]> Pileus Git - ~andy/linux/blob - kernel/workqueue.c
8fbef7008a7e1344c936f05043e01091469eba5a
[~andy/linux] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31
32 /*
33  * The per-CPU workqueue (if single thread, we always use the first
34  * possible cpu).
35  *
36  * The sequence counters are for flush_scheduled_work().  It wants to wait
37  * until until all currently-scheduled works are completed, but it doesn't
38  * want to be livelocked by new, incoming ones.  So it waits until
39  * remove_sequence is >= the insert_sequence which pertained when
40  * flush_scheduled_work() was called.
41  */
42 struct cpu_workqueue_struct {
43
44         spinlock_t lock;
45
46         long remove_sequence;   /* Least-recently added (next to run) */
47         long insert_sequence;   /* Next to add */
48
49         struct list_head worklist;
50         wait_queue_head_t more_work;
51         wait_queue_head_t work_done;
52
53         struct workqueue_struct *wq;
54         task_t *thread;
55
56         int run_depth;          /* Detect run_workqueue() recursion depth */
57 } ____cacheline_aligned;
58
59 /*
60  * The externally visible workqueue abstraction is an array of
61  * per-CPU workqueues:
62  */
63 struct workqueue_struct {
64         struct cpu_workqueue_struct *cpu_wq;
65         const char *name;
66         struct list_head list;  /* Empty if single thread */
67 };
68
69 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
70    threads to each one as cpus come/go. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
73
74 static int singlethread_cpu;
75
76 /* If it's single threaded, it isn't in the list of workqueues. */
77 static inline int is_single_threaded(struct workqueue_struct *wq)
78 {
79         return list_empty(&wq->list);
80 }
81
82 /* Preempt must be disabled. */
83 static void __queue_work(struct cpu_workqueue_struct *cwq,
84                          struct work_struct *work)
85 {
86         unsigned long flags;
87
88         spin_lock_irqsave(&cwq->lock, flags);
89         work->wq_data = cwq;
90         list_add_tail(&work->entry, &cwq->worklist);
91         cwq->insert_sequence++;
92         wake_up(&cwq->more_work);
93         spin_unlock_irqrestore(&cwq->lock, flags);
94 }
95
96 /*
97  * Queue work on a workqueue. Return non-zero if it was successfully
98  * added.
99  *
100  * We queue the work to the CPU it was submitted, but there is no
101  * guarantee that it will be processed by that CPU.
102  */
103 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
104 {
105         int ret = 0, cpu = get_cpu();
106
107         if (!test_and_set_bit(0, &work->pending)) {
108                 if (unlikely(is_single_threaded(wq)))
109                         cpu = singlethread_cpu;
110                 BUG_ON(!list_empty(&work->entry));
111                 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
112                 ret = 1;
113         }
114         put_cpu();
115         return ret;
116 }
117
118 static void delayed_work_timer_fn(unsigned long __data)
119 {
120         struct work_struct *work = (struct work_struct *)__data;
121         struct workqueue_struct *wq = work->wq_data;
122         int cpu = smp_processor_id();
123
124         if (unlikely(is_single_threaded(wq)))
125                 cpu = singlethread_cpu;
126
127         __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
128 }
129
130 int fastcall queue_delayed_work(struct workqueue_struct *wq,
131                         struct work_struct *work, unsigned long delay)
132 {
133         int ret = 0;
134         struct timer_list *timer = &work->timer;
135
136         if (!test_and_set_bit(0, &work->pending)) {
137                 BUG_ON(timer_pending(timer));
138                 BUG_ON(!list_empty(&work->entry));
139
140                 /* This stores wq for the moment, for the timer_fn */
141                 work->wq_data = wq;
142                 timer->expires = jiffies + delay;
143                 timer->data = (unsigned long)work;
144                 timer->function = delayed_work_timer_fn;
145                 add_timer(timer);
146                 ret = 1;
147         }
148         return ret;
149 }
150
151 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
152                         struct work_struct *work, unsigned long delay)
153 {
154         int ret = 0;
155         struct timer_list *timer = &work->timer;
156
157         if (!test_and_set_bit(0, &work->pending)) {
158                 BUG_ON(timer_pending(timer));
159                 BUG_ON(!list_empty(&work->entry));
160
161                 /* This stores wq for the moment, for the timer_fn */
162                 work->wq_data = wq;
163                 timer->expires = jiffies + delay;
164                 timer->data = (unsigned long)work;
165                 timer->function = delayed_work_timer_fn;
166                 add_timer_on(timer, cpu);
167                 ret = 1;
168         }
169         return ret;
170 }
171
172 static void run_workqueue(struct cpu_workqueue_struct *cwq)
173 {
174         unsigned long flags;
175
176         /*
177          * Keep taking off work from the queue until
178          * done.
179          */
180         spin_lock_irqsave(&cwq->lock, flags);
181         cwq->run_depth++;
182         if (cwq->run_depth > 3) {
183                 /* morton gets to eat his hat */
184                 printk("%s: recursion depth exceeded: %d\n",
185                         __FUNCTION__, cwq->run_depth);
186                 dump_stack();
187         }
188         while (!list_empty(&cwq->worklist)) {
189                 struct work_struct *work = list_entry(cwq->worklist.next,
190                                                 struct work_struct, entry);
191                 void (*f) (void *) = work->func;
192                 void *data = work->data;
193
194                 list_del_init(cwq->worklist.next);
195                 spin_unlock_irqrestore(&cwq->lock, flags);
196
197                 BUG_ON(work->wq_data != cwq);
198                 clear_bit(0, &work->pending);
199                 f(data);
200
201                 spin_lock_irqsave(&cwq->lock, flags);
202                 cwq->remove_sequence++;
203                 wake_up(&cwq->work_done);
204         }
205         cwq->run_depth--;
206         spin_unlock_irqrestore(&cwq->lock, flags);
207 }
208
209 static int worker_thread(void *__cwq)
210 {
211         struct cpu_workqueue_struct *cwq = __cwq;
212         DECLARE_WAITQUEUE(wait, current);
213         struct k_sigaction sa;
214         sigset_t blocked;
215
216         current->flags |= PF_NOFREEZE;
217
218         set_user_nice(current, -5);
219
220         /* Block and flush all signals */
221         sigfillset(&blocked);
222         sigprocmask(SIG_BLOCK, &blocked, NULL);
223         flush_signals(current);
224
225         /* SIG_IGN makes children autoreap: see do_notify_parent(). */
226         sa.sa.sa_handler = SIG_IGN;
227         sa.sa.sa_flags = 0;
228         siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
229         do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
230
231         set_current_state(TASK_INTERRUPTIBLE);
232         while (!kthread_should_stop()) {
233                 add_wait_queue(&cwq->more_work, &wait);
234                 if (list_empty(&cwq->worklist))
235                         schedule();
236                 else
237                         __set_current_state(TASK_RUNNING);
238                 remove_wait_queue(&cwq->more_work, &wait);
239
240                 if (!list_empty(&cwq->worklist))
241                         run_workqueue(cwq);
242                 set_current_state(TASK_INTERRUPTIBLE);
243         }
244         __set_current_state(TASK_RUNNING);
245         return 0;
246 }
247
248 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
249 {
250         if (cwq->thread == current) {
251                 /*
252                  * Probably keventd trying to flush its own queue. So simply run
253                  * it by hand rather than deadlocking.
254                  */
255                 run_workqueue(cwq);
256         } else {
257                 DEFINE_WAIT(wait);
258                 long sequence_needed;
259
260                 spin_lock_irq(&cwq->lock);
261                 sequence_needed = cwq->insert_sequence;
262
263                 while (sequence_needed - cwq->remove_sequence > 0) {
264                         prepare_to_wait(&cwq->work_done, &wait,
265                                         TASK_UNINTERRUPTIBLE);
266                         spin_unlock_irq(&cwq->lock);
267                         schedule();
268                         spin_lock_irq(&cwq->lock);
269                 }
270                 finish_wait(&cwq->work_done, &wait);
271                 spin_unlock_irq(&cwq->lock);
272         }
273 }
274
275 /*
276  * flush_workqueue - ensure that any scheduled work has run to completion.
277  *
278  * Forces execution of the workqueue and blocks until its completion.
279  * This is typically used in driver shutdown handlers.
280  *
281  * This function will sample each workqueue's current insert_sequence number and
282  * will sleep until the head sequence is greater than or equal to that.  This
283  * means that we sleep until all works which were queued on entry have been
284  * handled, but we are not livelocked by new incoming ones.
285  *
286  * This function used to run the workqueues itself.  Now we just wait for the
287  * helper threads to do it.
288  */
289 void fastcall flush_workqueue(struct workqueue_struct *wq)
290 {
291         might_sleep();
292
293         if (is_single_threaded(wq)) {
294                 /* Always use first cpu's area. */
295                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
296         } else {
297                 int cpu;
298
299                 lock_cpu_hotplug();
300                 for_each_online_cpu(cpu)
301                         flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
302                 unlock_cpu_hotplug();
303         }
304 }
305
306 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
307                                                    int cpu)
308 {
309         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
310         struct task_struct *p;
311
312         spin_lock_init(&cwq->lock);
313         cwq->wq = wq;
314         cwq->thread = NULL;
315         cwq->insert_sequence = 0;
316         cwq->remove_sequence = 0;
317         INIT_LIST_HEAD(&cwq->worklist);
318         init_waitqueue_head(&cwq->more_work);
319         init_waitqueue_head(&cwq->work_done);
320
321         if (is_single_threaded(wq))
322                 p = kthread_create(worker_thread, cwq, "%s", wq->name);
323         else
324                 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
325         if (IS_ERR(p))
326                 return NULL;
327         cwq->thread = p;
328         return p;
329 }
330
331 struct workqueue_struct *__create_workqueue(const char *name,
332                                             int singlethread)
333 {
334         int cpu, destroy = 0;
335         struct workqueue_struct *wq;
336         struct task_struct *p;
337
338         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
339         if (!wq)
340                 return NULL;
341
342         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
343         if (!wq->cpu_wq) {
344                 kfree(wq);
345                 return NULL;
346         }
347
348         wq->name = name;
349         /* We don't need the distraction of CPUs appearing and vanishing. */
350         lock_cpu_hotplug();
351         if (singlethread) {
352                 INIT_LIST_HEAD(&wq->list);
353                 p = create_workqueue_thread(wq, singlethread_cpu);
354                 if (!p)
355                         destroy = 1;
356                 else
357                         wake_up_process(p);
358         } else {
359                 spin_lock(&workqueue_lock);
360                 list_add(&wq->list, &workqueues);
361                 spin_unlock(&workqueue_lock);
362                 for_each_online_cpu(cpu) {
363                         p = create_workqueue_thread(wq, cpu);
364                         if (p) {
365                                 kthread_bind(p, cpu);
366                                 wake_up_process(p);
367                         } else
368                                 destroy = 1;
369                 }
370         }
371         unlock_cpu_hotplug();
372
373         /*
374          * Was there any error during startup? If yes then clean up:
375          */
376         if (destroy) {
377                 destroy_workqueue(wq);
378                 wq = NULL;
379         }
380         return wq;
381 }
382
383 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
384 {
385         struct cpu_workqueue_struct *cwq;
386         unsigned long flags;
387         struct task_struct *p;
388
389         cwq = per_cpu_ptr(wq->cpu_wq, cpu);
390         spin_lock_irqsave(&cwq->lock, flags);
391         p = cwq->thread;
392         cwq->thread = NULL;
393         spin_unlock_irqrestore(&cwq->lock, flags);
394         if (p)
395                 kthread_stop(p);
396 }
397
398 void destroy_workqueue(struct workqueue_struct *wq)
399 {
400         int cpu;
401
402         flush_workqueue(wq);
403
404         /* We don't need the distraction of CPUs appearing and vanishing. */
405         lock_cpu_hotplug();
406         if (is_single_threaded(wq))
407                 cleanup_workqueue_thread(wq, singlethread_cpu);
408         else {
409                 for_each_online_cpu(cpu)
410                         cleanup_workqueue_thread(wq, cpu);
411                 spin_lock(&workqueue_lock);
412                 list_del(&wq->list);
413                 spin_unlock(&workqueue_lock);
414         }
415         unlock_cpu_hotplug();
416         free_percpu(wq->cpu_wq);
417         kfree(wq);
418 }
419
420 static struct workqueue_struct *keventd_wq;
421
422 int fastcall schedule_work(struct work_struct *work)
423 {
424         return queue_work(keventd_wq, work);
425 }
426
427 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
428 {
429         return queue_delayed_work(keventd_wq, work, delay);
430 }
431
432 int schedule_delayed_work_on(int cpu,
433                         struct work_struct *work, unsigned long delay)
434 {
435         return queue_delayed_work_on(cpu, keventd_wq, work, delay);
436 }
437
438 /**
439  * schedule_on_each_cpu - call a function on each online CPU from keventd
440  * @func: the function to call
441  * @info: a pointer to pass to func()
442  *
443  * Returns zero on success.
444  * Returns -ve errno on failure.
445  *
446  * Appears to be racy against CPU hotplug.
447  *
448  * schedule_on_each_cpu() is very slow.
449  */
450 int schedule_on_each_cpu(void (*func)(void *info), void *info)
451 {
452         int cpu;
453         struct work_struct *works;
454
455         works = alloc_percpu(struct work_struct);
456         if (!works)
457                 return -ENOMEM;
458
459         for_each_online_cpu(cpu) {
460                 INIT_WORK(per_cpu_ptr(works, cpu), func, info);
461                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
462                                 per_cpu_ptr(works, cpu));
463         }
464         flush_workqueue(keventd_wq);
465         free_percpu(works);
466         return 0;
467 }
468
469 void flush_scheduled_work(void)
470 {
471         flush_workqueue(keventd_wq);
472 }
473
474 /**
475  * cancel_rearming_delayed_workqueue - reliably kill off a delayed
476  *                      work whose handler rearms the delayed work.
477  * @wq:   the controlling workqueue structure
478  * @work: the delayed work struct
479  */
480 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
481                                        struct work_struct *work)
482 {
483         while (!cancel_delayed_work(work))
484                 flush_workqueue(wq);
485 }
486 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
487
488 /**
489  * cancel_rearming_delayed_work - reliably kill off a delayed keventd
490  *                      work whose handler rearms the delayed work.
491  * @work: the delayed work struct
492  */
493 void cancel_rearming_delayed_work(struct work_struct *work)
494 {
495         cancel_rearming_delayed_workqueue(keventd_wq, work);
496 }
497 EXPORT_SYMBOL(cancel_rearming_delayed_work);
498
499 /**
500  * execute_in_process_context - reliably execute the routine with user context
501  * @fn:         the function to execute
502  * @data:       data to pass to the function
503  * @ew:         guaranteed storage for the execute work structure (must
504  *              be available when the work executes)
505  *
506  * Executes the function immediately if process context is available,
507  * otherwise schedules the function for delayed execution.
508  *
509  * Returns:     0 - function was executed
510  *              1 - function was scheduled for execution
511  */
512 int execute_in_process_context(void (*fn)(void *data), void *data,
513                                struct execute_work *ew)
514 {
515         if (!in_interrupt()) {
516                 fn(data);
517                 return 0;
518         }
519
520         INIT_WORK(&ew->work, fn, data);
521         schedule_work(&ew->work);
522
523         return 1;
524 }
525 EXPORT_SYMBOL_GPL(execute_in_process_context);
526
527 int keventd_up(void)
528 {
529         return keventd_wq != NULL;
530 }
531
532 int current_is_keventd(void)
533 {
534         struct cpu_workqueue_struct *cwq;
535         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
536         int ret = 0;
537
538         BUG_ON(!keventd_wq);
539
540         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
541         if (current == cwq->thread)
542                 ret = 1;
543
544         return ret;
545
546 }
547
548 #ifdef CONFIG_HOTPLUG_CPU
549 /* Take the work from this (downed) CPU. */
550 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
551 {
552         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
553         struct list_head list;
554         struct work_struct *work;
555
556         spin_lock_irq(&cwq->lock);
557         list_replace_init(&cwq->worklist, &list);
558
559         while (!list_empty(&list)) {
560                 printk("Taking work for %s\n", wq->name);
561                 work = list_entry(list.next,struct work_struct,entry);
562                 list_del(&work->entry);
563                 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
564         }
565         spin_unlock_irq(&cwq->lock);
566 }
567
568 /* We're holding the cpucontrol mutex here */
569 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
570                                   unsigned long action,
571                                   void *hcpu)
572 {
573         unsigned int hotcpu = (unsigned long)hcpu;
574         struct workqueue_struct *wq;
575
576         switch (action) {
577         case CPU_UP_PREPARE:
578                 /* Create a new workqueue thread for it. */
579                 list_for_each_entry(wq, &workqueues, list) {
580                         if (!create_workqueue_thread(wq, hotcpu)) {
581                                 printk("workqueue for %i failed\n", hotcpu);
582                                 return NOTIFY_BAD;
583                         }
584                 }
585                 break;
586
587         case CPU_ONLINE:
588                 /* Kick off worker threads. */
589                 list_for_each_entry(wq, &workqueues, list) {
590                         struct cpu_workqueue_struct *cwq;
591
592                         cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
593                         kthread_bind(cwq->thread, hotcpu);
594                         wake_up_process(cwq->thread);
595                 }
596                 break;
597
598         case CPU_UP_CANCELED:
599                 list_for_each_entry(wq, &workqueues, list) {
600                         if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
601                                 continue;
602                         /* Unbind so it can run. */
603                         kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
604                                      any_online_cpu(cpu_online_map));
605                         cleanup_workqueue_thread(wq, hotcpu);
606                 }
607                 break;
608
609         case CPU_DEAD:
610                 list_for_each_entry(wq, &workqueues, list)
611                         cleanup_workqueue_thread(wq, hotcpu);
612                 list_for_each_entry(wq, &workqueues, list)
613                         take_over_work(wq, hotcpu);
614                 break;
615         }
616
617         return NOTIFY_OK;
618 }
619 #endif
620
621 void init_workqueues(void)
622 {
623         singlethread_cpu = first_cpu(cpu_possible_map);
624         hotcpu_notifier(workqueue_cpu_callback, 0);
625         keventd_wq = create_workqueue("events");
626         BUG_ON(!keventd_wq);
627 }
628
629 EXPORT_SYMBOL_GPL(__create_workqueue);
630 EXPORT_SYMBOL_GPL(queue_work);
631 EXPORT_SYMBOL_GPL(queue_delayed_work);
632 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
633 EXPORT_SYMBOL_GPL(flush_workqueue);
634 EXPORT_SYMBOL_GPL(destroy_workqueue);
635
636 EXPORT_SYMBOL(schedule_work);
637 EXPORT_SYMBOL(schedule_delayed_work);
638 EXPORT_SYMBOL(schedule_delayed_work_on);
639 EXPORT_SYMBOL(flush_scheduled_work);