]> Pileus Git - ~andy/linux/blob - mm/filemap.c
mm: allow arch code to control the user page table ceiling
[~andy/linux] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42  * FIXME: remove all knowledge of the buffer layer from the core VM
43  */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_mutex              (truncate_pagecache)
64  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock             (exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_mutex
73  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
74  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page               (access_process_vm)
78  *
79  *  ->i_mutex                   (generic_file_buffered_write)
80  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
81  *
82  *  bdi->wb.list_lock
83  *    sb_lock                   (fs/fs-writeback.c)
84  *    ->mapping->tree_lock      (__sync_single_inode)
85  *
86  *  ->i_mmap_mutex
87  *    ->anon_vma.lock           (vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
91  *
92  *  ->page_table_lock or pte_lock
93  *    ->swap_lock               (try_to_unmap_one)
94  *    ->private_lock            (try_to_unmap_one)
95  *    ->tree_lock               (try_to_unmap_one)
96  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
97  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
98  *    ->private_lock            (page_remove_rmap->set_page_dirty)
99  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
101  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
103  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  * ->i_mmap_mutex
107  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
108  */
109
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         trace_mm_filemap_delete_from_page_cache(page);
120         /*
121          * if we're uptodate, flush out into the cleancache, otherwise
122          * invalidate any existing cleancache entries.  We can't leave
123          * stale data around in the cleancache once our page is gone
124          */
125         if (PageUptodate(page) && PageMappedToDisk(page))
126                 cleancache_put_page(page);
127         else
128                 cleancache_invalidate_page(mapping, page);
129
130         radix_tree_delete(&mapping->page_tree, page->index);
131         page->mapping = NULL;
132         /* Leave page->index set: truncation lookup relies upon it */
133         mapping->nrpages--;
134         __dec_zone_page_state(page, NR_FILE_PAGES);
135         if (PageSwapBacked(page))
136                 __dec_zone_page_state(page, NR_SHMEM);
137         BUG_ON(page_mapped(page));
138
139         /*
140          * Some filesystems seem to re-dirty the page even after
141          * the VM has canceled the dirty bit (eg ext3 journaling).
142          *
143          * Fix it up by doing a final dirty accounting check after
144          * having removed the page entirely.
145          */
146         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147                 dec_zone_page_state(page, NR_FILE_DIRTY);
148                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149         }
150 }
151
152 /**
153  * delete_from_page_cache - delete page from page cache
154  * @page: the page which the kernel is trying to remove from page cache
155  *
156  * This must be called only on pages that have been verified to be in the page
157  * cache and locked.  It will never put the page into the free list, the caller
158  * has a reference on the page.
159  */
160 void delete_from_page_cache(struct page *page)
161 {
162         struct address_space *mapping = page->mapping;
163         void (*freepage)(struct page *);
164
165         BUG_ON(!PageLocked(page));
166
167         freepage = mapping->a_ops->freepage;
168         spin_lock_irq(&mapping->tree_lock);
169         __delete_from_page_cache(page);
170         spin_unlock_irq(&mapping->tree_lock);
171         mem_cgroup_uncharge_cache_page(page);
172
173         if (freepage)
174                 freepage(page);
175         page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181         io_schedule();
182         return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187         sleep_on_page(word);
188         return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 /**
192  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193  * @mapping:    address space structure to write
194  * @start:      offset in bytes where the range starts
195  * @end:        offset in bytes where the range ends (inclusive)
196  * @sync_mode:  enable synchronous operation
197  *
198  * Start writeback against all of a mapping's dirty pages that lie
199  * within the byte offsets <start, end> inclusive.
200  *
201  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202  * opposed to a regular memory cleansing writeback.  The difference between
203  * these two operations is that if a dirty page/buffer is encountered, it must
204  * be waited upon, and not just skipped over.
205  */
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207                                 loff_t end, int sync_mode)
208 {
209         int ret;
210         struct writeback_control wbc = {
211                 .sync_mode = sync_mode,
212                 .nr_to_write = LONG_MAX,
213                 .range_start = start,
214                 .range_end = end,
215         };
216
217         if (!mapping_cap_writeback_dirty(mapping))
218                 return 0;
219
220         ret = do_writepages(mapping, &wbc);
221         return ret;
222 }
223
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225         int sync_mode)
226 {
227         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
228 }
229
230 int filemap_fdatawrite(struct address_space *mapping)
231 {
232         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233 }
234 EXPORT_SYMBOL(filemap_fdatawrite);
235
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237                                 loff_t end)
238 {
239         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
242
243 /**
244  * filemap_flush - mostly a non-blocking flush
245  * @mapping:    target address_space
246  *
247  * This is a mostly non-blocking flush.  Not suitable for data-integrity
248  * purposes - I/O may not be started against all dirty pages.
249  */
250 int filemap_flush(struct address_space *mapping)
251 {
252         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253 }
254 EXPORT_SYMBOL(filemap_flush);
255
256 /**
257  * filemap_fdatawait_range - wait for writeback to complete
258  * @mapping:            address space structure to wait for
259  * @start_byte:         offset in bytes where the range starts
260  * @end_byte:           offset in bytes where the range ends (inclusive)
261  *
262  * Walk the list of under-writeback pages of the given address space
263  * in the given range and wait for all of them.
264  */
265 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
266                             loff_t end_byte)
267 {
268         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
269         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
270         struct pagevec pvec;
271         int nr_pages;
272         int ret = 0;
273
274         if (end_byte < start_byte)
275                 return 0;
276
277         pagevec_init(&pvec, 0);
278         while ((index <= end) &&
279                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280                         PAGECACHE_TAG_WRITEBACK,
281                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282                 unsigned i;
283
284                 for (i = 0; i < nr_pages; i++) {
285                         struct page *page = pvec.pages[i];
286
287                         /* until radix tree lookup accepts end_index */
288                         if (page->index > end)
289                                 continue;
290
291                         wait_on_page_writeback(page);
292                         if (TestClearPageError(page))
293                                 ret = -EIO;
294                 }
295                 pagevec_release(&pvec);
296                 cond_resched();
297         }
298
299         /* Check for outstanding write errors */
300         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301                 ret = -ENOSPC;
302         if (test_and_clear_bit(AS_EIO, &mapping->flags))
303                 ret = -EIO;
304
305         return ret;
306 }
307 EXPORT_SYMBOL(filemap_fdatawait_range);
308
309 /**
310  * filemap_fdatawait - wait for all under-writeback pages to complete
311  * @mapping: address space structure to wait for
312  *
313  * Walk the list of under-writeback pages of the given address space
314  * and wait for all of them.
315  */
316 int filemap_fdatawait(struct address_space *mapping)
317 {
318         loff_t i_size = i_size_read(mapping->host);
319
320         if (i_size == 0)
321                 return 0;
322
323         return filemap_fdatawait_range(mapping, 0, i_size - 1);
324 }
325 EXPORT_SYMBOL(filemap_fdatawait);
326
327 int filemap_write_and_wait(struct address_space *mapping)
328 {
329         int err = 0;
330
331         if (mapping->nrpages) {
332                 err = filemap_fdatawrite(mapping);
333                 /*
334                  * Even if the above returned error, the pages may be
335                  * written partially (e.g. -ENOSPC), so we wait for it.
336                  * But the -EIO is special case, it may indicate the worst
337                  * thing (e.g. bug) happened, so we avoid waiting for it.
338                  */
339                 if (err != -EIO) {
340                         int err2 = filemap_fdatawait(mapping);
341                         if (!err)
342                                 err = err2;
343                 }
344         }
345         return err;
346 }
347 EXPORT_SYMBOL(filemap_write_and_wait);
348
349 /**
350  * filemap_write_and_wait_range - write out & wait on a file range
351  * @mapping:    the address_space for the pages
352  * @lstart:     offset in bytes where the range starts
353  * @lend:       offset in bytes where the range ends (inclusive)
354  *
355  * Write out and wait upon file offsets lstart->lend, inclusive.
356  *
357  * Note that `lend' is inclusive (describes the last byte to be written) so
358  * that this function can be used to write to the very end-of-file (end = -1).
359  */
360 int filemap_write_and_wait_range(struct address_space *mapping,
361                                  loff_t lstart, loff_t lend)
362 {
363         int err = 0;
364
365         if (mapping->nrpages) {
366                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
367                                                  WB_SYNC_ALL);
368                 /* See comment of filemap_write_and_wait() */
369                 if (err != -EIO) {
370                         int err2 = filemap_fdatawait_range(mapping,
371                                                 lstart, lend);
372                         if (!err)
373                                 err = err2;
374                 }
375         }
376         return err;
377 }
378 EXPORT_SYMBOL(filemap_write_and_wait_range);
379
380 /**
381  * replace_page_cache_page - replace a pagecache page with a new one
382  * @old:        page to be replaced
383  * @new:        page to replace with
384  * @gfp_mask:   allocation mode
385  *
386  * This function replaces a page in the pagecache with a new one.  On
387  * success it acquires the pagecache reference for the new page and
388  * drops it for the old page.  Both the old and new pages must be
389  * locked.  This function does not add the new page to the LRU, the
390  * caller must do that.
391  *
392  * The remove + add is atomic.  The only way this function can fail is
393  * memory allocation failure.
394  */
395 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
396 {
397         int error;
398
399         VM_BUG_ON(!PageLocked(old));
400         VM_BUG_ON(!PageLocked(new));
401         VM_BUG_ON(new->mapping);
402
403         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
404         if (!error) {
405                 struct address_space *mapping = old->mapping;
406                 void (*freepage)(struct page *);
407
408                 pgoff_t offset = old->index;
409                 freepage = mapping->a_ops->freepage;
410
411                 page_cache_get(new);
412                 new->mapping = mapping;
413                 new->index = offset;
414
415                 spin_lock_irq(&mapping->tree_lock);
416                 __delete_from_page_cache(old);
417                 error = radix_tree_insert(&mapping->page_tree, offset, new);
418                 BUG_ON(error);
419                 mapping->nrpages++;
420                 __inc_zone_page_state(new, NR_FILE_PAGES);
421                 if (PageSwapBacked(new))
422                         __inc_zone_page_state(new, NR_SHMEM);
423                 spin_unlock_irq(&mapping->tree_lock);
424                 /* mem_cgroup codes must not be called under tree_lock */
425                 mem_cgroup_replace_page_cache(old, new);
426                 radix_tree_preload_end();
427                 if (freepage)
428                         freepage(old);
429                 page_cache_release(old);
430         }
431
432         return error;
433 }
434 EXPORT_SYMBOL_GPL(replace_page_cache_page);
435
436 /**
437  * add_to_page_cache_locked - add a locked page to the pagecache
438  * @page:       page to add
439  * @mapping:    the page's address_space
440  * @offset:     page index
441  * @gfp_mask:   page allocation mode
442  *
443  * This function is used to add a page to the pagecache. It must be locked.
444  * This function does not add the page to the LRU.  The caller must do that.
445  */
446 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
447                 pgoff_t offset, gfp_t gfp_mask)
448 {
449         int error;
450
451         VM_BUG_ON(!PageLocked(page));
452         VM_BUG_ON(PageSwapBacked(page));
453
454         error = mem_cgroup_cache_charge(page, current->mm,
455                                         gfp_mask & GFP_RECLAIM_MASK);
456         if (error)
457                 goto out;
458
459         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
460         if (error == 0) {
461                 page_cache_get(page);
462                 page->mapping = mapping;
463                 page->index = offset;
464
465                 spin_lock_irq(&mapping->tree_lock);
466                 error = radix_tree_insert(&mapping->page_tree, offset, page);
467                 if (likely(!error)) {
468                         mapping->nrpages++;
469                         __inc_zone_page_state(page, NR_FILE_PAGES);
470                         spin_unlock_irq(&mapping->tree_lock);
471                         trace_mm_filemap_add_to_page_cache(page);
472                 } else {
473                         page->mapping = NULL;
474                         /* Leave page->index set: truncation relies upon it */
475                         spin_unlock_irq(&mapping->tree_lock);
476                         mem_cgroup_uncharge_cache_page(page);
477                         page_cache_release(page);
478                 }
479                 radix_tree_preload_end();
480         } else
481                 mem_cgroup_uncharge_cache_page(page);
482 out:
483         return error;
484 }
485 EXPORT_SYMBOL(add_to_page_cache_locked);
486
487 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
488                                 pgoff_t offset, gfp_t gfp_mask)
489 {
490         int ret;
491
492         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
493         if (ret == 0)
494                 lru_cache_add_file(page);
495         return ret;
496 }
497 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
498
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
501 {
502         int n;
503         struct page *page;
504
505         if (cpuset_do_page_mem_spread()) {
506                 unsigned int cpuset_mems_cookie;
507                 do {
508                         cpuset_mems_cookie = get_mems_allowed();
509                         n = cpuset_mem_spread_node();
510                         page = alloc_pages_exact_node(n, gfp, 0);
511                 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
512
513                 return page;
514         }
515         return alloc_pages(gfp, 0);
516 }
517 EXPORT_SYMBOL(__page_cache_alloc);
518 #endif
519
520 /*
521  * In order to wait for pages to become available there must be
522  * waitqueues associated with pages. By using a hash table of
523  * waitqueues where the bucket discipline is to maintain all
524  * waiters on the same queue and wake all when any of the pages
525  * become available, and for the woken contexts to check to be
526  * sure the appropriate page became available, this saves space
527  * at a cost of "thundering herd" phenomena during rare hash
528  * collisions.
529  */
530 static wait_queue_head_t *page_waitqueue(struct page *page)
531 {
532         const struct zone *zone = page_zone(page);
533
534         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
535 }
536
537 static inline void wake_up_page(struct page *page, int bit)
538 {
539         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
540 }
541
542 void wait_on_page_bit(struct page *page, int bit_nr)
543 {
544         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
545
546         if (test_bit(bit_nr, &page->flags))
547                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
548                                                         TASK_UNINTERRUPTIBLE);
549 }
550 EXPORT_SYMBOL(wait_on_page_bit);
551
552 int wait_on_page_bit_killable(struct page *page, int bit_nr)
553 {
554         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
555
556         if (!test_bit(bit_nr, &page->flags))
557                 return 0;
558
559         return __wait_on_bit(page_waitqueue(page), &wait,
560                              sleep_on_page_killable, TASK_KILLABLE);
561 }
562
563 /**
564  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
565  * @page: Page defining the wait queue of interest
566  * @waiter: Waiter to add to the queue
567  *
568  * Add an arbitrary @waiter to the wait queue for the nominated @page.
569  */
570 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
571 {
572         wait_queue_head_t *q = page_waitqueue(page);
573         unsigned long flags;
574
575         spin_lock_irqsave(&q->lock, flags);
576         __add_wait_queue(q, waiter);
577         spin_unlock_irqrestore(&q->lock, flags);
578 }
579 EXPORT_SYMBOL_GPL(add_page_wait_queue);
580
581 /**
582  * unlock_page - unlock a locked page
583  * @page: the page
584  *
585  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
586  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
587  * mechananism between PageLocked pages and PageWriteback pages is shared.
588  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
589  *
590  * The mb is necessary to enforce ordering between the clear_bit and the read
591  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
592  */
593 void unlock_page(struct page *page)
594 {
595         VM_BUG_ON(!PageLocked(page));
596         clear_bit_unlock(PG_locked, &page->flags);
597         smp_mb__after_clear_bit();
598         wake_up_page(page, PG_locked);
599 }
600 EXPORT_SYMBOL(unlock_page);
601
602 /**
603  * end_page_writeback - end writeback against a page
604  * @page: the page
605  */
606 void end_page_writeback(struct page *page)
607 {
608         if (TestClearPageReclaim(page))
609                 rotate_reclaimable_page(page);
610
611         if (!test_clear_page_writeback(page))
612                 BUG();
613
614         smp_mb__after_clear_bit();
615         wake_up_page(page, PG_writeback);
616 }
617 EXPORT_SYMBOL(end_page_writeback);
618
619 /**
620  * __lock_page - get a lock on the page, assuming we need to sleep to get it
621  * @page: the page to lock
622  */
623 void __lock_page(struct page *page)
624 {
625         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626
627         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
628                                                         TASK_UNINTERRUPTIBLE);
629 }
630 EXPORT_SYMBOL(__lock_page);
631
632 int __lock_page_killable(struct page *page)
633 {
634         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
635
636         return __wait_on_bit_lock(page_waitqueue(page), &wait,
637                                         sleep_on_page_killable, TASK_KILLABLE);
638 }
639 EXPORT_SYMBOL_GPL(__lock_page_killable);
640
641 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
642                          unsigned int flags)
643 {
644         if (flags & FAULT_FLAG_ALLOW_RETRY) {
645                 /*
646                  * CAUTION! In this case, mmap_sem is not released
647                  * even though return 0.
648                  */
649                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
650                         return 0;
651
652                 up_read(&mm->mmap_sem);
653                 if (flags & FAULT_FLAG_KILLABLE)
654                         wait_on_page_locked_killable(page);
655                 else
656                         wait_on_page_locked(page);
657                 return 0;
658         } else {
659                 if (flags & FAULT_FLAG_KILLABLE) {
660                         int ret;
661
662                         ret = __lock_page_killable(page);
663                         if (ret) {
664                                 up_read(&mm->mmap_sem);
665                                 return 0;
666                         }
667                 } else
668                         __lock_page(page);
669                 return 1;
670         }
671 }
672
673 /**
674  * find_get_page - find and get a page reference
675  * @mapping: the address_space to search
676  * @offset: the page index
677  *
678  * Is there a pagecache struct page at the given (mapping, offset) tuple?
679  * If yes, increment its refcount and return it; if no, return NULL.
680  */
681 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
682 {
683         void **pagep;
684         struct page *page;
685
686         rcu_read_lock();
687 repeat:
688         page = NULL;
689         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
690         if (pagep) {
691                 page = radix_tree_deref_slot(pagep);
692                 if (unlikely(!page))
693                         goto out;
694                 if (radix_tree_exception(page)) {
695                         if (radix_tree_deref_retry(page))
696                                 goto repeat;
697                         /*
698                          * Otherwise, shmem/tmpfs must be storing a swap entry
699                          * here as an exceptional entry: so return it without
700                          * attempting to raise page count.
701                          */
702                         goto out;
703                 }
704                 if (!page_cache_get_speculative(page))
705                         goto repeat;
706
707                 /*
708                  * Has the page moved?
709                  * This is part of the lockless pagecache protocol. See
710                  * include/linux/pagemap.h for details.
711                  */
712                 if (unlikely(page != *pagep)) {
713                         page_cache_release(page);
714                         goto repeat;
715                 }
716         }
717 out:
718         rcu_read_unlock();
719
720         return page;
721 }
722 EXPORT_SYMBOL(find_get_page);
723
724 /**
725  * find_lock_page - locate, pin and lock a pagecache page
726  * @mapping: the address_space to search
727  * @offset: the page index
728  *
729  * Locates the desired pagecache page, locks it, increments its reference
730  * count and returns its address.
731  *
732  * Returns zero if the page was not present. find_lock_page() may sleep.
733  */
734 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
735 {
736         struct page *page;
737
738 repeat:
739         page = find_get_page(mapping, offset);
740         if (page && !radix_tree_exception(page)) {
741                 lock_page(page);
742                 /* Has the page been truncated? */
743                 if (unlikely(page->mapping != mapping)) {
744                         unlock_page(page);
745                         page_cache_release(page);
746                         goto repeat;
747                 }
748                 VM_BUG_ON(page->index != offset);
749         }
750         return page;
751 }
752 EXPORT_SYMBOL(find_lock_page);
753
754 /**
755  * find_or_create_page - locate or add a pagecache page
756  * @mapping: the page's address_space
757  * @index: the page's index into the mapping
758  * @gfp_mask: page allocation mode
759  *
760  * Locates a page in the pagecache.  If the page is not present, a new page
761  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
762  * LRU list.  The returned page is locked and has its reference count
763  * incremented.
764  *
765  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
766  * allocation!
767  *
768  * find_or_create_page() returns the desired page's address, or zero on
769  * memory exhaustion.
770  */
771 struct page *find_or_create_page(struct address_space *mapping,
772                 pgoff_t index, gfp_t gfp_mask)
773 {
774         struct page *page;
775         int err;
776 repeat:
777         page = find_lock_page(mapping, index);
778         if (!page) {
779                 page = __page_cache_alloc(gfp_mask);
780                 if (!page)
781                         return NULL;
782                 /*
783                  * We want a regular kernel memory (not highmem or DMA etc)
784                  * allocation for the radix tree nodes, but we need to honour
785                  * the context-specific requirements the caller has asked for.
786                  * GFP_RECLAIM_MASK collects those requirements.
787                  */
788                 err = add_to_page_cache_lru(page, mapping, index,
789                         (gfp_mask & GFP_RECLAIM_MASK));
790                 if (unlikely(err)) {
791                         page_cache_release(page);
792                         page = NULL;
793                         if (err == -EEXIST)
794                                 goto repeat;
795                 }
796         }
797         return page;
798 }
799 EXPORT_SYMBOL(find_or_create_page);
800
801 /**
802  * find_get_pages - gang pagecache lookup
803  * @mapping:    The address_space to search
804  * @start:      The starting page index
805  * @nr_pages:   The maximum number of pages
806  * @pages:      Where the resulting pages are placed
807  *
808  * find_get_pages() will search for and return a group of up to
809  * @nr_pages pages in the mapping.  The pages are placed at @pages.
810  * find_get_pages() takes a reference against the returned pages.
811  *
812  * The search returns a group of mapping-contiguous pages with ascending
813  * indexes.  There may be holes in the indices due to not-present pages.
814  *
815  * find_get_pages() returns the number of pages which were found.
816  */
817 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
818                             unsigned int nr_pages, struct page **pages)
819 {
820         struct radix_tree_iter iter;
821         void **slot;
822         unsigned ret = 0;
823
824         if (unlikely(!nr_pages))
825                 return 0;
826
827         rcu_read_lock();
828 restart:
829         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
830                 struct page *page;
831 repeat:
832                 page = radix_tree_deref_slot(slot);
833                 if (unlikely(!page))
834                         continue;
835
836                 if (radix_tree_exception(page)) {
837                         if (radix_tree_deref_retry(page)) {
838                                 /*
839                                  * Transient condition which can only trigger
840                                  * when entry at index 0 moves out of or back
841                                  * to root: none yet gotten, safe to restart.
842                                  */
843                                 WARN_ON(iter.index);
844                                 goto restart;
845                         }
846                         /*
847                          * Otherwise, shmem/tmpfs must be storing a swap entry
848                          * here as an exceptional entry: so skip over it -
849                          * we only reach this from invalidate_mapping_pages().
850                          */
851                         continue;
852                 }
853
854                 if (!page_cache_get_speculative(page))
855                         goto repeat;
856
857                 /* Has the page moved? */
858                 if (unlikely(page != *slot)) {
859                         page_cache_release(page);
860                         goto repeat;
861                 }
862
863                 pages[ret] = page;
864                 if (++ret == nr_pages)
865                         break;
866         }
867
868         rcu_read_unlock();
869         return ret;
870 }
871
872 /**
873  * find_get_pages_contig - gang contiguous pagecache lookup
874  * @mapping:    The address_space to search
875  * @index:      The starting page index
876  * @nr_pages:   The maximum number of pages
877  * @pages:      Where the resulting pages are placed
878  *
879  * find_get_pages_contig() works exactly like find_get_pages(), except
880  * that the returned number of pages are guaranteed to be contiguous.
881  *
882  * find_get_pages_contig() returns the number of pages which were found.
883  */
884 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
885                                unsigned int nr_pages, struct page **pages)
886 {
887         struct radix_tree_iter iter;
888         void **slot;
889         unsigned int ret = 0;
890
891         if (unlikely(!nr_pages))
892                 return 0;
893
894         rcu_read_lock();
895 restart:
896         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
897                 struct page *page;
898 repeat:
899                 page = radix_tree_deref_slot(slot);
900                 /* The hole, there no reason to continue */
901                 if (unlikely(!page))
902                         break;
903
904                 if (radix_tree_exception(page)) {
905                         if (radix_tree_deref_retry(page)) {
906                                 /*
907                                  * Transient condition which can only trigger
908                                  * when entry at index 0 moves out of or back
909                                  * to root: none yet gotten, safe to restart.
910                                  */
911                                 goto restart;
912                         }
913                         /*
914                          * Otherwise, shmem/tmpfs must be storing a swap entry
915                          * here as an exceptional entry: so stop looking for
916                          * contiguous pages.
917                          */
918                         break;
919                 }
920
921                 if (!page_cache_get_speculative(page))
922                         goto repeat;
923
924                 /* Has the page moved? */
925                 if (unlikely(page != *slot)) {
926                         page_cache_release(page);
927                         goto repeat;
928                 }
929
930                 /*
931                  * must check mapping and index after taking the ref.
932                  * otherwise we can get both false positives and false
933                  * negatives, which is just confusing to the caller.
934                  */
935                 if (page->mapping == NULL || page->index != iter.index) {
936                         page_cache_release(page);
937                         break;
938                 }
939
940                 pages[ret] = page;
941                 if (++ret == nr_pages)
942                         break;
943         }
944         rcu_read_unlock();
945         return ret;
946 }
947 EXPORT_SYMBOL(find_get_pages_contig);
948
949 /**
950  * find_get_pages_tag - find and return pages that match @tag
951  * @mapping:    the address_space to search
952  * @index:      the starting page index
953  * @tag:        the tag index
954  * @nr_pages:   the maximum number of pages
955  * @pages:      where the resulting pages are placed
956  *
957  * Like find_get_pages, except we only return pages which are tagged with
958  * @tag.   We update @index to index the next page for the traversal.
959  */
960 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
961                         int tag, unsigned int nr_pages, struct page **pages)
962 {
963         struct radix_tree_iter iter;
964         void **slot;
965         unsigned ret = 0;
966
967         if (unlikely(!nr_pages))
968                 return 0;
969
970         rcu_read_lock();
971 restart:
972         radix_tree_for_each_tagged(slot, &mapping->page_tree,
973                                    &iter, *index, tag) {
974                 struct page *page;
975 repeat:
976                 page = radix_tree_deref_slot(slot);
977                 if (unlikely(!page))
978                         continue;
979
980                 if (radix_tree_exception(page)) {
981                         if (radix_tree_deref_retry(page)) {
982                                 /*
983                                  * Transient condition which can only trigger
984                                  * when entry at index 0 moves out of or back
985                                  * to root: none yet gotten, safe to restart.
986                                  */
987                                 goto restart;
988                         }
989                         /*
990                          * This function is never used on a shmem/tmpfs
991                          * mapping, so a swap entry won't be found here.
992                          */
993                         BUG();
994                 }
995
996                 if (!page_cache_get_speculative(page))
997                         goto repeat;
998
999                 /* Has the page moved? */
1000                 if (unlikely(page != *slot)) {
1001                         page_cache_release(page);
1002                         goto repeat;
1003                 }
1004
1005                 pages[ret] = page;
1006                 if (++ret == nr_pages)
1007                         break;
1008         }
1009
1010         rcu_read_unlock();
1011
1012         if (ret)
1013                 *index = pages[ret - 1]->index + 1;
1014
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(find_get_pages_tag);
1018
1019 /**
1020  * grab_cache_page_nowait - returns locked page at given index in given cache
1021  * @mapping: target address_space
1022  * @index: the page index
1023  *
1024  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1025  * This is intended for speculative data generators, where the data can
1026  * be regenerated if the page couldn't be grabbed.  This routine should
1027  * be safe to call while holding the lock for another page.
1028  *
1029  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1030  * and deadlock against the caller's locked page.
1031  */
1032 struct page *
1033 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1034 {
1035         struct page *page = find_get_page(mapping, index);
1036
1037         if (page) {
1038                 if (trylock_page(page))
1039                         return page;
1040                 page_cache_release(page);
1041                 return NULL;
1042         }
1043         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1044         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1045                 page_cache_release(page);
1046                 page = NULL;
1047         }
1048         return page;
1049 }
1050 EXPORT_SYMBOL(grab_cache_page_nowait);
1051
1052 /*
1053  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1054  * a _large_ part of the i/o request. Imagine the worst scenario:
1055  *
1056  *      ---R__________________________________________B__________
1057  *         ^ reading here                             ^ bad block(assume 4k)
1058  *
1059  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1060  * => failing the whole request => read(R) => read(R+1) =>
1061  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1062  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1063  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1064  *
1065  * It is going insane. Fix it by quickly scaling down the readahead size.
1066  */
1067 static void shrink_readahead_size_eio(struct file *filp,
1068                                         struct file_ra_state *ra)
1069 {
1070         ra->ra_pages /= 4;
1071 }
1072
1073 /**
1074  * do_generic_file_read - generic file read routine
1075  * @filp:       the file to read
1076  * @ppos:       current file position
1077  * @desc:       read_descriptor
1078  * @actor:      read method
1079  *
1080  * This is a generic file read routine, and uses the
1081  * mapping->a_ops->readpage() function for the actual low-level stuff.
1082  *
1083  * This is really ugly. But the goto's actually try to clarify some
1084  * of the logic when it comes to error handling etc.
1085  */
1086 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1087                 read_descriptor_t *desc, read_actor_t actor)
1088 {
1089         struct address_space *mapping = filp->f_mapping;
1090         struct inode *inode = mapping->host;
1091         struct file_ra_state *ra = &filp->f_ra;
1092         pgoff_t index;
1093         pgoff_t last_index;
1094         pgoff_t prev_index;
1095         unsigned long offset;      /* offset into pagecache page */
1096         unsigned int prev_offset;
1097         int error;
1098
1099         index = *ppos >> PAGE_CACHE_SHIFT;
1100         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1101         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1102         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1103         offset = *ppos & ~PAGE_CACHE_MASK;
1104
1105         for (;;) {
1106                 struct page *page;
1107                 pgoff_t end_index;
1108                 loff_t isize;
1109                 unsigned long nr, ret;
1110
1111                 cond_resched();
1112 find_page:
1113                 page = find_get_page(mapping, index);
1114                 if (!page) {
1115                         page_cache_sync_readahead(mapping,
1116                                         ra, filp,
1117                                         index, last_index - index);
1118                         page = find_get_page(mapping, index);
1119                         if (unlikely(page == NULL))
1120                                 goto no_cached_page;
1121                 }
1122                 if (PageReadahead(page)) {
1123                         page_cache_async_readahead(mapping,
1124                                         ra, filp, page,
1125                                         index, last_index - index);
1126                 }
1127                 if (!PageUptodate(page)) {
1128                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1129                                         !mapping->a_ops->is_partially_uptodate)
1130                                 goto page_not_up_to_date;
1131                         if (!trylock_page(page))
1132                                 goto page_not_up_to_date;
1133                         /* Did it get truncated before we got the lock? */
1134                         if (!page->mapping)
1135                                 goto page_not_up_to_date_locked;
1136                         if (!mapping->a_ops->is_partially_uptodate(page,
1137                                                                 desc, offset))
1138                                 goto page_not_up_to_date_locked;
1139                         unlock_page(page);
1140                 }
1141 page_ok:
1142                 /*
1143                  * i_size must be checked after we know the page is Uptodate.
1144                  *
1145                  * Checking i_size after the check allows us to calculate
1146                  * the correct value for "nr", which means the zero-filled
1147                  * part of the page is not copied back to userspace (unless
1148                  * another truncate extends the file - this is desired though).
1149                  */
1150
1151                 isize = i_size_read(inode);
1152                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1153                 if (unlikely(!isize || index > end_index)) {
1154                         page_cache_release(page);
1155                         goto out;
1156                 }
1157
1158                 /* nr is the maximum number of bytes to copy from this page */
1159                 nr = PAGE_CACHE_SIZE;
1160                 if (index == end_index) {
1161                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1162                         if (nr <= offset) {
1163                                 page_cache_release(page);
1164                                 goto out;
1165                         }
1166                 }
1167                 nr = nr - offset;
1168
1169                 /* If users can be writing to this page using arbitrary
1170                  * virtual addresses, take care about potential aliasing
1171                  * before reading the page on the kernel side.
1172                  */
1173                 if (mapping_writably_mapped(mapping))
1174                         flush_dcache_page(page);
1175
1176                 /*
1177                  * When a sequential read accesses a page several times,
1178                  * only mark it as accessed the first time.
1179                  */
1180                 if (prev_index != index || offset != prev_offset)
1181                         mark_page_accessed(page);
1182                 prev_index = index;
1183
1184                 /*
1185                  * Ok, we have the page, and it's up-to-date, so
1186                  * now we can copy it to user space...
1187                  *
1188                  * The actor routine returns how many bytes were actually used..
1189                  * NOTE! This may not be the same as how much of a user buffer
1190                  * we filled up (we may be padding etc), so we can only update
1191                  * "pos" here (the actor routine has to update the user buffer
1192                  * pointers and the remaining count).
1193                  */
1194                 ret = actor(desc, page, offset, nr);
1195                 offset += ret;
1196                 index += offset >> PAGE_CACHE_SHIFT;
1197                 offset &= ~PAGE_CACHE_MASK;
1198                 prev_offset = offset;
1199
1200                 page_cache_release(page);
1201                 if (ret == nr && desc->count)
1202                         continue;
1203                 goto out;
1204
1205 page_not_up_to_date:
1206                 /* Get exclusive access to the page ... */
1207                 error = lock_page_killable(page);
1208                 if (unlikely(error))
1209                         goto readpage_error;
1210
1211 page_not_up_to_date_locked:
1212                 /* Did it get truncated before we got the lock? */
1213                 if (!page->mapping) {
1214                         unlock_page(page);
1215                         page_cache_release(page);
1216                         continue;
1217                 }
1218
1219                 /* Did somebody else fill it already? */
1220                 if (PageUptodate(page)) {
1221                         unlock_page(page);
1222                         goto page_ok;
1223                 }
1224
1225 readpage:
1226                 /*
1227                  * A previous I/O error may have been due to temporary
1228                  * failures, eg. multipath errors.
1229                  * PG_error will be set again if readpage fails.
1230                  */
1231                 ClearPageError(page);
1232                 /* Start the actual read. The read will unlock the page. */
1233                 error = mapping->a_ops->readpage(filp, page);
1234
1235                 if (unlikely(error)) {
1236                         if (error == AOP_TRUNCATED_PAGE) {
1237                                 page_cache_release(page);
1238                                 goto find_page;
1239                         }
1240                         goto readpage_error;
1241                 }
1242
1243                 if (!PageUptodate(page)) {
1244                         error = lock_page_killable(page);
1245                         if (unlikely(error))
1246                                 goto readpage_error;
1247                         if (!PageUptodate(page)) {
1248                                 if (page->mapping == NULL) {
1249                                         /*
1250                                          * invalidate_mapping_pages got it
1251                                          */
1252                                         unlock_page(page);
1253                                         page_cache_release(page);
1254                                         goto find_page;
1255                                 }
1256                                 unlock_page(page);
1257                                 shrink_readahead_size_eio(filp, ra);
1258                                 error = -EIO;
1259                                 goto readpage_error;
1260                         }
1261                         unlock_page(page);
1262                 }
1263
1264                 goto page_ok;
1265
1266 readpage_error:
1267                 /* UHHUH! A synchronous read error occurred. Report it */
1268                 desc->error = error;
1269                 page_cache_release(page);
1270                 goto out;
1271
1272 no_cached_page:
1273                 /*
1274                  * Ok, it wasn't cached, so we need to create a new
1275                  * page..
1276                  */
1277                 page = page_cache_alloc_cold(mapping);
1278                 if (!page) {
1279                         desc->error = -ENOMEM;
1280                         goto out;
1281                 }
1282                 error = add_to_page_cache_lru(page, mapping,
1283                                                 index, GFP_KERNEL);
1284                 if (error) {
1285                         page_cache_release(page);
1286                         if (error == -EEXIST)
1287                                 goto find_page;
1288                         desc->error = error;
1289                         goto out;
1290                 }
1291                 goto readpage;
1292         }
1293
1294 out:
1295         ra->prev_pos = prev_index;
1296         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1297         ra->prev_pos |= prev_offset;
1298
1299         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1300         file_accessed(filp);
1301 }
1302
1303 int file_read_actor(read_descriptor_t *desc, struct page *page,
1304                         unsigned long offset, unsigned long size)
1305 {
1306         char *kaddr;
1307         unsigned long left, count = desc->count;
1308
1309         if (size > count)
1310                 size = count;
1311
1312         /*
1313          * Faults on the destination of a read are common, so do it before
1314          * taking the kmap.
1315          */
1316         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1317                 kaddr = kmap_atomic(page);
1318                 left = __copy_to_user_inatomic(desc->arg.buf,
1319                                                 kaddr + offset, size);
1320                 kunmap_atomic(kaddr);
1321                 if (left == 0)
1322                         goto success;
1323         }
1324
1325         /* Do it the slow way */
1326         kaddr = kmap(page);
1327         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1328         kunmap(page);
1329
1330         if (left) {
1331                 size -= left;
1332                 desc->error = -EFAULT;
1333         }
1334 success:
1335         desc->count = count - size;
1336         desc->written += size;
1337         desc->arg.buf += size;
1338         return size;
1339 }
1340
1341 /*
1342  * Performs necessary checks before doing a write
1343  * @iov:        io vector request
1344  * @nr_segs:    number of segments in the iovec
1345  * @count:      number of bytes to write
1346  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1347  *
1348  * Adjust number of segments and amount of bytes to write (nr_segs should be
1349  * properly initialized first). Returns appropriate error code that caller
1350  * should return or zero in case that write should be allowed.
1351  */
1352 int generic_segment_checks(const struct iovec *iov,
1353                         unsigned long *nr_segs, size_t *count, int access_flags)
1354 {
1355         unsigned long   seg;
1356         size_t cnt = 0;
1357         for (seg = 0; seg < *nr_segs; seg++) {
1358                 const struct iovec *iv = &iov[seg];
1359
1360                 /*
1361                  * If any segment has a negative length, or the cumulative
1362                  * length ever wraps negative then return -EINVAL.
1363                  */
1364                 cnt += iv->iov_len;
1365                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1366                         return -EINVAL;
1367                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1368                         continue;
1369                 if (seg == 0)
1370                         return -EFAULT;
1371                 *nr_segs = seg;
1372                 cnt -= iv->iov_len;     /* This segment is no good */
1373                 break;
1374         }
1375         *count = cnt;
1376         return 0;
1377 }
1378 EXPORT_SYMBOL(generic_segment_checks);
1379
1380 /**
1381  * generic_file_aio_read - generic filesystem read routine
1382  * @iocb:       kernel I/O control block
1383  * @iov:        io vector request
1384  * @nr_segs:    number of segments in the iovec
1385  * @pos:        current file position
1386  *
1387  * This is the "read()" routine for all filesystems
1388  * that can use the page cache directly.
1389  */
1390 ssize_t
1391 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1392                 unsigned long nr_segs, loff_t pos)
1393 {
1394         struct file *filp = iocb->ki_filp;
1395         ssize_t retval;
1396         unsigned long seg = 0;
1397         size_t count;
1398         loff_t *ppos = &iocb->ki_pos;
1399
1400         count = 0;
1401         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1402         if (retval)
1403                 return retval;
1404
1405         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1406         if (filp->f_flags & O_DIRECT) {
1407                 loff_t size;
1408                 struct address_space *mapping;
1409                 struct inode *inode;
1410
1411                 mapping = filp->f_mapping;
1412                 inode = mapping->host;
1413                 if (!count)
1414                         goto out; /* skip atime */
1415                 size = i_size_read(inode);
1416                 if (pos < size) {
1417                         retval = filemap_write_and_wait_range(mapping, pos,
1418                                         pos + iov_length(iov, nr_segs) - 1);
1419                         if (!retval) {
1420                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1421                                                         iov, pos, nr_segs);
1422                         }
1423                         if (retval > 0) {
1424                                 *ppos = pos + retval;
1425                                 count -= retval;
1426                         }
1427
1428                         /*
1429                          * Btrfs can have a short DIO read if we encounter
1430                          * compressed extents, so if there was an error, or if
1431                          * we've already read everything we wanted to, or if
1432                          * there was a short read because we hit EOF, go ahead
1433                          * and return.  Otherwise fallthrough to buffered io for
1434                          * the rest of the read.
1435                          */
1436                         if (retval < 0 || !count || *ppos >= size) {
1437                                 file_accessed(filp);
1438                                 goto out;
1439                         }
1440                 }
1441         }
1442
1443         count = retval;
1444         for (seg = 0; seg < nr_segs; seg++) {
1445                 read_descriptor_t desc;
1446                 loff_t offset = 0;
1447
1448                 /*
1449                  * If we did a short DIO read we need to skip the section of the
1450                  * iov that we've already read data into.
1451                  */
1452                 if (count) {
1453                         if (count > iov[seg].iov_len) {
1454                                 count -= iov[seg].iov_len;
1455                                 continue;
1456                         }
1457                         offset = count;
1458                         count = 0;
1459                 }
1460
1461                 desc.written = 0;
1462                 desc.arg.buf = iov[seg].iov_base + offset;
1463                 desc.count = iov[seg].iov_len - offset;
1464                 if (desc.count == 0)
1465                         continue;
1466                 desc.error = 0;
1467                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468                 retval += desc.written;
1469                 if (desc.error) {
1470                         retval = retval ?: desc.error;
1471                         break;
1472                 }
1473                 if (desc.count > 0)
1474                         break;
1475         }
1476 out:
1477         return retval;
1478 }
1479 EXPORT_SYMBOL(generic_file_aio_read);
1480
1481 #ifdef CONFIG_MMU
1482 /**
1483  * page_cache_read - adds requested page to the page cache if not already there
1484  * @file:       file to read
1485  * @offset:     page index
1486  *
1487  * This adds the requested page to the page cache if it isn't already there,
1488  * and schedules an I/O to read in its contents from disk.
1489  */
1490 static int page_cache_read(struct file *file, pgoff_t offset)
1491 {
1492         struct address_space *mapping = file->f_mapping;
1493         struct page *page; 
1494         int ret;
1495
1496         do {
1497                 page = page_cache_alloc_cold(mapping);
1498                 if (!page)
1499                         return -ENOMEM;
1500
1501                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1502                 if (ret == 0)
1503                         ret = mapping->a_ops->readpage(file, page);
1504                 else if (ret == -EEXIST)
1505                         ret = 0; /* losing race to add is OK */
1506
1507                 page_cache_release(page);
1508
1509         } while (ret == AOP_TRUNCATED_PAGE);
1510                 
1511         return ret;
1512 }
1513
1514 #define MMAP_LOTSAMISS  (100)
1515
1516 /*
1517  * Synchronous readahead happens when we don't even find
1518  * a page in the page cache at all.
1519  */
1520 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1521                                    struct file_ra_state *ra,
1522                                    struct file *file,
1523                                    pgoff_t offset)
1524 {
1525         unsigned long ra_pages;
1526         struct address_space *mapping = file->f_mapping;
1527
1528         /* If we don't want any read-ahead, don't bother */
1529         if (VM_RandomReadHint(vma))
1530                 return;
1531         if (!ra->ra_pages)
1532                 return;
1533
1534         if (VM_SequentialReadHint(vma)) {
1535                 page_cache_sync_readahead(mapping, ra, file, offset,
1536                                           ra->ra_pages);
1537                 return;
1538         }
1539
1540         /* Avoid banging the cache line if not needed */
1541         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1542                 ra->mmap_miss++;
1543
1544         /*
1545          * Do we miss much more than hit in this file? If so,
1546          * stop bothering with read-ahead. It will only hurt.
1547          */
1548         if (ra->mmap_miss > MMAP_LOTSAMISS)
1549                 return;
1550
1551         /*
1552          * mmap read-around
1553          */
1554         ra_pages = max_sane_readahead(ra->ra_pages);
1555         ra->start = max_t(long, 0, offset - ra_pages / 2);
1556         ra->size = ra_pages;
1557         ra->async_size = ra_pages / 4;
1558         ra_submit(ra, mapping, file);
1559 }
1560
1561 /*
1562  * Asynchronous readahead happens when we find the page and PG_readahead,
1563  * so we want to possibly extend the readahead further..
1564  */
1565 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1566                                     struct file_ra_state *ra,
1567                                     struct file *file,
1568                                     struct page *page,
1569                                     pgoff_t offset)
1570 {
1571         struct address_space *mapping = file->f_mapping;
1572
1573         /* If we don't want any read-ahead, don't bother */
1574         if (VM_RandomReadHint(vma))
1575                 return;
1576         if (ra->mmap_miss > 0)
1577                 ra->mmap_miss--;
1578         if (PageReadahead(page))
1579                 page_cache_async_readahead(mapping, ra, file,
1580                                            page, offset, ra->ra_pages);
1581 }
1582
1583 /**
1584  * filemap_fault - read in file data for page fault handling
1585  * @vma:        vma in which the fault was taken
1586  * @vmf:        struct vm_fault containing details of the fault
1587  *
1588  * filemap_fault() is invoked via the vma operations vector for a
1589  * mapped memory region to read in file data during a page fault.
1590  *
1591  * The goto's are kind of ugly, but this streamlines the normal case of having
1592  * it in the page cache, and handles the special cases reasonably without
1593  * having a lot of duplicated code.
1594  */
1595 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1596 {
1597         int error;
1598         struct file *file = vma->vm_file;
1599         struct address_space *mapping = file->f_mapping;
1600         struct file_ra_state *ra = &file->f_ra;
1601         struct inode *inode = mapping->host;
1602         pgoff_t offset = vmf->pgoff;
1603         struct page *page;
1604         pgoff_t size;
1605         int ret = 0;
1606
1607         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1608         if (offset >= size)
1609                 return VM_FAULT_SIGBUS;
1610
1611         /*
1612          * Do we have something in the page cache already?
1613          */
1614         page = find_get_page(mapping, offset);
1615         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1616                 /*
1617                  * We found the page, so try async readahead before
1618                  * waiting for the lock.
1619                  */
1620                 do_async_mmap_readahead(vma, ra, file, page, offset);
1621         } else if (!page) {
1622                 /* No page in the page cache at all */
1623                 do_sync_mmap_readahead(vma, ra, file, offset);
1624                 count_vm_event(PGMAJFAULT);
1625                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1626                 ret = VM_FAULT_MAJOR;
1627 retry_find:
1628                 page = find_get_page(mapping, offset);
1629                 if (!page)
1630                         goto no_cached_page;
1631         }
1632
1633         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1634                 page_cache_release(page);
1635                 return ret | VM_FAULT_RETRY;
1636         }
1637
1638         /* Did it get truncated? */
1639         if (unlikely(page->mapping != mapping)) {
1640                 unlock_page(page);
1641                 put_page(page);
1642                 goto retry_find;
1643         }
1644         VM_BUG_ON(page->index != offset);
1645
1646         /*
1647          * We have a locked page in the page cache, now we need to check
1648          * that it's up-to-date. If not, it is going to be due to an error.
1649          */
1650         if (unlikely(!PageUptodate(page)))
1651                 goto page_not_uptodate;
1652
1653         /*
1654          * Found the page and have a reference on it.
1655          * We must recheck i_size under page lock.
1656          */
1657         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1658         if (unlikely(offset >= size)) {
1659                 unlock_page(page);
1660                 page_cache_release(page);
1661                 return VM_FAULT_SIGBUS;
1662         }
1663
1664         vmf->page = page;
1665         return ret | VM_FAULT_LOCKED;
1666
1667 no_cached_page:
1668         /*
1669          * We're only likely to ever get here if MADV_RANDOM is in
1670          * effect.
1671          */
1672         error = page_cache_read(file, offset);
1673
1674         /*
1675          * The page we want has now been added to the page cache.
1676          * In the unlikely event that someone removed it in the
1677          * meantime, we'll just come back here and read it again.
1678          */
1679         if (error >= 0)
1680                 goto retry_find;
1681
1682         /*
1683          * An error return from page_cache_read can result if the
1684          * system is low on memory, or a problem occurs while trying
1685          * to schedule I/O.
1686          */
1687         if (error == -ENOMEM)
1688                 return VM_FAULT_OOM;
1689         return VM_FAULT_SIGBUS;
1690
1691 page_not_uptodate:
1692         /*
1693          * Umm, take care of errors if the page isn't up-to-date.
1694          * Try to re-read it _once_. We do this synchronously,
1695          * because there really aren't any performance issues here
1696          * and we need to check for errors.
1697          */
1698         ClearPageError(page);
1699         error = mapping->a_ops->readpage(file, page);
1700         if (!error) {
1701                 wait_on_page_locked(page);
1702                 if (!PageUptodate(page))
1703                         error = -EIO;
1704         }
1705         page_cache_release(page);
1706
1707         if (!error || error == AOP_TRUNCATED_PAGE)
1708                 goto retry_find;
1709
1710         /* Things didn't work out. Return zero to tell the mm layer so. */
1711         shrink_readahead_size_eio(file, ra);
1712         return VM_FAULT_SIGBUS;
1713 }
1714 EXPORT_SYMBOL(filemap_fault);
1715
1716 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1717 {
1718         struct page *page = vmf->page;
1719         struct inode *inode = file_inode(vma->vm_file);
1720         int ret = VM_FAULT_LOCKED;
1721
1722         sb_start_pagefault(inode->i_sb);
1723         file_update_time(vma->vm_file);
1724         lock_page(page);
1725         if (page->mapping != inode->i_mapping) {
1726                 unlock_page(page);
1727                 ret = VM_FAULT_NOPAGE;
1728                 goto out;
1729         }
1730         /*
1731          * We mark the page dirty already here so that when freeze is in
1732          * progress, we are guaranteed that writeback during freezing will
1733          * see the dirty page and writeprotect it again.
1734          */
1735         set_page_dirty(page);
1736         wait_for_stable_page(page);
1737 out:
1738         sb_end_pagefault(inode->i_sb);
1739         return ret;
1740 }
1741 EXPORT_SYMBOL(filemap_page_mkwrite);
1742
1743 const struct vm_operations_struct generic_file_vm_ops = {
1744         .fault          = filemap_fault,
1745         .page_mkwrite   = filemap_page_mkwrite,
1746         .remap_pages    = generic_file_remap_pages,
1747 };
1748
1749 /* This is used for a general mmap of a disk file */
1750
1751 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1752 {
1753         struct address_space *mapping = file->f_mapping;
1754
1755         if (!mapping->a_ops->readpage)
1756                 return -ENOEXEC;
1757         file_accessed(file);
1758         vma->vm_ops = &generic_file_vm_ops;
1759         return 0;
1760 }
1761
1762 /*
1763  * This is for filesystems which do not implement ->writepage.
1764  */
1765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1766 {
1767         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1768                 return -EINVAL;
1769         return generic_file_mmap(file, vma);
1770 }
1771 #else
1772 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773 {
1774         return -ENOSYS;
1775 }
1776 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1777 {
1778         return -ENOSYS;
1779 }
1780 #endif /* CONFIG_MMU */
1781
1782 EXPORT_SYMBOL(generic_file_mmap);
1783 EXPORT_SYMBOL(generic_file_readonly_mmap);
1784
1785 static struct page *__read_cache_page(struct address_space *mapping,
1786                                 pgoff_t index,
1787                                 int (*filler)(void *, struct page *),
1788                                 void *data,
1789                                 gfp_t gfp)
1790 {
1791         struct page *page;
1792         int err;
1793 repeat:
1794         page = find_get_page(mapping, index);
1795         if (!page) {
1796                 page = __page_cache_alloc(gfp | __GFP_COLD);
1797                 if (!page)
1798                         return ERR_PTR(-ENOMEM);
1799                 err = add_to_page_cache_lru(page, mapping, index, gfp);
1800                 if (unlikely(err)) {
1801                         page_cache_release(page);
1802                         if (err == -EEXIST)
1803                                 goto repeat;
1804                         /* Presumably ENOMEM for radix tree node */
1805                         return ERR_PTR(err);
1806                 }
1807                 err = filler(data, page);
1808                 if (err < 0) {
1809                         page_cache_release(page);
1810                         page = ERR_PTR(err);
1811                 }
1812         }
1813         return page;
1814 }
1815
1816 static struct page *do_read_cache_page(struct address_space *mapping,
1817                                 pgoff_t index,
1818                                 int (*filler)(void *, struct page *),
1819                                 void *data,
1820                                 gfp_t gfp)
1821
1822 {
1823         struct page *page;
1824         int err;
1825
1826 retry:
1827         page = __read_cache_page(mapping, index, filler, data, gfp);
1828         if (IS_ERR(page))
1829                 return page;
1830         if (PageUptodate(page))
1831                 goto out;
1832
1833         lock_page(page);
1834         if (!page->mapping) {
1835                 unlock_page(page);
1836                 page_cache_release(page);
1837                 goto retry;
1838         }
1839         if (PageUptodate(page)) {
1840                 unlock_page(page);
1841                 goto out;
1842         }
1843         err = filler(data, page);
1844         if (err < 0) {
1845                 page_cache_release(page);
1846                 return ERR_PTR(err);
1847         }
1848 out:
1849         mark_page_accessed(page);
1850         return page;
1851 }
1852
1853 /**
1854  * read_cache_page_async - read into page cache, fill it if needed
1855  * @mapping:    the page's address_space
1856  * @index:      the page index
1857  * @filler:     function to perform the read
1858  * @data:       first arg to filler(data, page) function, often left as NULL
1859  *
1860  * Same as read_cache_page, but don't wait for page to become unlocked
1861  * after submitting it to the filler.
1862  *
1863  * Read into the page cache. If a page already exists, and PageUptodate() is
1864  * not set, try to fill the page but don't wait for it to become unlocked.
1865  *
1866  * If the page does not get brought uptodate, return -EIO.
1867  */
1868 struct page *read_cache_page_async(struct address_space *mapping,
1869                                 pgoff_t index,
1870                                 int (*filler)(void *, struct page *),
1871                                 void *data)
1872 {
1873         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1874 }
1875 EXPORT_SYMBOL(read_cache_page_async);
1876
1877 static struct page *wait_on_page_read(struct page *page)
1878 {
1879         if (!IS_ERR(page)) {
1880                 wait_on_page_locked(page);
1881                 if (!PageUptodate(page)) {
1882                         page_cache_release(page);
1883                         page = ERR_PTR(-EIO);
1884                 }
1885         }
1886         return page;
1887 }
1888
1889 /**
1890  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1891  * @mapping:    the page's address_space
1892  * @index:      the page index
1893  * @gfp:        the page allocator flags to use if allocating
1894  *
1895  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1896  * any new page allocations done using the specified allocation flags.
1897  *
1898  * If the page does not get brought uptodate, return -EIO.
1899  */
1900 struct page *read_cache_page_gfp(struct address_space *mapping,
1901                                 pgoff_t index,
1902                                 gfp_t gfp)
1903 {
1904         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1905
1906         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1907 }
1908 EXPORT_SYMBOL(read_cache_page_gfp);
1909
1910 /**
1911  * read_cache_page - read into page cache, fill it if needed
1912  * @mapping:    the page's address_space
1913  * @index:      the page index
1914  * @filler:     function to perform the read
1915  * @data:       first arg to filler(data, page) function, often left as NULL
1916  *
1917  * Read into the page cache. If a page already exists, and PageUptodate() is
1918  * not set, try to fill the page then wait for it to become unlocked.
1919  *
1920  * If the page does not get brought uptodate, return -EIO.
1921  */
1922 struct page *read_cache_page(struct address_space *mapping,
1923                                 pgoff_t index,
1924                                 int (*filler)(void *, struct page *),
1925                                 void *data)
1926 {
1927         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1928 }
1929 EXPORT_SYMBOL(read_cache_page);
1930
1931 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1932                         const struct iovec *iov, size_t base, size_t bytes)
1933 {
1934         size_t copied = 0, left = 0;
1935
1936         while (bytes) {
1937                 char __user *buf = iov->iov_base + base;
1938                 int copy = min(bytes, iov->iov_len - base);
1939
1940                 base = 0;
1941                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1942                 copied += copy;
1943                 bytes -= copy;
1944                 vaddr += copy;
1945                 iov++;
1946
1947                 if (unlikely(left))
1948                         break;
1949         }
1950         return copied - left;
1951 }
1952
1953 /*
1954  * Copy as much as we can into the page and return the number of bytes which
1955  * were successfully copied.  If a fault is encountered then return the number of
1956  * bytes which were copied.
1957  */
1958 size_t iov_iter_copy_from_user_atomic(struct page *page,
1959                 struct iov_iter *i, unsigned long offset, size_t bytes)
1960 {
1961         char *kaddr;
1962         size_t copied;
1963
1964         BUG_ON(!in_atomic());
1965         kaddr = kmap_atomic(page);
1966         if (likely(i->nr_segs == 1)) {
1967                 int left;
1968                 char __user *buf = i->iov->iov_base + i->iov_offset;
1969                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1970                 copied = bytes - left;
1971         } else {
1972                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1973                                                 i->iov, i->iov_offset, bytes);
1974         }
1975         kunmap_atomic(kaddr);
1976
1977         return copied;
1978 }
1979 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1980
1981 /*
1982  * This has the same sideeffects and return value as
1983  * iov_iter_copy_from_user_atomic().
1984  * The difference is that it attempts to resolve faults.
1985  * Page must not be locked.
1986  */
1987 size_t iov_iter_copy_from_user(struct page *page,
1988                 struct iov_iter *i, unsigned long offset, size_t bytes)
1989 {
1990         char *kaddr;
1991         size_t copied;
1992
1993         kaddr = kmap(page);
1994         if (likely(i->nr_segs == 1)) {
1995                 int left;
1996                 char __user *buf = i->iov->iov_base + i->iov_offset;
1997                 left = __copy_from_user(kaddr + offset, buf, bytes);
1998                 copied = bytes - left;
1999         } else {
2000                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2001                                                 i->iov, i->iov_offset, bytes);
2002         }
2003         kunmap(page);
2004         return copied;
2005 }
2006 EXPORT_SYMBOL(iov_iter_copy_from_user);
2007
2008 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2009 {
2010         BUG_ON(i->count < bytes);
2011
2012         if (likely(i->nr_segs == 1)) {
2013                 i->iov_offset += bytes;
2014                 i->count -= bytes;
2015         } else {
2016                 const struct iovec *iov = i->iov;
2017                 size_t base = i->iov_offset;
2018                 unsigned long nr_segs = i->nr_segs;
2019
2020                 /*
2021                  * The !iov->iov_len check ensures we skip over unlikely
2022                  * zero-length segments (without overruning the iovec).
2023                  */
2024                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2025                         int copy;
2026
2027                         copy = min(bytes, iov->iov_len - base);
2028                         BUG_ON(!i->count || i->count < copy);
2029                         i->count -= copy;
2030                         bytes -= copy;
2031                         base += copy;
2032                         if (iov->iov_len == base) {
2033                                 iov++;
2034                                 nr_segs--;
2035                                 base = 0;
2036                         }
2037                 }
2038                 i->iov = iov;
2039                 i->iov_offset = base;
2040                 i->nr_segs = nr_segs;
2041         }
2042 }
2043 EXPORT_SYMBOL(iov_iter_advance);
2044
2045 /*
2046  * Fault in the first iovec of the given iov_iter, to a maximum length
2047  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2048  * accessed (ie. because it is an invalid address).
2049  *
2050  * writev-intensive code may want this to prefault several iovecs -- that
2051  * would be possible (callers must not rely on the fact that _only_ the
2052  * first iovec will be faulted with the current implementation).
2053  */
2054 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2055 {
2056         char __user *buf = i->iov->iov_base + i->iov_offset;
2057         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2058         return fault_in_pages_readable(buf, bytes);
2059 }
2060 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2061
2062 /*
2063  * Return the count of just the current iov_iter segment.
2064  */
2065 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2066 {
2067         const struct iovec *iov = i->iov;
2068         if (i->nr_segs == 1)
2069                 return i->count;
2070         else
2071                 return min(i->count, iov->iov_len - i->iov_offset);
2072 }
2073 EXPORT_SYMBOL(iov_iter_single_seg_count);
2074
2075 /*
2076  * Performs necessary checks before doing a write
2077  *
2078  * Can adjust writing position or amount of bytes to write.
2079  * Returns appropriate error code that caller should return or
2080  * zero in case that write should be allowed.
2081  */
2082 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2083 {
2084         struct inode *inode = file->f_mapping->host;
2085         unsigned long limit = rlimit(RLIMIT_FSIZE);
2086
2087         if (unlikely(*pos < 0))
2088                 return -EINVAL;
2089
2090         if (!isblk) {
2091                 /* FIXME: this is for backwards compatibility with 2.4 */
2092                 if (file->f_flags & O_APPEND)
2093                         *pos = i_size_read(inode);
2094
2095                 if (limit != RLIM_INFINITY) {
2096                         if (*pos >= limit) {
2097                                 send_sig(SIGXFSZ, current, 0);
2098                                 return -EFBIG;
2099                         }
2100                         if (*count > limit - (typeof(limit))*pos) {
2101                                 *count = limit - (typeof(limit))*pos;
2102                         }
2103                 }
2104         }
2105
2106         /*
2107          * LFS rule
2108          */
2109         if (unlikely(*pos + *count > MAX_NON_LFS &&
2110                                 !(file->f_flags & O_LARGEFILE))) {
2111                 if (*pos >= MAX_NON_LFS) {
2112                         return -EFBIG;
2113                 }
2114                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2115                         *count = MAX_NON_LFS - (unsigned long)*pos;
2116                 }
2117         }
2118
2119         /*
2120          * Are we about to exceed the fs block limit ?
2121          *
2122          * If we have written data it becomes a short write.  If we have
2123          * exceeded without writing data we send a signal and return EFBIG.
2124          * Linus frestrict idea will clean these up nicely..
2125          */
2126         if (likely(!isblk)) {
2127                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2128                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2129                                 return -EFBIG;
2130                         }
2131                         /* zero-length writes at ->s_maxbytes are OK */
2132                 }
2133
2134                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2135                         *count = inode->i_sb->s_maxbytes - *pos;
2136         } else {
2137 #ifdef CONFIG_BLOCK
2138                 loff_t isize;
2139                 if (bdev_read_only(I_BDEV(inode)))
2140                         return -EPERM;
2141                 isize = i_size_read(inode);
2142                 if (*pos >= isize) {
2143                         if (*count || *pos > isize)
2144                                 return -ENOSPC;
2145                 }
2146
2147                 if (*pos + *count > isize)
2148                         *count = isize - *pos;
2149 #else
2150                 return -EPERM;
2151 #endif
2152         }
2153         return 0;
2154 }
2155 EXPORT_SYMBOL(generic_write_checks);
2156
2157 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2158                                 loff_t pos, unsigned len, unsigned flags,
2159                                 struct page **pagep, void **fsdata)
2160 {
2161         const struct address_space_operations *aops = mapping->a_ops;
2162
2163         return aops->write_begin(file, mapping, pos, len, flags,
2164                                                         pagep, fsdata);
2165 }
2166 EXPORT_SYMBOL(pagecache_write_begin);
2167
2168 int pagecache_write_end(struct file *file, struct address_space *mapping,
2169                                 loff_t pos, unsigned len, unsigned copied,
2170                                 struct page *page, void *fsdata)
2171 {
2172         const struct address_space_operations *aops = mapping->a_ops;
2173
2174         mark_page_accessed(page);
2175         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2176 }
2177 EXPORT_SYMBOL(pagecache_write_end);
2178
2179 ssize_t
2180 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2181                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2182                 size_t count, size_t ocount)
2183 {
2184         struct file     *file = iocb->ki_filp;
2185         struct address_space *mapping = file->f_mapping;
2186         struct inode    *inode = mapping->host;
2187         ssize_t         written;
2188         size_t          write_len;
2189         pgoff_t         end;
2190
2191         if (count != ocount)
2192                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2193
2194         write_len = iov_length(iov, *nr_segs);
2195         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2196
2197         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2198         if (written)
2199                 goto out;
2200
2201         /*
2202          * After a write we want buffered reads to be sure to go to disk to get
2203          * the new data.  We invalidate clean cached page from the region we're
2204          * about to write.  We do this *before* the write so that we can return
2205          * without clobbering -EIOCBQUEUED from ->direct_IO().
2206          */
2207         if (mapping->nrpages) {
2208                 written = invalidate_inode_pages2_range(mapping,
2209                                         pos >> PAGE_CACHE_SHIFT, end);
2210                 /*
2211                  * If a page can not be invalidated, return 0 to fall back
2212                  * to buffered write.
2213                  */
2214                 if (written) {
2215                         if (written == -EBUSY)
2216                                 return 0;
2217                         goto out;
2218                 }
2219         }
2220
2221         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2222
2223         /*
2224          * Finally, try again to invalidate clean pages which might have been
2225          * cached by non-direct readahead, or faulted in by get_user_pages()
2226          * if the source of the write was an mmap'ed region of the file
2227          * we're writing.  Either one is a pretty crazy thing to do,
2228          * so we don't support it 100%.  If this invalidation
2229          * fails, tough, the write still worked...
2230          */
2231         if (mapping->nrpages) {
2232                 invalidate_inode_pages2_range(mapping,
2233                                               pos >> PAGE_CACHE_SHIFT, end);
2234         }
2235
2236         if (written > 0) {
2237                 pos += written;
2238                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2239                         i_size_write(inode, pos);
2240                         mark_inode_dirty(inode);
2241                 }
2242                 *ppos = pos;
2243         }
2244 out:
2245         return written;
2246 }
2247 EXPORT_SYMBOL(generic_file_direct_write);
2248
2249 /*
2250  * Find or create a page at the given pagecache position. Return the locked
2251  * page. This function is specifically for buffered writes.
2252  */
2253 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2254                                         pgoff_t index, unsigned flags)
2255 {
2256         int status;
2257         gfp_t gfp_mask;
2258         struct page *page;
2259         gfp_t gfp_notmask = 0;
2260
2261         gfp_mask = mapping_gfp_mask(mapping);
2262         if (mapping_cap_account_dirty(mapping))
2263                 gfp_mask |= __GFP_WRITE;
2264         if (flags & AOP_FLAG_NOFS)
2265                 gfp_notmask = __GFP_FS;
2266 repeat:
2267         page = find_lock_page(mapping, index);
2268         if (page)
2269                 goto found;
2270
2271         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2272         if (!page)
2273                 return NULL;
2274         status = add_to_page_cache_lru(page, mapping, index,
2275                                                 GFP_KERNEL & ~gfp_notmask);
2276         if (unlikely(status)) {
2277                 page_cache_release(page);
2278                 if (status == -EEXIST)
2279                         goto repeat;
2280                 return NULL;
2281         }
2282 found:
2283         wait_for_stable_page(page);
2284         return page;
2285 }
2286 EXPORT_SYMBOL(grab_cache_page_write_begin);
2287
2288 static ssize_t generic_perform_write(struct file *file,
2289                                 struct iov_iter *i, loff_t pos)
2290 {
2291         struct address_space *mapping = file->f_mapping;
2292         const struct address_space_operations *a_ops = mapping->a_ops;
2293         long status = 0;
2294         ssize_t written = 0;
2295         unsigned int flags = 0;
2296
2297         /*
2298          * Copies from kernel address space cannot fail (NFSD is a big user).
2299          */
2300         if (segment_eq(get_fs(), KERNEL_DS))
2301                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2302
2303         do {
2304                 struct page *page;
2305                 unsigned long offset;   /* Offset into pagecache page */
2306                 unsigned long bytes;    /* Bytes to write to page */
2307                 size_t copied;          /* Bytes copied from user */
2308                 void *fsdata;
2309
2310                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2311                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2312                                                 iov_iter_count(i));
2313
2314 again:
2315                 /*
2316                  * Bring in the user page that we will copy from _first_.
2317                  * Otherwise there's a nasty deadlock on copying from the
2318                  * same page as we're writing to, without it being marked
2319                  * up-to-date.
2320                  *
2321                  * Not only is this an optimisation, but it is also required
2322                  * to check that the address is actually valid, when atomic
2323                  * usercopies are used, below.
2324                  */
2325                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2326                         status = -EFAULT;
2327                         break;
2328                 }
2329
2330                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2331                                                 &page, &fsdata);
2332                 if (unlikely(status))
2333                         break;
2334
2335                 if (mapping_writably_mapped(mapping))
2336                         flush_dcache_page(page);
2337
2338                 pagefault_disable();
2339                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2340                 pagefault_enable();
2341                 flush_dcache_page(page);
2342
2343                 mark_page_accessed(page);
2344                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2345                                                 page, fsdata);
2346                 if (unlikely(status < 0))
2347                         break;
2348                 copied = status;
2349
2350                 cond_resched();
2351
2352                 iov_iter_advance(i, copied);
2353                 if (unlikely(copied == 0)) {
2354                         /*
2355                          * If we were unable to copy any data at all, we must
2356                          * fall back to a single segment length write.
2357                          *
2358                          * If we didn't fallback here, we could livelock
2359                          * because not all segments in the iov can be copied at
2360                          * once without a pagefault.
2361                          */
2362                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2363                                                 iov_iter_single_seg_count(i));
2364                         goto again;
2365                 }
2366                 pos += copied;
2367                 written += copied;
2368
2369                 balance_dirty_pages_ratelimited(mapping);
2370                 if (fatal_signal_pending(current)) {
2371                         status = -EINTR;
2372                         break;
2373                 }
2374         } while (iov_iter_count(i));
2375
2376         return written ? written : status;
2377 }
2378
2379 ssize_t
2380 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2381                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2382                 size_t count, ssize_t written)
2383 {
2384         struct file *file = iocb->ki_filp;
2385         ssize_t status;
2386         struct iov_iter i;
2387
2388         iov_iter_init(&i, iov, nr_segs, count, written);
2389         status = generic_perform_write(file, &i, pos);
2390
2391         if (likely(status >= 0)) {
2392                 written += status;
2393                 *ppos = pos + status;
2394         }
2395         
2396         return written ? written : status;
2397 }
2398 EXPORT_SYMBOL(generic_file_buffered_write);
2399
2400 /**
2401  * __generic_file_aio_write - write data to a file
2402  * @iocb:       IO state structure (file, offset, etc.)
2403  * @iov:        vector with data to write
2404  * @nr_segs:    number of segments in the vector
2405  * @ppos:       position where to write
2406  *
2407  * This function does all the work needed for actually writing data to a
2408  * file. It does all basic checks, removes SUID from the file, updates
2409  * modification times and calls proper subroutines depending on whether we
2410  * do direct IO or a standard buffered write.
2411  *
2412  * It expects i_mutex to be grabbed unless we work on a block device or similar
2413  * object which does not need locking at all.
2414  *
2415  * This function does *not* take care of syncing data in case of O_SYNC write.
2416  * A caller has to handle it. This is mainly due to the fact that we want to
2417  * avoid syncing under i_mutex.
2418  */
2419 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2420                                  unsigned long nr_segs, loff_t *ppos)
2421 {
2422         struct file *file = iocb->ki_filp;
2423         struct address_space * mapping = file->f_mapping;
2424         size_t ocount;          /* original count */
2425         size_t count;           /* after file limit checks */
2426         struct inode    *inode = mapping->host;
2427         loff_t          pos;
2428         ssize_t         written;
2429         ssize_t         err;
2430
2431         ocount = 0;
2432         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2433         if (err)
2434                 return err;
2435
2436         count = ocount;
2437         pos = *ppos;
2438
2439         /* We can write back this queue in page reclaim */
2440         current->backing_dev_info = mapping->backing_dev_info;
2441         written = 0;
2442
2443         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2444         if (err)
2445                 goto out;
2446
2447         if (count == 0)
2448                 goto out;
2449
2450         err = file_remove_suid(file);
2451         if (err)
2452                 goto out;
2453
2454         err = file_update_time(file);
2455         if (err)
2456                 goto out;
2457
2458         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2459         if (unlikely(file->f_flags & O_DIRECT)) {
2460                 loff_t endbyte;
2461                 ssize_t written_buffered;
2462
2463                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2464                                                         ppos, count, ocount);
2465                 if (written < 0 || written == count)
2466                         goto out;
2467                 /*
2468                  * direct-io write to a hole: fall through to buffered I/O
2469                  * for completing the rest of the request.
2470                  */
2471                 pos += written;
2472                 count -= written;
2473                 written_buffered = generic_file_buffered_write(iocb, iov,
2474                                                 nr_segs, pos, ppos, count,
2475                                                 written);
2476                 /*
2477                  * If generic_file_buffered_write() retuned a synchronous error
2478                  * then we want to return the number of bytes which were
2479                  * direct-written, or the error code if that was zero.  Note
2480                  * that this differs from normal direct-io semantics, which
2481                  * will return -EFOO even if some bytes were written.
2482                  */
2483                 if (written_buffered < 0) {
2484                         err = written_buffered;
2485                         goto out;
2486                 }
2487
2488                 /*
2489                  * We need to ensure that the page cache pages are written to
2490                  * disk and invalidated to preserve the expected O_DIRECT
2491                  * semantics.
2492                  */
2493                 endbyte = pos + written_buffered - written - 1;
2494                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2495                 if (err == 0) {
2496                         written = written_buffered;
2497                         invalidate_mapping_pages(mapping,
2498                                                  pos >> PAGE_CACHE_SHIFT,
2499                                                  endbyte >> PAGE_CACHE_SHIFT);
2500                 } else {
2501                         /*
2502                          * We don't know how much we wrote, so just return
2503                          * the number of bytes which were direct-written
2504                          */
2505                 }
2506         } else {
2507                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2508                                 pos, ppos, count, written);
2509         }
2510 out:
2511         current->backing_dev_info = NULL;
2512         return written ? written : err;
2513 }
2514 EXPORT_SYMBOL(__generic_file_aio_write);
2515
2516 /**
2517  * generic_file_aio_write - write data to a file
2518  * @iocb:       IO state structure
2519  * @iov:        vector with data to write
2520  * @nr_segs:    number of segments in the vector
2521  * @pos:        position in file where to write
2522  *
2523  * This is a wrapper around __generic_file_aio_write() to be used by most
2524  * filesystems. It takes care of syncing the file in case of O_SYNC file
2525  * and acquires i_mutex as needed.
2526  */
2527 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2528                 unsigned long nr_segs, loff_t pos)
2529 {
2530         struct file *file = iocb->ki_filp;
2531         struct inode *inode = file->f_mapping->host;
2532         ssize_t ret;
2533
2534         BUG_ON(iocb->ki_pos != pos);
2535
2536         sb_start_write(inode->i_sb);
2537         mutex_lock(&inode->i_mutex);
2538         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2539         mutex_unlock(&inode->i_mutex);
2540
2541         if (ret > 0 || ret == -EIOCBQUEUED) {
2542                 ssize_t err;
2543
2544                 err = generic_write_sync(file, pos, ret);
2545                 if (err < 0 && ret > 0)
2546                         ret = err;
2547         }
2548         sb_end_write(inode->i_sb);
2549         return ret;
2550 }
2551 EXPORT_SYMBOL(generic_file_aio_write);
2552
2553 /**
2554  * try_to_release_page() - release old fs-specific metadata on a page
2555  *
2556  * @page: the page which the kernel is trying to free
2557  * @gfp_mask: memory allocation flags (and I/O mode)
2558  *
2559  * The address_space is to try to release any data against the page
2560  * (presumably at page->private).  If the release was successful, return `1'.
2561  * Otherwise return zero.
2562  *
2563  * This may also be called if PG_fscache is set on a page, indicating that the
2564  * page is known to the local caching routines.
2565  *
2566  * The @gfp_mask argument specifies whether I/O may be performed to release
2567  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2568  *
2569  */
2570 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2571 {
2572         struct address_space * const mapping = page->mapping;
2573
2574         BUG_ON(!PageLocked(page));
2575         if (PageWriteback(page))
2576                 return 0;
2577
2578         if (mapping && mapping->a_ops->releasepage)
2579                 return mapping->a_ops->releasepage(page, gfp_mask);
2580         return try_to_free_buffers(page);
2581 }
2582
2583 EXPORT_SYMBOL(try_to_release_page);