376  *
1377  * This is the "read()" routine for all filesystems
1378  * that can use the page cache directly.
1379  */
1380 ssize_t
1381 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1382                 unsigned long nr_segs, loff_t pos)
1383 {
1384         struct file *filp = iocb->ki_filp;
1385         ssize_t retval;
1386         unsigned long seg = 0;
1387         size_t count;
1388         loff_t *ppos = &iocb->ki_pos;
1389
1390         count = 0;
1391         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1392         if (retval)
1393                 return retval;
1394
1395         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1396         if (filp->f_flags & O_DIRECT) {
1397                 loff_t size;
1398                 struct address_space *mapping;
1399                 struct inode *inode;
1400
1401                 mapping = filp->f_mapping;
1402                 inode = mapping->host;
1403                 if (!count)
1404                         goto out; /* skip atime */
1405                 size = i_size_read(inode);
1406                 if (pos < size) {
1407                         retval = filemap_write_and_wait_range(mapping, pos,
1408                                         pos + iov_length(iov, nr_segs) - 1);
1409                         if (!retval) {
1410                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1411                                                         iov, pos, nr_segs);
1412                         }
1413                         if (retval > 0) {
1414                                 *ppos = pos + retval;
1415                                 count -= retval;
1416                         }
1417
1418                         /*
1419                          * Btrfs can have a short DIO read if we encounter
1420                          * compressed extents, so if there was an error, or if
1421                          * we've already read everything we wanted to, or if
1422                          * there was a short read because we hit EOF, go ahead
1423                          * and return.  Otherwise fallthrough to buffered io for
1424                          * the rest of the read.
1425                          */
1426                         if (retval < 0 || !count || *ppos >= size) {
1427                                 file_accessed(filp);
1428                                 goto out;
1429                         }
1430                 }
1431         }
1432
1433         count = retval;
1434         for (seg = 0; seg < nr_segs; seg++) {
1435                 read_descriptor_t desc;
1436                 loff_t offset = 0;
1437
1438                 /*
1439                  * If we did a short DIO read we need to skip the section of the
1440                  * iov that we've already read data into.
1441                  */
1442                 if (count) {
1443                         if (count > iov[seg].iov_len) {
1444                                 count -= iov[seg].iov_len;
1445                                 continue;
1446                         }
1447                         offset = count;
1448                         count = 0;
1449                 }
1450
1451                 desc.written = 0;
1452                 desc.arg.buf = iov[seg].iov_base + offset;
1453                 desc.count = iov[seg].iov_len - offset;
1454                 if (desc.count == 0)
1455                         continue;
1456                 desc.error = 0;
1457                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1458                 retval += desc.written;
1459                 if (desc.error) {
1460                         retval = retval ?: desc.error;
1461                         break;
1462                 }
1463                 if (desc.count > 0)
1464                         break;
1465         }
1466 out:
1467         return retval;
1468 }
1469 EXPORT_SYMBOL(generic_file_aio_read);
1470
1471 static ssize_t
1472 do_readahead(struct address_space *mapping, struct file *filp,
1473              pgoff_t index, unsigned long nr)
1474 {
1475         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1476                 return -EINVAL;
1477
1478         force_page_cache_readahead(mapping, filp, index, nr);
1479         return 0;
1480 }
1481
1482 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1483 {
1484         ssize_t ret;
1485         struct file *file;
1486
1487         ret = -EBADF;
1488         file = fget(fd);
1489         if (file) {
1490                 if (file->f_mode & FMODE_READ) {
1491                         struct address_space *mapping = file->f_mapping;
1492                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1493                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1494                         unsigned long len = end - start + 1;
1495                         ret = do_readahead(mapping, file, start, len);
1496                 }
1497                 fput(file);
1498         }
1499         return ret;
1500 }
1501 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1502 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1503 {
1504         return SYSC_readahead((int) fd, offset, (size_t) count);
1505 }
1506 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1507 #endif
1508
1509 #ifdef CONFIG_MMU
1510 /**
1511  * page_cache_read - adds requested page to the page cache if not already there
1512  * @file:       file to read
1513  * @offset:     page index
1514  *
1515  * This adds the requested page to the page cache if it isn't already there,
1516  * and schedules an I/O to read in its contents from disk.
1517  */
1518 static int page_cache_read(struct file *file, pgoff_t offset)
1519 {
1520         struct address_space *mapping = file->f_mapping;
1521         struct page *page; 
1522         int ret;
1523
1524         do {
1525                 page = page_cache_alloc_cold(mapping);
1526                 if (!page)
1527                         return -ENOMEM;
1528
1529                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1530                 if (ret == 0)
1531                         ret = mapping->a_ops->readpage(file, page);
1532                 else if (ret == -EEXIST)
1533                         ret = 0; /* losing race to add is OK */
1534
1535                 page_cache_release(page);
1536
1537         } while (ret == AOP_TRUNCATED_PAGE);
1538                 
1539         return ret;
1540 }
1541
1542 #define MMAP_LOTSAMISS  (100)
1543
1544 /*
1545  * Synchronous readahead happens when we don't even find
1546  * a page in the page cache at all.
1547  */
1548 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1549                                    struct file_ra_state *ra,
1550                                    struct file *file,
1551                                    pgoff_t offset)
1552 {
1553         unsigned long ra_pages;
1554         struct address_space *mapping = file->f_mapping;
1555
1556         /* If we don't want any read-ahead, don't bother */
1557         if (VM_RandomReadHint(vma))
1558                 return;
1559
1560         if (VM_SequentialReadHint(vma) ||
1561                         offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1562                 page_cache_sync_readahead(mapping, ra, file, offset,
1563                                           ra->ra_pages);
1564                 return;
1565         }
1566
1567         if (ra->mmap_miss < INT_MAX)
1568                 ra->mmap_miss++;
1569
1570         /*
1571          * Do we miss much more than hit in this file? If so,
1572          * stop bothering with read-ahead. It will only hurt.
1573          */
1574         if (ra->mmap_miss > MMAP_LOTSAMISS)
1575                 return;
1576
1577         /*
1578          * mmap read-around
1579          */
1580         ra_pages = max_sane_readahead(ra->ra_pages);
1581         if (ra_pages) {
1582                 ra->start = max_t(long, 0, offset - ra_pages/2);
1583                 ra->size = ra_pages;
1584                 ra->async_size = 0;
1585                 ra_submit(ra, mapping, file);
1586         }
1587 }
1588
1589 /*
1590  * Asynchronous readahead happens when we find the page and PG_readahead,
1591  * so we want to possibly extend the readahead further..
1592  */
1593 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1594                                     struct file_ra_state *ra,
1595                                     struct file *file,
1596                                     struct page *page,
1597                                     pgoff_t offset)
1598 {
1599         struct address_space *mapping = file->f_mapping;
1600
1601         /* If we don't want any read-ahead, don't bother */
1602         if (VM_RandomReadHint(vma))
1603                 return;
1604         if (ra->mmap_miss > 0)
1605                 ra->mmap_miss--;
1606         if (PageReadahead(page))
1607                 page_cache_async_readahead(mapping, ra, file,
1608                                            page, offset, ra->ra_pages);
1609 }
1610
1611 /**
1612  * filemap_fault - read in file data for page fault handling
1613  * @vma:        vma in which the fault was taken
1614  * @vmf:        struct vm_fault containing details of the fault
1615  *
1616  * filemap_fault() is invoked via the vma operations vector for a
1617  * mapped memory region to read in file data during a page fault.
1618  *
1619  * The goto's are kind of ugly, but this streamlines the normal case of having
1620  * it in the page cache, and handles the special cases reasonably without
1621  * having a lot of duplicated code.
1622  */
1623 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1624 {
1625         int error;
1626         struct file *file = vma->vm_file;
1627         struct address_space *mapping = file->f_mapping;
1628         struct file_ra_state *ra = &file->f_ra;
1629         struct inode *inode = mapping->host;
1630         pgoff_t offset = vmf->pgoff;
1631         struct page *page;
1632         pgoff_t size;
1633         int ret = 0;
1634
1635         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1636         if (offset >= size)
1637                 return VM_FAULT_SIGBUS;
1638
1639         /*
1640          * Do we have something in the page cache already?
1641          */
1642         page = find_get_page(mapping, offset);
1643         if (likely(page)) {
1644                 /*
1645                  * We found the page, so try async readahead before
1646                  * waiting for the lock.
1647                  */
1648                 do_async_mmap_readahead(vma, ra, file, page, offset);
1649         } else {
1650                 /* No page in the page cache at all */
1651                 do_sync_mmap_readahead(vma, ra, file, offset);
1652                 count_vm_event(PGMAJFAULT);
1653                 ret = VM_FAULT_MAJOR;
1654 retry_find:
1655                 page = find_get_page(mapping, offset);
1656                 if (!page)
1657                         goto no_cached_page;
1658         }
1659
1660         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1661                 page_cache_release(page);
1662                 return ret | VM_FAULT_RETRY;
1663         }
1664
1665         /* Did it get truncated? */
1666         if (unlikely(page->mapping != mapping)) {
1667                 unlock_page(page);
1668                 put_page(page);
1669                 goto retry_find;
1670         }
1671         VM_BUG_ON(page->index != offset);
1672
1673         /*
1674          * We have a locked page in the page cache, now we need to check
1675          * that it's up-to-date. If not, it is going to be due to an error.
1676          */
1677         if (unlikely(!PageUptodate(page)))
1678                 goto page_not_uptodate;
1679
1680         /*
1681          * Found the page and have a reference on it.
1682          * We must recheck i_size under page lock.
1683          */
1684         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1685         if (unlikely(offset >= size)) {
1686                 unlock_page(page);
1687                 page_cache_release(page);
1688                 return VM_FAULT_SIGBUS;
1689         }
1690
1691         ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1692         vmf->page = page;
1693         return ret | VM_FAULT_LOCKED;
1694
1695 no_cached_page:
1696         /*
1697          * We're only likely to ever get here if MADV_RANDOM is in
1698          * effect.
1699          */
1700         error = page_cache_read(file, offset);
1701
1702         /*
1703          * The page we want has now been added to the page cache.
1704          * In the unlikely event that someone removed it in the
1705          * meantime, we'll just come back here and read it again.
1706          */
1707         if (error >= 0)
1708                 goto retry_find;
1709
1710         /*
1711          * An error return from page_cache_read can result if the
1712          * system is low on memory, or a problem occurs while trying
1713          * to schedule I/O.
1714          */
1715         if (error == -ENOMEM)
1716                 return VM_FAULT_OOM;
1717         return VM_FAULT_SIGBUS;
1718
1719 page_not_uptodate:
1720         /*
1721          * Umm, take care of errors if the page isn't up-to-date.
1722          * Try to re-read it _once_. We do this synchronously,
1723          * because there really aren't any performance issues here
1724          * and we need to check for errors.
1725          */
1726         ClearPageError(page);
1727         error = mapping->a_ops->readpage(file, page);
1728         if (!error) {
1729                 wait_on_page_locked(page);
1730                 if (!PageUptodate(page))
1731                         error = -EIO;
1732         }
1733         page_cache_release(page);
1734
1735         if (!error || error == AOP_TRUNCATED_PAGE)
1736                 goto retry_find;
1737
1738         /* Things didn't work out. Return zero to tell the mm layer so. */
1739         shrink_readahead_size_eio(file, ra);
1740         return VM_FAULT_SIGBUS;
1741 }
1742 EXPORT_SYMBOL(filemap_fault);
1743
1744 const struct vm_operations_struct generic_file_vm_ops = {
1745         .fault          = filemap_fault,
1746 };
1747
1748 /* This is used for a general mmap of a disk file */
1749
1750 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1751 {
1752         struct address_space *mapping = file->f_mapping;
1753
1754         if (!mapping->a_ops->readpage)
1755                 return -ENOEXEC;
1756         file_accessed(file);
1757         vma->vm_ops = &generic_file_vm_ops;
1758         vma->vm_flags |= VM_CAN_NONLINEAR;
1759         return 0;
1760 }
1761
1762 /*
1763  * This is for filesystems which do not implement ->writepage.
1764  */
1765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1766 {
1767         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1768                 return -EINVAL;
1769         return generic_file_mmap(file, vma);
1770 }
1771 #else
1772 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773 {
1774         return -ENOSYS;
1775 }
1776 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1777 {
1778         return -ENOSYS;
1779 }
1780 #endif /* CONFIG_MMU */
1781
1782 EXPORT_SYMBOL(generic_file_mmap);
1783 EXPORT_SYMBOL(generic_file_readonly_mmap);
1784
1785 static struct page *__read_cache_page(struct address_space *mapping,
1786                                 pgoff_t index,
1787                                 int (*filler)(void *,struct page*),
1788                                 void *data,
1789                                 gfp_t gfp)
1790 {
1791         struct page *page;
1792         int err;
1793 repeat:
1794         page = find_get_page(mapping, index);
1795         if (!page) {
1796                 page = __page_cache_alloc(gfp | __GFP_COLD);
1797                 if (!page)
1798                         return ERR_PTR(-ENOMEM);
1799                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1800                 if (unlikely(err)) {
1801                         page_cache_release(page);
1802                         if (err == -EEXIST)
1803                                 goto repeat;
1804                         /* Presumably ENOMEM for radix tree node */
1805                         return ERR_PTR(err);
1806                 }
1807                 err = filler(data, page);
1808                 if (err < 0) {
1809                         page_cache_release(page);
1810                         page = ERR_PTR(err);
1811                 }
1812         }
1813         return page;
1814 }
1815
1816 static struct page *do_read_cache_page(struct address_space *mapping,
1817                                 pgoff_t index,
1818                                 int (*filler)(void *,struct page*),
1819                                 void *data,
1820                                 gfp_t gfp)
1821
1822 {
1823         struct page *page;
1824         int err;
1825
1826 retry:
1827         page = __read_cache_page(mapping, index, filler, data, gfp);
1828         if (IS_ERR(page))
1829                 return page;
1830         if (PageUptodate(page))
1831                 goto out;
1832
1833         lock_page(page);
1834         if (!page->mapping) {
1835                 unlock_page(page);
1836                 page_cache_release(page);
1837                 goto retry;
1838         }
1839         if (PageUptodate(page)) {
1840                 unlock_page(page);
1841                 goto out;
1842         }
1843         err = filler(data, page);
1844         if (err < 0) {
1845                 page_cache_release(page);
1846                 return ERR_PTR(err);
1847         }
1848 out:
1849         mark_page_accessed(page);
1850         return page;
1851 }
1852
1853 /**
1854  * read_cache_page_async - read into page cache, fill it if needed
1855  * @mapping:    the page's address_space
1856  * @index:      the page index
1857  * @filler:     function to perform the read
1858  * @data:       destination for read data
1859  *
1860  * Same as read_cache_page, but don't wait for page to become unlocked
1861  * after submitting it to the filler.
1862  *
1863  * Read into the page cache. If a page already exists, and PageUptodate() is
1864  * not set, try to fill the page but don't wait for it to become unlocked.
1865  *
1866  * If the page does not get brought uptodate, return -EIO.
1867  */
1868 struct page *read_cache_page_async(struct address_space *mapping,
1869                                 pgoff_t index,
1870                                 int (*filler)(void *,struct page*),
1871                                 void *data)
1872 {
1873         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1874 }
1875 EXPORT_SYMBOL(read_cache_page_async);
1876
1877 static struct page *wait_on_page_read(struct page *page)
1878 {
1879         if (!IS_ERR(page)) {
1880                 wait_on_page_locked(page);
1881                 if (!PageUptodate(page)) {
1882                         page_cache_release(page);
1883                         page = ERR_PTR(-EIO);
1884                 }
1885         }
1886         return page;
1887 }
1888
1889 /**
1890  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1891  * @mapping:    the page's address_space
1892  * @index:      the page index
1893  * @gfp:        the page allocator flags to use if allocating
1894  *
1895  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1896  * any new page allocations done using the specified allocation flags. Note
1897  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1898  * expect to do this atomically or anything like that - but you can pass in
1899  * other page requirements.
1900  *
1901  * If the page does not get brought uptodate, return -EIO.
1902  */
1903 struct page *read_cache_page_gfp(struct address_space *mapping,
1904                                 pgoff_t index,
1905                                 gfp_t gfp)
1906 {
1907         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1908
1909         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1910 }
1911 EXPORT_SYMBOL(read_cache_page_gfp);
1912
1913 /**
1914  * read_cache_page - read into page cache, fill it if needed
1915  * @mapping:    the page's address_space
1916  * @index:      the page index
1917  * @filler:     function to perform the read
1918  * @data:       destination for read data
1919  *
1920  * Read into the page cache. If a page already exists, and PageUptodate() is
1921  * not set, try to fill the page then wait for it to become unlocked.
1922  *
1923  * If the page does not get brought uptodate, return -EIO.
1924  */
1925 struct page *read_cache_page(struct address_space *mapping,
1926                                 pgoff_t index,
1927                                 int (*filler)(void *,struct page*),
1928                                 void *data)
1929 {
1930         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1931 }
1932 EXPORT_SYMBOL(read_cache_page);
1933
1934 /*
1935  * The logic we want is
1936  *
1937  *      if suid or (sgid and xgrp)
1938  *              remove privs
1939  */
1940 int should_remove_suid(struct dentry *dentry)
1941 {
1942         mode_t mode = dentry->d_inode->i_mode;
1943         int kill = 0;
1944
1945         /* suid always must be killed */
1946         if (unlikely(mode & S_ISUID))
1947                 kill = ATTR_KILL_SUID;
1948
1949         /*
1950          * sgid without any exec bits is just a mandatory locking mark; leave
1951          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1952          */
1953         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1954                 kill |= ATTR_KILL_SGID;
1955
1956         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1957                 return kill;
1958
1959         return 0;
1960 }
1961 EXPORT_SYMBOL(should_remove_suid);
1962
1963 static int __remove_suid(struct dentry *dentry, int kill)
1964 {
1965         struct iattr newattrs;
1966
1967         newattrs.ia_valid = ATTR_FORCE | kill;
1968         return notify_change(dentry, &newattrs);
1969 }
1970
1971 int file_remove_suid(struct file *file)
1972 {
1973         struct dentry *dentry = file->f_path.dentry;
1974         int killsuid = should_remove_suid(dentry);
1975         int killpriv = security_inode_need_killpriv(dentry);
1976         int error = 0;
1977
1978         if (killpriv < 0)
1979                 return killpriv;
1980         if (killpriv)
1981                 error = security_inode_killpriv(dentry);
1982         if (!error && killsuid)
1983                 error = __remove_suid(dentry, killsuid);
1984
1985         return error;
1986 }
1987 EXPORT_SYMBOL(file_remove_suid);
1988
1989 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1990                         const struct iovec *iov, size_t base, size_t bytes)
1991 {
1992         size_t copied = 0, left = 0;
1993
1994         while (bytes) {
1995                 char __user *buf = iov->iov_base + base;
1996                 int copy = min(bytes, iov->iov_len - base);
1997
1998                 base = 0;
1999                 left = __copy_from_user_inatomic(vaddr, buf, copy);
2000                 copied += copy;
2001                 bytes -= copy;
2002                 vaddr += copy;
2003                 iov++;
2004
2005                 if (unlikely(left))
2006                         break;
2007         }
2008         return copied - left;
2009 }
2010
2011 /*
2012  * Copy as much as we can into the page and return the number of bytes which
2013  * were successfully copied.  If a fault is encountered then return the number of
2014  * bytes which were copied.
2015  */
2016 size_t iov_iter_copy_from_user_atomic(struct page *page,
2017                 struct iov_iter *i, unsigned long offset, size_t bytes)
2018 {
2019         char *kaddr;
2020         size_t copied;
2021
2022         BUG_ON(!in_atomic());
2023         kaddr = kmap_atomic(page, KM_USER0);
2024         if (likely(i->nr_segs == 1)) {
2025                 int left;
2026                 char __user *buf = i->iov->iov_base + i->iov_offset;
2027                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2028                 copied = bytes - left;
2029         } else {
2030                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2031                                                 i->iov, i->iov_offset, bytes);
2032         }
2033         kunmap_atomic(kaddr, KM_USER0);
2034
2035         return copied;
2036 }
2037 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2038
2039 /*
2040  * This has the same sideeffects and return value as
2041  * iov_iter_copy_from_user_atomic().
2042  * The difference is that it attempts to resolve faults.
2043  * Page must not be locked.
2044  */
2045 size_t iov_iter_copy_from_user(struct page *page,
2046                 struct iov_iter *i, unsigned long offset, size_t bytes)
2047 {
2048         char *kaddr;
2049         size_t copied;
2050
2051         kaddr = kmap(page);
2052         if (likely(i->nr_segs == 1)) {
2053                 int left;
2054                 char __user *buf = i->iov->iov_base + i->iov_offset;
2055                 left = __copy_from_user(kaddr + offset, buf, bytes);
2056                 copied = bytes - left;
2057         } else {
2058                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2059                                                 i->iov, i->iov_offset, bytes);
2060         }
2061         kunmap(page);
2062         return copied;
2063 }
2064 EXPORT_SYMBOL(iov_iter_copy_from_user);
2065
2066 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2067 {
2068         BUG_ON(i->count < bytes);
2069
2070         if (likely(i->nr_segs == 1)) {
2071                 i->iov_offset += bytes;
2072                 i->count -= bytes;
2073         } else {
2074                 const struct iovec *iov = i->iov;
2075                 size_t base = i->iov_offset;
2076
2077                 /*
2078                  * The !iov->iov_len check ensures we skip over unlikely
2079                  * zero-length segments (without overruning the iovec).
2080                  */
2081                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2082                         int copy;
2083
2084                         copy = min(bytes, iov->iov_len - base);
2085                         BUG_ON(!i->count || i->count < copy);
2086                         i->count -= copy;
2087                         bytes -= copy;
2088                         base += copy;
2089                         if (iov->iov_len == base) {
2090                                 iov++;
2091                                 base = 0;
2092                         }
2093                 }
2094                 i->iov = iov;
2095                 i->iov_offset = base;
2096         }
2097 }
2098 EXPORT_SYMBOL(iov_iter_advance);
2099
2100 /*
2101  * Fault in the first iovec of the given iov_iter, to a maximum length
2102  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2103  * accessed (ie. because it is an invalid address).
2104  *
2105  * writev-intensive code may want this to prefault several iovecs -- that
2106  * would be possible (callers must not rely on the fact that _only_ the
2107  * first iovec will be faulted with the current implementation).
2108  */
2109 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2110 {
2111         char __user *buf = i->iov->iov_base + i->iov_offset;
2112         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2113         return fault_in_pages_readable(buf, bytes);
2114 }
2115 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2116
2117 /*
2118  * Return the count of just the current iov_iter segment.
2119  */
2120 size_t iov_iter_single_seg_count(struct iov_iter *i)
2121 {
2122         const struct iovec *iov = i->iov;
2123         if (i->nr_segs == 1)
2124                 return i->count;
2125         else
2126                 return min(i->count, iov->iov_len - i->iov_offset);
2127 }
2128 EXPORT_SYMBOL(iov_iter_single_seg_count);
2129
2130 /*
2131  * Performs necessary checks before doing a write
2132  *
2133  * Can adjust writing position or amount of bytes to write.
2134  * Returns appropriate error code that caller should return or
2135  * zero in case that write should be allowed.
2136  */
2137 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2138 {
2139         struct inode *inode = file->f_mapping->host;
2140         unsigned long limit = rlimit(RLIMIT_FSIZE);
2141
2142         if (unlikely(*pos < 0))
2143                 return -EINVAL;
2144
2145         if (!isblk) {
2146                 /* FIXME: this is for backwards compatibility with 2.4 */
2147                 if (file->f_flags & O_APPEND)
2148                         *pos = i_size_read(inode);
2149
2150                 if (limit != RLIM_INFINITY) {
2151                         if (*pos >= limit) {
2152                                 send_sig(SIGXFSZ, current, 0);
2153                                 return -EFBIG;
2154                         }
2155                         if (*count > limit - (typeof(limit))*pos) {
2156                                 *count = limit - (typeof(limit))*pos;
2157                         }
2158                 }
2159         }
2160
2161         /*
2162          * LFS rule
2163          */
2164         if (unlikely(*pos + *count > MAX_NON_LFS &&
2165                                 !(file->f_flags & O_LARGEFILE))) {
2166                 if (*pos >= MAX_NON_LFS) {
2167                         return -EFBIG;
2168                 }
2169                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2170                         *count = MAX_NON_LFS - (unsigned long)*pos;
2171                 }
2172         }
2173
2174         /*
2175          * Are we about to exceed the fs block limit ?
2176          *
2177          * If we have written data it becomes a short write.  If we have
2178          * exceeded without writing data we send a signal and return EFBIG.
2179          * Linus frestrict idea will clean these up nicely..
2180          */
2181         if (likely(!isblk)) {
2182                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2183                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2184                                 return -EFBIG;
2185                         }
2186                         /* zero-length writes at ->s_maxbytes are OK */
2187                 }
2188
2189                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2190                         *count = inode->i_sb->s_maxbytes - *pos;
2191         } else {
2192 #ifdef CONFIG_BLOCK
2193                 loff_t isize;
2194                 if (bdev_read_only(I_BDEV(inode)))
2195                         return -EPERM;
2196                 isize = i_size_read(inode);
2197                 if (*pos >= isize) {
2198                         if (*count || *pos > isize)
2199                                 return -ENOSPC;
2200                 }
2201
2202                 if (*pos + *count > isize)
2203                         *count = isize - *pos;
2204 #else
2205                 return -EPERM;
2206 #endif
2207         }
2208         return 0;
2209 }
2210 EXPORT_SYMBOL(generic_write_checks);
2211
2212 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2213                                 loff_t pos, unsigned len, unsigned flags,
2214                                 struct page **pagep, void **fsdata)
2215 {
2216         const struct address_space_operations *aops = mapping->a_ops;
2217
2218         return aops->write_begin(file, mapping, pos, len, flags,
2219                                                         pagep, fsdata);
2220 }
2221 EXPORT_SYMBOL(pagecache_write_begin);
2222
2223 int pagecache_write_end(struct file *file, struct address_space *mapping,
2224                                 loff_t pos, unsigned len, unsigned copied,
2225                                 struct page *page, void *fsdata)
2226 {
2227         const struct address_space_operations *aops = mapping->a_ops;
2228
2229         mark_page_accessed(page);
2230         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2231 }
2232 EXPORT_SYMBOL(pagecache_write_end);
2233
2234 ssize_t
2235 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2236                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2237                 size_t count, size_t ocount)
2238 {
2239         struct file     *file = iocb->ki_filp;
2240         struct address_space *mapping = file->f_mapping;
2241         struct inode    *inode = mapping->host;
2242         ssize_t         written;
2243         size_t          write_len;
2244         pgoff_t         end;
2245
2246         if (count != ocount)
2247                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2248
2249         write_len = iov_length(iov, *nr_segs);
2250         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2251
2252         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2253         if (written)
2254                 goto out;
2255
2256         /*
2257          * After a write we want buffered reads to be sure to go to disk to get
2258          * the new data.  We invalidate clean cached page from the region we're
2259          * about to write.  We do this *before* the write so that we can return
2260          * without clobbering -EIOCBQUEUED from ->direct_IO().
2261          */
2262         if (mapping->nrpages) {
2263                 written = invalidate_inode_pages2_range(mapping,
2264                                         pos >> PAGE_CACHE_SHIFT, end);
2265                 /*
2266                  * If a page can not be invalidated, return 0 to fall back
2267                  * to buffered write.
2268                  */
2269                 if (written) {
2270                         if (written == -EBUSY)
2271                                 return 0;
2272                         goto out;
2273                 }
2274         }
2275
2276         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2277
2278         /*
2279          * Finally, try again to invalidate clean pages which might have been
2280          * cached by non-direct readahead, or faulted in by get_user_pages()
2281          * if the source of the write was an mmap'ed region of the file
2282          * we're writing.  Either one is a pretty crazy thing to do,
2283          * so we don't support it 100%.  If this invalidation
2284          * fails, tough, the write still worked...
2285          */
2286         if (mapping->nrpages) {
2287                 invalidate_inode_pages2_range(mapping,
2288                                               pos >> PAGE_CACHE_SHIFT, end);
2289         }
2290
2291         if (written > 0) {
2292                 pos += written;
2293                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2294                         i_size_write(inode, pos);
2295                         mark_inode_dirty(inode);
2296                 }
2297                 *ppos = pos;
2298         }
2299 out:
2300         return written;
2301 }
2302 EXPORT_SYMBOL(generic_file_direct_write);
2303
2304 /*
2305  * Find or create a page at the given pagecache position. Return the locked
2306  * page. This function is specifically for buffered writes.
2307  */
2308 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2309                                         pgoff_t index, unsigned flags)
2310 {
2311         int status;
2312         struct page *page;
2313         gfp_t gfp_notmask = 0;
2314         if (flags & AOP_FLAG_NOFS)
2315                 gfp_notmask = __GFP_FS;
2316 repeat:
2317         page = find_lock_page(mapping, index);
2318         if (page)
2319                 return page;
2320
2321         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2322         if (!page)
2323                 return NULL;
2324         status = add_to_page_cache_lru(page, mapping, index,
2325                                                 GFP_KERNEL & ~gfp_notmask);
2326         if (unlikely(status)) {
2327                 page_cache_release(page);
2328                 if (status == -EEXIST)
2329                         goto repeat;
2330                 return NULL;
2331         }
2332         return page;
2333 }
2334 EXPORT_SYMBOL(grab_cache_page_write_begin);
2335
2336 static ssize_t generic_perform_write(struct file *file,
2337                                 struct iov_iter *i, loff_t pos)
2338 {
2339         struct address_space *mapping = file->f_mapping;
2340         const struct address_space_operations *a_ops = mapping->a_ops;
2341         long status = 0;
2342         ssize_t written = 0;
2343         unsigned int flags = 0;
2344
2345         /*
2346          * Copies from kernel address space cannot fail (NFSD is a big user).
2347          */
2348         if (segment_eq(get_fs(), KERNEL_DS))
2349                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2350
2351         do {
2352                 struct page *page;
2353                 unsigned long offset;   /* Offset into pagecache page */
2354                 unsigned long bytes;    /* Bytes to write to page */
2355                 size_t copied;          /* Bytes copied from user */
2356                 void *fsdata;
2357
2358                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2359                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2360                                                 iov_iter_count(i));
2361
2362 again:
2363
2364                 /*
2365                  * Bring in the user page that we will copy from _first_.
2366                  * Otherwise there's a nasty deadlock on copying from the
2367                  * same page as we're writing to, without it being marked
2368                  * up-to-date.
2369                  *
2370                  * Not only is this an optimisation, but it is also required
2371                  * to check that the address is actually valid, when atomic
2372                  * usercopies are used, below.
2373                  */
2374                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2375                         status = -EFAULT;
2376                         break;
2377                 }
2378
2379                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2380                                                 &page, &fsdata);
2381                 if (unlikely(status))
2382                         break;
2383
2384                 if (mapping_writably_mapped(mapping))
2385                         flush_dcache_page(page);
2386
2387                 pagefault_disable();
2388                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2389                 pagefault_enable();
2390                 flush_dcache_page(page);
2391
2392                 mark_page_accessed(page);
2393                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2394                                                 page, fsdata);
2395                 if (unlikely(status < 0))
2396                         break;
2397                 copied = status;
2398
2399                 cond_resched();
2400
2401                 iov_iter_advance(i, copied);
2402                 if (unlikely(copied == 0)) {
2403                         /*
2404                          * If we were unable to copy any data at all, we must
2405                          * fall back to a single segment length write.
2406                          *
2407                          * If we didn't fallback here, we could livelock
2408                          * because not all segments in the iov can be copied at
2409                          * once without a pagefault.
2410                          */
2411                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2412                                                 iov_iter_single_seg_count(i));
2413                         goto again;
2414                 }
2415                 pos += copied;
2416                 written += copied;
2417
2418                 balance_dirty_pages_ratelimited(mapping);
2419
2420         } while (iov_iter_count(i));
2421
2422         return written ? written : status;
2423 }
2424
2425 ssize_t
2426 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2427                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2428                 size_t count, ssize_t written)
2429 {
2430         struct file *file = iocb->ki_filp;
2431         ssize_t status;
2432         struct iov_iter i;
2433
2434         iov_iter_init(&i, iov, nr_segs, count, written);
2435         status = generic_perform_write(file, &i, pos);
2436
2437         if (likely(status >= 0)) {
2438                 written += status;
2439                 *ppos = pos + status;
2440         }
2441         
2442         return written ? written : status;
2443 }
2444 EXPORT_SYMBOL(generic_file_buffered_write);
2445
2446 /**
2447  * __generic_file_aio_write - write data to a file
2448  * @iocb:       IO state structure (file, offset, etc.)
2449  * @iov:        vector with data to write
2450  * @nr_segs:    number of segments in the vector
2451  * @ppos:       position where to write
2452  *
2453  * This function does all the work needed for actually writing data to a
2454  * file. It does all basic checks, removes SUID from the file, updates
2455  * modification times and calls proper subroutines depending on whether we
2456  * do direct IO or a standard buffered write.
2457  *
2458  * It expects i_mutex to be grabbed unless we work on a block device or similar
2459  * object which does not need locking at all.
2460  *
2461  * This function does *not* take care of syncing data in case of O_SYNC write.
2462  * A caller has to handle it. This is mainly due to the fact that we want to
2463  * avoid syncing under i_mutex.
2464  */
2465 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2466                                  unsigned long nr_segs, loff_t *ppos)
2467 {
2468         struct file *file = iocb->ki_filp;
2469         struct address_space * mapping = file->f_mapping;
2470         size_t ocount;          /* original count */
2471         size_t count;           /* after file limit checks */
2472         struct inode    *inode = mapping->host;
2473         loff_t          pos;
2474         ssize_t         written;
2475         ssize_t         err;
2476
2477         ocount = 0;
2478         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2479         if (err)
2480                 return err;
2481
2482         count = ocount;
2483         pos = *ppos;
2484
2485         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2486
2487         /* We can write back this queue in page reclaim */
2488         current->backing_dev_info = mapping->backing_dev_info;
2489         written = 0;
2490
2491         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2492         if (err)
2493                 goto out;
2494
2495         if (count == 0)
2496                 goto out;
2497
2498         err = file_remove_suid(file);
2499         if (err)
2500                 goto out;
2501
2502         file_update_time(file);
2503
2504         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2505         if (unlikely(file->f_flags & O_DIRECT)) {
2506                 loff_t endbyte;
2507                 ssize_t written_buffered;
2508
2509                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2510                                                         ppos, count, ocount);
2511                 if (written < 0 || written == count)
2512                         goto out;
2513                 /*
2514                  * direct-io write to a hole: fall through to buffered I/O
2515                  * for completing the rest of the request.
2516                  */
2517                 pos += written;
2518                 count -= written;
2519                 written_buffered = generic_file_buffered_write(iocb, iov,
2520                                                 nr_segs, pos, ppos, count,
2521                                                 written);
2522                 /*
2523                  * If generic_file_buffered_write() retuned a synchronous error
2524                  * then we want to return the number of bytes which were
2525                  * direct-written, or the error code if that was zero.  Note
2526                  * that this differs from normal direct-io semantics, which
2527                  * will return -EFOO even if some bytes were written.
2528                  */
2529                 if (written_buffered < 0) {
2530                         err = written_buffered;
2531                         goto out;
2532                 }
2533
2534                 /*
2535                  * We need to ensure that the page cache pages are written to
2536                  * disk and invalidated to preserve the expected O_DIRECT
2537                  * semantics.
2538                  */
2539                 endbyte = pos + written_buffered - written - 1;
2540                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2541                 if (err == 0) {
2542                         written = written_buffered;
2543                         invalidate_mapping_pages(mapping,
2544                                                  pos >> PAGE_CACHE_SHIFT,
2545                                                  endbyte >> PAGE_CACHE_SHIFT);
2546                 } else {
2547                         /*
2548                          * We don't know how much we wrote, so just return
2549                          * the number of bytes which were direct-written
2550                          */
2551                 }
2552         } else {
2553                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2554                                 pos, ppos, count, written);
2555         }
2556 out:
2557         current->backing_dev_info = NULL;
2558         return written ? written : err;
2559 }
2560 EXPORT_SYMBOL(__generic_file_aio_write);
2561
2562 /**
2563  * generic_file_aio_write - write data to a file
2564  * @iocb:       IO state structure
2565  * @iov:        vector with data to write
2566  * @nr_segs:    number of segments in the vector
2567  * @pos:        position in file where to write
2568  *
2569  * This is a wrapper around __generic_file_aio_write() to be used by most
2570  * filesystems. It takes care of syncing the file in case of O_SYNC file
2571  * and acquires i_mutex as needed.
2572  */
2573 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2574                 unsigned long nr_segs, loff_t pos)
2575 {
2576         struct file *file = iocb->ki_filp;
2577         struct inode *inode = file->f_mapping->host;
2578         ssize_t ret;
2579
2580         BUG_ON(iocb->ki_pos != pos);
2581
2582         mutex_lock(&inode->i_mutex);
2583         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2584         mutex_unlock(&inode->i_mutex);
2585
2586         if (ret > 0 || ret == -EIOCBQUEUED) {
2587                 ssize_t err;
2588
2589                 err = generic_write_sync(file, pos, ret);
2590                 if (err < 0 && ret > 0)
2591                         ret = err;
2592         }
2593         return ret;
2594 }
2595 EXPORT_SYMBOL(generic_file_aio_write);
2596
2597 /**
2598  * try_to_release_page() - release old fs-specific metadata on a page
2599  *
2600  * @page: the page which the kernel is trying to free
2601  * @gfp_mask: memory allocation flags (and I/O mode)
2602  *
2603  * The address_space is to try to release any data against the page
2604  * (presumably at page->private).  If the release was successful, return `1'.
2605  * Otherwise return zero.
2606  *
2607  * This may also be called if PG_fscache is set on a page, indicating that the
2608  * page is known to the local caching routines.
2609  *
2610  * The @gfp_mask argument specifies whether I/O may be performed to release
2611  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2612  *
2613  */
2614 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2615 {
2616         struct address_space * const mapping = page->mapping;
2617
2618         BUG_ON(!PageLocked(page));
2619         if (PageWriteback(page))
2620                 return 0;
2621
2622         if (mapping && mapping->a_ops->releasepage)
2623                 return mapping->a_ops->releasepage(page, gfp_mask);
2624         return try_to_free_buffers(page);
2625 }
2626
2627 EXPORT_SYMBOL(try_to_release_page);