]> Pileus Git - ~andy/linux/blob - kernel/trace/ring_buffer.c
ring-buffer: Fix crash due to uninitialized new_pages list head
[~andy/linux] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 static void update_pages_handler(struct work_struct *work);
27
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33         int ret;
34
35         ret = trace_seq_printf(s, "# compressed entry header\n");
36         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39         ret = trace_seq_printf(s, "\n");
40         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41                                RINGBUF_TYPE_PADDING);
42         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                                RINGBUF_TYPE_TIME_EXTEND);
44         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return ret;
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190
191 enum {
192         RB_LEN_TIME_EXTEND = 8,
193         RB_LEN_TIME_STAMP = 16,
194 };
195
196 #define skip_time_extend(event) \
197         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206         /* padding has a NULL time_delta */
207         event->type_len = RINGBUF_TYPE_PADDING;
208         event->time_delta = 0;
209 }
210
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214         unsigned length;
215
216         if (event->type_len)
217                 length = event->type_len * RB_ALIGNMENT;
218         else
219                 length = event->array[0];
220         return length + RB_EVNT_HDR_SIZE;
221 }
222
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231         switch (event->type_len) {
232         case RINGBUF_TYPE_PADDING:
233                 if (rb_null_event(event))
234                         /* undefined */
235                         return -1;
236                 return  event->array[0] + RB_EVNT_HDR_SIZE;
237
238         case RINGBUF_TYPE_TIME_EXTEND:
239                 return RB_LEN_TIME_EXTEND;
240
241         case RINGBUF_TYPE_TIME_STAMP:
242                 return RB_LEN_TIME_STAMP;
243
244         case RINGBUF_TYPE_DATA:
245                 return rb_event_data_length(event);
246         default:
247                 BUG();
248         }
249         /* not hit */
250         return 0;
251 }
252
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260         unsigned len = 0;
261
262         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263                 /* time extends include the data event after it */
264                 len = RB_LEN_TIME_EXTEND;
265                 event = skip_time_extend(event);
266         }
267         return len + rb_event_length(event);
268 }
269
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282         unsigned length;
283
284         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285                 event = skip_time_extend(event);
286
287         length = rb_event_length(event);
288         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289                 return length;
290         length -= RB_EVNT_HDR_SIZE;
291         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293         return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302                 event = skip_time_extend(event);
303         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304         /* If length is in len field, then array[0] has the data */
305         if (event->type_len)
306                 return (void *)&event->array[0];
307         /* Otherwise length is in array[0] and array[1] has the data */
308         return (void *)&event->array[1];
309 }
310
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317         return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320
321 #define for_each_buffer_cpu(buffer, cpu)                \
322         for_each_cpu(cpu, buffer->cpumask)
323
324 #define TS_SHIFT        27
325 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST   (~TS_MASK)
327
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS        (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED        (1 << 30)
332
333 struct buffer_data_page {
334         u64              time_stamp;    /* page time stamp */
335         local_t          commit;        /* write committed index */
336         unsigned char    data[];        /* data of buffer page */
337 };
338
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348         struct list_head list;          /* list of buffer pages */
349         local_t          write;         /* index for next write */
350         unsigned         read;          /* index for next read */
351         local_t          entries;       /* entries on this page */
352         unsigned long    real_end;      /* real end of data */
353         struct buffer_data_page *page;  /* Actual data page */
354 };
355
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK           0xfffff
369 #define RB_WRITE_INTCNT         (1 << 20)
370
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373         local_set(&bpage->commit, 0);
374 }
375
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384         return local_read(&((struct buffer_data_page *)page)->commit)
385                 + BUF_PAGE_HDR_SIZE;
386 }
387
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394         free_page((unsigned long)bpage->page);
395         kfree(bpage);
396 }
397
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403         if (delta & TS_DELTA_TEST)
404                 return 1;
405         return 0;
406 }
407
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415         struct buffer_data_page field;
416         int ret;
417
418         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419                                "offset:0;\tsize:%u;\tsigned:%u;\n",
420                                (unsigned int)sizeof(field.time_stamp),
421                                (unsigned int)is_signed_type(u64));
422
423         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
425                                (unsigned int)offsetof(typeof(field), commit),
426                                (unsigned int)sizeof(field.commit),
427                                (unsigned int)is_signed_type(long));
428
429         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                1,
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: char data;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), data),
438                                (unsigned int)BUF_PAGE_SIZE,
439                                (unsigned int)is_signed_type(char));
440
441         return ret;
442 }
443
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448         int                             cpu;
449         atomic_t                        record_disabled;
450         struct ring_buffer              *buffer;
451         raw_spinlock_t                  reader_lock;    /* serialize readers */
452         arch_spinlock_t                 lock;
453         struct lock_class_key           lock_key;
454         unsigned int                    nr_pages;
455         struct list_head                *pages;
456         struct buffer_page              *head_page;     /* read from head */
457         struct buffer_page              *tail_page;     /* write to tail */
458         struct buffer_page              *commit_page;   /* committed pages */
459         struct buffer_page              *reader_page;
460         unsigned long                   lost_events;
461         unsigned long                   last_overrun;
462         local_t                         entries_bytes;
463         local_t                         commit_overrun;
464         local_t                         overrun;
465         local_t                         entries;
466         local_t                         committing;
467         local_t                         commits;
468         unsigned long                   read;
469         unsigned long                   read_bytes;
470         u64                             write_stamp;
471         u64                             read_stamp;
472         /* ring buffer pages to update, > 0 to add, < 0 to remove */
473         int                             nr_pages_to_update;
474         struct list_head                new_pages; /* new pages to add */
475         struct work_struct              update_pages_work;
476         struct completion               update_done;
477 };
478
479 struct ring_buffer {
480         unsigned                        flags;
481         int                             cpus;
482         atomic_t                        record_disabled;
483         atomic_t                        resize_disabled;
484         cpumask_var_t                   cpumask;
485
486         struct lock_class_key           *reader_lock_key;
487
488         struct mutex                    mutex;
489
490         struct ring_buffer_per_cpu      **buffers;
491
492 #ifdef CONFIG_HOTPLUG_CPU
493         struct notifier_block           cpu_notify;
494 #endif
495         u64                             (*clock)(void);
496 };
497
498 struct ring_buffer_iter {
499         struct ring_buffer_per_cpu      *cpu_buffer;
500         unsigned long                   head;
501         struct buffer_page              *head_page;
502         struct buffer_page              *cache_reader_page;
503         unsigned long                   cache_read;
504         u64                             read_stamp;
505 };
506
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond)                                             \
509         ({                                                              \
510                 int _____ret = unlikely(cond);                          \
511                 if (_____ret) {                                         \
512                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513                                 struct ring_buffer_per_cpu *__b =       \
514                                         (void *)b;                      \
515                                 atomic_inc(&__b->buffer->record_disabled); \
516                         } else                                          \
517                                 atomic_inc(&b->record_disabled);        \
518                         WARN_ON(1);                                     \
519                 }                                                       \
520                 _____ret;                                               \
521         })
522
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
525
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
527 {
528         /* shift to debug/test normalization and TIME_EXTENTS */
529         return buffer->clock() << DEBUG_SHIFT;
530 }
531
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533 {
534         u64 time;
535
536         preempt_disable_notrace();
537         time = rb_time_stamp(buffer);
538         preempt_enable_no_resched_notrace();
539
540         return time;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545                                       int cpu, u64 *ts)
546 {
547         /* Just stupid testing the normalize function and deltas */
548         *ts >>= DEBUG_SHIFT;
549 }
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
552 /*
553  * Making the ring buffer lockless makes things tricky.
554  * Although writes only happen on the CPU that they are on,
555  * and they only need to worry about interrupts. Reads can
556  * happen on any CPU.
557  *
558  * The reader page is always off the ring buffer, but when the
559  * reader finishes with a page, it needs to swap its page with
560  * a new one from the buffer. The reader needs to take from
561  * the head (writes go to the tail). But if a writer is in overwrite
562  * mode and wraps, it must push the head page forward.
563  *
564  * Here lies the problem.
565  *
566  * The reader must be careful to replace only the head page, and
567  * not another one. As described at the top of the file in the
568  * ASCII art, the reader sets its old page to point to the next
569  * page after head. It then sets the page after head to point to
570  * the old reader page. But if the writer moves the head page
571  * during this operation, the reader could end up with the tail.
572  *
573  * We use cmpxchg to help prevent this race. We also do something
574  * special with the page before head. We set the LSB to 1.
575  *
576  * When the writer must push the page forward, it will clear the
577  * bit that points to the head page, move the head, and then set
578  * the bit that points to the new head page.
579  *
580  * We also don't want an interrupt coming in and moving the head
581  * page on another writer. Thus we use the second LSB to catch
582  * that too. Thus:
583  *
584  * head->list->prev->next        bit 1          bit 0
585  *                              -------        -------
586  * Normal page                     0              0
587  * Points to head page             0              1
588  * New head page                   1              0
589  *
590  * Note we can not trust the prev pointer of the head page, because:
591  *
592  * +----+       +-----+        +-----+
593  * |    |------>|  T  |---X--->|  N  |
594  * |    |<------|     |        |     |
595  * +----+       +-----+        +-----+
596  *   ^                           ^ |
597  *   |          +-----+          | |
598  *   +----------|  R  |----------+ |
599  *              |     |<-----------+
600  *              +-----+
601  *
602  * Key:  ---X-->  HEAD flag set in pointer
603  *         T      Tail page
604  *         R      Reader page
605  *         N      Next page
606  *
607  * (see __rb_reserve_next() to see where this happens)
608  *
609  *  What the above shows is that the reader just swapped out
610  *  the reader page with a page in the buffer, but before it
611  *  could make the new header point back to the new page added
612  *  it was preempted by a writer. The writer moved forward onto
613  *  the new page added by the reader and is about to move forward
614  *  again.
615  *
616  *  You can see, it is legitimate for the previous pointer of
617  *  the head (or any page) not to point back to itself. But only
618  *  temporarially.
619  */
620
621 #define RB_PAGE_NORMAL          0UL
622 #define RB_PAGE_HEAD            1UL
623 #define RB_PAGE_UPDATE          2UL
624
625
626 #define RB_FLAG_MASK            3UL
627
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED           4UL
630
631 /*
632  * rb_list_head - remove any bit
633  */
634 static struct list_head *rb_list_head(struct list_head *list)
635 {
636         unsigned long val = (unsigned long)list;
637
638         return (struct list_head *)(val & ~RB_FLAG_MASK);
639 }
640
641 /*
642  * rb_is_head_page - test if the given page is the head page
643  *
644  * Because the reader may move the head_page pointer, we can
645  * not trust what the head page is (it may be pointing to
646  * the reader page). But if the next page is a header page,
647  * its flags will be non zero.
648  */
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651                 struct buffer_page *page, struct list_head *list)
652 {
653         unsigned long val;
654
655         val = (unsigned long)list->next;
656
657         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658                 return RB_PAGE_MOVED;
659
660         return val & RB_FLAG_MASK;
661 }
662
663 /*
664  * rb_is_reader_page
665  *
666  * The unique thing about the reader page, is that, if the
667  * writer is ever on it, the previous pointer never points
668  * back to the reader page.
669  */
670 static int rb_is_reader_page(struct buffer_page *page)
671 {
672         struct list_head *list = page->list.prev;
673
674         return rb_list_head(list->next) != &page->list;
675 }
676
677 /*
678  * rb_set_list_to_head - set a list_head to be pointing to head.
679  */
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681                                 struct list_head *list)
682 {
683         unsigned long *ptr;
684
685         ptr = (unsigned long *)&list->next;
686         *ptr |= RB_PAGE_HEAD;
687         *ptr &= ~RB_PAGE_UPDATE;
688 }
689
690 /*
691  * rb_head_page_activate - sets up head page
692  */
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695         struct buffer_page *head;
696
697         head = cpu_buffer->head_page;
698         if (!head)
699                 return;
700
701         /*
702          * Set the previous list pointer to have the HEAD flag.
703          */
704         rb_set_list_to_head(cpu_buffer, head->list.prev);
705 }
706
707 static void rb_list_head_clear(struct list_head *list)
708 {
709         unsigned long *ptr = (unsigned long *)&list->next;
710
711         *ptr &= ~RB_FLAG_MASK;
712 }
713
714 /*
715  * rb_head_page_dactivate - clears head page ptr (for free list)
716  */
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720         struct list_head *hd;
721
722         /* Go through the whole list and clear any pointers found. */
723         rb_list_head_clear(cpu_buffer->pages);
724
725         list_for_each(hd, cpu_buffer->pages)
726                 rb_list_head_clear(hd);
727 }
728
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730                             struct buffer_page *head,
731                             struct buffer_page *prev,
732                             int old_flag, int new_flag)
733 {
734         struct list_head *list;
735         unsigned long val = (unsigned long)&head->list;
736         unsigned long ret;
737
738         list = &prev->list;
739
740         val &= ~RB_FLAG_MASK;
741
742         ret = cmpxchg((unsigned long *)&list->next,
743                       val | old_flag, val | new_flag);
744
745         /* check if the reader took the page */
746         if ((ret & ~RB_FLAG_MASK) != val)
747                 return RB_PAGE_MOVED;
748
749         return ret & RB_FLAG_MASK;
750 }
751
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753                                    struct buffer_page *head,
754                                    struct buffer_page *prev,
755                                    int old_flag)
756 {
757         return rb_head_page_set(cpu_buffer, head, prev,
758                                 old_flag, RB_PAGE_UPDATE);
759 }
760
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762                                  struct buffer_page *head,
763                                  struct buffer_page *prev,
764                                  int old_flag)
765 {
766         return rb_head_page_set(cpu_buffer, head, prev,
767                                 old_flag, RB_PAGE_HEAD);
768 }
769
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771                                    struct buffer_page *head,
772                                    struct buffer_page *prev,
773                                    int old_flag)
774 {
775         return rb_head_page_set(cpu_buffer, head, prev,
776                                 old_flag, RB_PAGE_NORMAL);
777 }
778
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780                                struct buffer_page **bpage)
781 {
782         struct list_head *p = rb_list_head((*bpage)->list.next);
783
784         *bpage = list_entry(p, struct buffer_page, list);
785 }
786
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790         struct buffer_page *head;
791         struct buffer_page *page;
792         struct list_head *list;
793         int i;
794
795         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796                 return NULL;
797
798         /* sanity check */
799         list = cpu_buffer->pages;
800         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801                 return NULL;
802
803         page = head = cpu_buffer->head_page;
804         /*
805          * It is possible that the writer moves the header behind
806          * where we started, and we miss in one loop.
807          * A second loop should grab the header, but we'll do
808          * three loops just because I'm paranoid.
809          */
810         for (i = 0; i < 3; i++) {
811                 do {
812                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813                                 cpu_buffer->head_page = page;
814                                 return page;
815                         }
816                         rb_inc_page(cpu_buffer, &page);
817                 } while (page != head);
818         }
819
820         RB_WARN_ON(cpu_buffer, 1);
821
822         return NULL;
823 }
824
825 static int rb_head_page_replace(struct buffer_page *old,
826                                 struct buffer_page *new)
827 {
828         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829         unsigned long val;
830         unsigned long ret;
831
832         val = *ptr & ~RB_FLAG_MASK;
833         val |= RB_PAGE_HEAD;
834
835         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
836
837         return ret == val;
838 }
839
840 /*
841  * rb_tail_page_update - move the tail page forward
842  *
843  * Returns 1 if moved tail page, 0 if someone else did.
844  */
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846                                struct buffer_page *tail_page,
847                                struct buffer_page *next_page)
848 {
849         struct buffer_page *old_tail;
850         unsigned long old_entries;
851         unsigned long old_write;
852         int ret = 0;
853
854         /*
855          * The tail page now needs to be moved forward.
856          *
857          * We need to reset the tail page, but without messing
858          * with possible erasing of data brought in by interrupts
859          * that have moved the tail page and are currently on it.
860          *
861          * We add a counter to the write field to denote this.
862          */
863         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866         /*
867          * Just make sure we have seen our old_write and synchronize
868          * with any interrupts that come in.
869          */
870         barrier();
871
872         /*
873          * If the tail page is still the same as what we think
874          * it is, then it is up to us to update the tail
875          * pointer.
876          */
877         if (tail_page == cpu_buffer->tail_page) {
878                 /* Zero the write counter */
879                 unsigned long val = old_write & ~RB_WRITE_MASK;
880                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882                 /*
883                  * This will only succeed if an interrupt did
884                  * not come in and change it. In which case, we
885                  * do not want to modify it.
886                  *
887                  * We add (void) to let the compiler know that we do not care
888                  * about the return value of these functions. We use the
889                  * cmpxchg to only update if an interrupt did not already
890                  * do it for us. If the cmpxchg fails, we don't care.
891                  */
892                 (void)local_cmpxchg(&next_page->write, old_write, val);
893                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
894
895                 /*
896                  * No need to worry about races with clearing out the commit.
897                  * it only can increment when a commit takes place. But that
898                  * only happens in the outer most nested commit.
899                  */
900                 local_set(&next_page->page->commit, 0);
901
902                 old_tail = cmpxchg(&cpu_buffer->tail_page,
903                                    tail_page, next_page);
904
905                 if (old_tail == tail_page)
906                         ret = 1;
907         }
908
909         return ret;
910 }
911
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913                           struct buffer_page *bpage)
914 {
915         unsigned long val = (unsigned long)bpage;
916
917         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918                 return 1;
919
920         return 0;
921 }
922
923 /**
924  * rb_check_list - make sure a pointer to a list has the last bits zero
925  */
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927                          struct list_head *list)
928 {
929         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930                 return 1;
931         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932                 return 1;
933         return 0;
934 }
935
936 /**
937  * check_pages - integrity check of buffer pages
938  * @cpu_buffer: CPU buffer with pages to test
939  *
940  * As a safety measure we check to make sure the data pages have not
941  * been corrupted.
942  */
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945         struct list_head *head = cpu_buffer->pages;
946         struct buffer_page *bpage, *tmp;
947
948         /* Reset the head page if it exists */
949         if (cpu_buffer->head_page)
950                 rb_set_head_page(cpu_buffer);
951
952         rb_head_page_deactivate(cpu_buffer);
953
954         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955                 return -1;
956         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957                 return -1;
958
959         if (rb_check_list(cpu_buffer, head))
960                 return -1;
961
962         list_for_each_entry_safe(bpage, tmp, head, list) {
963                 if (RB_WARN_ON(cpu_buffer,
964                                bpage->list.next->prev != &bpage->list))
965                         return -1;
966                 if (RB_WARN_ON(cpu_buffer,
967                                bpage->list.prev->next != &bpage->list))
968                         return -1;
969                 if (rb_check_list(cpu_buffer, &bpage->list))
970                         return -1;
971         }
972
973         rb_head_page_activate(cpu_buffer);
974
975         return 0;
976 }
977
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
979 {
980         int i;
981         struct buffer_page *bpage, *tmp;
982
983         for (i = 0; i < nr_pages; i++) {
984                 struct page *page;
985                 /*
986                  * __GFP_NORETRY flag makes sure that the allocation fails
987                  * gracefully without invoking oom-killer and the system is
988                  * not destabilized.
989                  */
990                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991                                     GFP_KERNEL | __GFP_NORETRY,
992                                     cpu_to_node(cpu));
993                 if (!bpage)
994                         goto free_pages;
995
996                 list_add(&bpage->list, pages);
997
998                 page = alloc_pages_node(cpu_to_node(cpu),
999                                         GFP_KERNEL | __GFP_NORETRY, 0);
1000                 if (!page)
1001                         goto free_pages;
1002                 bpage->page = page_address(page);
1003                 rb_init_page(bpage->page);
1004         }
1005
1006         return 0;
1007
1008 free_pages:
1009         list_for_each_entry_safe(bpage, tmp, pages, list) {
1010                 list_del_init(&bpage->list);
1011                 free_buffer_page(bpage);
1012         }
1013
1014         return -ENOMEM;
1015 }
1016
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018                              unsigned nr_pages)
1019 {
1020         LIST_HEAD(pages);
1021
1022         WARN_ON(!nr_pages);
1023
1024         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025                 return -ENOMEM;
1026
1027         /*
1028          * The ring buffer page list is a circular list that does not
1029          * start and end with a list head. All page list items point to
1030          * other pages.
1031          */
1032         cpu_buffer->pages = pages.next;
1033         list_del(&pages);
1034
1035         cpu_buffer->nr_pages = nr_pages;
1036
1037         rb_check_pages(cpu_buffer);
1038
1039         return 0;
1040 }
1041
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044 {
1045         struct ring_buffer_per_cpu *cpu_buffer;
1046         struct buffer_page *bpage;
1047         struct page *page;
1048         int ret;
1049
1050         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051                                   GFP_KERNEL, cpu_to_node(cpu));
1052         if (!cpu_buffer)
1053                 return NULL;
1054
1055         cpu_buffer->cpu = cpu;
1056         cpu_buffer->buffer = buffer;
1057         raw_spin_lock_init(&cpu_buffer->reader_lock);
1058         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061         init_completion(&cpu_buffer->update_done);
1062
1063         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064                             GFP_KERNEL, cpu_to_node(cpu));
1065         if (!bpage)
1066                 goto fail_free_buffer;
1067
1068         rb_check_bpage(cpu_buffer, bpage);
1069
1070         cpu_buffer->reader_page = bpage;
1071         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072         if (!page)
1073                 goto fail_free_reader;
1074         bpage->page = page_address(page);
1075         rb_init_page(bpage->page);
1076
1077         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079
1080         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081         if (ret < 0)
1082                 goto fail_free_reader;
1083
1084         cpu_buffer->head_page
1085                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1086         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087
1088         rb_head_page_activate(cpu_buffer);
1089
1090         return cpu_buffer;
1091
1092  fail_free_reader:
1093         free_buffer_page(cpu_buffer->reader_page);
1094
1095  fail_free_buffer:
1096         kfree(cpu_buffer);
1097         return NULL;
1098 }
1099
1100 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101 {
1102         struct list_head *head = cpu_buffer->pages;
1103         struct buffer_page *bpage, *tmp;
1104
1105         free_buffer_page(cpu_buffer->reader_page);
1106
1107         rb_head_page_deactivate(cpu_buffer);
1108
1109         if (head) {
1110                 list_for_each_entry_safe(bpage, tmp, head, list) {
1111                         list_del_init(&bpage->list);
1112                         free_buffer_page(bpage);
1113                 }
1114                 bpage = list_entry(head, struct buffer_page, list);
1115                 free_buffer_page(bpage);
1116         }
1117
1118         kfree(cpu_buffer);
1119 }
1120
1121 #ifdef CONFIG_HOTPLUG_CPU
1122 static int rb_cpu_notify(struct notifier_block *self,
1123                          unsigned long action, void *hcpu);
1124 #endif
1125
1126 /**
1127  * ring_buffer_alloc - allocate a new ring_buffer
1128  * @size: the size in bytes per cpu that is needed.
1129  * @flags: attributes to set for the ring buffer.
1130  *
1131  * Currently the only flag that is available is the RB_FL_OVERWRITE
1132  * flag. This flag means that the buffer will overwrite old data
1133  * when the buffer wraps. If this flag is not set, the buffer will
1134  * drop data when the tail hits the head.
1135  */
1136 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137                                         struct lock_class_key *key)
1138 {
1139         struct ring_buffer *buffer;
1140         int bsize;
1141         int cpu, nr_pages;
1142
1143         /* keep it in its own cache line */
1144         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145                          GFP_KERNEL);
1146         if (!buffer)
1147                 return NULL;
1148
1149         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150                 goto fail_free_buffer;
1151
1152         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153         buffer->flags = flags;
1154         buffer->clock = trace_clock_local;
1155         buffer->reader_lock_key = key;
1156
1157         /* need at least two pages */
1158         if (nr_pages < 2)
1159                 nr_pages = 2;
1160
1161         /*
1162          * In case of non-hotplug cpu, if the ring-buffer is allocated
1163          * in early initcall, it will not be notified of secondary cpus.
1164          * In that off case, we need to allocate for all possible cpus.
1165          */
1166 #ifdef CONFIG_HOTPLUG_CPU
1167         get_online_cpus();
1168         cpumask_copy(buffer->cpumask, cpu_online_mask);
1169 #else
1170         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171 #endif
1172         buffer->cpus = nr_cpu_ids;
1173
1174         bsize = sizeof(void *) * nr_cpu_ids;
1175         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176                                   GFP_KERNEL);
1177         if (!buffer->buffers)
1178                 goto fail_free_cpumask;
1179
1180         for_each_buffer_cpu(buffer, cpu) {
1181                 buffer->buffers[cpu] =
1182                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183                 if (!buffer->buffers[cpu])
1184                         goto fail_free_buffers;
1185         }
1186
1187 #ifdef CONFIG_HOTPLUG_CPU
1188         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189         buffer->cpu_notify.priority = 0;
1190         register_cpu_notifier(&buffer->cpu_notify);
1191 #endif
1192
1193         put_online_cpus();
1194         mutex_init(&buffer->mutex);
1195
1196         return buffer;
1197
1198  fail_free_buffers:
1199         for_each_buffer_cpu(buffer, cpu) {
1200                 if (buffer->buffers[cpu])
1201                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1202         }
1203         kfree(buffer->buffers);
1204
1205  fail_free_cpumask:
1206         free_cpumask_var(buffer->cpumask);
1207         put_online_cpus();
1208
1209  fail_free_buffer:
1210         kfree(buffer);
1211         return NULL;
1212 }
1213 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214
1215 /**
1216  * ring_buffer_free - free a ring buffer.
1217  * @buffer: the buffer to free.
1218  */
1219 void
1220 ring_buffer_free(struct ring_buffer *buffer)
1221 {
1222         int cpu;
1223
1224         get_online_cpus();
1225
1226 #ifdef CONFIG_HOTPLUG_CPU
1227         unregister_cpu_notifier(&buffer->cpu_notify);
1228 #endif
1229
1230         for_each_buffer_cpu(buffer, cpu)
1231                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
1233         put_online_cpus();
1234
1235         kfree(buffer->buffers);
1236         free_cpumask_var(buffer->cpumask);
1237
1238         kfree(buffer);
1239 }
1240 EXPORT_SYMBOL_GPL(ring_buffer_free);
1241
1242 void ring_buffer_set_clock(struct ring_buffer *buffer,
1243                            u64 (*clock)(void))
1244 {
1245         buffer->clock = clock;
1246 }
1247
1248 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251 {
1252         return local_read(&bpage->entries) & RB_WRITE_MASK;
1253 }
1254
1255 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256 {
1257         return local_read(&bpage->write) & RB_WRITE_MASK;
1258 }
1259
1260 static int
1261 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262 {
1263         struct list_head *tail_page, *to_remove, *next_page;
1264         struct buffer_page *to_remove_page, *tmp_iter_page;
1265         struct buffer_page *last_page, *first_page;
1266         unsigned int nr_removed;
1267         unsigned long head_bit;
1268         int page_entries;
1269
1270         head_bit = 0;
1271
1272         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273         atomic_inc(&cpu_buffer->record_disabled);
1274         /*
1275          * We don't race with the readers since we have acquired the reader
1276          * lock. We also don't race with writers after disabling recording.
1277          * This makes it easy to figure out the first and the last page to be
1278          * removed from the list. We unlink all the pages in between including
1279          * the first and last pages. This is done in a busy loop so that we
1280          * lose the least number of traces.
1281          * The pages are freed after we restart recording and unlock readers.
1282          */
1283         tail_page = &cpu_buffer->tail_page->list;
1284
1285         /*
1286          * tail page might be on reader page, we remove the next page
1287          * from the ring buffer
1288          */
1289         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290                 tail_page = rb_list_head(tail_page->next);
1291         to_remove = tail_page;
1292
1293         /* start of pages to remove */
1294         first_page = list_entry(rb_list_head(to_remove->next),
1295                                 struct buffer_page, list);
1296
1297         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298                 to_remove = rb_list_head(to_remove)->next;
1299                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300         }
1301
1302         next_page = rb_list_head(to_remove)->next;
1303
1304         /*
1305          * Now we remove all pages between tail_page and next_page.
1306          * Make sure that we have head_bit value preserved for the
1307          * next page
1308          */
1309         tail_page->next = (struct list_head *)((unsigned long)next_page |
1310                                                 head_bit);
1311         next_page = rb_list_head(next_page);
1312         next_page->prev = tail_page;
1313
1314         /* make sure pages points to a valid page in the ring buffer */
1315         cpu_buffer->pages = next_page;
1316
1317         /* update head page */
1318         if (head_bit)
1319                 cpu_buffer->head_page = list_entry(next_page,
1320                                                 struct buffer_page, list);
1321
1322         /*
1323          * change read pointer to make sure any read iterators reset
1324          * themselves
1325          */
1326         cpu_buffer->read = 0;
1327
1328         /* pages are removed, resume tracing and then free the pages */
1329         atomic_dec(&cpu_buffer->record_disabled);
1330         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331
1332         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334         /* last buffer page to remove */
1335         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336                                 list);
1337         tmp_iter_page = first_page;
1338
1339         do {
1340                 to_remove_page = tmp_iter_page;
1341                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343                 /* update the counters */
1344                 page_entries = rb_page_entries(to_remove_page);
1345                 if (page_entries) {
1346                         /*
1347                          * If something was added to this page, it was full
1348                          * since it is not the tail page. So we deduct the
1349                          * bytes consumed in ring buffer from here.
1350                          * No need to update overruns, since this page is
1351                          * deleted from ring buffer and its entries are
1352                          * already accounted for.
1353                          */
1354                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1355                 }
1356
1357                 /*
1358                  * We have already removed references to this list item, just
1359                  * free up the buffer_page and its page
1360                  */
1361                 free_buffer_page(to_remove_page);
1362                 nr_removed--;
1363
1364         } while (to_remove_page != last_page);
1365
1366         RB_WARN_ON(cpu_buffer, nr_removed);
1367
1368         return nr_removed == 0;
1369 }
1370
1371 static int
1372 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1373 {
1374         struct list_head *pages = &cpu_buffer->new_pages;
1375         int retries, success;
1376
1377         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1378         /*
1379          * We are holding the reader lock, so the reader page won't be swapped
1380          * in the ring buffer. Now we are racing with the writer trying to
1381          * move head page and the tail page.
1382          * We are going to adapt the reader page update process where:
1383          * 1. We first splice the start and end of list of new pages between
1384          *    the head page and its previous page.
1385          * 2. We cmpxchg the prev_page->next to point from head page to the
1386          *    start of new pages list.
1387          * 3. Finally, we update the head->prev to the end of new list.
1388          *
1389          * We will try this process 10 times, to make sure that we don't keep
1390          * spinning.
1391          */
1392         retries = 10;
1393         success = 0;
1394         while (retries--) {
1395                 struct list_head *head_page, *prev_page, *r;
1396                 struct list_head *last_page, *first_page;
1397                 struct list_head *head_page_with_bit;
1398
1399                 head_page = &rb_set_head_page(cpu_buffer)->list;
1400                 prev_page = head_page->prev;
1401
1402                 first_page = pages->next;
1403                 last_page  = pages->prev;
1404
1405                 head_page_with_bit = (struct list_head *)
1406                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1407
1408                 last_page->next = head_page_with_bit;
1409                 first_page->prev = prev_page;
1410
1411                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1412
1413                 if (r == head_page_with_bit) {
1414                         /*
1415                          * yay, we replaced the page pointer to our new list,
1416                          * now, we just have to update to head page's prev
1417                          * pointer to point to end of list
1418                          */
1419                         head_page->prev = last_page;
1420                         success = 1;
1421                         break;
1422                 }
1423         }
1424
1425         if (success)
1426                 INIT_LIST_HEAD(pages);
1427         /*
1428          * If we weren't successful in adding in new pages, warn and stop
1429          * tracing
1430          */
1431         RB_WARN_ON(cpu_buffer, !success);
1432         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1433
1434         /* free pages if they weren't inserted */
1435         if (!success) {
1436                 struct buffer_page *bpage, *tmp;
1437                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1438                                          list) {
1439                         list_del_init(&bpage->list);
1440                         free_buffer_page(bpage);
1441                 }
1442         }
1443         return success;
1444 }
1445
1446 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1447 {
1448         int success;
1449
1450         if (cpu_buffer->nr_pages_to_update > 0)
1451                 success = rb_insert_pages(cpu_buffer);
1452         else
1453                 success = rb_remove_pages(cpu_buffer,
1454                                         -cpu_buffer->nr_pages_to_update);
1455
1456         if (success)
1457                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1458 }
1459
1460 static void update_pages_handler(struct work_struct *work)
1461 {
1462         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1463                         struct ring_buffer_per_cpu, update_pages_work);
1464         rb_update_pages(cpu_buffer);
1465         complete(&cpu_buffer->update_done);
1466 }
1467
1468 /**
1469  * ring_buffer_resize - resize the ring buffer
1470  * @buffer: the buffer to resize.
1471  * @size: the new size.
1472  *
1473  * Minimum size is 2 * BUF_PAGE_SIZE.
1474  *
1475  * Returns 0 on success and < 0 on failure.
1476  */
1477 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1478                         int cpu_id)
1479 {
1480         struct ring_buffer_per_cpu *cpu_buffer;
1481         unsigned nr_pages;
1482         int cpu, err = 0;
1483
1484         /*
1485          * Always succeed at resizing a non-existent buffer:
1486          */
1487         if (!buffer)
1488                 return size;
1489
1490         /* Make sure the requested buffer exists */
1491         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1492             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1493                 return size;
1494
1495         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1496         size *= BUF_PAGE_SIZE;
1497
1498         /* we need a minimum of two pages */
1499         if (size < BUF_PAGE_SIZE * 2)
1500                 size = BUF_PAGE_SIZE * 2;
1501
1502         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1503
1504         /*
1505          * Don't succeed if resizing is disabled, as a reader might be
1506          * manipulating the ring buffer and is expecting a sane state while
1507          * this is true.
1508          */
1509         if (atomic_read(&buffer->resize_disabled))
1510                 return -EBUSY;
1511
1512         /* prevent another thread from changing buffer sizes */
1513         mutex_lock(&buffer->mutex);
1514
1515         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1516                 /* calculate the pages to update */
1517                 for_each_buffer_cpu(buffer, cpu) {
1518                         cpu_buffer = buffer->buffers[cpu];
1519
1520                         cpu_buffer->nr_pages_to_update = nr_pages -
1521                                                         cpu_buffer->nr_pages;
1522                         /*
1523                          * nothing more to do for removing pages or no update
1524                          */
1525                         if (cpu_buffer->nr_pages_to_update <= 0)
1526                                 continue;
1527                         /*
1528                          * to add pages, make sure all new pages can be
1529                          * allocated without receiving ENOMEM
1530                          */
1531                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1532                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1533                                                 &cpu_buffer->new_pages, cpu)) {
1534                                 /* not enough memory for new pages */
1535                                 err = -ENOMEM;
1536                                 goto out_err;
1537                         }
1538                 }
1539
1540                 get_online_cpus();
1541                 /*
1542                  * Fire off all the required work handlers
1543                  * We can't schedule on offline CPUs, but it's not necessary
1544                  * since we can change their buffer sizes without any race.
1545                  */
1546                 for_each_buffer_cpu(buffer, cpu) {
1547                         cpu_buffer = buffer->buffers[cpu];
1548                         if (!cpu_buffer->nr_pages_to_update)
1549                                 continue;
1550
1551                         if (cpu_online(cpu))
1552                                 schedule_work_on(cpu,
1553                                                 &cpu_buffer->update_pages_work);
1554                         else
1555                                 rb_update_pages(cpu_buffer);
1556                 }
1557
1558                 /* wait for all the updates to complete */
1559                 for_each_buffer_cpu(buffer, cpu) {
1560                         cpu_buffer = buffer->buffers[cpu];
1561                         if (!cpu_buffer->nr_pages_to_update)
1562                                 continue;
1563
1564                         if (cpu_online(cpu))
1565                                 wait_for_completion(&cpu_buffer->update_done);
1566                         cpu_buffer->nr_pages_to_update = 0;
1567                 }
1568
1569                 put_online_cpus();
1570         } else {
1571                 cpu_buffer = buffer->buffers[cpu_id];
1572
1573                 if (nr_pages == cpu_buffer->nr_pages)
1574                         goto out;
1575
1576                 cpu_buffer->nr_pages_to_update = nr_pages -
1577                                                 cpu_buffer->nr_pages;
1578
1579                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1580                 if (cpu_buffer->nr_pages_to_update > 0 &&
1581                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1582                                             &cpu_buffer->new_pages, cpu_id)) {
1583                         err = -ENOMEM;
1584                         goto out_err;
1585                 }
1586
1587                 get_online_cpus();
1588
1589                 if (cpu_online(cpu_id)) {
1590                         schedule_work_on(cpu_id,
1591                                          &cpu_buffer->update_pages_work);
1592                         wait_for_completion(&cpu_buffer->update_done);
1593                 } else
1594                         rb_update_pages(cpu_buffer);
1595
1596                 cpu_buffer->nr_pages_to_update = 0;
1597                 put_online_cpus();
1598         }
1599
1600  out:
1601         /*
1602          * The ring buffer resize can happen with the ring buffer
1603          * enabled, so that the update disturbs the tracing as little
1604          * as possible. But if the buffer is disabled, we do not need
1605          * to worry about that, and we can take the time to verify
1606          * that the buffer is not corrupt.
1607          */
1608         if (atomic_read(&buffer->record_disabled)) {
1609                 atomic_inc(&buffer->record_disabled);
1610                 /*
1611                  * Even though the buffer was disabled, we must make sure
1612                  * that it is truly disabled before calling rb_check_pages.
1613                  * There could have been a race between checking
1614                  * record_disable and incrementing it.
1615                  */
1616                 synchronize_sched();
1617                 for_each_buffer_cpu(buffer, cpu) {
1618                         cpu_buffer = buffer->buffers[cpu];
1619                         rb_check_pages(cpu_buffer);
1620                 }
1621                 atomic_dec(&buffer->record_disabled);
1622         }
1623
1624         mutex_unlock(&buffer->mutex);
1625         return size;
1626
1627  out_err:
1628         for_each_buffer_cpu(buffer, cpu) {
1629                 struct buffer_page *bpage, *tmp;
1630
1631                 cpu_buffer = buffer->buffers[cpu];
1632                 cpu_buffer->nr_pages_to_update = 0;
1633
1634                 if (list_empty(&cpu_buffer->new_pages))
1635                         continue;
1636
1637                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1638                                         list) {
1639                         list_del_init(&bpage->list);
1640                         free_buffer_page(bpage);
1641                 }
1642         }
1643         mutex_unlock(&buffer->mutex);
1644         return err;
1645 }
1646 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1647
1648 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1649 {
1650         mutex_lock(&buffer->mutex);
1651         if (val)
1652                 buffer->flags |= RB_FL_OVERWRITE;
1653         else
1654                 buffer->flags &= ~RB_FL_OVERWRITE;
1655         mutex_unlock(&buffer->mutex);
1656 }
1657 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1658
1659 static inline void *
1660 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1661 {
1662         return bpage->data + index;
1663 }
1664
1665 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1666 {
1667         return bpage->page->data + index;
1668 }
1669
1670 static inline struct ring_buffer_event *
1671 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1672 {
1673         return __rb_page_index(cpu_buffer->reader_page,
1674                                cpu_buffer->reader_page->read);
1675 }
1676
1677 static inline struct ring_buffer_event *
1678 rb_iter_head_event(struct ring_buffer_iter *iter)
1679 {
1680         return __rb_page_index(iter->head_page, iter->head);
1681 }
1682
1683 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1684 {
1685         return local_read(&bpage->page->commit);
1686 }
1687
1688 /* Size is determined by what has been committed */
1689 static inline unsigned rb_page_size(struct buffer_page *bpage)
1690 {
1691         return rb_page_commit(bpage);
1692 }
1693
1694 static inline unsigned
1695 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1696 {
1697         return rb_page_commit(cpu_buffer->commit_page);
1698 }
1699
1700 static inline unsigned
1701 rb_event_index(struct ring_buffer_event *event)
1702 {
1703         unsigned long addr = (unsigned long)event;
1704
1705         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1706 }
1707
1708 static inline int
1709 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1710                    struct ring_buffer_event *event)
1711 {
1712         unsigned long addr = (unsigned long)event;
1713         unsigned long index;
1714
1715         index = rb_event_index(event);
1716         addr &= PAGE_MASK;
1717
1718         return cpu_buffer->commit_page->page == (void *)addr &&
1719                 rb_commit_index(cpu_buffer) == index;
1720 }
1721
1722 static void
1723 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1724 {
1725         unsigned long max_count;
1726
1727         /*
1728          * We only race with interrupts and NMIs on this CPU.
1729          * If we own the commit event, then we can commit
1730          * all others that interrupted us, since the interruptions
1731          * are in stack format (they finish before they come
1732          * back to us). This allows us to do a simple loop to
1733          * assign the commit to the tail.
1734          */
1735  again:
1736         max_count = cpu_buffer->nr_pages * 100;
1737
1738         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1739                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1740                         return;
1741                 if (RB_WARN_ON(cpu_buffer,
1742                                rb_is_reader_page(cpu_buffer->tail_page)))
1743                         return;
1744                 local_set(&cpu_buffer->commit_page->page->commit,
1745                           rb_page_write(cpu_buffer->commit_page));
1746                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1747                 cpu_buffer->write_stamp =
1748                         cpu_buffer->commit_page->page->time_stamp;
1749                 /* add barrier to keep gcc from optimizing too much */
1750                 barrier();
1751         }
1752         while (rb_commit_index(cpu_buffer) !=
1753                rb_page_write(cpu_buffer->commit_page)) {
1754
1755                 local_set(&cpu_buffer->commit_page->page->commit,
1756                           rb_page_write(cpu_buffer->commit_page));
1757                 RB_WARN_ON(cpu_buffer,
1758                            local_read(&cpu_buffer->commit_page->page->commit) &
1759                            ~RB_WRITE_MASK);
1760                 barrier();
1761         }
1762
1763         /* again, keep gcc from optimizing */
1764         barrier();
1765
1766         /*
1767          * If an interrupt came in just after the first while loop
1768          * and pushed the tail page forward, we will be left with
1769          * a dangling commit that will never go forward.
1770          */
1771         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1772                 goto again;
1773 }
1774
1775 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1776 {
1777         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1778         cpu_buffer->reader_page->read = 0;
1779 }
1780
1781 static void rb_inc_iter(struct ring_buffer_iter *iter)
1782 {
1783         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1784
1785         /*
1786          * The iterator could be on the reader page (it starts there).
1787          * But the head could have moved, since the reader was
1788          * found. Check for this case and assign the iterator
1789          * to the head page instead of next.
1790          */
1791         if (iter->head_page == cpu_buffer->reader_page)
1792                 iter->head_page = rb_set_head_page(cpu_buffer);
1793         else
1794                 rb_inc_page(cpu_buffer, &iter->head_page);
1795
1796         iter->read_stamp = iter->head_page->page->time_stamp;
1797         iter->head = 0;
1798 }
1799
1800 /* Slow path, do not inline */
1801 static noinline struct ring_buffer_event *
1802 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1803 {
1804         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1805
1806         /* Not the first event on the page? */
1807         if (rb_event_index(event)) {
1808                 event->time_delta = delta & TS_MASK;
1809                 event->array[0] = delta >> TS_SHIFT;
1810         } else {
1811                 /* nope, just zero it */
1812                 event->time_delta = 0;
1813                 event->array[0] = 0;
1814         }
1815
1816         return skip_time_extend(event);
1817 }
1818
1819 /**
1820  * ring_buffer_update_event - update event type and data
1821  * @event: the even to update
1822  * @type: the type of event
1823  * @length: the size of the event field in the ring buffer
1824  *
1825  * Update the type and data fields of the event. The length
1826  * is the actual size that is written to the ring buffer,
1827  * and with this, we can determine what to place into the
1828  * data field.
1829  */
1830 static void
1831 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1832                 struct ring_buffer_event *event, unsigned length,
1833                 int add_timestamp, u64 delta)
1834 {
1835         /* Only a commit updates the timestamp */
1836         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1837                 delta = 0;
1838
1839         /*
1840          * If we need to add a timestamp, then we
1841          * add it to the start of the resevered space.
1842          */
1843         if (unlikely(add_timestamp)) {
1844                 event = rb_add_time_stamp(event, delta);
1845                 length -= RB_LEN_TIME_EXTEND;
1846                 delta = 0;
1847         }
1848
1849         event->time_delta = delta;
1850         length -= RB_EVNT_HDR_SIZE;
1851         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1852                 event->type_len = 0;
1853                 event->array[0] = length;
1854         } else
1855                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1856 }
1857
1858 /*
1859  * rb_handle_head_page - writer hit the head page
1860  *
1861  * Returns: +1 to retry page
1862  *           0 to continue
1863  *          -1 on error
1864  */
1865 static int
1866 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1867                     struct buffer_page *tail_page,
1868                     struct buffer_page *next_page)
1869 {
1870         struct buffer_page *new_head;
1871         int entries;
1872         int type;
1873         int ret;
1874
1875         entries = rb_page_entries(next_page);
1876
1877         /*
1878          * The hard part is here. We need to move the head
1879          * forward, and protect against both readers on
1880          * other CPUs and writers coming in via interrupts.
1881          */
1882         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1883                                        RB_PAGE_HEAD);
1884
1885         /*
1886          * type can be one of four:
1887          *  NORMAL - an interrupt already moved it for us
1888          *  HEAD   - we are the first to get here.
1889          *  UPDATE - we are the interrupt interrupting
1890          *           a current move.
1891          *  MOVED  - a reader on another CPU moved the next
1892          *           pointer to its reader page. Give up
1893          *           and try again.
1894          */
1895
1896         switch (type) {
1897         case RB_PAGE_HEAD:
1898                 /*
1899                  * We changed the head to UPDATE, thus
1900                  * it is our responsibility to update
1901                  * the counters.
1902                  */
1903                 local_add(entries, &cpu_buffer->overrun);
1904                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1905
1906                 /*
1907                  * The entries will be zeroed out when we move the
1908                  * tail page.
1909                  */
1910
1911                 /* still more to do */
1912                 break;
1913
1914         case RB_PAGE_UPDATE:
1915                 /*
1916                  * This is an interrupt that interrupt the
1917                  * previous update. Still more to do.
1918                  */
1919                 break;
1920         case RB_PAGE_NORMAL:
1921                 /*
1922                  * An interrupt came in before the update
1923                  * and processed this for us.
1924                  * Nothing left to do.
1925                  */
1926                 return 1;
1927         case RB_PAGE_MOVED:
1928                 /*
1929                  * The reader is on another CPU and just did
1930                  * a swap with our next_page.
1931                  * Try again.
1932                  */
1933                 return 1;
1934         default:
1935                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1936                 return -1;
1937         }
1938
1939         /*
1940          * Now that we are here, the old head pointer is
1941          * set to UPDATE. This will keep the reader from
1942          * swapping the head page with the reader page.
1943          * The reader (on another CPU) will spin till
1944          * we are finished.
1945          *
1946          * We just need to protect against interrupts
1947          * doing the job. We will set the next pointer
1948          * to HEAD. After that, we set the old pointer
1949          * to NORMAL, but only if it was HEAD before.
1950          * otherwise we are an interrupt, and only
1951          * want the outer most commit to reset it.
1952          */
1953         new_head = next_page;
1954         rb_inc_page(cpu_buffer, &new_head);
1955
1956         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1957                                     RB_PAGE_NORMAL);
1958
1959         /*
1960          * Valid returns are:
1961          *  HEAD   - an interrupt came in and already set it.
1962          *  NORMAL - One of two things:
1963          *            1) We really set it.
1964          *            2) A bunch of interrupts came in and moved
1965          *               the page forward again.
1966          */
1967         switch (ret) {
1968         case RB_PAGE_HEAD:
1969         case RB_PAGE_NORMAL:
1970                 /* OK */
1971                 break;
1972         default:
1973                 RB_WARN_ON(cpu_buffer, 1);
1974                 return -1;
1975         }
1976
1977         /*
1978          * It is possible that an interrupt came in,
1979          * set the head up, then more interrupts came in
1980          * and moved it again. When we get back here,
1981          * the page would have been set to NORMAL but we
1982          * just set it back to HEAD.
1983          *
1984          * How do you detect this? Well, if that happened
1985          * the tail page would have moved.
1986          */
1987         if (ret == RB_PAGE_NORMAL) {
1988                 /*
1989                  * If the tail had moved passed next, then we need
1990                  * to reset the pointer.
1991                  */
1992                 if (cpu_buffer->tail_page != tail_page &&
1993                     cpu_buffer->tail_page != next_page)
1994                         rb_head_page_set_normal(cpu_buffer, new_head,
1995                                                 next_page,
1996                                                 RB_PAGE_HEAD);
1997         }
1998
1999         /*
2000          * If this was the outer most commit (the one that
2001          * changed the original pointer from HEAD to UPDATE),
2002          * then it is up to us to reset it to NORMAL.
2003          */
2004         if (type == RB_PAGE_HEAD) {
2005                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2006                                               tail_page,
2007                                               RB_PAGE_UPDATE);
2008                 if (RB_WARN_ON(cpu_buffer,
2009                                ret != RB_PAGE_UPDATE))
2010                         return -1;
2011         }
2012
2013         return 0;
2014 }
2015
2016 static unsigned rb_calculate_event_length(unsigned length)
2017 {
2018         struct ring_buffer_event event; /* Used only for sizeof array */
2019
2020         /* zero length can cause confusions */
2021         if (!length)
2022                 length = 1;
2023
2024         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2025                 length += sizeof(event.array[0]);
2026
2027         length += RB_EVNT_HDR_SIZE;
2028         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2029
2030         return length;
2031 }
2032
2033 static inline void
2034 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2035               struct buffer_page *tail_page,
2036               unsigned long tail, unsigned long length)
2037 {
2038         struct ring_buffer_event *event;
2039
2040         /*
2041          * Only the event that crossed the page boundary
2042          * must fill the old tail_page with padding.
2043          */
2044         if (tail >= BUF_PAGE_SIZE) {
2045                 /*
2046                  * If the page was filled, then we still need
2047                  * to update the real_end. Reset it to zero
2048                  * and the reader will ignore it.
2049                  */
2050                 if (tail == BUF_PAGE_SIZE)
2051                         tail_page->real_end = 0;
2052
2053                 local_sub(length, &tail_page->write);
2054                 return;
2055         }
2056
2057         event = __rb_page_index(tail_page, tail);
2058         kmemcheck_annotate_bitfield(event, bitfield);
2059
2060         /* account for padding bytes */
2061         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2062
2063         /*
2064          * Save the original length to the meta data.
2065          * This will be used by the reader to add lost event
2066          * counter.
2067          */
2068         tail_page->real_end = tail;
2069
2070         /*
2071          * If this event is bigger than the minimum size, then
2072          * we need to be careful that we don't subtract the
2073          * write counter enough to allow another writer to slip
2074          * in on this page.
2075          * We put in a discarded commit instead, to make sure
2076          * that this space is not used again.
2077          *
2078          * If we are less than the minimum size, we don't need to
2079          * worry about it.
2080          */
2081         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2082                 /* No room for any events */
2083
2084                 /* Mark the rest of the page with padding */
2085                 rb_event_set_padding(event);
2086
2087                 /* Set the write back to the previous setting */
2088                 local_sub(length, &tail_page->write);
2089                 return;
2090         }
2091
2092         /* Put in a discarded event */
2093         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2094         event->type_len = RINGBUF_TYPE_PADDING;
2095         /* time delta must be non zero */
2096         event->time_delta = 1;
2097
2098         /* Set write to end of buffer */
2099         length = (tail + length) - BUF_PAGE_SIZE;
2100         local_sub(length, &tail_page->write);
2101 }
2102
2103 /*
2104  * This is the slow path, force gcc not to inline it.
2105  */
2106 static noinline struct ring_buffer_event *
2107 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2108              unsigned long length, unsigned long tail,
2109              struct buffer_page *tail_page, u64 ts)
2110 {
2111         struct buffer_page *commit_page = cpu_buffer->commit_page;
2112         struct ring_buffer *buffer = cpu_buffer->buffer;
2113         struct buffer_page *next_page;
2114         int ret;
2115
2116         next_page = tail_page;
2117
2118         rb_inc_page(cpu_buffer, &next_page);
2119
2120         /*
2121          * If for some reason, we had an interrupt storm that made
2122          * it all the way around the buffer, bail, and warn
2123          * about it.
2124          */
2125         if (unlikely(next_page == commit_page)) {
2126                 local_inc(&cpu_buffer->commit_overrun);
2127                 goto out_reset;
2128         }
2129
2130         /*
2131          * This is where the fun begins!
2132          *
2133          * We are fighting against races between a reader that
2134          * could be on another CPU trying to swap its reader
2135          * page with the buffer head.
2136          *
2137          * We are also fighting against interrupts coming in and
2138          * moving the head or tail on us as well.
2139          *
2140          * If the next page is the head page then we have filled
2141          * the buffer, unless the commit page is still on the
2142          * reader page.
2143          */
2144         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2145
2146                 /*
2147                  * If the commit is not on the reader page, then
2148                  * move the header page.
2149                  */
2150                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151                         /*
2152                          * If we are not in overwrite mode,
2153                          * this is easy, just stop here.
2154                          */
2155                         if (!(buffer->flags & RB_FL_OVERWRITE))
2156                                 goto out_reset;
2157
2158                         ret = rb_handle_head_page(cpu_buffer,
2159                                                   tail_page,
2160                                                   next_page);
2161                         if (ret < 0)
2162                                 goto out_reset;
2163                         if (ret)
2164                                 goto out_again;
2165                 } else {
2166                         /*
2167                          * We need to be careful here too. The
2168                          * commit page could still be on the reader
2169                          * page. We could have a small buffer, and
2170                          * have filled up the buffer with events
2171                          * from interrupts and such, and wrapped.
2172                          *
2173                          * Note, if the tail page is also the on the
2174                          * reader_page, we let it move out.
2175                          */
2176                         if (unlikely((cpu_buffer->commit_page !=
2177                                       cpu_buffer->tail_page) &&
2178                                      (cpu_buffer->commit_page ==
2179                                       cpu_buffer->reader_page))) {
2180                                 local_inc(&cpu_buffer->commit_overrun);
2181                                 goto out_reset;
2182                         }
2183                 }
2184         }
2185
2186         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2187         if (ret) {
2188                 /*
2189                  * Nested commits always have zero deltas, so
2190                  * just reread the time stamp
2191                  */
2192                 ts = rb_time_stamp(buffer);
2193                 next_page->page->time_stamp = ts;
2194         }
2195
2196  out_again:
2197
2198         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2199
2200         /* fail and let the caller try again */
2201         return ERR_PTR(-EAGAIN);
2202
2203  out_reset:
2204         /* reset write */
2205         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2206
2207         return NULL;
2208 }
2209
2210 static struct ring_buffer_event *
2211 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2212                   unsigned long length, u64 ts,
2213                   u64 delta, int add_timestamp)
2214 {
2215         struct buffer_page *tail_page;
2216         struct ring_buffer_event *event;
2217         unsigned long tail, write;
2218
2219         /*
2220          * If the time delta since the last event is too big to
2221          * hold in the time field of the event, then we append a
2222          * TIME EXTEND event ahead of the data event.
2223          */
2224         if (unlikely(add_timestamp))
2225                 length += RB_LEN_TIME_EXTEND;
2226
2227         tail_page = cpu_buffer->tail_page;
2228         write = local_add_return(length, &tail_page->write);
2229
2230         /* set write to only the index of the write */
2231         write &= RB_WRITE_MASK;
2232         tail = write - length;
2233
2234         /* See if we shot pass the end of this buffer page */
2235         if (unlikely(write > BUF_PAGE_SIZE))
2236                 return rb_move_tail(cpu_buffer, length, tail,
2237                                     tail_page, ts);
2238
2239         /* We reserved something on the buffer */
2240
2241         event = __rb_page_index(tail_page, tail);
2242         kmemcheck_annotate_bitfield(event, bitfield);
2243         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2244
2245         local_inc(&tail_page->entries);
2246
2247         /*
2248          * If this is the first commit on the page, then update
2249          * its timestamp.
2250          */
2251         if (!tail)
2252                 tail_page->page->time_stamp = ts;
2253
2254         /* account for these added bytes */
2255         local_add(length, &cpu_buffer->entries_bytes);
2256
2257         return event;
2258 }
2259
2260 static inline int
2261 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2262                   struct ring_buffer_event *event)
2263 {
2264         unsigned long new_index, old_index;
2265         struct buffer_page *bpage;
2266         unsigned long index;
2267         unsigned long addr;
2268
2269         new_index = rb_event_index(event);
2270         old_index = new_index + rb_event_ts_length(event);
2271         addr = (unsigned long)event;
2272         addr &= PAGE_MASK;
2273
2274         bpage = cpu_buffer->tail_page;
2275
2276         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2277                 unsigned long write_mask =
2278                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2279                 unsigned long event_length = rb_event_length(event);
2280                 /*
2281                  * This is on the tail page. It is possible that
2282                  * a write could come in and move the tail page
2283                  * and write to the next page. That is fine
2284                  * because we just shorten what is on this page.
2285                  */
2286                 old_index += write_mask;
2287                 new_index += write_mask;
2288                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2289                 if (index == old_index) {
2290                         /* update counters */
2291                         local_sub(event_length, &cpu_buffer->entries_bytes);
2292                         return 1;
2293                 }
2294         }
2295
2296         /* could not discard */
2297         return 0;
2298 }
2299
2300 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2301 {
2302         local_inc(&cpu_buffer->committing);
2303         local_inc(&cpu_buffer->commits);
2304 }
2305
2306 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2307 {
2308         unsigned long commits;
2309
2310         if (RB_WARN_ON(cpu_buffer,
2311                        !local_read(&cpu_buffer->committing)))
2312                 return;
2313
2314  again:
2315         commits = local_read(&cpu_buffer->commits);
2316         /* synchronize with interrupts */
2317         barrier();
2318         if (local_read(&cpu_buffer->committing) == 1)
2319                 rb_set_commit_to_write(cpu_buffer);
2320
2321         local_dec(&cpu_buffer->committing);
2322
2323         /* synchronize with interrupts */
2324         barrier();
2325
2326         /*
2327          * Need to account for interrupts coming in between the
2328          * updating of the commit page and the clearing of the
2329          * committing counter.
2330          */
2331         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2332             !local_read(&cpu_buffer->committing)) {
2333                 local_inc(&cpu_buffer->committing);
2334                 goto again;
2335         }
2336 }
2337
2338 static struct ring_buffer_event *
2339 rb_reserve_next_event(struct ring_buffer *buffer,
2340                       struct ring_buffer_per_cpu *cpu_buffer,
2341                       unsigned long length)
2342 {
2343         struct ring_buffer_event *event;
2344         u64 ts, delta;
2345         int nr_loops = 0;
2346         int add_timestamp;
2347         u64 diff;
2348
2349         rb_start_commit(cpu_buffer);
2350
2351 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2352         /*
2353          * Due to the ability to swap a cpu buffer from a buffer
2354          * it is possible it was swapped before we committed.
2355          * (committing stops a swap). We check for it here and
2356          * if it happened, we have to fail the write.
2357          */
2358         barrier();
2359         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2360                 local_dec(&cpu_buffer->committing);
2361                 local_dec(&cpu_buffer->commits);
2362                 return NULL;
2363         }
2364 #endif
2365
2366         length = rb_calculate_event_length(length);
2367  again:
2368         add_timestamp = 0;
2369         delta = 0;
2370
2371         /*
2372          * We allow for interrupts to reenter here and do a trace.
2373          * If one does, it will cause this original code to loop
2374          * back here. Even with heavy interrupts happening, this
2375          * should only happen a few times in a row. If this happens
2376          * 1000 times in a row, there must be either an interrupt
2377          * storm or we have something buggy.
2378          * Bail!
2379          */
2380         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2381                 goto out_fail;
2382
2383         ts = rb_time_stamp(cpu_buffer->buffer);
2384         diff = ts - cpu_buffer->write_stamp;
2385
2386         /* make sure this diff is calculated here */
2387         barrier();
2388
2389         /* Did the write stamp get updated already? */
2390         if (likely(ts >= cpu_buffer->write_stamp)) {
2391                 delta = diff;
2392                 if (unlikely(test_time_stamp(delta))) {
2393                         int local_clock_stable = 1;
2394 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2395                         local_clock_stable = sched_clock_stable;
2396 #endif
2397                         WARN_ONCE(delta > (1ULL << 59),
2398                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2399                                   (unsigned long long)delta,
2400                                   (unsigned long long)ts,
2401                                   (unsigned long long)cpu_buffer->write_stamp,
2402                                   local_clock_stable ? "" :
2403                                   "If you just came from a suspend/resume,\n"
2404                                   "please switch to the trace global clock:\n"
2405                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2406                         add_timestamp = 1;
2407                 }
2408         }
2409
2410         event = __rb_reserve_next(cpu_buffer, length, ts,
2411                                   delta, add_timestamp);
2412         if (unlikely(PTR_ERR(event) == -EAGAIN))
2413                 goto again;
2414
2415         if (!event)
2416                 goto out_fail;
2417
2418         return event;
2419
2420  out_fail:
2421         rb_end_commit(cpu_buffer);
2422         return NULL;
2423 }
2424
2425 #ifdef CONFIG_TRACING
2426
2427 #define TRACE_RECURSIVE_DEPTH 16
2428
2429 /* Keep this code out of the fast path cache */
2430 static noinline void trace_recursive_fail(void)
2431 {
2432         /* Disable all tracing before we do anything else */
2433         tracing_off_permanent();
2434
2435         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2436                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2437                     trace_recursion_buffer(),
2438                     hardirq_count() >> HARDIRQ_SHIFT,
2439                     softirq_count() >> SOFTIRQ_SHIFT,
2440                     in_nmi());
2441
2442         WARN_ON_ONCE(1);
2443 }
2444
2445 static inline int trace_recursive_lock(void)
2446 {
2447         trace_recursion_inc();
2448
2449         if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2450                 return 0;
2451
2452         trace_recursive_fail();
2453
2454         return -1;
2455 }
2456
2457 static inline void trace_recursive_unlock(void)
2458 {
2459         WARN_ON_ONCE(!trace_recursion_buffer());
2460
2461         trace_recursion_dec();
2462 }
2463
2464 #else
2465
2466 #define trace_recursive_lock()          (0)
2467 #define trace_recursive_unlock()        do { } while (0)
2468
2469 #endif
2470
2471 /**
2472  * ring_buffer_lock_reserve - reserve a part of the buffer
2473  * @buffer: the ring buffer to reserve from
2474  * @length: the length of the data to reserve (excluding event header)
2475  *
2476  * Returns a reseverd event on the ring buffer to copy directly to.
2477  * The user of this interface will need to get the body to write into
2478  * and can use the ring_buffer_event_data() interface.
2479  *
2480  * The length is the length of the data needed, not the event length
2481  * which also includes the event header.
2482  *
2483  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2484  * If NULL is returned, then nothing has been allocated or locked.
2485  */
2486 struct ring_buffer_event *
2487 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2488 {
2489         struct ring_buffer_per_cpu *cpu_buffer;
2490         struct ring_buffer_event *event;
2491         int cpu;
2492
2493         if (ring_buffer_flags != RB_BUFFERS_ON)
2494                 return NULL;
2495
2496         /* If we are tracing schedule, we don't want to recurse */
2497         preempt_disable_notrace();
2498
2499         if (atomic_read(&buffer->record_disabled))
2500                 goto out_nocheck;
2501
2502         if (trace_recursive_lock())
2503                 goto out_nocheck;
2504
2505         cpu = raw_smp_processor_id();
2506
2507         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2508                 goto out;
2509
2510         cpu_buffer = buffer->buffers[cpu];
2511
2512         if (atomic_read(&cpu_buffer->record_disabled))
2513                 goto out;
2514
2515         if (length > BUF_MAX_DATA_SIZE)
2516                 goto out;
2517
2518         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2519         if (!event)
2520                 goto out;
2521
2522         return event;
2523
2524  out:
2525         trace_recursive_unlock();
2526
2527  out_nocheck:
2528         preempt_enable_notrace();
2529         return NULL;
2530 }
2531 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2532
2533 static void
2534 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2535                       struct ring_buffer_event *event)
2536 {
2537         u64 delta;
2538
2539         /*
2540          * The event first in the commit queue updates the
2541          * time stamp.
2542          */
2543         if (rb_event_is_commit(cpu_buffer, event)) {
2544                 /*
2545                  * A commit event that is first on a page
2546                  * updates the write timestamp with the page stamp
2547                  */
2548                 if (!rb_event_index(event))
2549                         cpu_buffer->write_stamp =
2550                                 cpu_buffer->commit_page->page->time_stamp;
2551                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2552                         delta = event->array[0];
2553                         delta <<= TS_SHIFT;
2554                         delta += event->time_delta;
2555                         cpu_buffer->write_stamp += delta;
2556                 } else
2557                         cpu_buffer->write_stamp += event->time_delta;
2558         }
2559 }
2560
2561 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2562                       struct ring_buffer_event *event)
2563 {
2564         local_inc(&cpu_buffer->entries);
2565         rb_update_write_stamp(cpu_buffer, event);
2566         rb_end_commit(cpu_buffer);
2567 }
2568
2569 /**
2570  * ring_buffer_unlock_commit - commit a reserved
2571  * @buffer: The buffer to commit to
2572  * @event: The event pointer to commit.
2573  *
2574  * This commits the data to the ring buffer, and releases any locks held.
2575  *
2576  * Must be paired with ring_buffer_lock_reserve.
2577  */
2578 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2579                               struct ring_buffer_event *event)
2580 {
2581         struct ring_buffer_per_cpu *cpu_buffer;
2582         int cpu = raw_smp_processor_id();
2583
2584         cpu_buffer = buffer->buffers[cpu];
2585
2586         rb_commit(cpu_buffer, event);
2587
2588         trace_recursive_unlock();
2589
2590         preempt_enable_notrace();
2591
2592         return 0;
2593 }
2594 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2595
2596 static inline void rb_event_discard(struct ring_buffer_event *event)
2597 {
2598         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2599                 event = skip_time_extend(event);
2600
2601         /* array[0] holds the actual length for the discarded event */
2602         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2603         event->type_len = RINGBUF_TYPE_PADDING;
2604         /* time delta must be non zero */
2605         if (!event->time_delta)
2606                 event->time_delta = 1;
2607 }
2608
2609 /*
2610  * Decrement the entries to the page that an event is on.
2611  * The event does not even need to exist, only the pointer
2612  * to the page it is on. This may only be called before the commit
2613  * takes place.
2614  */
2615 static inline void
2616 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2617                    struct ring_buffer_event *event)
2618 {
2619         unsigned long addr = (unsigned long)event;
2620         struct buffer_page *bpage = cpu_buffer->commit_page;
2621         struct buffer_page *start;
2622
2623         addr &= PAGE_MASK;
2624
2625         /* Do the likely case first */
2626         if (likely(bpage->page == (void *)addr)) {
2627                 local_dec(&bpage->entries);
2628                 return;
2629         }
2630
2631         /*
2632          * Because the commit page may be on the reader page we
2633          * start with the next page and check the end loop there.
2634          */
2635         rb_inc_page(cpu_buffer, &bpage);
2636         start = bpage;
2637         do {
2638                 if (bpage->page == (void *)addr) {
2639                         local_dec(&bpage->entries);
2640                         return;
2641                 }
2642                 rb_inc_page(cpu_buffer, &bpage);
2643         } while (bpage != start);
2644
2645         /* commit not part of this buffer?? */
2646         RB_WARN_ON(cpu_buffer, 1);
2647 }
2648
2649 /**
2650  * ring_buffer_commit_discard - discard an event that has not been committed
2651  * @buffer: the ring buffer
2652  * @event: non committed event to discard
2653  *
2654  * Sometimes an event that is in the ring buffer needs to be ignored.
2655  * This function lets the user discard an event in the ring buffer
2656  * and then that event will not be read later.
2657  *
2658  * This function only works if it is called before the the item has been
2659  * committed. It will try to free the event from the ring buffer
2660  * if another event has not been added behind it.
2661  *
2662  * If another event has been added behind it, it will set the event
2663  * up as discarded, and perform the commit.
2664  *
2665  * If this function is called, do not call ring_buffer_unlock_commit on
2666  * the event.
2667  */
2668 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2669                                 struct ring_buffer_event *event)
2670 {
2671         struct ring_buffer_per_cpu *cpu_buffer;
2672         int cpu;
2673
2674         /* The event is discarded regardless */
2675         rb_event_discard(event);
2676
2677         cpu = smp_processor_id();
2678         cpu_buffer = buffer->buffers[cpu];
2679
2680         /*
2681          * This must only be called if the event has not been
2682          * committed yet. Thus we can assume that preemption
2683          * is still disabled.
2684          */
2685         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2686
2687         rb_decrement_entry(cpu_buffer, event);
2688         if (rb_try_to_discard(cpu_buffer, event))
2689                 goto out;
2690
2691         /*
2692          * The commit is still visible by the reader, so we
2693          * must still update the timestamp.
2694          */
2695         rb_update_write_stamp(cpu_buffer, event);
2696  out:
2697         rb_end_commit(cpu_buffer);
2698
2699         trace_recursive_unlock();
2700
2701         preempt_enable_notrace();
2702
2703 }
2704 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2705
2706 /**
2707  * ring_buffer_write - write data to the buffer without reserving
2708  * @buffer: The ring buffer to write to.
2709  * @length: The length of the data being written (excluding the event header)
2710  * @data: The data to write to the buffer.
2711  *
2712  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2713  * one function. If you already have the data to write to the buffer, it
2714  * may be easier to simply call this function.
2715  *
2716  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2717  * and not the length of the event which would hold the header.
2718  */
2719 int ring_buffer_write(struct ring_buffer *buffer,
2720                         unsigned long length,
2721                         void *data)
2722 {
2723         struct ring_buffer_per_cpu *cpu_buffer;
2724         struct ring_buffer_event *event;
2725         void *body;
2726         int ret = -EBUSY;
2727         int cpu;
2728
2729         if (ring_buffer_flags != RB_BUFFERS_ON)
2730                 return -EBUSY;
2731
2732         preempt_disable_notrace();
2733
2734         if (atomic_read(&buffer->record_disabled))
2735                 goto out;
2736
2737         cpu = raw_smp_processor_id();
2738
2739         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2740                 goto out;
2741
2742         cpu_buffer = buffer->buffers[cpu];
2743
2744         if (atomic_read(&cpu_buffer->record_disabled))
2745                 goto out;
2746
2747         if (length > BUF_MAX_DATA_SIZE)
2748                 goto out;
2749
2750         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2751         if (!event)
2752                 goto out;
2753
2754         body = rb_event_data(event);
2755
2756         memcpy(body, data, length);
2757
2758         rb_commit(cpu_buffer, event);
2759
2760         ret = 0;
2761  out:
2762         preempt_enable_notrace();
2763
2764         return ret;
2765 }
2766 EXPORT_SYMBOL_GPL(ring_buffer_write);
2767
2768 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2769 {
2770         struct buffer_page *reader = cpu_buffer->reader_page;
2771         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2772         struct buffer_page *commit = cpu_buffer->commit_page;
2773
2774         /* In case of error, head will be NULL */
2775         if (unlikely(!head))
2776                 return 1;
2777
2778         return reader->read == rb_page_commit(reader) &&
2779                 (commit == reader ||
2780                  (commit == head &&
2781                   head->read == rb_page_commit(commit)));
2782 }
2783
2784 /**
2785  * ring_buffer_record_disable - stop all writes into the buffer
2786  * @buffer: The ring buffer to stop writes to.
2787  *
2788  * This prevents all writes to the buffer. Any attempt to write
2789  * to the buffer after this will fail and return NULL.
2790  *
2791  * The caller should call synchronize_sched() after this.
2792  */
2793 void ring_buffer_record_disable(struct ring_buffer *buffer)
2794 {
2795         atomic_inc(&buffer->record_disabled);
2796 }
2797 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2798
2799 /**
2800  * ring_buffer_record_enable - enable writes to the buffer
2801  * @buffer: The ring buffer to enable writes
2802  *
2803  * Note, multiple disables will need the same number of enables
2804  * to truly enable the writing (much like preempt_disable).
2805  */
2806 void ring_buffer_record_enable(struct ring_buffer *buffer)
2807 {
2808         atomic_dec(&buffer->record_disabled);
2809 }
2810 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2811
2812 /**
2813  * ring_buffer_record_off - stop all writes into the buffer
2814  * @buffer: The ring buffer to stop writes to.
2815  *
2816  * This prevents all writes to the buffer. Any attempt to write
2817  * to the buffer after this will fail and return NULL.
2818  *
2819  * This is different than ring_buffer_record_disable() as
2820  * it works like an on/off switch, where as the disable() verison
2821  * must be paired with a enable().
2822  */
2823 void ring_buffer_record_off(struct ring_buffer *buffer)
2824 {
2825         unsigned int rd;
2826         unsigned int new_rd;
2827
2828         do {
2829                 rd = atomic_read(&buffer->record_disabled);
2830                 new_rd = rd | RB_BUFFER_OFF;
2831         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2832 }
2833 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2834
2835 /**
2836  * ring_buffer_record_on - restart writes into the buffer
2837  * @buffer: The ring buffer to start writes to.
2838  *
2839  * This enables all writes to the buffer that was disabled by
2840  * ring_buffer_record_off().
2841  *
2842  * This is different than ring_buffer_record_enable() as
2843  * it works like an on/off switch, where as the enable() verison
2844  * must be paired with a disable().
2845  */
2846 void ring_buffer_record_on(struct ring_buffer *buffer)
2847 {
2848         unsigned int rd;
2849         unsigned int new_rd;
2850
2851         do {
2852                 rd = atomic_read(&buffer->record_disabled);
2853                 new_rd = rd & ~RB_BUFFER_OFF;
2854         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2855 }
2856 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2857
2858 /**
2859  * ring_buffer_record_is_on - return true if the ring buffer can write
2860  * @buffer: The ring buffer to see if write is enabled
2861  *
2862  * Returns true if the ring buffer is in a state that it accepts writes.
2863  */
2864 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2865 {
2866         return !atomic_read(&buffer->record_disabled);
2867 }
2868
2869 /**
2870  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2871  * @buffer: The ring buffer to stop writes to.
2872  * @cpu: The CPU buffer to stop
2873  *
2874  * This prevents all writes to the buffer. Any attempt to write
2875  * to the buffer after this will fail and return NULL.
2876  *
2877  * The caller should call synchronize_sched() after this.
2878  */
2879 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2880 {
2881         struct ring_buffer_per_cpu *cpu_buffer;
2882
2883         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2884                 return;
2885
2886         cpu_buffer = buffer->buffers[cpu];
2887         atomic_inc(&cpu_buffer->record_disabled);
2888 }
2889 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2890
2891 /**
2892  * ring_buffer_record_enable_cpu - enable writes to the buffer
2893  * @buffer: The ring buffer to enable writes
2894  * @cpu: The CPU to enable.
2895  *
2896  * Note, multiple disables will need the same number of enables
2897  * to truly enable the writing (much like preempt_disable).
2898  */
2899 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2900 {
2901         struct ring_buffer_per_cpu *cpu_buffer;
2902
2903         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2904                 return;
2905
2906         cpu_buffer = buffer->buffers[cpu];
2907         atomic_dec(&cpu_buffer->record_disabled);
2908 }
2909 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2910
2911 /*
2912  * The total entries in the ring buffer is the running counter
2913  * of entries entered into the ring buffer, minus the sum of
2914  * the entries read from the ring buffer and the number of
2915  * entries that were overwritten.
2916  */
2917 static inline unsigned long
2918 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2919 {
2920         return local_read(&cpu_buffer->entries) -
2921                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2922 }
2923
2924 /**
2925  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2926  * @buffer: The ring buffer
2927  * @cpu: The per CPU buffer to read from.
2928  */
2929 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2930 {
2931         unsigned long flags;
2932         struct ring_buffer_per_cpu *cpu_buffer;
2933         struct buffer_page *bpage;
2934         unsigned long ret;
2935
2936         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2937                 return 0;
2938
2939         cpu_buffer = buffer->buffers[cpu];
2940         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2941         /*
2942          * if the tail is on reader_page, oldest time stamp is on the reader
2943          * page
2944          */
2945         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2946                 bpage = cpu_buffer->reader_page;
2947         else
2948                 bpage = rb_set_head_page(cpu_buffer);
2949         ret = bpage->page->time_stamp;
2950         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2951
2952         return ret;
2953 }
2954 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2955
2956 /**
2957  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2958  * @buffer: The ring buffer
2959  * @cpu: The per CPU buffer to read from.
2960  */
2961 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2962 {
2963         struct ring_buffer_per_cpu *cpu_buffer;
2964         unsigned long ret;
2965
2966         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2967                 return 0;
2968
2969         cpu_buffer = buffer->buffers[cpu];
2970         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2971
2972         return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2975
2976 /**
2977  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2978  * @buffer: The ring buffer
2979  * @cpu: The per CPU buffer to get the entries from.
2980  */
2981 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2982 {
2983         struct ring_buffer_per_cpu *cpu_buffer;
2984
2985         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2986                 return 0;
2987
2988         cpu_buffer = buffer->buffers[cpu];
2989
2990         return rb_num_of_entries(cpu_buffer);
2991 }
2992 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2993
2994 /**
2995  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2996  * @buffer: The ring buffer
2997  * @cpu: The per CPU buffer to get the number of overruns from
2998  */
2999 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3000 {
3001         struct ring_buffer_per_cpu *cpu_buffer;
3002         unsigned long ret;
3003
3004         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3005                 return 0;
3006
3007         cpu_buffer = buffer->buffers[cpu];
3008         ret = local_read(&cpu_buffer->overrun);
3009
3010         return ret;
3011 }
3012 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3013
3014 /**
3015  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3016  * @buffer: The ring buffer
3017  * @cpu: The per CPU buffer to get the number of overruns from
3018  */
3019 unsigned long
3020 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3021 {
3022         struct ring_buffer_per_cpu *cpu_buffer;
3023         unsigned long ret;
3024
3025         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3026                 return 0;
3027
3028         cpu_buffer = buffer->buffers[cpu];
3029         ret = local_read(&cpu_buffer->commit_overrun);
3030
3031         return ret;
3032 }
3033 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3034
3035 /**
3036  * ring_buffer_entries - get the number of entries in a buffer
3037  * @buffer: The ring buffer
3038  *
3039  * Returns the total number of entries in the ring buffer
3040  * (all CPU entries)
3041  */
3042 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3043 {
3044         struct ring_buffer_per_cpu *cpu_buffer;
3045         unsigned long entries = 0;
3046         int cpu;
3047
3048         /* if you care about this being correct, lock the buffer */
3049         for_each_buffer_cpu(buffer, cpu) {
3050                 cpu_buffer = buffer->buffers[cpu];
3051                 entries += rb_num_of_entries(cpu_buffer);
3052         }
3053
3054         return entries;
3055 }
3056 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3057
3058 /**
3059  * ring_buffer_overruns - get the number of overruns in buffer
3060  * @buffer: The ring buffer
3061  *
3062  * Returns the total number of overruns in the ring buffer
3063  * (all CPU entries)
3064  */
3065 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3066 {
3067         struct ring_buffer_per_cpu *cpu_buffer;
3068         unsigned long overruns = 0;
3069         int cpu;
3070
3071         /* if you care about this being correct, lock the buffer */
3072         for_each_buffer_cpu(buffer, cpu) {
3073                 cpu_buffer = buffer->buffers[cpu];
3074                 overruns += local_read(&cpu_buffer->overrun);
3075         }
3076
3077         return overruns;
3078 }
3079 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3080
3081 static void rb_iter_reset(struct ring_buffer_iter *iter)
3082 {
3083         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3084
3085         /* Iterator usage is expected to have record disabled */
3086         if (list_empty(&cpu_buffer->reader_page->list)) {
3087                 iter->head_page = rb_set_head_page(cpu_buffer);
3088                 if (unlikely(!iter->head_page))
3089                         return;
3090                 iter->head = iter->head_page->read;
3091         } else {
3092                 iter->head_page = cpu_buffer->reader_page;
3093                 iter->head = cpu_buffer->reader_page->read;
3094         }
3095         if (iter->head)
3096                 iter->read_stamp = cpu_buffer->read_stamp;
3097         else
3098                 iter->read_stamp = iter->head_page->page->time_stamp;
3099         iter->cache_reader_page = cpu_buffer->reader_page;
3100         iter->cache_read = cpu_buffer->read;
3101 }
3102
3103 /**
3104  * ring_buffer_iter_reset - reset an iterator
3105  * @iter: The iterator to reset
3106  *
3107  * Resets the iterator, so that it will start from the beginning
3108  * again.
3109  */
3110 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3111 {
3112         struct ring_buffer_per_cpu *cpu_buffer;
3113         unsigned long flags;
3114
3115         if (!iter)
3116                 return;
3117
3118         cpu_buffer = iter->cpu_buffer;
3119
3120         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3121         rb_iter_reset(iter);
3122         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3125
3126 /**
3127  * ring_buffer_iter_empty - check if an iterator has no more to read
3128  * @iter: The iterator to check
3129  */
3130 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3131 {
3132         struct ring_buffer_per_cpu *cpu_buffer;
3133
3134         cpu_buffer = iter->cpu_buffer;
3135
3136         return iter->head_page == cpu_buffer->commit_page &&
3137                 iter->head == rb_commit_index(cpu_buffer);
3138 }
3139 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3140
3141 static void
3142 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3143                      struct ring_buffer_event *event)
3144 {
3145         u64 delta;
3146
3147         switch (event->type_len) {
3148         case RINGBUF_TYPE_PADDING:
3149                 return;
3150
3151         case RINGBUF_TYPE_TIME_EXTEND:
3152                 delta = event->array[0];
3153                 delta <<= TS_SHIFT;
3154                 delta += event->time_delta;
3155                 cpu_buffer->read_stamp += delta;
3156                 return;
3157
3158         case RINGBUF_TYPE_TIME_STAMP:
3159                 /* FIXME: not implemented */
3160                 return;
3161
3162         case RINGBUF_TYPE_DATA:
3163                 cpu_buffer->read_stamp += event->time_delta;
3164                 return;
3165
3166         default:
3167                 BUG();
3168         }
3169         return;
3170 }
3171
3172 static void
3173 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3174                           struct ring_buffer_event *event)
3175 {
3176         u64 delta;
3177
3178         switch (event->type_len) {
3179         case RINGBUF_TYPE_PADDING:
3180                 return;
3181
3182         case RINGBUF_TYPE_TIME_EXTEND:
3183                 delta = event->array[0];
3184                 delta <<= TS_SHIFT;
3185                 delta += event->time_delta;
3186                 iter->read_stamp += delta;
3187                 return;
3188
3189         case RINGBUF_TYPE_TIME_STAMP:
3190                 /* FIXME: not implemented */
3191                 return;
3192
3193         case RINGBUF_TYPE_DATA:
3194                 iter->read_stamp += event->time_delta;
3195                 return;
3196
3197         default:
3198                 BUG();
3199         }
3200         return;
3201 }
3202
3203 static struct buffer_page *
3204 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3205 {
3206         struct buffer_page *reader = NULL;
3207         unsigned long overwrite;
3208         unsigned long flags;
3209         int nr_loops = 0;
3210         int ret;
3211
3212         local_irq_save(flags);
3213         arch_spin_lock(&cpu_buffer->lock);
3214
3215  again:
3216         /*
3217          * This should normally only loop twice. But because the
3218          * start of the reader inserts an empty page, it causes
3219          * a case where we will loop three times. There should be no
3220          * reason to loop four times (that I know of).
3221          */
3222         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3223                 reader = NULL;
3224                 goto out;
3225         }
3226
3227         reader = cpu_buffer->reader_page;
3228
3229         /* If there's more to read, return this page */
3230         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3231                 goto out;
3232
3233         /* Never should we have an index greater than the size */
3234         if (RB_WARN_ON(cpu_buffer,
3235                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3236                 goto out;
3237
3238         /* check if we caught up to the tail */
3239         reader = NULL;
3240         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3241                 goto out;
3242
3243         /*
3244          * Reset the reader page to size zero.
3245          */
3246         local_set(&cpu_buffer->reader_page->write, 0);
3247         local_set(&cpu_buffer->reader_page->entries, 0);
3248         local_set(&cpu_buffer->reader_page->page->commit, 0);
3249         cpu_buffer->reader_page->real_end = 0;
3250
3251  spin:
3252         /*
3253          * Splice the empty reader page into the list around the head.
3254          */
3255         reader = rb_set_head_page(cpu_buffer);
3256         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3257         cpu_buffer->reader_page->list.prev = reader->list.prev;
3258
3259         /*
3260          * cpu_buffer->pages just needs to point to the buffer, it
3261          *  has no specific buffer page to point to. Lets move it out
3262          *  of our way so we don't accidentally swap it.
3263          */
3264         cpu_buffer->pages = reader->list.prev;
3265
3266         /* The reader page will be pointing to the new head */
3267         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3268
3269         /*
3270          * We want to make sure we read the overruns after we set up our
3271          * pointers to the next object. The writer side does a
3272          * cmpxchg to cross pages which acts as the mb on the writer
3273          * side. Note, the reader will constantly fail the swap
3274          * while the writer is updating the pointers, so this
3275          * guarantees that the overwrite recorded here is the one we
3276          * want to compare with the last_overrun.
3277          */
3278         smp_mb();
3279         overwrite = local_read(&(cpu_buffer->overrun));
3280
3281         /*
3282          * Here's the tricky part.
3283          *
3284          * We need to move the pointer past the header page.
3285          * But we can only do that if a writer is not currently
3286          * moving it. The page before the header page has the
3287          * flag bit '1' set if it is pointing to the page we want.
3288          * but if the writer is in the process of moving it
3289          * than it will be '2' or already moved '0'.
3290          */
3291
3292         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3293
3294         /*
3295          * If we did not convert it, then we must try again.
3296          */
3297         if (!ret)
3298                 goto spin;
3299
3300         /*
3301          * Yeah! We succeeded in replacing the page.
3302          *
3303          * Now make the new head point back to the reader page.
3304          */
3305         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3306         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3307
3308         /* Finally update the reader page to the new head */
3309         cpu_buffer->reader_page = reader;
3310         rb_reset_reader_page(cpu_buffer);
3311
3312         if (overwrite != cpu_buffer->last_overrun) {
3313                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3314                 cpu_buffer->last_overrun = overwrite;
3315         }
3316
3317         goto again;
3318
3319  out:
3320         arch_spin_unlock(&cpu_buffer->lock);
3321         local_irq_restore(flags);
3322
3323         return reader;
3324 }
3325
3326 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3327 {
3328         struct ring_buffer_event *event;
3329         struct buffer_page *reader;
3330         unsigned length;
3331
3332         reader = rb_get_reader_page(cpu_buffer);
3333
3334         /* This function should not be called when buffer is empty */
3335         if (RB_WARN_ON(cpu_buffer, !reader))
3336                 return;
3337
3338         event = rb_reader_event(cpu_buffer);
3339
3340         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3341                 cpu_buffer->read++;
3342
3343         rb_update_read_stamp(cpu_buffer, event);
3344
3345         length = rb_event_length(event);
3346         cpu_buffer->reader_page->read += length;
3347 }
3348
3349 static void rb_advance_iter(struct ring_buffer_iter *iter)
3350 {
3351         struct ring_buffer_per_cpu *cpu_buffer;
3352         struct ring_buffer_event *event;
3353         unsigned length;
3354
3355         cpu_buffer = iter->cpu_buffer;
3356
3357         /*
3358          * Check if we are at the end of the buffer.
3359          */
3360         if (iter->head >= rb_page_size(iter->head_page)) {
3361                 /* discarded commits can make the page empty */
3362                 if (iter->head_page == cpu_buffer->commit_page)
3363                         return;
3364                 rb_inc_iter(iter);
3365                 return;
3366         }
3367
3368         event = rb_iter_head_event(iter);
3369
3370         length = rb_event_length(event);
3371
3372         /*
3373          * This should not be called to advance the header if we are
3374          * at the tail of the buffer.
3375          */
3376         if (RB_WARN_ON(cpu_buffer,
3377                        (iter->head_page == cpu_buffer->commit_page) &&
3378                        (iter->head + length > rb_commit_index(cpu_buffer))))
3379                 return;
3380
3381         rb_update_iter_read_stamp(iter, event);
3382
3383         iter->head += length;
3384
3385         /* check for end of page padding */
3386         if ((iter->head >= rb_page_size(iter->head_page)) &&
3387             (iter->head_page != cpu_buffer->commit_page))
3388                 rb_advance_iter(iter);
3389 }
3390
3391 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3392 {
3393         return cpu_buffer->lost_events;
3394 }
3395
3396 static struct ring_buffer_event *
3397 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3398                unsigned long *lost_events)
3399 {
3400         struct ring_buffer_event *event;
3401         struct buffer_page *reader;
3402         int nr_loops = 0;
3403
3404  again:
3405         /*
3406          * We repeat when a time extend is encountered.
3407          * Since the time extend is always attached to a data event,
3408          * we should never loop more than once.
3409          * (We never hit the following condition more than twice).
3410          */
3411         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3412                 return NULL;
3413
3414         reader = rb_get_reader_page(cpu_buffer);
3415         if (!reader)
3416                 return NULL;
3417
3418         event = rb_reader_event(cpu_buffer);
3419
3420         switch (event->type_len) {
3421         case RINGBUF_TYPE_PADDING:
3422                 if (rb_null_event(event))
3423                         RB_WARN_ON(cpu_buffer, 1);
3424                 /*
3425                  * Because the writer could be discarding every
3426                  * event it creates (which would probably be bad)
3427                  * if we were to go back to "again" then we may never
3428                  * catch up, and will trigger the warn on, or lock
3429                  * the box. Return the padding, and we will release
3430                  * the current locks, and try again.
3431                  */
3432                 return event;
3433
3434         case RINGBUF_TYPE_TIME_EXTEND:
3435                 /* Internal data, OK to advance */
3436                 rb_advance_reader(cpu_buffer);
3437                 goto again;
3438
3439         case RINGBUF_TYPE_TIME_STAMP:
3440                 /* FIXME: not implemented */
3441                 rb_advance_reader(cpu_buffer);
3442                 goto again;
3443
3444         case RINGBUF_TYPE_DATA:
3445                 if (ts) {
3446                         *ts = cpu_buffer->read_stamp + event->time_delta;
3447                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3448                                                          cpu_buffer->cpu, ts);
3449                 }
3450                 if (lost_events)
3451                         *lost_events = rb_lost_events(cpu_buffer);
3452                 return event;
3453
3454         default:
3455                 BUG();
3456         }
3457
3458         return NULL;
3459 }
3460 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3461
3462 static struct ring_buffer_event *
3463 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3464 {
3465         struct ring_buffer *buffer;
3466         struct ring_buffer_per_cpu *cpu_buffer;
3467         struct ring_buffer_event *event;
3468         int nr_loops = 0;
3469
3470         cpu_buffer = iter->cpu_buffer;
3471         buffer = cpu_buffer->buffer;
3472
3473         /*
3474          * Check if someone performed a consuming read to
3475          * the buffer. A consuming read invalidates the iterator
3476          * and we need to reset the iterator in this case.
3477          */
3478         if (unlikely(iter->cache_read != cpu_buffer->read ||
3479                      iter->cache_reader_page != cpu_buffer->reader_page))
3480                 rb_iter_reset(iter);
3481
3482  again:
3483         if (ring_buffer_iter_empty(iter))
3484                 return NULL;
3485
3486         /*
3487          * We repeat when a time extend is encountered.
3488          * Since the time extend is always attached to a data event,
3489          * we should never loop more than once.
3490          * (We never hit the following condition more than twice).
3491          */
3492         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3493                 return NULL;
3494
3495         if (rb_per_cpu_empty(cpu_buffer))
3496                 return NULL;
3497
3498         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3499                 rb_inc_iter(iter);
3500                 goto again;
3501         }
3502
3503         event = rb_iter_head_event(iter);
3504
3505         switch (event->type_len) {
3506         case RINGBUF_TYPE_PADDING:
3507                 if (rb_null_event(event)) {
3508                         rb_inc_iter(iter);
3509                         goto again;
3510                 }
3511                 rb_advance_iter(iter);
3512                 return event;
3513
3514         case RINGBUF_TYPE_TIME_EXTEND:
3515                 /* Internal data, OK to advance */
3516                 rb_advance_iter(iter);
3517                 goto again;
3518
3519         case RINGBUF_TYPE_TIME_STAMP:
3520                 /* FIXME: not implemented */
3521                 rb_advance_iter(iter);
3522                 goto again;
3523
3524         case RINGBUF_TYPE_DATA:
3525                 if (ts) {
3526                         *ts = iter->read_stamp + event->time_delta;
3527                         ring_buffer_normalize_time_stamp(buffer,
3528                                                          cpu_buffer->cpu, ts);
3529                 }
3530                 return event;
3531
3532         default:
3533                 BUG();
3534         }
3535
3536         return NULL;
3537 }
3538 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3539
3540 static inline int rb_ok_to_lock(void)
3541 {
3542         /*
3543          * If an NMI die dumps out the content of the ring buffer
3544          * do not grab locks. We also permanently disable the ring
3545          * buffer too. A one time deal is all you get from reading
3546          * the ring buffer from an NMI.
3547          */
3548         if (likely(!in_nmi()))
3549                 return 1;
3550
3551         tracing_off_permanent();
3552         return 0;
3553 }
3554
3555 /**
3556  * ring_buffer_peek - peek at the next event to be read
3557  * @buffer: The ring buffer to read
3558  * @cpu: The cpu to peak at
3559  * @ts: The timestamp counter of this event.
3560  * @lost_events: a variable to store if events were lost (may be NULL)
3561  *
3562  * This will return the event that will be read next, but does
3563  * not consume the data.
3564  */
3565 struct ring_buffer_event *
3566 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3567                  unsigned long *lost_events)
3568 {
3569         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3570         struct ring_buffer_event *event;
3571         unsigned long flags;
3572         int dolock;
3573
3574         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3575                 return NULL;
3576
3577         dolock = rb_ok_to_lock();
3578  again:
3579         local_irq_save(flags);
3580         if (dolock)
3581                 raw_spin_lock(&cpu_buffer->reader_lock);
3582         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3583         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3584                 rb_advance_reader(cpu_buffer);
3585         if (dolock)
3586                 raw_spin_unlock(&cpu_buffer->reader_lock);
3587         local_irq_restore(flags);
3588
3589         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3590                 goto again;
3591
3592         return event;
3593 }
3594
3595 /**
3596  * ring_buffer_iter_peek - peek at the next event to be read
3597  * @iter: The ring buffer iterator
3598  * @ts: The timestamp counter of this event.
3599  *
3600  * This will return the event that will be read next, but does
3601  * not increment the iterator.
3602  */
3603 struct ring_buffer_event *
3604 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3605 {
3606         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3607         struct ring_buffer_event *event;
3608         unsigned long flags;
3609
3610  again:
3611         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3612         event = rb_iter_peek(iter, ts);
3613         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3614
3615         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3616                 goto again;
3617
3618         return event;
3619 }
3620
3621 /**
3622  * ring_buffer_consume - return an event and consume it
3623  * @buffer: The ring buffer to get the next event from
3624  * @cpu: the cpu to read the buffer from
3625  * @ts: a variable to store the timestamp (may be NULL)
3626  * @lost_events: a variable to store if events were lost (may be NULL)
3627  *
3628  * Returns the next event in the ring buffer, and that event is consumed.
3629  * Meaning, that sequential reads will keep returning a different event,
3630  * and eventually empty the ring buffer if the producer is slower.
3631  */
3632 struct ring_buffer_event *
3633 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3634                     unsigned long *lost_events)
3635 {
3636         struct ring_buffer_per_cpu *cpu_buffer;
3637         struct ring_buffer_event *event = NULL;
3638         unsigned long flags;
3639         int dolock;
3640
3641         dolock = rb_ok_to_lock();
3642
3643  again:
3644         /* might be called in atomic */
3645         preempt_disable();
3646
3647         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3648                 goto out;
3649
3650         cpu_buffer = buffer->buffers[cpu];
3651         local_irq_save(flags);
3652         if (dolock)
3653                 raw_spin_lock(&cpu_buffer->reader_lock);
3654
3655         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3656         if (event) {
3657                 cpu_buffer->lost_events = 0;
3658                 rb_advance_reader(cpu_buffer);
3659         }
3660
3661         if (dolock)
3662                 raw_spin_unlock(&cpu_buffer->reader_lock);
3663         local_irq_restore(flags);
3664
3665  out:
3666         preempt_enable();
3667
3668         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3669                 goto again;
3670
3671         return event;
3672 }
3673 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3674
3675 /**
3676  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3677  * @buffer: The ring buffer to read from
3678  * @cpu: The cpu buffer to iterate over
3679  *
3680  * This performs the initial preparations necessary to iterate
3681  * through the buffer.  Memory is allocated, buffer recording
3682  * is disabled, and the iterator pointer is returned to the caller.
3683  *
3684  * Disabling buffer recordng prevents the reading from being
3685  * corrupted. This is not a consuming read, so a producer is not
3686  * expected.
3687  *
3688  * After a sequence of ring_buffer_read_prepare calls, the user is
3689  * expected to make at least one call to ring_buffer_prepare_sync.
3690  * Afterwards, ring_buffer_read_start is invoked to get things going
3691  * for real.
3692  *
3693  * This overall must be paired with ring_buffer_finish.
3694  */
3695 struct ring_buffer_iter *
3696 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3697 {
3698         struct ring_buffer_per_cpu *cpu_buffer;
3699         struct ring_buffer_iter *iter;
3700
3701         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3702                 return NULL;
3703
3704         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3705         if (!iter)
3706                 return NULL;
3707
3708         cpu_buffer = buffer->buffers[cpu];
3709
3710         iter->cpu_buffer = cpu_buffer;
3711
3712         atomic_inc(&buffer->resize_disabled);
3713         atomic_inc(&cpu_buffer->record_disabled);
3714
3715         return iter;
3716 }
3717 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3718
3719 /**
3720  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3721  *
3722  * All previously invoked ring_buffer_read_prepare calls to prepare
3723  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3724  * calls on those iterators are allowed.
3725  */
3726 void
3727 ring_buffer_read_prepare_sync(void)
3728 {
3729         synchronize_sched();
3730 }
3731 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3732
3733 /**
3734  * ring_buffer_read_start - start a non consuming read of the buffer
3735  * @iter: The iterator returned by ring_buffer_read_prepare
3736  *
3737  * This finalizes the startup of an iteration through the buffer.
3738  * The iterator comes from a call to ring_buffer_read_prepare and
3739  * an intervening ring_buffer_read_prepare_sync must have been
3740  * performed.
3741  *
3742  * Must be paired with ring_buffer_finish.
3743  */
3744 void
3745 ring_buffer_read_start(struct ring_buffer_iter *iter)
3746 {
3747         struct ring_buffer_per_cpu *cpu_buffer;
3748         unsigned long flags;
3749
3750         if (!iter)
3751                 return;
3752
3753         cpu_buffer = iter->cpu_buffer;
3754
3755         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3756         arch_spin_lock(&cpu_buffer->lock);
3757         rb_iter_reset(iter);
3758         arch_spin_unlock(&cpu_buffer->lock);
3759         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3760 }
3761 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3762
3763 /**
3764  * ring_buffer_finish - finish reading the iterator of the buffer
3765  * @iter: The iterator retrieved by ring_buffer_start
3766  *
3767  * This re-enables the recording to the buffer, and frees the
3768  * iterator.
3769  */
3770 void
3771 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3772 {
3773         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3774
3775         /*
3776          * Ring buffer is disabled from recording, here's a good place
3777          * to check the integrity of the ring buffer. 
3778          */
3779         rb_check_pages(cpu_buffer);
3780
3781         atomic_dec(&cpu_buffer->record_disabled);
3782         atomic_dec(&cpu_buffer->buffer->resize_disabled);
3783         kfree(iter);
3784 }
3785 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3786
3787 /**
3788  * ring_buffer_read - read the next item in the ring buffer by the iterator
3789  * @iter: The ring buffer iterator
3790  * @ts: The time stamp of the event read.
3791  *
3792  * This reads the next event in the ring buffer and increments the iterator.
3793  */
3794 struct ring_buffer_event *
3795 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3796 {
3797         struct ring_buffer_event *event;
3798         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3799         unsigned long flags;
3800
3801         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3802  again:
3803         event = rb_iter_peek(iter, ts);
3804         if (!event)
3805                 goto out;
3806
3807         if (event->type_len == RINGBUF_TYPE_PADDING)
3808                 goto again;
3809
3810         rb_advance_iter(iter);
3811  out:
3812         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3813
3814         return event;
3815 }
3816 EXPORT_SYMBOL_GPL(ring_buffer_read);
3817
3818 /**
3819  * ring_buffer_size - return the size of the ring buffer (in bytes)
3820  * @buffer: The ring buffer.
3821  */
3822 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3823 {
3824         /*
3825          * Earlier, this method returned
3826          *      BUF_PAGE_SIZE * buffer->nr_pages
3827          * Since the nr_pages field is now removed, we have converted this to
3828          * return the per cpu buffer value.
3829          */
3830         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3831                 return 0;
3832
3833         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3834 }
3835 EXPORT_SYMBOL_GPL(ring_buffer_size);
3836
3837 static void
3838 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3839 {
3840         rb_head_page_deactivate(cpu_buffer);
3841
3842         cpu_buffer->head_page
3843                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3844         local_set(&cpu_buffer->head_page->write, 0);
3845         local_set(&cpu_buffer->head_page->entries, 0);
3846         local_set(&cpu_buffer->head_page->page->commit, 0);
3847
3848         cpu_buffer->head_page->read = 0;
3849
3850         cpu_buffer->tail_page = cpu_buffer->head_page;
3851         cpu_buffer->commit_page = cpu_buffer->head_page;
3852
3853         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3854         INIT_LIST_HEAD(&cpu_buffer->new_pages);
3855         local_set(&cpu_buffer->reader_page->write, 0);
3856         local_set(&cpu_buffer->reader_page->entries, 0);
3857         local_set(&cpu_buffer->reader_page->page->commit, 0);
3858         cpu_buffer->reader_page->read = 0;
3859
3860         local_set(&cpu_buffer->commit_overrun, 0);
3861         local_set(&cpu_buffer->entries_bytes, 0);
3862         local_set(&cpu_buffer->overrun, 0);
3863         local_set(&cpu_buffer->entries, 0);
3864         local_set(&cpu_buffer->committing, 0);
3865         local_set(&cpu_buffer->commits, 0);
3866         cpu_buffer->read = 0;
3867         cpu_buffer->read_bytes = 0;
3868
3869         cpu_buffer->write_stamp = 0;
3870         cpu_buffer->read_stamp = 0;
3871
3872         cpu_buffer->lost_events = 0;
3873         cpu_buffer->last_overrun = 0;
3874
3875         rb_head_page_activate(cpu_buffer);
3876 }
3877
3878 /**
3879  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3880  * @buffer: The ring buffer to reset a per cpu buffer of
3881  * @cpu: The CPU buffer to be reset
3882  */
3883 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3884 {
3885         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3886         unsigned long flags;
3887
3888         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3889                 return;
3890
3891         atomic_inc(&buffer->resize_disabled);
3892         atomic_inc(&cpu_buffer->record_disabled);
3893
3894         /* Make sure all commits have finished */
3895         synchronize_sched();
3896
3897         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3898
3899         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3900                 goto out;
3901
3902         arch_spin_lock(&cpu_buffer->lock);
3903
3904         rb_reset_cpu(cpu_buffer);
3905
3906         arch_spin_unlock(&cpu_buffer->lock);
3907
3908  out:
3909         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3910
3911         atomic_dec(&cpu_buffer->record_disabled);
3912         atomic_dec(&buffer->resize_disabled);
3913 }
3914 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3915
3916 /**
3917  * ring_buffer_reset - reset a ring buffer
3918  * @buffer: The ring buffer to reset all cpu buffers
3919  */
3920 void ring_buffer_reset(struct ring_buffer *buffer)
3921 {
3922         int cpu;
3923
3924         for_each_buffer_cpu(buffer, cpu)
3925                 ring_buffer_reset_cpu(buffer, cpu);
3926 }
3927 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3928
3929 /**
3930  * rind_buffer_empty - is the ring buffer empty?
3931  * @buffer: The ring buffer to test
3932  */
3933 int ring_buffer_empty(struct ring_buffer *buffer)
3934 {
3935         struct ring_buffer_per_cpu *cpu_buffer;
3936         unsigned long flags;
3937         int dolock;
3938         int cpu;
3939         int ret;
3940
3941         dolock = rb_ok_to_lock();
3942
3943         /* yes this is racy, but if you don't like the race, lock the buffer */
3944         for_each_buffer_cpu(buffer, cpu) {
3945                 cpu_buffer = buffer->buffers[cpu];
3946                 local_irq_save(flags);
3947                 if (dolock)
3948                         raw_spin_lock(&cpu_buffer->reader_lock);
3949                 ret = rb_per_cpu_empty(cpu_buffer);
3950                 if (dolock)
3951                         raw_spin_unlock(&cpu_buffer->reader_lock);
3952                 local_irq_restore(flags);
3953
3954                 if (!ret)
3955                         return 0;
3956         }
3957
3958         return 1;
3959 }
3960 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3961
3962 /**
3963  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3964  * @buffer: The ring buffer
3965  * @cpu: The CPU buffer to test
3966  */
3967 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3968 {
3969         struct ring_buffer_per_cpu *cpu_buffer;
3970         unsigned long flags;
3971         int dolock;
3972         int ret;
3973
3974         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975                 return 1;
3976
3977         dolock = rb_ok_to_lock();
3978
3979         cpu_buffer = buffer->buffers[cpu];
3980         local_irq_save(flags);
3981         if (dolock)
3982                 raw_spin_lock(&cpu_buffer->reader_lock);
3983         ret = rb_per_cpu_empty(cpu_buffer);
3984         if (dolock)
3985                 raw_spin_unlock(&cpu_buffer->reader_lock);
3986         local_irq_restore(flags);
3987
3988         return ret;
3989 }
3990 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3991
3992 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3993 /**
3994  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3995  * @buffer_a: One buffer to swap with
3996  * @buffer_b: The other buffer to swap with
3997  *
3998  * This function is useful for tracers that want to take a "snapshot"
3999  * of a CPU buffer and has another back up buffer lying around.
4000  * it is expected that the tracer handles the cpu buffer not being
4001  * used at the moment.
4002  */
4003 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4004                          struct ring_buffer *buffer_b, int cpu)
4005 {
4006         struct ring_buffer_per_cpu *cpu_buffer_a;
4007         struct ring_buffer_per_cpu *cpu_buffer_b;
4008         int ret = -EINVAL;
4009
4010         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4011             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4012                 goto out;
4013
4014         cpu_buffer_a = buffer_a->buffers[cpu];
4015         cpu_buffer_b = buffer_b->buffers[cpu];
4016
4017         /* At least make sure the two buffers are somewhat the same */
4018         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4019                 goto out;
4020
4021         ret = -EAGAIN;
4022
4023         if (ring_buffer_flags != RB_BUFFERS_ON)
4024                 goto out;
4025
4026         if (atomic_read(&buffer_a->record_disabled))
4027                 goto out;
4028
4029         if (atomic_read(&buffer_b->record_disabled))
4030                 goto out;
4031
4032         if (atomic_read(&cpu_buffer_a->record_disabled))
4033                 goto out;
4034
4035         if (atomic_read(&cpu_buffer_b->record_disabled))
4036                 goto out;
4037
4038         /*
4039          * We can't do a synchronize_sched here because this
4040          * function can be called in atomic context.
4041          * Normally this will be called from the same CPU as cpu.
4042          * If not it's up to the caller to protect this.
4043          */
4044         atomic_inc(&cpu_buffer_a->record_disabled);
4045         atomic_inc(&cpu_buffer_b->record_disabled);
4046
4047         ret = -EBUSY;
4048         if (local_read(&cpu_buffer_a->committing))
4049                 goto out_dec;
4050         if (local_read(&cpu_buffer_b->committing))
4051                 goto out_dec;
4052
4053         buffer_a->buffers[cpu] = cpu_buffer_b;
4054         buffer_b->buffers[cpu] = cpu_buffer_a;
4055
4056         cpu_buffer_b->buffer = buffer_a;
4057         cpu_buffer_a->buffer = buffer_b;
4058
4059         ret = 0;
4060
4061 out_dec:
4062         atomic_dec(&cpu_buffer_a->record_disabled);
4063         atomic_dec(&cpu_buffer_b->record_disabled);
4064 out:
4065         return ret;
4066 }
4067 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4068 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4069
4070 /**
4071  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4072  * @buffer: the buffer to allocate for.
4073  *
4074  * This function is used in conjunction with ring_buffer_read_page.
4075  * When reading a full page from the ring buffer, these functions
4076  * can be used to speed up the process. The calling function should
4077  * allocate a few pages first with this function. Then when it
4078  * needs to get pages from the ring buffer, it passes the result
4079  * of this function into ring_buffer_read_page, which will swap
4080  * the page that was allocated, with the read page of the buffer.
4081  *
4082  * Returns:
4083  *  The page allocated, or NULL on error.
4084  */
4085 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4086 {
4087         struct buffer_data_page *bpage;
4088         struct page *page;
4089
4090         page = alloc_pages_node(cpu_to_node(cpu),
4091                                 GFP_KERNEL | __GFP_NORETRY, 0);
4092         if (!page)
4093                 return NULL;
4094
4095         bpage = page_address(page);
4096
4097         rb_init_page(bpage);
4098
4099         return bpage;
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4102
4103 /**
4104  * ring_buffer_free_read_page - free an allocated read page
4105  * @buffer: the buffer the page was allocate for
4106  * @data: the page to free
4107  *
4108  * Free a page allocated from ring_buffer_alloc_read_page.
4109  */
4110 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4111 {
4112         free_page((unsigned long)data);
4113 }
4114 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4115
4116 /**
4117  * ring_buffer_read_page - extract a page from the ring buffer
4118  * @buffer: buffer to extract from
4119  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4120  * @len: amount to extract
4121  * @cpu: the cpu of the buffer to extract
4122  * @full: should the extraction only happen when the page is full.
4123  *
4124  * This function will pull out a page from the ring buffer and consume it.
4125  * @data_page must be the address of the variable that was returned
4126  * from ring_buffer_alloc_read_page. This is because the page might be used
4127  * to swap with a page in the ring buffer.
4128  *
4129  * for example:
4130  *      rpage = ring_buffer_alloc_read_page(buffer);
4131  *      if (!rpage)
4132  *              return error;
4133  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4134  *      if (ret >= 0)
4135  *              process_page(rpage, ret);
4136  *
4137  * When @full is set, the function will not return true unless
4138  * the writer is off the reader page.
4139  *
4140  * Note: it is up to the calling functions to handle sleeps and wakeups.
4141  *  The ring buffer can be used anywhere in the kernel and can not
4142  *  blindly call wake_up. The layer that uses the ring buffer must be
4143  *  responsible for that.
4144  *
4145  * Returns:
4146  *  >=0 if data has been transferred, returns the offset of consumed data.
4147  *  <0 if no data has been transferred.
4148  */
4149 int ring_buffer_read_page(struct ring_buffer *buffer,
4150                           void **data_page, size_t len, int cpu, int full)
4151 {
4152         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4153         struct ring_buffer_event *event;
4154         struct buffer_data_page *bpage;
4155         struct buffer_page *reader;
4156         unsigned long missed_events;
4157         unsigned long flags;
4158         unsigned int commit;
4159         unsigned int read;
4160         u64 save_timestamp;
4161         int ret = -1;
4162
4163         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164                 goto out;
4165
4166         /*
4167          * If len is not big enough to hold the page header, then
4168          * we can not copy anything.
4169          */
4170         if (len <= BUF_PAGE_HDR_SIZE)
4171                 goto out;
4172
4173         len -= BUF_PAGE_HDR_SIZE;
4174
4175         if (!data_page)
4176                 goto out;
4177
4178         bpage = *data_page;
4179         if (!bpage)
4180                 goto out;
4181
4182         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4183
4184         reader = rb_get_reader_page(cpu_buffer);
4185         if (!reader)
4186                 goto out_unlock;
4187
4188         event = rb_reader_event(cpu_buffer);
4189
4190         read = reader->read;
4191         commit = rb_page_commit(reader);
4192
4193         /* Check if any events were dropped */
4194         missed_events = cpu_buffer->lost_events;
4195
4196         /*
4197          * If this page has been partially read or
4198          * if len is not big enough to read the rest of the page or
4199          * a writer is still on the page, then
4200          * we must copy the data from the page to the buffer.
4201          * Otherwise, we can simply swap the page with the one passed in.
4202          */
4203         if (read || (len < (commit - read)) ||
4204             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4205                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4206                 unsigned int rpos = read;
4207                 unsigned int pos = 0;
4208                 unsigned int size;
4209
4210                 if (full)
4211                         goto out_unlock;
4212
4213                 if (len > (commit - read))
4214                         len = (commit - read);
4215
4216                 /* Always keep the time extend and data together */
4217                 size = rb_event_ts_length(event);
4218
4219                 if (len < size)
4220                         goto out_unlock;
4221
4222                 /* save the current timestamp, since the user will need it */
4223                 save_timestamp = cpu_buffer->read_stamp;
4224
4225                 /* Need to copy one event at a time */
4226                 do {
4227                         /* We need the size of one event, because
4228                          * rb_advance_reader only advances by one event,
4229                          * whereas rb_event_ts_length may include the size of
4230                          * one or two events.
4231                          * We have already ensured there's enough space if this
4232                          * is a time extend. */
4233                         size = rb_event_length(event);
4234                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4235
4236                         len -= size;
4237
4238                         rb_advance_reader(cpu_buffer);
4239                         rpos = reader->read;
4240                         pos += size;
4241
4242                         if (rpos >= commit)
4243                                 break;
4244
4245                         event = rb_reader_event(cpu_buffer);
4246                         /* Always keep the time extend and data together */
4247                         size = rb_event_ts_length(event);
4248                 } while (len >= size);
4249
4250                 /* update bpage */
4251                 local_set(&bpage->commit, pos);
4252                 bpage->time_stamp = save_timestamp;
4253
4254                 /* we copied everything to the beginning */
4255                 read = 0;
4256         } else {
4257                 /* update the entry counter */
4258                 cpu_buffer->read += rb_page_entries(reader);
4259                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4260
4261                 /* swap the pages */
4262                 rb_init_page(bpage);
4263                 bpage = reader->page;
4264                 reader->page = *data_page;
4265                 local_set(&reader->write, 0);
4266                 local_set(&reader->entries, 0);
4267                 reader->read = 0;
4268                 *data_page = bpage;
4269
4270                 /*
4271                  * Use the real_end for the data size,
4272                  * This gives us a chance to store the lost events
4273                  * on the page.
4274                  */
4275                 if (reader->real_end)
4276                         local_set(&bpage->commit, reader->real_end);
4277         }
4278         ret = read;
4279
4280         cpu_buffer->lost_events = 0;
4281
4282         commit = local_read(&bpage->commit);
4283         /*
4284          * Set a flag in the commit field if we lost events
4285          */
4286         if (missed_events) {
4287                 /* If there is room at the end of the page to save the
4288                  * missed events, then record it there.
4289                  */
4290                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4291                         memcpy(&bpage->data[commit], &missed_events,
4292                                sizeof(missed_events));
4293                         local_add(RB_MISSED_STORED, &bpage->commit);
4294                         commit += sizeof(missed_events);
4295                 }
4296                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4297         }
4298
4299         /*
4300          * This page may be off to user land. Zero it out here.
4301          */
4302         if (commit < BUF_PAGE_SIZE)
4303                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4304
4305  out_unlock:
4306         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4307
4308  out:
4309         return ret;
4310 }
4311 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4312
4313 #ifdef CONFIG_HOTPLUG_CPU
4314 static int rb_cpu_notify(struct notifier_block *self,
4315                          unsigned long action, void *hcpu)
4316 {
4317         struct ring_buffer *buffer =
4318                 container_of(self, struct ring_buffer, cpu_notify);
4319         long cpu = (long)hcpu;
4320         int cpu_i, nr_pages_same;
4321         unsigned int nr_pages;
4322
4323         switch (action) {
4324         case CPU_UP_PREPARE:
4325         case CPU_UP_PREPARE_FROZEN:
4326                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4327                         return NOTIFY_OK;
4328
4329                 nr_pages = 0;
4330                 nr_pages_same = 1;
4331                 /* check if all cpu sizes are same */
4332                 for_each_buffer_cpu(buffer, cpu_i) {
4333                         /* fill in the size from first enabled cpu */
4334                         if (nr_pages == 0)
4335                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4336                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4337                                 nr_pages_same = 0;
4338                                 break;
4339                         }
4340                 }
4341                 /* allocate minimum pages, user can later expand it */
4342                 if (!nr_pages_same)
4343                         nr_pages = 2;
4344                 buffer->buffers[cpu] =
4345                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4346                 if (!buffer->buffers[cpu]) {
4347                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4348                              cpu);
4349                         return NOTIFY_OK;
4350                 }
4351                 smp_wmb();
4352                 cpumask_set_cpu(cpu, buffer->cpumask);
4353                 break;
4354         case CPU_DOWN_PREPARE:
4355         case CPU_DOWN_PREPARE_FROZEN:
4356                 /*
4357                  * Do nothing.
4358                  *  If we were to free the buffer, then the user would
4359                  *  lose any trace that was in the buffer.
4360                  */
4361                 break;
4362         default:
4363                 break;
4364         }
4365         return NOTIFY_OK;
4366 }
4367 #endif