]> Pileus Git - ~andy/linux/blob - kernel/trace/ring_buffer.c
6cf340e1a4a3b3f204d3597025d982d1aa64d5cc
[~andy/linux] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "# compressed entry header\n");
32         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
209
210 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
211 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
212
213 enum {
214         RB_LEN_TIME_EXTEND = 8,
215         RB_LEN_TIME_STAMP = 16,
216 };
217
218 static inline int rb_null_event(struct ring_buffer_event *event)
219 {
220         return event->type_len == RINGBUF_TYPE_PADDING
221                         && event->time_delta == 0;
222 }
223
224 static inline int rb_discarded_event(struct ring_buffer_event *event)
225 {
226         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
227 }
228
229 static void rb_event_set_padding(struct ring_buffer_event *event)
230 {
231         event->type_len = RINGBUF_TYPE_PADDING;
232         event->time_delta = 0;
233 }
234
235 static unsigned
236 rb_event_data_length(struct ring_buffer_event *event)
237 {
238         unsigned length;
239
240         if (event->type_len)
241                 length = event->type_len * RB_ALIGNMENT;
242         else
243                 length = event->array[0];
244         return length + RB_EVNT_HDR_SIZE;
245 }
246
247 /* inline for ring buffer fast paths */
248 static unsigned
249 rb_event_length(struct ring_buffer_event *event)
250 {
251         switch (event->type_len) {
252         case RINGBUF_TYPE_PADDING:
253                 if (rb_null_event(event))
254                         /* undefined */
255                         return -1;
256                 return  event->array[0] + RB_EVNT_HDR_SIZE;
257
258         case RINGBUF_TYPE_TIME_EXTEND:
259                 return RB_LEN_TIME_EXTEND;
260
261         case RINGBUF_TYPE_TIME_STAMP:
262                 return RB_LEN_TIME_STAMP;
263
264         case RINGBUF_TYPE_DATA:
265                 return rb_event_data_length(event);
266         default:
267                 BUG();
268         }
269         /* not hit */
270         return 0;
271 }
272
273 /**
274  * ring_buffer_event_length - return the length of the event
275  * @event: the event to get the length of
276  */
277 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
278 {
279         unsigned length = rb_event_length(event);
280         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
281                 return length;
282         length -= RB_EVNT_HDR_SIZE;
283         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284                 length -= sizeof(event->array[0]);
285         return length;
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
288
289 /* inline for ring buffer fast paths */
290 static void *
291 rb_event_data(struct ring_buffer_event *event)
292 {
293         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
294         /* If length is in len field, then array[0] has the data */
295         if (event->type_len)
296                 return (void *)&event->array[0];
297         /* Otherwise length is in array[0] and array[1] has the data */
298         return (void *)&event->array[1];
299 }
300
301 /**
302  * ring_buffer_event_data - return the data of the event
303  * @event: the event to get the data from
304  */
305 void *ring_buffer_event_data(struct ring_buffer_event *event)
306 {
307         return rb_event_data(event);
308 }
309 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
310
311 #define for_each_buffer_cpu(buffer, cpu)                \
312         for_each_cpu(cpu, buffer->cpumask)
313
314 #define TS_SHIFT        27
315 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST   (~TS_MASK)
317
318 struct buffer_data_page {
319         u64              time_stamp;    /* page time stamp */
320         local_t          commit;        /* write committed index */
321         unsigned char    data[];        /* data of buffer page */
322 };
323
324 struct buffer_page {
325         struct list_head list;          /* list of buffer pages */
326         local_t          write;         /* index for next write */
327         unsigned         read;          /* index for next read */
328         local_t          entries;       /* entries on this page */
329         struct buffer_data_page *page;  /* Actual data page */
330 };
331
332 static void rb_init_page(struct buffer_data_page *bpage)
333 {
334         local_set(&bpage->commit, 0);
335 }
336
337 /**
338  * ring_buffer_page_len - the size of data on the page.
339  * @page: The page to read
340  *
341  * Returns the amount of data on the page, including buffer page header.
342  */
343 size_t ring_buffer_page_len(void *page)
344 {
345         return local_read(&((struct buffer_data_page *)page)->commit)
346                 + BUF_PAGE_HDR_SIZE;
347 }
348
349 /*
350  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351  * this issue out.
352  */
353 static void free_buffer_page(struct buffer_page *bpage)
354 {
355         free_page((unsigned long)bpage->page);
356         kfree(bpage);
357 }
358
359 /*
360  * We need to fit the time_stamp delta into 27 bits.
361  */
362 static inline int test_time_stamp(u64 delta)
363 {
364         if (delta & TS_DELTA_TEST)
365                 return 1;
366         return 0;
367 }
368
369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370
371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
374 /* Max number of timestamps that can fit on a page */
375 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
376
377 int ring_buffer_print_page_header(struct trace_seq *s)
378 {
379         struct buffer_data_page field;
380         int ret;
381
382         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
383                                "offset:0;\tsize:%u;\n",
384                                (unsigned int)sizeof(field.time_stamp));
385
386         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
387                                "offset:%u;\tsize:%u;\n",
388                                (unsigned int)offsetof(typeof(field), commit),
389                                (unsigned int)sizeof(field.commit));
390
391         ret = trace_seq_printf(s, "\tfield: char data;\t"
392                                "offset:%u;\tsize:%u;\n",
393                                (unsigned int)offsetof(typeof(field), data),
394                                (unsigned int)BUF_PAGE_SIZE);
395
396         return ret;
397 }
398
399 /*
400  * head_page == tail_page && head == tail then buffer is empty.
401  */
402 struct ring_buffer_per_cpu {
403         int                             cpu;
404         struct ring_buffer              *buffer;
405         spinlock_t                      reader_lock; /* serialize readers */
406         raw_spinlock_t                  lock;
407         struct lock_class_key           lock_key;
408         struct list_head                pages;
409         struct buffer_page              *head_page;     /* read from head */
410         struct buffer_page              *tail_page;     /* write to tail */
411         struct buffer_page              *commit_page;   /* committed pages */
412         struct buffer_page              *reader_page;
413         unsigned long                   nmi_dropped;
414         unsigned long                   commit_overrun;
415         unsigned long                   overrun;
416         unsigned long                   read;
417         local_t                         entries;
418         local_t                         committing;
419         local_t                         commits;
420         u64                             write_stamp;
421         u64                             read_stamp;
422         atomic_t                        record_disabled;
423 };
424
425 struct ring_buffer {
426         unsigned                        pages;
427         unsigned                        flags;
428         int                             cpus;
429         atomic_t                        record_disabled;
430         cpumask_var_t                   cpumask;
431
432         struct lock_class_key           *reader_lock_key;
433
434         struct mutex                    mutex;
435
436         struct ring_buffer_per_cpu      **buffers;
437
438 #ifdef CONFIG_HOTPLUG_CPU
439         struct notifier_block           cpu_notify;
440 #endif
441         u64                             (*clock)(void);
442 };
443
444 struct ring_buffer_iter {
445         struct ring_buffer_per_cpu      *cpu_buffer;
446         unsigned long                   head;
447         struct buffer_page              *head_page;
448         u64                             read_stamp;
449 };
450
451 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
452 #define RB_WARN_ON(buffer, cond)                                \
453         ({                                                      \
454                 int _____ret = unlikely(cond);                  \
455                 if (_____ret) {                                 \
456                         atomic_inc(&buffer->record_disabled);   \
457                         WARN_ON(1);                             \
458                 }                                               \
459                 _____ret;                                       \
460         })
461
462 /* Up this if you want to test the TIME_EXTENTS and normalization */
463 #define DEBUG_SHIFT 0
464
465 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
466 {
467         /* shift to debug/test normalization and TIME_EXTENTS */
468         return buffer->clock() << DEBUG_SHIFT;
469 }
470
471 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
472 {
473         u64 time;
474
475         preempt_disable_notrace();
476         time = rb_time_stamp(buffer, cpu);
477         preempt_enable_no_resched_notrace();
478
479         return time;
480 }
481 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
482
483 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
484                                       int cpu, u64 *ts)
485 {
486         /* Just stupid testing the normalize function and deltas */
487         *ts >>= DEBUG_SHIFT;
488 }
489 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
490
491 /**
492  * check_pages - integrity check of buffer pages
493  * @cpu_buffer: CPU buffer with pages to test
494  *
495  * As a safety measure we check to make sure the data pages have not
496  * been corrupted.
497  */
498 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
499 {
500         struct list_head *head = &cpu_buffer->pages;
501         struct buffer_page *bpage, *tmp;
502
503         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
504                 return -1;
505         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
506                 return -1;
507
508         list_for_each_entry_safe(bpage, tmp, head, list) {
509                 if (RB_WARN_ON(cpu_buffer,
510                                bpage->list.next->prev != &bpage->list))
511                         return -1;
512                 if (RB_WARN_ON(cpu_buffer,
513                                bpage->list.prev->next != &bpage->list))
514                         return -1;
515         }
516
517         return 0;
518 }
519
520 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
521                              unsigned nr_pages)
522 {
523         struct list_head *head = &cpu_buffer->pages;
524         struct buffer_page *bpage, *tmp;
525         unsigned long addr;
526         LIST_HEAD(pages);
527         unsigned i;
528
529         for (i = 0; i < nr_pages; i++) {
530                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
531                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
532                 if (!bpage)
533                         goto free_pages;
534                 list_add(&bpage->list, &pages);
535
536                 addr = __get_free_page(GFP_KERNEL);
537                 if (!addr)
538                         goto free_pages;
539                 bpage->page = (void *)addr;
540                 rb_init_page(bpage->page);
541         }
542
543         list_splice(&pages, head);
544
545         rb_check_pages(cpu_buffer);
546
547         return 0;
548
549  free_pages:
550         list_for_each_entry_safe(bpage, tmp, &pages, list) {
551                 list_del_init(&bpage->list);
552                 free_buffer_page(bpage);
553         }
554         return -ENOMEM;
555 }
556
557 static struct ring_buffer_per_cpu *
558 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
559 {
560         struct ring_buffer_per_cpu *cpu_buffer;
561         struct buffer_page *bpage;
562         unsigned long addr;
563         int ret;
564
565         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
566                                   GFP_KERNEL, cpu_to_node(cpu));
567         if (!cpu_buffer)
568                 return NULL;
569
570         cpu_buffer->cpu = cpu;
571         cpu_buffer->buffer = buffer;
572         spin_lock_init(&cpu_buffer->reader_lock);
573         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
574         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
575         INIT_LIST_HEAD(&cpu_buffer->pages);
576
577         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
578                             GFP_KERNEL, cpu_to_node(cpu));
579         if (!bpage)
580                 goto fail_free_buffer;
581
582         cpu_buffer->reader_page = bpage;
583         addr = __get_free_page(GFP_KERNEL);
584         if (!addr)
585                 goto fail_free_reader;
586         bpage->page = (void *)addr;
587         rb_init_page(bpage->page);
588
589         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
590
591         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
592         if (ret < 0)
593                 goto fail_free_reader;
594
595         cpu_buffer->head_page
596                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
597         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
598
599         return cpu_buffer;
600
601  fail_free_reader:
602         free_buffer_page(cpu_buffer->reader_page);
603
604  fail_free_buffer:
605         kfree(cpu_buffer);
606         return NULL;
607 }
608
609 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
610 {
611         struct list_head *head = &cpu_buffer->pages;
612         struct buffer_page *bpage, *tmp;
613
614         free_buffer_page(cpu_buffer->reader_page);
615
616         list_for_each_entry_safe(bpage, tmp, head, list) {
617                 list_del_init(&bpage->list);
618                 free_buffer_page(bpage);
619         }
620         kfree(cpu_buffer);
621 }
622
623 /*
624  * Causes compile errors if the struct buffer_page gets bigger
625  * than the struct page.
626  */
627 extern int ring_buffer_page_too_big(void);
628
629 #ifdef CONFIG_HOTPLUG_CPU
630 static int rb_cpu_notify(struct notifier_block *self,
631                          unsigned long action, void *hcpu);
632 #endif
633
634 /**
635  * ring_buffer_alloc - allocate a new ring_buffer
636  * @size: the size in bytes per cpu that is needed.
637  * @flags: attributes to set for the ring buffer.
638  *
639  * Currently the only flag that is available is the RB_FL_OVERWRITE
640  * flag. This flag means that the buffer will overwrite old data
641  * when the buffer wraps. If this flag is not set, the buffer will
642  * drop data when the tail hits the head.
643  */
644 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
645                                         struct lock_class_key *key)
646 {
647         struct ring_buffer *buffer;
648         int bsize;
649         int cpu;
650
651         /* Paranoid! Optimizes out when all is well */
652         if (sizeof(struct buffer_page) > sizeof(struct page))
653                 ring_buffer_page_too_big();
654
655
656         /* keep it in its own cache line */
657         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
658                          GFP_KERNEL);
659         if (!buffer)
660                 return NULL;
661
662         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
663                 goto fail_free_buffer;
664
665         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
666         buffer->flags = flags;
667         buffer->clock = trace_clock_local;
668         buffer->reader_lock_key = key;
669
670         /* need at least two pages */
671         if (buffer->pages == 1)
672                 buffer->pages++;
673
674         /*
675          * In case of non-hotplug cpu, if the ring-buffer is allocated
676          * in early initcall, it will not be notified of secondary cpus.
677          * In that off case, we need to allocate for all possible cpus.
678          */
679 #ifdef CONFIG_HOTPLUG_CPU
680         get_online_cpus();
681         cpumask_copy(buffer->cpumask, cpu_online_mask);
682 #else
683         cpumask_copy(buffer->cpumask, cpu_possible_mask);
684 #endif
685         buffer->cpus = nr_cpu_ids;
686
687         bsize = sizeof(void *) * nr_cpu_ids;
688         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
689                                   GFP_KERNEL);
690         if (!buffer->buffers)
691                 goto fail_free_cpumask;
692
693         for_each_buffer_cpu(buffer, cpu) {
694                 buffer->buffers[cpu] =
695                         rb_allocate_cpu_buffer(buffer, cpu);
696                 if (!buffer->buffers[cpu])
697                         goto fail_free_buffers;
698         }
699
700 #ifdef CONFIG_HOTPLUG_CPU
701         buffer->cpu_notify.notifier_call = rb_cpu_notify;
702         buffer->cpu_notify.priority = 0;
703         register_cpu_notifier(&buffer->cpu_notify);
704 #endif
705
706         put_online_cpus();
707         mutex_init(&buffer->mutex);
708
709         return buffer;
710
711  fail_free_buffers:
712         for_each_buffer_cpu(buffer, cpu) {
713                 if (buffer->buffers[cpu])
714                         rb_free_cpu_buffer(buffer->buffers[cpu]);
715         }
716         kfree(buffer->buffers);
717
718  fail_free_cpumask:
719         free_cpumask_var(buffer->cpumask);
720         put_online_cpus();
721
722  fail_free_buffer:
723         kfree(buffer);
724         return NULL;
725 }
726 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
727
728 /**
729  * ring_buffer_free - free a ring buffer.
730  * @buffer: the buffer to free.
731  */
732 void
733 ring_buffer_free(struct ring_buffer *buffer)
734 {
735         int cpu;
736
737         get_online_cpus();
738
739 #ifdef CONFIG_HOTPLUG_CPU
740         unregister_cpu_notifier(&buffer->cpu_notify);
741 #endif
742
743         for_each_buffer_cpu(buffer, cpu)
744                 rb_free_cpu_buffer(buffer->buffers[cpu]);
745
746         put_online_cpus();
747
748         free_cpumask_var(buffer->cpumask);
749
750         kfree(buffer);
751 }
752 EXPORT_SYMBOL_GPL(ring_buffer_free);
753
754 void ring_buffer_set_clock(struct ring_buffer *buffer,
755                            u64 (*clock)(void))
756 {
757         buffer->clock = clock;
758 }
759
760 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
761
762 static void
763 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
764 {
765         struct buffer_page *bpage;
766         struct list_head *p;
767         unsigned i;
768
769         atomic_inc(&cpu_buffer->record_disabled);
770         synchronize_sched();
771
772         for (i = 0; i < nr_pages; i++) {
773                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
774                         return;
775                 p = cpu_buffer->pages.next;
776                 bpage = list_entry(p, struct buffer_page, list);
777                 list_del_init(&bpage->list);
778                 free_buffer_page(bpage);
779         }
780         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
781                 return;
782
783         rb_reset_cpu(cpu_buffer);
784
785         rb_check_pages(cpu_buffer);
786
787         atomic_dec(&cpu_buffer->record_disabled);
788
789 }
790
791 static void
792 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
793                 struct list_head *pages, unsigned nr_pages)
794 {
795         struct buffer_page *bpage;
796         struct list_head *p;
797         unsigned i;
798
799         atomic_inc(&cpu_buffer->record_disabled);
800         synchronize_sched();
801
802         for (i = 0; i < nr_pages; i++) {
803                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
804                         return;
805                 p = pages->next;
806                 bpage = list_entry(p, struct buffer_page, list);
807                 list_del_init(&bpage->list);
808                 list_add_tail(&bpage->list, &cpu_buffer->pages);
809         }
810         rb_reset_cpu(cpu_buffer);
811
812         rb_check_pages(cpu_buffer);
813
814         atomic_dec(&cpu_buffer->record_disabled);
815 }
816
817 /**
818  * ring_buffer_resize - resize the ring buffer
819  * @buffer: the buffer to resize.
820  * @size: the new size.
821  *
822  * The tracer is responsible for making sure that the buffer is
823  * not being used while changing the size.
824  * Note: We may be able to change the above requirement by using
825  *  RCU synchronizations.
826  *
827  * Minimum size is 2 * BUF_PAGE_SIZE.
828  *
829  * Returns -1 on failure.
830  */
831 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
832 {
833         struct ring_buffer_per_cpu *cpu_buffer;
834         unsigned nr_pages, rm_pages, new_pages;
835         struct buffer_page *bpage, *tmp;
836         unsigned long buffer_size;
837         unsigned long addr;
838         LIST_HEAD(pages);
839         int i, cpu;
840
841         /*
842          * Always succeed at resizing a non-existent buffer:
843          */
844         if (!buffer)
845                 return size;
846
847         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
848         size *= BUF_PAGE_SIZE;
849         buffer_size = buffer->pages * BUF_PAGE_SIZE;
850
851         /* we need a minimum of two pages */
852         if (size < BUF_PAGE_SIZE * 2)
853                 size = BUF_PAGE_SIZE * 2;
854
855         if (size == buffer_size)
856                 return size;
857
858         mutex_lock(&buffer->mutex);
859         get_online_cpus();
860
861         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
862
863         if (size < buffer_size) {
864
865                 /* easy case, just free pages */
866                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
867                         goto out_fail;
868
869                 rm_pages = buffer->pages - nr_pages;
870
871                 for_each_buffer_cpu(buffer, cpu) {
872                         cpu_buffer = buffer->buffers[cpu];
873                         rb_remove_pages(cpu_buffer, rm_pages);
874                 }
875                 goto out;
876         }
877
878         /*
879          * This is a bit more difficult. We only want to add pages
880          * when we can allocate enough for all CPUs. We do this
881          * by allocating all the pages and storing them on a local
882          * link list. If we succeed in our allocation, then we
883          * add these pages to the cpu_buffers. Otherwise we just free
884          * them all and return -ENOMEM;
885          */
886         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
887                 goto out_fail;
888
889         new_pages = nr_pages - buffer->pages;
890
891         for_each_buffer_cpu(buffer, cpu) {
892                 for (i = 0; i < new_pages; i++) {
893                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
894                                                   cache_line_size()),
895                                             GFP_KERNEL, cpu_to_node(cpu));
896                         if (!bpage)
897                                 goto free_pages;
898                         list_add(&bpage->list, &pages);
899                         addr = __get_free_page(GFP_KERNEL);
900                         if (!addr)
901                                 goto free_pages;
902                         bpage->page = (void *)addr;
903                         rb_init_page(bpage->page);
904                 }
905         }
906
907         for_each_buffer_cpu(buffer, cpu) {
908                 cpu_buffer = buffer->buffers[cpu];
909                 rb_insert_pages(cpu_buffer, &pages, new_pages);
910         }
911
912         if (RB_WARN_ON(buffer, !list_empty(&pages)))
913                 goto out_fail;
914
915  out:
916         buffer->pages = nr_pages;
917         put_online_cpus();
918         mutex_unlock(&buffer->mutex);
919
920         return size;
921
922  free_pages:
923         list_for_each_entry_safe(bpage, tmp, &pages, list) {
924                 list_del_init(&bpage->list);
925                 free_buffer_page(bpage);
926         }
927         put_online_cpus();
928         mutex_unlock(&buffer->mutex);
929         return -ENOMEM;
930
931         /*
932          * Something went totally wrong, and we are too paranoid
933          * to even clean up the mess.
934          */
935  out_fail:
936         put_online_cpus();
937         mutex_unlock(&buffer->mutex);
938         return -1;
939 }
940 EXPORT_SYMBOL_GPL(ring_buffer_resize);
941
942 static inline void *
943 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
944 {
945         return bpage->data + index;
946 }
947
948 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
949 {
950         return bpage->page->data + index;
951 }
952
953 static inline struct ring_buffer_event *
954 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
955 {
956         return __rb_page_index(cpu_buffer->reader_page,
957                                cpu_buffer->reader_page->read);
958 }
959
960 static inline struct ring_buffer_event *
961 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
962 {
963         return __rb_page_index(cpu_buffer->head_page,
964                                cpu_buffer->head_page->read);
965 }
966
967 static inline struct ring_buffer_event *
968 rb_iter_head_event(struct ring_buffer_iter *iter)
969 {
970         return __rb_page_index(iter->head_page, iter->head);
971 }
972
973 static inline unsigned rb_page_write(struct buffer_page *bpage)
974 {
975         return local_read(&bpage->write);
976 }
977
978 static inline unsigned rb_page_commit(struct buffer_page *bpage)
979 {
980         return local_read(&bpage->page->commit);
981 }
982
983 /* Size is determined by what has been commited */
984 static inline unsigned rb_page_size(struct buffer_page *bpage)
985 {
986         return rb_page_commit(bpage);
987 }
988
989 static inline unsigned
990 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
991 {
992         return rb_page_commit(cpu_buffer->commit_page);
993 }
994
995 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
996 {
997         return rb_page_commit(cpu_buffer->head_page);
998 }
999
1000 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1001                                struct buffer_page **bpage)
1002 {
1003         struct list_head *p = (*bpage)->list.next;
1004
1005         if (p == &cpu_buffer->pages)
1006                 p = p->next;
1007
1008         *bpage = list_entry(p, struct buffer_page, list);
1009 }
1010
1011 static inline unsigned
1012 rb_event_index(struct ring_buffer_event *event)
1013 {
1014         unsigned long addr = (unsigned long)event;
1015
1016         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1017 }
1018
1019 static inline int
1020 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1021                    struct ring_buffer_event *event)
1022 {
1023         unsigned long addr = (unsigned long)event;
1024         unsigned long index;
1025
1026         index = rb_event_index(event);
1027         addr &= PAGE_MASK;
1028
1029         return cpu_buffer->commit_page->page == (void *)addr &&
1030                 rb_commit_index(cpu_buffer) == index;
1031 }
1032
1033 static void
1034 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1035 {
1036         /*
1037          * We only race with interrupts and NMIs on this CPU.
1038          * If we own the commit event, then we can commit
1039          * all others that interrupted us, since the interruptions
1040          * are in stack format (they finish before they come
1041          * back to us). This allows us to do a simple loop to
1042          * assign the commit to the tail.
1043          */
1044  again:
1045         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1046                 cpu_buffer->commit_page->page->commit =
1047                         cpu_buffer->commit_page->write;
1048                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1049                 cpu_buffer->write_stamp =
1050                         cpu_buffer->commit_page->page->time_stamp;
1051                 /* add barrier to keep gcc from optimizing too much */
1052                 barrier();
1053         }
1054         while (rb_commit_index(cpu_buffer) !=
1055                rb_page_write(cpu_buffer->commit_page)) {
1056                 cpu_buffer->commit_page->page->commit =
1057                         cpu_buffer->commit_page->write;
1058                 barrier();
1059         }
1060
1061         /* again, keep gcc from optimizing */
1062         barrier();
1063
1064         /*
1065          * If an interrupt came in just after the first while loop
1066          * and pushed the tail page forward, we will be left with
1067          * a dangling commit that will never go forward.
1068          */
1069         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1070                 goto again;
1071 }
1072
1073 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1074 {
1075         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1076         cpu_buffer->reader_page->read = 0;
1077 }
1078
1079 static void rb_inc_iter(struct ring_buffer_iter *iter)
1080 {
1081         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1082
1083         /*
1084          * The iterator could be on the reader page (it starts there).
1085          * But the head could have moved, since the reader was
1086          * found. Check for this case and assign the iterator
1087          * to the head page instead of next.
1088          */
1089         if (iter->head_page == cpu_buffer->reader_page)
1090                 iter->head_page = cpu_buffer->head_page;
1091         else
1092                 rb_inc_page(cpu_buffer, &iter->head_page);
1093
1094         iter->read_stamp = iter->head_page->page->time_stamp;
1095         iter->head = 0;
1096 }
1097
1098 /**
1099  * ring_buffer_update_event - update event type and data
1100  * @event: the even to update
1101  * @type: the type of event
1102  * @length: the size of the event field in the ring buffer
1103  *
1104  * Update the type and data fields of the event. The length
1105  * is the actual size that is written to the ring buffer,
1106  * and with this, we can determine what to place into the
1107  * data field.
1108  */
1109 static void
1110 rb_update_event(struct ring_buffer_event *event,
1111                          unsigned type, unsigned length)
1112 {
1113         event->type_len = type;
1114
1115         switch (type) {
1116
1117         case RINGBUF_TYPE_PADDING:
1118         case RINGBUF_TYPE_TIME_EXTEND:
1119         case RINGBUF_TYPE_TIME_STAMP:
1120                 break;
1121
1122         case 0:
1123                 length -= RB_EVNT_HDR_SIZE;
1124                 if (length > RB_MAX_SMALL_DATA)
1125                         event->array[0] = length;
1126                 else
1127                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1128                 break;
1129         default:
1130                 BUG();
1131         }
1132 }
1133
1134 static unsigned rb_calculate_event_length(unsigned length)
1135 {
1136         struct ring_buffer_event event; /* Used only for sizeof array */
1137
1138         /* zero length can cause confusions */
1139         if (!length)
1140                 length = 1;
1141
1142         if (length > RB_MAX_SMALL_DATA)
1143                 length += sizeof(event.array[0]);
1144
1145         length += RB_EVNT_HDR_SIZE;
1146         length = ALIGN(length, RB_ALIGNMENT);
1147
1148         return length;
1149 }
1150
1151 static inline void
1152 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1153               struct buffer_page *tail_page,
1154               unsigned long tail, unsigned long length)
1155 {
1156         struct ring_buffer_event *event;
1157
1158         /*
1159          * Only the event that crossed the page boundary
1160          * must fill the old tail_page with padding.
1161          */
1162         if (tail >= BUF_PAGE_SIZE) {
1163                 local_sub(length, &tail_page->write);
1164                 return;
1165         }
1166
1167         event = __rb_page_index(tail_page, tail);
1168
1169         /*
1170          * If this event is bigger than the minimum size, then
1171          * we need to be careful that we don't subtract the
1172          * write counter enough to allow another writer to slip
1173          * in on this page.
1174          * We put in a discarded commit instead, to make sure
1175          * that this space is not used again.
1176          *
1177          * If we are less than the minimum size, we don't need to
1178          * worry about it.
1179          */
1180         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1181                 /* No room for any events */
1182
1183                 /* Mark the rest of the page with padding */
1184                 rb_event_set_padding(event);
1185
1186                 /* Set the write back to the previous setting */
1187                 local_sub(length, &tail_page->write);
1188                 return;
1189         }
1190
1191         /* Put in a discarded event */
1192         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1193         event->type_len = RINGBUF_TYPE_PADDING;
1194         /* time delta must be non zero */
1195         event->time_delta = 1;
1196         /* Account for this as an entry */
1197         local_inc(&tail_page->entries);
1198         local_inc(&cpu_buffer->entries);
1199
1200         /* Set write to end of buffer */
1201         length = (tail + length) - BUF_PAGE_SIZE;
1202         local_sub(length, &tail_page->write);
1203 }
1204
1205 static struct ring_buffer_event *
1206 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1207              unsigned long length, unsigned long tail,
1208              struct buffer_page *commit_page,
1209              struct buffer_page *tail_page, u64 *ts)
1210 {
1211         struct buffer_page *next_page, *head_page, *reader_page;
1212         struct ring_buffer *buffer = cpu_buffer->buffer;
1213         bool lock_taken = false;
1214         unsigned long flags;
1215
1216         next_page = tail_page;
1217
1218         local_irq_save(flags);
1219         /*
1220          * Since the write to the buffer is still not
1221          * fully lockless, we must be careful with NMIs.
1222          * The locks in the writers are taken when a write
1223          * crosses to a new page. The locks protect against
1224          * races with the readers (this will soon be fixed
1225          * with a lockless solution).
1226          *
1227          * Because we can not protect against NMIs, and we
1228          * want to keep traces reentrant, we need to manage
1229          * what happens when we are in an NMI.
1230          *
1231          * NMIs can happen after we take the lock.
1232          * If we are in an NMI, only take the lock
1233          * if it is not already taken. Otherwise
1234          * simply fail.
1235          */
1236         if (unlikely(in_nmi())) {
1237                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1238                         cpu_buffer->nmi_dropped++;
1239                         goto out_reset;
1240                 }
1241         } else
1242                 __raw_spin_lock(&cpu_buffer->lock);
1243
1244         lock_taken = true;
1245
1246         rb_inc_page(cpu_buffer, &next_page);
1247
1248         head_page = cpu_buffer->head_page;
1249         reader_page = cpu_buffer->reader_page;
1250
1251         /* we grabbed the lock before incrementing */
1252         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1253                 goto out_reset;
1254
1255         /*
1256          * If for some reason, we had an interrupt storm that made
1257          * it all the way around the buffer, bail, and warn
1258          * about it.
1259          */
1260         if (unlikely(next_page == commit_page)) {
1261                 cpu_buffer->commit_overrun++;
1262                 goto out_reset;
1263         }
1264
1265         if (next_page == head_page) {
1266                 if (!(buffer->flags & RB_FL_OVERWRITE))
1267                         goto out_reset;
1268
1269                 /* tail_page has not moved yet? */
1270                 if (tail_page == cpu_buffer->tail_page) {
1271                         /* count overflows */
1272                         cpu_buffer->overrun +=
1273                                 local_read(&head_page->entries);
1274
1275                         rb_inc_page(cpu_buffer, &head_page);
1276                         cpu_buffer->head_page = head_page;
1277                         cpu_buffer->head_page->read = 0;
1278                 }
1279         }
1280
1281         /*
1282          * If the tail page is still the same as what we think
1283          * it is, then it is up to us to update the tail
1284          * pointer.
1285          */
1286         if (tail_page == cpu_buffer->tail_page) {
1287                 local_set(&next_page->write, 0);
1288                 local_set(&next_page->entries, 0);
1289                 local_set(&next_page->page->commit, 0);
1290                 cpu_buffer->tail_page = next_page;
1291
1292                 /* reread the time stamp */
1293                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1294                 cpu_buffer->tail_page->page->time_stamp = *ts;
1295         }
1296
1297         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1298
1299         __raw_spin_unlock(&cpu_buffer->lock);
1300         local_irq_restore(flags);
1301
1302         /* fail and let the caller try again */
1303         return ERR_PTR(-EAGAIN);
1304
1305  out_reset:
1306         /* reset write */
1307         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1308
1309         if (likely(lock_taken))
1310                 __raw_spin_unlock(&cpu_buffer->lock);
1311         local_irq_restore(flags);
1312         return NULL;
1313 }
1314
1315 static struct ring_buffer_event *
1316 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1317                   unsigned type, unsigned long length, u64 *ts)
1318 {
1319         struct buffer_page *tail_page, *commit_page;
1320         struct ring_buffer_event *event;
1321         unsigned long tail, write;
1322
1323         commit_page = cpu_buffer->commit_page;
1324         /* we just need to protect against interrupts */
1325         barrier();
1326         tail_page = cpu_buffer->tail_page;
1327         write = local_add_return(length, &tail_page->write);
1328         tail = write - length;
1329
1330         /* See if we shot pass the end of this buffer page */
1331         if (write > BUF_PAGE_SIZE)
1332                 return rb_move_tail(cpu_buffer, length, tail,
1333                                     commit_page, tail_page, ts);
1334
1335         /* We reserved something on the buffer */
1336
1337         event = __rb_page_index(tail_page, tail);
1338         rb_update_event(event, type, length);
1339
1340         /* The passed in type is zero for DATA */
1341         if (likely(!type))
1342                 local_inc(&tail_page->entries);
1343
1344         /*
1345          * If this is the first commit on the page, then update
1346          * its timestamp.
1347          */
1348         if (!tail)
1349                 tail_page->page->time_stamp = *ts;
1350
1351         return event;
1352 }
1353
1354 static inline int
1355 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1356                   struct ring_buffer_event *event)
1357 {
1358         unsigned long new_index, old_index;
1359         struct buffer_page *bpage;
1360         unsigned long index;
1361         unsigned long addr;
1362
1363         new_index = rb_event_index(event);
1364         old_index = new_index + rb_event_length(event);
1365         addr = (unsigned long)event;
1366         addr &= PAGE_MASK;
1367
1368         bpage = cpu_buffer->tail_page;
1369
1370         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1371                 /*
1372                  * This is on the tail page. It is possible that
1373                  * a write could come in and move the tail page
1374                  * and write to the next page. That is fine
1375                  * because we just shorten what is on this page.
1376                  */
1377                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1378                 if (index == old_index)
1379                         return 1;
1380         }
1381
1382         /* could not discard */
1383         return 0;
1384 }
1385
1386 static int
1387 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1388                   u64 *ts, u64 *delta)
1389 {
1390         struct ring_buffer_event *event;
1391         static int once;
1392         int ret;
1393
1394         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1395                 printk(KERN_WARNING "Delta way too big! %llu"
1396                        " ts=%llu write stamp = %llu\n",
1397                        (unsigned long long)*delta,
1398                        (unsigned long long)*ts,
1399                        (unsigned long long)cpu_buffer->write_stamp);
1400                 WARN_ON(1);
1401         }
1402
1403         /*
1404          * The delta is too big, we to add a
1405          * new timestamp.
1406          */
1407         event = __rb_reserve_next(cpu_buffer,
1408                                   RINGBUF_TYPE_TIME_EXTEND,
1409                                   RB_LEN_TIME_EXTEND,
1410                                   ts);
1411         if (!event)
1412                 return -EBUSY;
1413
1414         if (PTR_ERR(event) == -EAGAIN)
1415                 return -EAGAIN;
1416
1417         /* Only a commited time event can update the write stamp */
1418         if (rb_event_is_commit(cpu_buffer, event)) {
1419                 /*
1420                  * If this is the first on the page, then it was
1421                  * updated with the page itself. Try to discard it
1422                  * and if we can't just make it zero.
1423                  */
1424                 if (rb_event_index(event)) {
1425                         event->time_delta = *delta & TS_MASK;
1426                         event->array[0] = *delta >> TS_SHIFT;
1427                 } else {
1428                         /* try to discard, since we do not need this */
1429                         if (!rb_try_to_discard(cpu_buffer, event)) {
1430                                 /* nope, just zero it */
1431                                 event->time_delta = 0;
1432                                 event->array[0] = 0;
1433                         }
1434                 }
1435                 cpu_buffer->write_stamp = *ts;
1436                 /* let the caller know this was the commit */
1437                 ret = 1;
1438         } else {
1439                 /* Try to discard the event */
1440                 if (!rb_try_to_discard(cpu_buffer, event)) {
1441                         /* Darn, this is just wasted space */
1442                         event->time_delta = 0;
1443                         event->array[0] = 0;
1444                 }
1445                 ret = 0;
1446         }
1447
1448         *delta = 0;
1449
1450         return ret;
1451 }
1452
1453 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1454 {
1455         local_inc(&cpu_buffer->committing);
1456         local_inc(&cpu_buffer->commits);
1457 }
1458
1459 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1460 {
1461         unsigned long commits;
1462
1463         if (RB_WARN_ON(cpu_buffer,
1464                        !local_read(&cpu_buffer->committing)))
1465                 return;
1466
1467  again:
1468         commits = local_read(&cpu_buffer->commits);
1469         /* synchronize with interrupts */
1470         barrier();
1471         if (local_read(&cpu_buffer->committing) == 1)
1472                 rb_set_commit_to_write(cpu_buffer);
1473
1474         local_dec(&cpu_buffer->committing);
1475
1476         /* synchronize with interrupts */
1477         barrier();
1478
1479         /*
1480          * Need to account for interrupts coming in between the
1481          * updating of the commit page and the clearing of the
1482          * committing counter.
1483          */
1484         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1485             !local_read(&cpu_buffer->committing)) {
1486                 local_inc(&cpu_buffer->committing);
1487                 goto again;
1488         }
1489 }
1490
1491 static struct ring_buffer_event *
1492 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1493                       unsigned long length)
1494 {
1495         struct ring_buffer_event *event;
1496         u64 ts, delta = 0;
1497         int commit = 0;
1498         int nr_loops = 0;
1499
1500         rb_start_commit(cpu_buffer);
1501
1502         length = rb_calculate_event_length(length);
1503  again:
1504         /*
1505          * We allow for interrupts to reenter here and do a trace.
1506          * If one does, it will cause this original code to loop
1507          * back here. Even with heavy interrupts happening, this
1508          * should only happen a few times in a row. If this happens
1509          * 1000 times in a row, there must be either an interrupt
1510          * storm or we have something buggy.
1511          * Bail!
1512          */
1513         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1514                 goto out_fail;
1515
1516         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1517
1518         /*
1519          * Only the first commit can update the timestamp.
1520          * Yes there is a race here. If an interrupt comes in
1521          * just after the conditional and it traces too, then it
1522          * will also check the deltas. More than one timestamp may
1523          * also be made. But only the entry that did the actual
1524          * commit will be something other than zero.
1525          */
1526         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1527                    rb_page_write(cpu_buffer->tail_page) ==
1528                    rb_commit_index(cpu_buffer))) {
1529                 u64 diff;
1530
1531                 diff = ts - cpu_buffer->write_stamp;
1532
1533                 /* make sure this diff is calculated here */
1534                 barrier();
1535
1536                 /* Did the write stamp get updated already? */
1537                 if (unlikely(ts < cpu_buffer->write_stamp))
1538                         goto get_event;
1539
1540                 delta = diff;
1541                 if (unlikely(test_time_stamp(delta))) {
1542
1543                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1544                         if (commit == -EBUSY)
1545                                 goto out_fail;
1546
1547                         if (commit == -EAGAIN)
1548                                 goto again;
1549
1550                         RB_WARN_ON(cpu_buffer, commit < 0);
1551                 }
1552         }
1553
1554  get_event:
1555         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1556         if (unlikely(PTR_ERR(event) == -EAGAIN))
1557                 goto again;
1558
1559         if (!event)
1560                 goto out_fail;
1561
1562         if (!rb_event_is_commit(cpu_buffer, event))
1563                 delta = 0;
1564
1565         event->time_delta = delta;
1566
1567         return event;
1568
1569  out_fail:
1570         rb_end_commit(cpu_buffer);
1571         return NULL;
1572 }
1573
1574 #define TRACE_RECURSIVE_DEPTH 16
1575
1576 static int trace_recursive_lock(void)
1577 {
1578         current->trace_recursion++;
1579
1580         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1581                 return 0;
1582
1583         /* Disable all tracing before we do anything else */
1584         tracing_off_permanent();
1585
1586         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1587                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1588                     current->trace_recursion,
1589                     hardirq_count() >> HARDIRQ_SHIFT,
1590                     softirq_count() >> SOFTIRQ_SHIFT,
1591                     in_nmi());
1592
1593         WARN_ON_ONCE(1);
1594         return -1;
1595 }
1596
1597 static void trace_recursive_unlock(void)
1598 {
1599         WARN_ON_ONCE(!current->trace_recursion);
1600
1601         current->trace_recursion--;
1602 }
1603
1604 static DEFINE_PER_CPU(int, rb_need_resched);
1605
1606 /**
1607  * ring_buffer_lock_reserve - reserve a part of the buffer
1608  * @buffer: the ring buffer to reserve from
1609  * @length: the length of the data to reserve (excluding event header)
1610  *
1611  * Returns a reseverd event on the ring buffer to copy directly to.
1612  * The user of this interface will need to get the body to write into
1613  * and can use the ring_buffer_event_data() interface.
1614  *
1615  * The length is the length of the data needed, not the event length
1616  * which also includes the event header.
1617  *
1618  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1619  * If NULL is returned, then nothing has been allocated or locked.
1620  */
1621 struct ring_buffer_event *
1622 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1623 {
1624         struct ring_buffer_per_cpu *cpu_buffer;
1625         struct ring_buffer_event *event;
1626         int cpu, resched;
1627
1628         if (ring_buffer_flags != RB_BUFFERS_ON)
1629                 return NULL;
1630
1631         if (atomic_read(&buffer->record_disabled))
1632                 return NULL;
1633
1634         /* If we are tracing schedule, we don't want to recurse */
1635         resched = ftrace_preempt_disable();
1636
1637         if (trace_recursive_lock())
1638                 goto out_nocheck;
1639
1640         cpu = raw_smp_processor_id();
1641
1642         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1643                 goto out;
1644
1645         cpu_buffer = buffer->buffers[cpu];
1646
1647         if (atomic_read(&cpu_buffer->record_disabled))
1648                 goto out;
1649
1650         if (length > BUF_MAX_DATA_SIZE)
1651                 goto out;
1652
1653         event = rb_reserve_next_event(cpu_buffer, length);
1654         if (!event)
1655                 goto out;
1656
1657         /*
1658          * Need to store resched state on this cpu.
1659          * Only the first needs to.
1660          */
1661
1662         if (preempt_count() == 1)
1663                 per_cpu(rb_need_resched, cpu) = resched;
1664
1665         return event;
1666
1667  out:
1668         trace_recursive_unlock();
1669
1670  out_nocheck:
1671         ftrace_preempt_enable(resched);
1672         return NULL;
1673 }
1674 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1675
1676 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1677                       struct ring_buffer_event *event)
1678 {
1679         local_inc(&cpu_buffer->entries);
1680
1681         /*
1682          * The event first in the commit queue updates the
1683          * time stamp.
1684          */
1685         if (rb_event_is_commit(cpu_buffer, event))
1686                 cpu_buffer->write_stamp += event->time_delta;
1687
1688         rb_end_commit(cpu_buffer);
1689 }
1690
1691 /**
1692  * ring_buffer_unlock_commit - commit a reserved
1693  * @buffer: The buffer to commit to
1694  * @event: The event pointer to commit.
1695  *
1696  * This commits the data to the ring buffer, and releases any locks held.
1697  *
1698  * Must be paired with ring_buffer_lock_reserve.
1699  */
1700 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1701                               struct ring_buffer_event *event)
1702 {
1703         struct ring_buffer_per_cpu *cpu_buffer;
1704         int cpu = raw_smp_processor_id();
1705
1706         cpu_buffer = buffer->buffers[cpu];
1707
1708         rb_commit(cpu_buffer, event);
1709
1710         trace_recursive_unlock();
1711
1712         /*
1713          * Only the last preempt count needs to restore preemption.
1714          */
1715         if (preempt_count() == 1)
1716                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1717         else
1718                 preempt_enable_no_resched_notrace();
1719
1720         return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1723
1724 static inline void rb_event_discard(struct ring_buffer_event *event)
1725 {
1726         /* array[0] holds the actual length for the discarded event */
1727         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1728         event->type_len = RINGBUF_TYPE_PADDING;
1729         /* time delta must be non zero */
1730         if (!event->time_delta)
1731                 event->time_delta = 1;
1732 }
1733
1734 /**
1735  * ring_buffer_event_discard - discard any event in the ring buffer
1736  * @event: the event to discard
1737  *
1738  * Sometimes a event that is in the ring buffer needs to be ignored.
1739  * This function lets the user discard an event in the ring buffer
1740  * and then that event will not be read later.
1741  *
1742  * Note, it is up to the user to be careful with this, and protect
1743  * against races. If the user discards an event that has been consumed
1744  * it is possible that it could corrupt the ring buffer.
1745  */
1746 void ring_buffer_event_discard(struct ring_buffer_event *event)
1747 {
1748         rb_event_discard(event);
1749 }
1750 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1751
1752 /**
1753  * ring_buffer_commit_discard - discard an event that has not been committed
1754  * @buffer: the ring buffer
1755  * @event: non committed event to discard
1756  *
1757  * This is similar to ring_buffer_event_discard but must only be
1758  * performed on an event that has not been committed yet. The difference
1759  * is that this will also try to free the event from the ring buffer
1760  * if another event has not been added behind it.
1761  *
1762  * If another event has been added behind it, it will set the event
1763  * up as discarded, and perform the commit.
1764  *
1765  * If this function is called, do not call ring_buffer_unlock_commit on
1766  * the event.
1767  */
1768 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1769                                 struct ring_buffer_event *event)
1770 {
1771         struct ring_buffer_per_cpu *cpu_buffer;
1772         int cpu;
1773
1774         /* The event is discarded regardless */
1775         rb_event_discard(event);
1776
1777         cpu = smp_processor_id();
1778         cpu_buffer = buffer->buffers[cpu];
1779
1780         /*
1781          * This must only be called if the event has not been
1782          * committed yet. Thus we can assume that preemption
1783          * is still disabled.
1784          */
1785         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1786
1787         if (!rb_try_to_discard(cpu_buffer, event))
1788                 goto out;
1789
1790         /*
1791          * The commit is still visible by the reader, so we
1792          * must increment entries.
1793          */
1794         local_inc(&cpu_buffer->entries);
1795  out:
1796         rb_end_commit(cpu_buffer);
1797
1798         trace_recursive_unlock();
1799
1800         /*
1801          * Only the last preempt count needs to restore preemption.
1802          */
1803         if (preempt_count() == 1)
1804                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1805         else
1806                 preempt_enable_no_resched_notrace();
1807
1808 }
1809 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1810
1811 /**
1812  * ring_buffer_write - write data to the buffer without reserving
1813  * @buffer: The ring buffer to write to.
1814  * @length: The length of the data being written (excluding the event header)
1815  * @data: The data to write to the buffer.
1816  *
1817  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1818  * one function. If you already have the data to write to the buffer, it
1819  * may be easier to simply call this function.
1820  *
1821  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1822  * and not the length of the event which would hold the header.
1823  */
1824 int ring_buffer_write(struct ring_buffer *buffer,
1825                         unsigned long length,
1826                         void *data)
1827 {
1828         struct ring_buffer_per_cpu *cpu_buffer;
1829         struct ring_buffer_event *event;
1830         void *body;
1831         int ret = -EBUSY;
1832         int cpu, resched;
1833
1834         if (ring_buffer_flags != RB_BUFFERS_ON)
1835                 return -EBUSY;
1836
1837         if (atomic_read(&buffer->record_disabled))
1838                 return -EBUSY;
1839
1840         resched = ftrace_preempt_disable();
1841
1842         cpu = raw_smp_processor_id();
1843
1844         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1845                 goto out;
1846
1847         cpu_buffer = buffer->buffers[cpu];
1848
1849         if (atomic_read(&cpu_buffer->record_disabled))
1850                 goto out;
1851
1852         if (length > BUF_MAX_DATA_SIZE)
1853                 goto out;
1854
1855         event = rb_reserve_next_event(cpu_buffer, length);
1856         if (!event)
1857                 goto out;
1858
1859         body = rb_event_data(event);
1860
1861         memcpy(body, data, length);
1862
1863         rb_commit(cpu_buffer, event);
1864
1865         ret = 0;
1866  out:
1867         ftrace_preempt_enable(resched);
1868
1869         return ret;
1870 }
1871 EXPORT_SYMBOL_GPL(ring_buffer_write);
1872
1873 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1874 {
1875         struct buffer_page *reader = cpu_buffer->reader_page;
1876         struct buffer_page *head = cpu_buffer->head_page;
1877         struct buffer_page *commit = cpu_buffer->commit_page;
1878
1879         return reader->read == rb_page_commit(reader) &&
1880                 (commit == reader ||
1881                  (commit == head &&
1882                   head->read == rb_page_commit(commit)));
1883 }
1884
1885 /**
1886  * ring_buffer_record_disable - stop all writes into the buffer
1887  * @buffer: The ring buffer to stop writes to.
1888  *
1889  * This prevents all writes to the buffer. Any attempt to write
1890  * to the buffer after this will fail and return NULL.
1891  *
1892  * The caller should call synchronize_sched() after this.
1893  */
1894 void ring_buffer_record_disable(struct ring_buffer *buffer)
1895 {
1896         atomic_inc(&buffer->record_disabled);
1897 }
1898 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1899
1900 /**
1901  * ring_buffer_record_enable - enable writes to the buffer
1902  * @buffer: The ring buffer to enable writes
1903  *
1904  * Note, multiple disables will need the same number of enables
1905  * to truely enable the writing (much like preempt_disable).
1906  */
1907 void ring_buffer_record_enable(struct ring_buffer *buffer)
1908 {
1909         atomic_dec(&buffer->record_disabled);
1910 }
1911 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1912
1913 /**
1914  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1915  * @buffer: The ring buffer to stop writes to.
1916  * @cpu: The CPU buffer to stop
1917  *
1918  * This prevents all writes to the buffer. Any attempt to write
1919  * to the buffer after this will fail and return NULL.
1920  *
1921  * The caller should call synchronize_sched() after this.
1922  */
1923 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1924 {
1925         struct ring_buffer_per_cpu *cpu_buffer;
1926
1927         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1928                 return;
1929
1930         cpu_buffer = buffer->buffers[cpu];
1931         atomic_inc(&cpu_buffer->record_disabled);
1932 }
1933 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1934
1935 /**
1936  * ring_buffer_record_enable_cpu - enable writes to the buffer
1937  * @buffer: The ring buffer to enable writes
1938  * @cpu: The CPU to enable.
1939  *
1940  * Note, multiple disables will need the same number of enables
1941  * to truely enable the writing (much like preempt_disable).
1942  */
1943 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1944 {
1945         struct ring_buffer_per_cpu *cpu_buffer;
1946
1947         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1948                 return;
1949
1950         cpu_buffer = buffer->buffers[cpu];
1951         atomic_dec(&cpu_buffer->record_disabled);
1952 }
1953 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1954
1955 /**
1956  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1957  * @buffer: The ring buffer
1958  * @cpu: The per CPU buffer to get the entries from.
1959  */
1960 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1961 {
1962         struct ring_buffer_per_cpu *cpu_buffer;
1963         unsigned long ret;
1964
1965         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1966                 return 0;
1967
1968         cpu_buffer = buffer->buffers[cpu];
1969         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1970                 - cpu_buffer->read;
1971
1972         return ret;
1973 }
1974 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1975
1976 /**
1977  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1978  * @buffer: The ring buffer
1979  * @cpu: The per CPU buffer to get the number of overruns from
1980  */
1981 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1982 {
1983         struct ring_buffer_per_cpu *cpu_buffer;
1984         unsigned long ret;
1985
1986         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1987                 return 0;
1988
1989         cpu_buffer = buffer->buffers[cpu];
1990         ret = cpu_buffer->overrun;
1991
1992         return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1995
1996 /**
1997  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1998  * @buffer: The ring buffer
1999  * @cpu: The per CPU buffer to get the number of overruns from
2000  */
2001 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
2002 {
2003         struct ring_buffer_per_cpu *cpu_buffer;
2004         unsigned long ret;
2005
2006         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2007                 return 0;
2008
2009         cpu_buffer = buffer->buffers[cpu];
2010         ret = cpu_buffer->nmi_dropped;
2011
2012         return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2015
2016 /**
2017  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2018  * @buffer: The ring buffer
2019  * @cpu: The per CPU buffer to get the number of overruns from
2020  */
2021 unsigned long
2022 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2023 {
2024         struct ring_buffer_per_cpu *cpu_buffer;
2025         unsigned long ret;
2026
2027         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2028                 return 0;
2029
2030         cpu_buffer = buffer->buffers[cpu];
2031         ret = cpu_buffer->commit_overrun;
2032
2033         return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2036
2037 /**
2038  * ring_buffer_entries - get the number of entries in a buffer
2039  * @buffer: The ring buffer
2040  *
2041  * Returns the total number of entries in the ring buffer
2042  * (all CPU entries)
2043  */
2044 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2045 {
2046         struct ring_buffer_per_cpu *cpu_buffer;
2047         unsigned long entries = 0;
2048         int cpu;
2049
2050         /* if you care about this being correct, lock the buffer */
2051         for_each_buffer_cpu(buffer, cpu) {
2052                 cpu_buffer = buffer->buffers[cpu];
2053                 entries += (local_read(&cpu_buffer->entries) -
2054                             cpu_buffer->overrun) - cpu_buffer->read;
2055         }
2056
2057         return entries;
2058 }
2059 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2060
2061 /**
2062  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2063  * @buffer: The ring buffer
2064  *
2065  * Returns the total number of overruns in the ring buffer
2066  * (all CPU entries)
2067  */
2068 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2069 {
2070         struct ring_buffer_per_cpu *cpu_buffer;
2071         unsigned long overruns = 0;
2072         int cpu;
2073
2074         /* if you care about this being correct, lock the buffer */
2075         for_each_buffer_cpu(buffer, cpu) {
2076                 cpu_buffer = buffer->buffers[cpu];
2077                 overruns += cpu_buffer->overrun;
2078         }
2079
2080         return overruns;
2081 }
2082 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2083
2084 static void rb_iter_reset(struct ring_buffer_iter *iter)
2085 {
2086         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2087
2088         /* Iterator usage is expected to have record disabled */
2089         if (list_empty(&cpu_buffer->reader_page->list)) {
2090                 iter->head_page = cpu_buffer->head_page;
2091                 iter->head = cpu_buffer->head_page->read;
2092         } else {
2093                 iter->head_page = cpu_buffer->reader_page;
2094                 iter->head = cpu_buffer->reader_page->read;
2095         }
2096         if (iter->head)
2097                 iter->read_stamp = cpu_buffer->read_stamp;
2098         else
2099                 iter->read_stamp = iter->head_page->page->time_stamp;
2100 }
2101
2102 /**
2103  * ring_buffer_iter_reset - reset an iterator
2104  * @iter: The iterator to reset
2105  *
2106  * Resets the iterator, so that it will start from the beginning
2107  * again.
2108  */
2109 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2110 {
2111         struct ring_buffer_per_cpu *cpu_buffer;
2112         unsigned long flags;
2113
2114         if (!iter)
2115                 return;
2116
2117         cpu_buffer = iter->cpu_buffer;
2118
2119         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2120         rb_iter_reset(iter);
2121         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2122 }
2123 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2124
2125 /**
2126  * ring_buffer_iter_empty - check if an iterator has no more to read
2127  * @iter: The iterator to check
2128  */
2129 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2130 {
2131         struct ring_buffer_per_cpu *cpu_buffer;
2132
2133         cpu_buffer = iter->cpu_buffer;
2134
2135         return iter->head_page == cpu_buffer->commit_page &&
2136                 iter->head == rb_commit_index(cpu_buffer);
2137 }
2138 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2139
2140 static void
2141 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2142                      struct ring_buffer_event *event)
2143 {
2144         u64 delta;
2145
2146         switch (event->type_len) {
2147         case RINGBUF_TYPE_PADDING:
2148                 return;
2149
2150         case RINGBUF_TYPE_TIME_EXTEND:
2151                 delta = event->array[0];
2152                 delta <<= TS_SHIFT;
2153                 delta += event->time_delta;
2154                 cpu_buffer->read_stamp += delta;
2155                 return;
2156
2157         case RINGBUF_TYPE_TIME_STAMP:
2158                 /* FIXME: not implemented */
2159                 return;
2160
2161         case RINGBUF_TYPE_DATA:
2162                 cpu_buffer->read_stamp += event->time_delta;
2163                 return;
2164
2165         default:
2166                 BUG();
2167         }
2168         return;
2169 }
2170
2171 static void
2172 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2173                           struct ring_buffer_event *event)
2174 {
2175         u64 delta;
2176
2177         switch (event->type_len) {
2178         case RINGBUF_TYPE_PADDING:
2179                 return;
2180
2181         case RINGBUF_TYPE_TIME_EXTEND:
2182                 delta = event->array[0];
2183                 delta <<= TS_SHIFT;
2184                 delta += event->time_delta;
2185                 iter->read_stamp += delta;
2186                 return;
2187
2188         case RINGBUF_TYPE_TIME_STAMP:
2189                 /* FIXME: not implemented */
2190                 return;
2191
2192         case RINGBUF_TYPE_DATA:
2193                 iter->read_stamp += event->time_delta;
2194                 return;
2195
2196         default:
2197                 BUG();
2198         }
2199         return;
2200 }
2201
2202 static struct buffer_page *
2203 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2204 {
2205         struct buffer_page *reader = NULL;
2206         unsigned long flags;
2207         int nr_loops = 0;
2208
2209         local_irq_save(flags);
2210         __raw_spin_lock(&cpu_buffer->lock);
2211
2212  again:
2213         /*
2214          * This should normally only loop twice. But because the
2215          * start of the reader inserts an empty page, it causes
2216          * a case where we will loop three times. There should be no
2217          * reason to loop four times (that I know of).
2218          */
2219         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2220                 reader = NULL;
2221                 goto out;
2222         }
2223
2224         reader = cpu_buffer->reader_page;
2225
2226         /* If there's more to read, return this page */
2227         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2228                 goto out;
2229
2230         /* Never should we have an index greater than the size */
2231         if (RB_WARN_ON(cpu_buffer,
2232                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2233                 goto out;
2234
2235         /* check if we caught up to the tail */
2236         reader = NULL;
2237         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2238                 goto out;
2239
2240         /*
2241          * Splice the empty reader page into the list around the head.
2242          * Reset the reader page to size zero.
2243          */
2244
2245         reader = cpu_buffer->head_page;
2246         cpu_buffer->reader_page->list.next = reader->list.next;
2247         cpu_buffer->reader_page->list.prev = reader->list.prev;
2248
2249         local_set(&cpu_buffer->reader_page->write, 0);
2250         local_set(&cpu_buffer->reader_page->entries, 0);
2251         local_set(&cpu_buffer->reader_page->page->commit, 0);
2252
2253         /* Make the reader page now replace the head */
2254         reader->list.prev->next = &cpu_buffer->reader_page->list;
2255         reader->list.next->prev = &cpu_buffer->reader_page->list;
2256
2257         /*
2258          * If the tail is on the reader, then we must set the head
2259          * to the inserted page, otherwise we set it one before.
2260          */
2261         cpu_buffer->head_page = cpu_buffer->reader_page;
2262
2263         if (cpu_buffer->commit_page != reader)
2264                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2265
2266         /* Finally update the reader page to the new head */
2267         cpu_buffer->reader_page = reader;
2268         rb_reset_reader_page(cpu_buffer);
2269
2270         goto again;
2271
2272  out:
2273         __raw_spin_unlock(&cpu_buffer->lock);
2274         local_irq_restore(flags);
2275
2276         return reader;
2277 }
2278
2279 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2280 {
2281         struct ring_buffer_event *event;
2282         struct buffer_page *reader;
2283         unsigned length;
2284
2285         reader = rb_get_reader_page(cpu_buffer);
2286
2287         /* This function should not be called when buffer is empty */
2288         if (RB_WARN_ON(cpu_buffer, !reader))
2289                 return;
2290
2291         event = rb_reader_event(cpu_buffer);
2292
2293         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2294                         || rb_discarded_event(event))
2295                 cpu_buffer->read++;
2296
2297         rb_update_read_stamp(cpu_buffer, event);
2298
2299         length = rb_event_length(event);
2300         cpu_buffer->reader_page->read += length;
2301 }
2302
2303 static void rb_advance_iter(struct ring_buffer_iter *iter)
2304 {
2305         struct ring_buffer *buffer;
2306         struct ring_buffer_per_cpu *cpu_buffer;
2307         struct ring_buffer_event *event;
2308         unsigned length;
2309
2310         cpu_buffer = iter->cpu_buffer;
2311         buffer = cpu_buffer->buffer;
2312
2313         /*
2314          * Check if we are at the end of the buffer.
2315          */
2316         if (iter->head >= rb_page_size(iter->head_page)) {
2317                 /* discarded commits can make the page empty */
2318                 if (iter->head_page == cpu_buffer->commit_page)
2319                         return;
2320                 rb_inc_iter(iter);
2321                 return;
2322         }
2323
2324         event = rb_iter_head_event(iter);
2325
2326         length = rb_event_length(event);
2327
2328         /*
2329          * This should not be called to advance the header if we are
2330          * at the tail of the buffer.
2331          */
2332         if (RB_WARN_ON(cpu_buffer,
2333                        (iter->head_page == cpu_buffer->commit_page) &&
2334                        (iter->head + length > rb_commit_index(cpu_buffer))))
2335                 return;
2336
2337         rb_update_iter_read_stamp(iter, event);
2338
2339         iter->head += length;
2340
2341         /* check for end of page padding */
2342         if ((iter->head >= rb_page_size(iter->head_page)) &&
2343             (iter->head_page != cpu_buffer->commit_page))
2344                 rb_advance_iter(iter);
2345 }
2346
2347 static struct ring_buffer_event *
2348 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2349 {
2350         struct ring_buffer_per_cpu *cpu_buffer;
2351         struct ring_buffer_event *event;
2352         struct buffer_page *reader;
2353         int nr_loops = 0;
2354
2355         cpu_buffer = buffer->buffers[cpu];
2356
2357  again:
2358         /*
2359          * We repeat when a timestamp is encountered. It is possible
2360          * to get multiple timestamps from an interrupt entering just
2361          * as one timestamp is about to be written, or from discarded
2362          * commits. The most that we can have is the number on a single page.
2363          */
2364         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2365                 return NULL;
2366
2367         reader = rb_get_reader_page(cpu_buffer);
2368         if (!reader)
2369                 return NULL;
2370
2371         event = rb_reader_event(cpu_buffer);
2372
2373         switch (event->type_len) {
2374         case RINGBUF_TYPE_PADDING:
2375                 if (rb_null_event(event))
2376                         RB_WARN_ON(cpu_buffer, 1);
2377                 /*
2378                  * Because the writer could be discarding every
2379                  * event it creates (which would probably be bad)
2380                  * if we were to go back to "again" then we may never
2381                  * catch up, and will trigger the warn on, or lock
2382                  * the box. Return the padding, and we will release
2383                  * the current locks, and try again.
2384                  */
2385                 rb_advance_reader(cpu_buffer);
2386                 return event;
2387
2388         case RINGBUF_TYPE_TIME_EXTEND:
2389                 /* Internal data, OK to advance */
2390                 rb_advance_reader(cpu_buffer);
2391                 goto again;
2392
2393         case RINGBUF_TYPE_TIME_STAMP:
2394                 /* FIXME: not implemented */
2395                 rb_advance_reader(cpu_buffer);
2396                 goto again;
2397
2398         case RINGBUF_TYPE_DATA:
2399                 if (ts) {
2400                         *ts = cpu_buffer->read_stamp + event->time_delta;
2401                         ring_buffer_normalize_time_stamp(buffer,
2402                                                          cpu_buffer->cpu, ts);
2403                 }
2404                 return event;
2405
2406         default:
2407                 BUG();
2408         }
2409
2410         return NULL;
2411 }
2412 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2413
2414 static struct ring_buffer_event *
2415 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2416 {
2417         struct ring_buffer *buffer;
2418         struct ring_buffer_per_cpu *cpu_buffer;
2419         struct ring_buffer_event *event;
2420         int nr_loops = 0;
2421
2422         if (ring_buffer_iter_empty(iter))
2423                 return NULL;
2424
2425         cpu_buffer = iter->cpu_buffer;
2426         buffer = cpu_buffer->buffer;
2427
2428  again:
2429         /*
2430          * We repeat when a timestamp is encountered.
2431          * We can get multiple timestamps by nested interrupts or also
2432          * if filtering is on (discarding commits). Since discarding
2433          * commits can be frequent we can get a lot of timestamps.
2434          * But we limit them by not adding timestamps if they begin
2435          * at the start of a page.
2436          */
2437         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2438                 return NULL;
2439
2440         if (rb_per_cpu_empty(cpu_buffer))
2441                 return NULL;
2442
2443         event = rb_iter_head_event(iter);
2444
2445         switch (event->type_len) {
2446         case RINGBUF_TYPE_PADDING:
2447                 if (rb_null_event(event)) {
2448                         rb_inc_iter(iter);
2449                         goto again;
2450                 }
2451                 rb_advance_iter(iter);
2452                 return event;
2453
2454         case RINGBUF_TYPE_TIME_EXTEND:
2455                 /* Internal data, OK to advance */
2456                 rb_advance_iter(iter);
2457                 goto again;
2458
2459         case RINGBUF_TYPE_TIME_STAMP:
2460                 /* FIXME: not implemented */
2461                 rb_advance_iter(iter);
2462                 goto again;
2463
2464         case RINGBUF_TYPE_DATA:
2465                 if (ts) {
2466                         *ts = iter->read_stamp + event->time_delta;
2467                         ring_buffer_normalize_time_stamp(buffer,
2468                                                          cpu_buffer->cpu, ts);
2469                 }
2470                 return event;
2471
2472         default:
2473                 BUG();
2474         }
2475
2476         return NULL;
2477 }
2478 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2479
2480 /**
2481  * ring_buffer_peek - peek at the next event to be read
2482  * @buffer: The ring buffer to read
2483  * @cpu: The cpu to peak at
2484  * @ts: The timestamp counter of this event.
2485  *
2486  * This will return the event that will be read next, but does
2487  * not consume the data.
2488  */
2489 struct ring_buffer_event *
2490 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2491 {
2492         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2493         struct ring_buffer_event *event;
2494         unsigned long flags;
2495
2496         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2497                 return NULL;
2498
2499  again:
2500         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2501         event = rb_buffer_peek(buffer, cpu, ts);
2502         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2503
2504         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2505                 cpu_relax();
2506                 goto again;
2507         }
2508
2509         return event;
2510 }
2511
2512 /**
2513  * ring_buffer_iter_peek - peek at the next event to be read
2514  * @iter: The ring buffer iterator
2515  * @ts: The timestamp counter of this event.
2516  *
2517  * This will return the event that will be read next, but does
2518  * not increment the iterator.
2519  */
2520 struct ring_buffer_event *
2521 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2522 {
2523         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2524         struct ring_buffer_event *event;
2525         unsigned long flags;
2526
2527  again:
2528         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2529         event = rb_iter_peek(iter, ts);
2530         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2531
2532         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2533                 cpu_relax();
2534                 goto again;
2535         }
2536
2537         return event;
2538 }
2539
2540 /**
2541  * ring_buffer_consume - return an event and consume it
2542  * @buffer: The ring buffer to get the next event from
2543  *
2544  * Returns the next event in the ring buffer, and that event is consumed.
2545  * Meaning, that sequential reads will keep returning a different event,
2546  * and eventually empty the ring buffer if the producer is slower.
2547  */
2548 struct ring_buffer_event *
2549 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2550 {
2551         struct ring_buffer_per_cpu *cpu_buffer;
2552         struct ring_buffer_event *event = NULL;
2553         unsigned long flags;
2554
2555  again:
2556         /* might be called in atomic */
2557         preempt_disable();
2558
2559         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2560                 goto out;
2561
2562         cpu_buffer = buffer->buffers[cpu];
2563         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2564
2565         event = rb_buffer_peek(buffer, cpu, ts);
2566         if (!event)
2567                 goto out_unlock;
2568
2569         rb_advance_reader(cpu_buffer);
2570
2571  out_unlock:
2572         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2573
2574  out:
2575         preempt_enable();
2576
2577         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2578                 cpu_relax();
2579                 goto again;
2580         }
2581
2582         return event;
2583 }
2584 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2585
2586 /**
2587  * ring_buffer_read_start - start a non consuming read of the buffer
2588  * @buffer: The ring buffer to read from
2589  * @cpu: The cpu buffer to iterate over
2590  *
2591  * This starts up an iteration through the buffer. It also disables
2592  * the recording to the buffer until the reading is finished.
2593  * This prevents the reading from being corrupted. This is not
2594  * a consuming read, so a producer is not expected.
2595  *
2596  * Must be paired with ring_buffer_finish.
2597  */
2598 struct ring_buffer_iter *
2599 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2600 {
2601         struct ring_buffer_per_cpu *cpu_buffer;
2602         struct ring_buffer_iter *iter;
2603         unsigned long flags;
2604
2605         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2606                 return NULL;
2607
2608         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2609         if (!iter)
2610                 return NULL;
2611
2612         cpu_buffer = buffer->buffers[cpu];
2613
2614         iter->cpu_buffer = cpu_buffer;
2615
2616         atomic_inc(&cpu_buffer->record_disabled);
2617         synchronize_sched();
2618
2619         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2620         __raw_spin_lock(&cpu_buffer->lock);
2621         rb_iter_reset(iter);
2622         __raw_spin_unlock(&cpu_buffer->lock);
2623         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2624
2625         return iter;
2626 }
2627 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2628
2629 /**
2630  * ring_buffer_finish - finish reading the iterator of the buffer
2631  * @iter: The iterator retrieved by ring_buffer_start
2632  *
2633  * This re-enables the recording to the buffer, and frees the
2634  * iterator.
2635  */
2636 void
2637 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2638 {
2639         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2640
2641         atomic_dec(&cpu_buffer->record_disabled);
2642         kfree(iter);
2643 }
2644 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2645
2646 /**
2647  * ring_buffer_read - read the next item in the ring buffer by the iterator
2648  * @iter: The ring buffer iterator
2649  * @ts: The time stamp of the event read.
2650  *
2651  * This reads the next event in the ring buffer and increments the iterator.
2652  */
2653 struct ring_buffer_event *
2654 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2655 {
2656         struct ring_buffer_event *event;
2657         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2658         unsigned long flags;
2659
2660  again:
2661         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2662         event = rb_iter_peek(iter, ts);
2663         if (!event)
2664                 goto out;
2665
2666         rb_advance_iter(iter);
2667  out:
2668         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2669
2670         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2671                 cpu_relax();
2672                 goto again;
2673         }
2674
2675         return event;
2676 }
2677 EXPORT_SYMBOL_GPL(ring_buffer_read);
2678
2679 /**
2680  * ring_buffer_size - return the size of the ring buffer (in bytes)
2681  * @buffer: The ring buffer.
2682  */
2683 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2684 {
2685         return BUF_PAGE_SIZE * buffer->pages;
2686 }
2687 EXPORT_SYMBOL_GPL(ring_buffer_size);
2688
2689 static void
2690 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2691 {
2692         cpu_buffer->head_page
2693                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2694         local_set(&cpu_buffer->head_page->write, 0);
2695         local_set(&cpu_buffer->head_page->entries, 0);
2696         local_set(&cpu_buffer->head_page->page->commit, 0);
2697
2698         cpu_buffer->head_page->read = 0;
2699
2700         cpu_buffer->tail_page = cpu_buffer->head_page;
2701         cpu_buffer->commit_page = cpu_buffer->head_page;
2702
2703         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2704         local_set(&cpu_buffer->reader_page->write, 0);
2705         local_set(&cpu_buffer->reader_page->entries, 0);
2706         local_set(&cpu_buffer->reader_page->page->commit, 0);
2707         cpu_buffer->reader_page->read = 0;
2708
2709         cpu_buffer->nmi_dropped = 0;
2710         cpu_buffer->commit_overrun = 0;
2711         cpu_buffer->overrun = 0;
2712         cpu_buffer->read = 0;
2713         local_set(&cpu_buffer->entries, 0);
2714         local_set(&cpu_buffer->committing, 0);
2715         local_set(&cpu_buffer->commits, 0);
2716
2717         cpu_buffer->write_stamp = 0;
2718         cpu_buffer->read_stamp = 0;
2719 }
2720
2721 /**
2722  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2723  * @buffer: The ring buffer to reset a per cpu buffer of
2724  * @cpu: The CPU buffer to be reset
2725  */
2726 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2727 {
2728         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2729         unsigned long flags;
2730
2731         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2732                 return;
2733
2734         atomic_inc(&cpu_buffer->record_disabled);
2735
2736         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2737
2738         __raw_spin_lock(&cpu_buffer->lock);
2739
2740         rb_reset_cpu(cpu_buffer);
2741
2742         __raw_spin_unlock(&cpu_buffer->lock);
2743
2744         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2745
2746         atomic_dec(&cpu_buffer->record_disabled);
2747 }
2748 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2749
2750 /**
2751  * ring_buffer_reset - reset a ring buffer
2752  * @buffer: The ring buffer to reset all cpu buffers
2753  */
2754 void ring_buffer_reset(struct ring_buffer *buffer)
2755 {
2756         int cpu;
2757
2758         for_each_buffer_cpu(buffer, cpu)
2759                 ring_buffer_reset_cpu(buffer, cpu);
2760 }
2761 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2762
2763 /**
2764  * rind_buffer_empty - is the ring buffer empty?
2765  * @buffer: The ring buffer to test
2766  */
2767 int ring_buffer_empty(struct ring_buffer *buffer)
2768 {
2769         struct ring_buffer_per_cpu *cpu_buffer;
2770         int cpu;
2771
2772         /* yes this is racy, but if you don't like the race, lock the buffer */
2773         for_each_buffer_cpu(buffer, cpu) {
2774                 cpu_buffer = buffer->buffers[cpu];
2775                 if (!rb_per_cpu_empty(cpu_buffer))
2776                         return 0;
2777         }
2778
2779         return 1;
2780 }
2781 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2782
2783 /**
2784  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2785  * @buffer: The ring buffer
2786  * @cpu: The CPU buffer to test
2787  */
2788 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2789 {
2790         struct ring_buffer_per_cpu *cpu_buffer;
2791         int ret;
2792
2793         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2794                 return 1;
2795
2796         cpu_buffer = buffer->buffers[cpu];
2797         ret = rb_per_cpu_empty(cpu_buffer);
2798
2799
2800         return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2803
2804 /**
2805  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2806  * @buffer_a: One buffer to swap with
2807  * @buffer_b: The other buffer to swap with
2808  *
2809  * This function is useful for tracers that want to take a "snapshot"
2810  * of a CPU buffer and has another back up buffer lying around.
2811  * it is expected that the tracer handles the cpu buffer not being
2812  * used at the moment.
2813  */
2814 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2815                          struct ring_buffer *buffer_b, int cpu)
2816 {
2817         struct ring_buffer_per_cpu *cpu_buffer_a;
2818         struct ring_buffer_per_cpu *cpu_buffer_b;
2819         int ret = -EINVAL;
2820
2821         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2822             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2823                 goto out;
2824
2825         /* At least make sure the two buffers are somewhat the same */
2826         if (buffer_a->pages != buffer_b->pages)
2827                 goto out;
2828
2829         ret = -EAGAIN;
2830
2831         if (ring_buffer_flags != RB_BUFFERS_ON)
2832                 goto out;
2833
2834         if (atomic_read(&buffer_a->record_disabled))
2835                 goto out;
2836
2837         if (atomic_read(&buffer_b->record_disabled))
2838                 goto out;
2839
2840         cpu_buffer_a = buffer_a->buffers[cpu];
2841         cpu_buffer_b = buffer_b->buffers[cpu];
2842
2843         if (atomic_read(&cpu_buffer_a->record_disabled))
2844                 goto out;
2845
2846         if (atomic_read(&cpu_buffer_b->record_disabled))
2847                 goto out;
2848
2849         /*
2850          * We can't do a synchronize_sched here because this
2851          * function can be called in atomic context.
2852          * Normally this will be called from the same CPU as cpu.
2853          * If not it's up to the caller to protect this.
2854          */
2855         atomic_inc(&cpu_buffer_a->record_disabled);
2856         atomic_inc(&cpu_buffer_b->record_disabled);
2857
2858         buffer_a->buffers[cpu] = cpu_buffer_b;
2859         buffer_b->buffers[cpu] = cpu_buffer_a;
2860
2861         cpu_buffer_b->buffer = buffer_a;
2862         cpu_buffer_a->buffer = buffer_b;
2863
2864         atomic_dec(&cpu_buffer_a->record_disabled);
2865         atomic_dec(&cpu_buffer_b->record_disabled);
2866
2867         ret = 0;
2868 out:
2869         return ret;
2870 }
2871 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2872
2873 /**
2874  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2875  * @buffer: the buffer to allocate for.
2876  *
2877  * This function is used in conjunction with ring_buffer_read_page.
2878  * When reading a full page from the ring buffer, these functions
2879  * can be used to speed up the process. The calling function should
2880  * allocate a few pages first with this function. Then when it
2881  * needs to get pages from the ring buffer, it passes the result
2882  * of this function into ring_buffer_read_page, which will swap
2883  * the page that was allocated, with the read page of the buffer.
2884  *
2885  * Returns:
2886  *  The page allocated, or NULL on error.
2887  */
2888 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2889 {
2890         struct buffer_data_page *bpage;
2891         unsigned long addr;
2892
2893         addr = __get_free_page(GFP_KERNEL);
2894         if (!addr)
2895                 return NULL;
2896
2897         bpage = (void *)addr;
2898
2899         rb_init_page(bpage);
2900
2901         return bpage;
2902 }
2903 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2904
2905 /**
2906  * ring_buffer_free_read_page - free an allocated read page
2907  * @buffer: the buffer the page was allocate for
2908  * @data: the page to free
2909  *
2910  * Free a page allocated from ring_buffer_alloc_read_page.
2911  */
2912 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2913 {
2914         free_page((unsigned long)data);
2915 }
2916 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2917
2918 /**
2919  * ring_buffer_read_page - extract a page from the ring buffer
2920  * @buffer: buffer to extract from
2921  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2922  * @len: amount to extract
2923  * @cpu: the cpu of the buffer to extract
2924  * @full: should the extraction only happen when the page is full.
2925  *
2926  * This function will pull out a page from the ring buffer and consume it.
2927  * @data_page must be the address of the variable that was returned
2928  * from ring_buffer_alloc_read_page. This is because the page might be used
2929  * to swap with a page in the ring buffer.
2930  *
2931  * for example:
2932  *      rpage = ring_buffer_alloc_read_page(buffer);
2933  *      if (!rpage)
2934  *              return error;
2935  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2936  *      if (ret >= 0)
2937  *              process_page(rpage, ret);
2938  *
2939  * When @full is set, the function will not return true unless
2940  * the writer is off the reader page.
2941  *
2942  * Note: it is up to the calling functions to handle sleeps and wakeups.
2943  *  The ring buffer can be used anywhere in the kernel and can not
2944  *  blindly call wake_up. The layer that uses the ring buffer must be
2945  *  responsible for that.
2946  *
2947  * Returns:
2948  *  >=0 if data has been transferred, returns the offset of consumed data.
2949  *  <0 if no data has been transferred.
2950  */
2951 int ring_buffer_read_page(struct ring_buffer *buffer,
2952                           void **data_page, size_t len, int cpu, int full)
2953 {
2954         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2955         struct ring_buffer_event *event;
2956         struct buffer_data_page *bpage;
2957         struct buffer_page *reader;
2958         unsigned long flags;
2959         unsigned int commit;
2960         unsigned int read;
2961         u64 save_timestamp;
2962         int ret = -1;
2963
2964         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2965                 goto out;
2966
2967         /*
2968          * If len is not big enough to hold the page header, then
2969          * we can not copy anything.
2970          */
2971         if (len <= BUF_PAGE_HDR_SIZE)
2972                 goto out;
2973
2974         len -= BUF_PAGE_HDR_SIZE;
2975
2976         if (!data_page)
2977                 goto out;
2978
2979         bpage = *data_page;
2980         if (!bpage)
2981                 goto out;
2982
2983         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2984
2985         reader = rb_get_reader_page(cpu_buffer);
2986         if (!reader)
2987                 goto out_unlock;
2988
2989         event = rb_reader_event(cpu_buffer);
2990
2991         read = reader->read;
2992         commit = rb_page_commit(reader);
2993
2994         /*
2995          * If this page has been partially read or
2996          * if len is not big enough to read the rest of the page or
2997          * a writer is still on the page, then
2998          * we must copy the data from the page to the buffer.
2999          * Otherwise, we can simply swap the page with the one passed in.
3000          */
3001         if (read || (len < (commit - read)) ||
3002             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3003                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3004                 unsigned int rpos = read;
3005                 unsigned int pos = 0;
3006                 unsigned int size;
3007
3008                 if (full)
3009                         goto out_unlock;
3010
3011                 if (len > (commit - read))
3012                         len = (commit - read);
3013
3014                 size = rb_event_length(event);
3015
3016                 if (len < size)
3017                         goto out_unlock;
3018
3019                 /* save the current timestamp, since the user will need it */
3020                 save_timestamp = cpu_buffer->read_stamp;
3021
3022                 /* Need to copy one event at a time */
3023                 do {
3024                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3025
3026                         len -= size;
3027
3028                         rb_advance_reader(cpu_buffer);
3029                         rpos = reader->read;
3030                         pos += size;
3031
3032                         event = rb_reader_event(cpu_buffer);
3033                         size = rb_event_length(event);
3034                 } while (len > size);
3035
3036                 /* update bpage */
3037                 local_set(&bpage->commit, pos);
3038                 bpage->time_stamp = save_timestamp;
3039
3040                 /* we copied everything to the beginning */
3041                 read = 0;
3042         } else {
3043                 /* update the entry counter */
3044                 cpu_buffer->read += local_read(&reader->entries);
3045
3046                 /* swap the pages */
3047                 rb_init_page(bpage);
3048                 bpage = reader->page;
3049                 reader->page = *data_page;
3050                 local_set(&reader->write, 0);
3051                 local_set(&reader->entries, 0);
3052                 reader->read = 0;
3053                 *data_page = bpage;
3054         }
3055         ret = read;
3056
3057  out_unlock:
3058         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3059
3060  out:
3061         return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3064
3065 static ssize_t
3066 rb_simple_read(struct file *filp, char __user *ubuf,
3067                size_t cnt, loff_t *ppos)
3068 {
3069         unsigned long *p = filp->private_data;
3070         char buf[64];
3071         int r;
3072
3073         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3074                 r = sprintf(buf, "permanently disabled\n");
3075         else
3076                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3077
3078         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3079 }
3080
3081 static ssize_t
3082 rb_simple_write(struct file *filp, const char __user *ubuf,
3083                 size_t cnt, loff_t *ppos)
3084 {
3085         unsigned long *p = filp->private_data;
3086         char buf[64];
3087         unsigned long val;
3088         int ret;
3089
3090         if (cnt >= sizeof(buf))
3091                 return -EINVAL;
3092
3093         if (copy_from_user(&buf, ubuf, cnt))
3094                 return -EFAULT;
3095
3096         buf[cnt] = 0;
3097
3098         ret = strict_strtoul(buf, 10, &val);
3099         if (ret < 0)
3100                 return ret;
3101
3102         if (val)
3103                 set_bit(RB_BUFFERS_ON_BIT, p);
3104         else
3105                 clear_bit(RB_BUFFERS_ON_BIT, p);
3106
3107         (*ppos)++;
3108
3109         return cnt;
3110 }
3111
3112 static const struct file_operations rb_simple_fops = {
3113         .open           = tracing_open_generic,
3114         .read           = rb_simple_read,
3115         .write          = rb_simple_write,
3116 };
3117
3118
3119 static __init int rb_init_debugfs(void)
3120 {
3121         struct dentry *d_tracer;
3122
3123         d_tracer = tracing_init_dentry();
3124
3125         trace_create_file("tracing_on", 0644, d_tracer,
3126                             &ring_buffer_flags, &rb_simple_fops);
3127
3128         return 0;
3129 }
3130
3131 fs_initcall(rb_init_debugfs);
3132
3133 #ifdef CONFIG_HOTPLUG_CPU
3134 static int rb_cpu_notify(struct notifier_block *self,
3135                          unsigned long action, void *hcpu)
3136 {
3137         struct ring_buffer *buffer =
3138                 container_of(self, struct ring_buffer, cpu_notify);
3139         long cpu = (long)hcpu;
3140
3141         switch (action) {
3142         case CPU_UP_PREPARE:
3143         case CPU_UP_PREPARE_FROZEN:
3144                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3145                         return NOTIFY_OK;
3146
3147                 buffer->buffers[cpu] =
3148                         rb_allocate_cpu_buffer(buffer, cpu);
3149                 if (!buffer->buffers[cpu]) {
3150                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3151                              cpu);
3152                         return NOTIFY_OK;
3153                 }
3154                 smp_wmb();
3155                 cpumask_set_cpu(cpu, buffer->cpumask);
3156                 break;
3157         case CPU_DOWN_PREPARE:
3158         case CPU_DOWN_PREPARE_FROZEN:
3159                 /*
3160                  * Do nothing.
3161                  *  If we were to free the buffer, then the user would
3162                  *  lose any trace that was in the buffer.
3163                  */
3164                 break;
3165         default:
3166                 break;
3167         }
3168         return NOTIFY_OK;
3169 }
3170 #endif