]> Pileus Git - ~andy/linux/blob - kernel/trace/ring_buffer.c
ring-buffer: move big if statement down
[~andy/linux] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "# compressed entry header\n");
32         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING
220                         && event->time_delta == 0;
221 }
222
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
224 {
225         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
226 }
227
228 static void rb_event_set_padding(struct ring_buffer_event *event)
229 {
230         event->type_len = RINGBUF_TYPE_PADDING;
231         event->time_delta = 0;
232 }
233
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
236 {
237         unsigned length;
238
239         if (event->type_len)
240                 length = event->type_len * RB_ALIGNMENT;
241         else
242                 length = event->array[0];
243         return length + RB_EVNT_HDR_SIZE;
244 }
245
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
249 {
250         switch (event->type_len) {
251         case RINGBUF_TYPE_PADDING:
252                 if (rb_null_event(event))
253                         /* undefined */
254                         return -1;
255                 return  event->array[0] + RB_EVNT_HDR_SIZE;
256
257         case RINGBUF_TYPE_TIME_EXTEND:
258                 return RB_LEN_TIME_EXTEND;
259
260         case RINGBUF_TYPE_TIME_STAMP:
261                 return RB_LEN_TIME_STAMP;
262
263         case RINGBUF_TYPE_DATA:
264                 return rb_event_data_length(event);
265         default:
266                 BUG();
267         }
268         /* not hit */
269         return 0;
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  */
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277 {
278         unsigned length = rb_event_length(event);
279         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280                 return length;
281         length -= RB_EVNT_HDR_SIZE;
282         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284         return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293         /* If length is in len field, then array[0] has the data */
294         if (event->type_len)
295                 return (void *)&event->array[0];
296         /* Otherwise length is in array[0] and array[1] has the data */
297         return (void *)&event->array[1];
298 }
299
300 /**
301  * ring_buffer_event_data - return the data of the event
302  * @event: the event to get the data from
303  */
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
305 {
306         return rb_event_data(event);
307 }
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
309
310 #define for_each_buffer_cpu(buffer, cpu)                \
311         for_each_cpu(cpu, buffer->cpumask)
312
313 #define TS_SHIFT        27
314 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST   (~TS_MASK)
316
317 struct buffer_data_page {
318         u64              time_stamp;    /* page time stamp */
319         local_t          commit;        /* write committed index */
320         unsigned char    data[];        /* data of buffer page */
321 };
322
323 struct buffer_page {
324         struct list_head list;          /* list of buffer pages */
325         local_t          write;         /* index for next write */
326         unsigned         read;          /* index for next read */
327         local_t          entries;       /* entries on this page */
328         struct buffer_data_page *page;  /* Actual data page */
329 };
330
331 static void rb_init_page(struct buffer_data_page *bpage)
332 {
333         local_set(&bpage->commit, 0);
334 }
335
336 /**
337  * ring_buffer_page_len - the size of data on the page.
338  * @page: The page to read
339  *
340  * Returns the amount of data on the page, including buffer page header.
341  */
342 size_t ring_buffer_page_len(void *page)
343 {
344         return local_read(&((struct buffer_data_page *)page)->commit)
345                 + BUF_PAGE_HDR_SIZE;
346 }
347
348 /*
349  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350  * this issue out.
351  */
352 static void free_buffer_page(struct buffer_page *bpage)
353 {
354         free_page((unsigned long)bpage->page);
355         kfree(bpage);
356 }
357
358 /*
359  * We need to fit the time_stamp delta into 27 bits.
360  */
361 static inline int test_time_stamp(u64 delta)
362 {
363         if (delta & TS_DELTA_TEST)
364                 return 1;
365         return 0;
366 }
367
368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
369
370 int ring_buffer_print_page_header(struct trace_seq *s)
371 {
372         struct buffer_data_page field;
373         int ret;
374
375         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376                                "offset:0;\tsize:%u;\n",
377                                (unsigned int)sizeof(field.time_stamp));
378
379         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
380                                "offset:%u;\tsize:%u;\n",
381                                (unsigned int)offsetof(typeof(field), commit),
382                                (unsigned int)sizeof(field.commit));
383
384         ret = trace_seq_printf(s, "\tfield: char data;\t"
385                                "offset:%u;\tsize:%u;\n",
386                                (unsigned int)offsetof(typeof(field), data),
387                                (unsigned int)BUF_PAGE_SIZE);
388
389         return ret;
390 }
391
392 /*
393  * head_page == tail_page && head == tail then buffer is empty.
394  */
395 struct ring_buffer_per_cpu {
396         int                             cpu;
397         struct ring_buffer              *buffer;
398         spinlock_t                      reader_lock; /* serialize readers */
399         raw_spinlock_t                  lock;
400         struct lock_class_key           lock_key;
401         struct list_head                pages;
402         struct buffer_page              *head_page;     /* read from head */
403         struct buffer_page              *tail_page;     /* write to tail */
404         struct buffer_page              *commit_page;   /* committed pages */
405         struct buffer_page              *reader_page;
406         unsigned long                   nmi_dropped;
407         unsigned long                   commit_overrun;
408         unsigned long                   overrun;
409         unsigned long                   read;
410         local_t                         entries;
411         u64                             write_stamp;
412         u64                             read_stamp;
413         atomic_t                        record_disabled;
414 };
415
416 struct ring_buffer {
417         unsigned                        pages;
418         unsigned                        flags;
419         int                             cpus;
420         atomic_t                        record_disabled;
421         cpumask_var_t                   cpumask;
422
423         struct mutex                    mutex;
424
425         struct ring_buffer_per_cpu      **buffers;
426
427 #ifdef CONFIG_HOTPLUG_CPU
428         struct notifier_block           cpu_notify;
429 #endif
430         u64                             (*clock)(void);
431 };
432
433 struct ring_buffer_iter {
434         struct ring_buffer_per_cpu      *cpu_buffer;
435         unsigned long                   head;
436         struct buffer_page              *head_page;
437         u64                             read_stamp;
438 };
439
440 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
441 #define RB_WARN_ON(buffer, cond)                                \
442         ({                                                      \
443                 int _____ret = unlikely(cond);                  \
444                 if (_____ret) {                                 \
445                         atomic_inc(&buffer->record_disabled);   \
446                         WARN_ON(1);                             \
447                 }                                               \
448                 _____ret;                                       \
449         })
450
451 /* Up this if you want to test the TIME_EXTENTS and normalization */
452 #define DEBUG_SHIFT 0
453
454 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
455 {
456         u64 time;
457
458         preempt_disable_notrace();
459         /* shift to debug/test normalization and TIME_EXTENTS */
460         time = buffer->clock() << DEBUG_SHIFT;
461         preempt_enable_no_resched_notrace();
462
463         return time;
464 }
465 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
466
467 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
468                                       int cpu, u64 *ts)
469 {
470         /* Just stupid testing the normalize function and deltas */
471         *ts >>= DEBUG_SHIFT;
472 }
473 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
474
475 /**
476  * check_pages - integrity check of buffer pages
477  * @cpu_buffer: CPU buffer with pages to test
478  *
479  * As a safety measure we check to make sure the data pages have not
480  * been corrupted.
481  */
482 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
483 {
484         struct list_head *head = &cpu_buffer->pages;
485         struct buffer_page *bpage, *tmp;
486
487         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
488                 return -1;
489         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
490                 return -1;
491
492         list_for_each_entry_safe(bpage, tmp, head, list) {
493                 if (RB_WARN_ON(cpu_buffer,
494                                bpage->list.next->prev != &bpage->list))
495                         return -1;
496                 if (RB_WARN_ON(cpu_buffer,
497                                bpage->list.prev->next != &bpage->list))
498                         return -1;
499         }
500
501         return 0;
502 }
503
504 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
505                              unsigned nr_pages)
506 {
507         struct list_head *head = &cpu_buffer->pages;
508         struct buffer_page *bpage, *tmp;
509         unsigned long addr;
510         LIST_HEAD(pages);
511         unsigned i;
512
513         for (i = 0; i < nr_pages; i++) {
514                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
515                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
516                 if (!bpage)
517                         goto free_pages;
518                 list_add(&bpage->list, &pages);
519
520                 addr = __get_free_page(GFP_KERNEL);
521                 if (!addr)
522                         goto free_pages;
523                 bpage->page = (void *)addr;
524                 rb_init_page(bpage->page);
525         }
526
527         list_splice(&pages, head);
528
529         rb_check_pages(cpu_buffer);
530
531         return 0;
532
533  free_pages:
534         list_for_each_entry_safe(bpage, tmp, &pages, list) {
535                 list_del_init(&bpage->list);
536                 free_buffer_page(bpage);
537         }
538         return -ENOMEM;
539 }
540
541 static struct ring_buffer_per_cpu *
542 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
543 {
544         struct ring_buffer_per_cpu *cpu_buffer;
545         struct buffer_page *bpage;
546         unsigned long addr;
547         int ret;
548
549         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
550                                   GFP_KERNEL, cpu_to_node(cpu));
551         if (!cpu_buffer)
552                 return NULL;
553
554         cpu_buffer->cpu = cpu;
555         cpu_buffer->buffer = buffer;
556         spin_lock_init(&cpu_buffer->reader_lock);
557         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
558         INIT_LIST_HEAD(&cpu_buffer->pages);
559
560         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
561                             GFP_KERNEL, cpu_to_node(cpu));
562         if (!bpage)
563                 goto fail_free_buffer;
564
565         cpu_buffer->reader_page = bpage;
566         addr = __get_free_page(GFP_KERNEL);
567         if (!addr)
568                 goto fail_free_reader;
569         bpage->page = (void *)addr;
570         rb_init_page(bpage->page);
571
572         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
573
574         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
575         if (ret < 0)
576                 goto fail_free_reader;
577
578         cpu_buffer->head_page
579                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
580         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
581
582         return cpu_buffer;
583
584  fail_free_reader:
585         free_buffer_page(cpu_buffer->reader_page);
586
587  fail_free_buffer:
588         kfree(cpu_buffer);
589         return NULL;
590 }
591
592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
593 {
594         struct list_head *head = &cpu_buffer->pages;
595         struct buffer_page *bpage, *tmp;
596
597         free_buffer_page(cpu_buffer->reader_page);
598
599         list_for_each_entry_safe(bpage, tmp, head, list) {
600                 list_del_init(&bpage->list);
601                 free_buffer_page(bpage);
602         }
603         kfree(cpu_buffer);
604 }
605
606 /*
607  * Causes compile errors if the struct buffer_page gets bigger
608  * than the struct page.
609  */
610 extern int ring_buffer_page_too_big(void);
611
612 #ifdef CONFIG_HOTPLUG_CPU
613 static int rb_cpu_notify(struct notifier_block *self,
614                          unsigned long action, void *hcpu);
615 #endif
616
617 /**
618  * ring_buffer_alloc - allocate a new ring_buffer
619  * @size: the size in bytes per cpu that is needed.
620  * @flags: attributes to set for the ring buffer.
621  *
622  * Currently the only flag that is available is the RB_FL_OVERWRITE
623  * flag. This flag means that the buffer will overwrite old data
624  * when the buffer wraps. If this flag is not set, the buffer will
625  * drop data when the tail hits the head.
626  */
627 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
628 {
629         struct ring_buffer *buffer;
630         int bsize;
631         int cpu;
632
633         /* Paranoid! Optimizes out when all is well */
634         if (sizeof(struct buffer_page) > sizeof(struct page))
635                 ring_buffer_page_too_big();
636
637
638         /* keep it in its own cache line */
639         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
640                          GFP_KERNEL);
641         if (!buffer)
642                 return NULL;
643
644         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
645                 goto fail_free_buffer;
646
647         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
648         buffer->flags = flags;
649         buffer->clock = trace_clock_local;
650
651         /* need at least two pages */
652         if (buffer->pages == 1)
653                 buffer->pages++;
654
655         /*
656          * In case of non-hotplug cpu, if the ring-buffer is allocated
657          * in early initcall, it will not be notified of secondary cpus.
658          * In that off case, we need to allocate for all possible cpus.
659          */
660 #ifdef CONFIG_HOTPLUG_CPU
661         get_online_cpus();
662         cpumask_copy(buffer->cpumask, cpu_online_mask);
663 #else
664         cpumask_copy(buffer->cpumask, cpu_possible_mask);
665 #endif
666         buffer->cpus = nr_cpu_ids;
667
668         bsize = sizeof(void *) * nr_cpu_ids;
669         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
670                                   GFP_KERNEL);
671         if (!buffer->buffers)
672                 goto fail_free_cpumask;
673
674         for_each_buffer_cpu(buffer, cpu) {
675                 buffer->buffers[cpu] =
676                         rb_allocate_cpu_buffer(buffer, cpu);
677                 if (!buffer->buffers[cpu])
678                         goto fail_free_buffers;
679         }
680
681 #ifdef CONFIG_HOTPLUG_CPU
682         buffer->cpu_notify.notifier_call = rb_cpu_notify;
683         buffer->cpu_notify.priority = 0;
684         register_cpu_notifier(&buffer->cpu_notify);
685 #endif
686
687         put_online_cpus();
688         mutex_init(&buffer->mutex);
689
690         return buffer;
691
692  fail_free_buffers:
693         for_each_buffer_cpu(buffer, cpu) {
694                 if (buffer->buffers[cpu])
695                         rb_free_cpu_buffer(buffer->buffers[cpu]);
696         }
697         kfree(buffer->buffers);
698
699  fail_free_cpumask:
700         free_cpumask_var(buffer->cpumask);
701         put_online_cpus();
702
703  fail_free_buffer:
704         kfree(buffer);
705         return NULL;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
708
709 /**
710  * ring_buffer_free - free a ring buffer.
711  * @buffer: the buffer to free.
712  */
713 void
714 ring_buffer_free(struct ring_buffer *buffer)
715 {
716         int cpu;
717
718         get_online_cpus();
719
720 #ifdef CONFIG_HOTPLUG_CPU
721         unregister_cpu_notifier(&buffer->cpu_notify);
722 #endif
723
724         for_each_buffer_cpu(buffer, cpu)
725                 rb_free_cpu_buffer(buffer->buffers[cpu]);
726
727         put_online_cpus();
728
729         free_cpumask_var(buffer->cpumask);
730
731         kfree(buffer);
732 }
733 EXPORT_SYMBOL_GPL(ring_buffer_free);
734
735 void ring_buffer_set_clock(struct ring_buffer *buffer,
736                            u64 (*clock)(void))
737 {
738         buffer->clock = clock;
739 }
740
741 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
742
743 static void
744 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
745 {
746         struct buffer_page *bpage;
747         struct list_head *p;
748         unsigned i;
749
750         atomic_inc(&cpu_buffer->record_disabled);
751         synchronize_sched();
752
753         for (i = 0; i < nr_pages; i++) {
754                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
755                         return;
756                 p = cpu_buffer->pages.next;
757                 bpage = list_entry(p, struct buffer_page, list);
758                 list_del_init(&bpage->list);
759                 free_buffer_page(bpage);
760         }
761         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
762                 return;
763
764         rb_reset_cpu(cpu_buffer);
765
766         rb_check_pages(cpu_buffer);
767
768         atomic_dec(&cpu_buffer->record_disabled);
769
770 }
771
772 static void
773 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
774                 struct list_head *pages, unsigned nr_pages)
775 {
776         struct buffer_page *bpage;
777         struct list_head *p;
778         unsigned i;
779
780         atomic_inc(&cpu_buffer->record_disabled);
781         synchronize_sched();
782
783         for (i = 0; i < nr_pages; i++) {
784                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
785                         return;
786                 p = pages->next;
787                 bpage = list_entry(p, struct buffer_page, list);
788                 list_del_init(&bpage->list);
789                 list_add_tail(&bpage->list, &cpu_buffer->pages);
790         }
791         rb_reset_cpu(cpu_buffer);
792
793         rb_check_pages(cpu_buffer);
794
795         atomic_dec(&cpu_buffer->record_disabled);
796 }
797
798 /**
799  * ring_buffer_resize - resize the ring buffer
800  * @buffer: the buffer to resize.
801  * @size: the new size.
802  *
803  * The tracer is responsible for making sure that the buffer is
804  * not being used while changing the size.
805  * Note: We may be able to change the above requirement by using
806  *  RCU synchronizations.
807  *
808  * Minimum size is 2 * BUF_PAGE_SIZE.
809  *
810  * Returns -1 on failure.
811  */
812 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
813 {
814         struct ring_buffer_per_cpu *cpu_buffer;
815         unsigned nr_pages, rm_pages, new_pages;
816         struct buffer_page *bpage, *tmp;
817         unsigned long buffer_size;
818         unsigned long addr;
819         LIST_HEAD(pages);
820         int i, cpu;
821
822         /*
823          * Always succeed at resizing a non-existent buffer:
824          */
825         if (!buffer)
826                 return size;
827
828         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
829         size *= BUF_PAGE_SIZE;
830         buffer_size = buffer->pages * BUF_PAGE_SIZE;
831
832         /* we need a minimum of two pages */
833         if (size < BUF_PAGE_SIZE * 2)
834                 size = BUF_PAGE_SIZE * 2;
835
836         if (size == buffer_size)
837                 return size;
838
839         mutex_lock(&buffer->mutex);
840         get_online_cpus();
841
842         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
843
844         if (size < buffer_size) {
845
846                 /* easy case, just free pages */
847                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
848                         goto out_fail;
849
850                 rm_pages = buffer->pages - nr_pages;
851
852                 for_each_buffer_cpu(buffer, cpu) {
853                         cpu_buffer = buffer->buffers[cpu];
854                         rb_remove_pages(cpu_buffer, rm_pages);
855                 }
856                 goto out;
857         }
858
859         /*
860          * This is a bit more difficult. We only want to add pages
861          * when we can allocate enough for all CPUs. We do this
862          * by allocating all the pages and storing them on a local
863          * link list. If we succeed in our allocation, then we
864          * add these pages to the cpu_buffers. Otherwise we just free
865          * them all and return -ENOMEM;
866          */
867         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
868                 goto out_fail;
869
870         new_pages = nr_pages - buffer->pages;
871
872         for_each_buffer_cpu(buffer, cpu) {
873                 for (i = 0; i < new_pages; i++) {
874                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
875                                                   cache_line_size()),
876                                             GFP_KERNEL, cpu_to_node(cpu));
877                         if (!bpage)
878                                 goto free_pages;
879                         list_add(&bpage->list, &pages);
880                         addr = __get_free_page(GFP_KERNEL);
881                         if (!addr)
882                                 goto free_pages;
883                         bpage->page = (void *)addr;
884                         rb_init_page(bpage->page);
885                 }
886         }
887
888         for_each_buffer_cpu(buffer, cpu) {
889                 cpu_buffer = buffer->buffers[cpu];
890                 rb_insert_pages(cpu_buffer, &pages, new_pages);
891         }
892
893         if (RB_WARN_ON(buffer, !list_empty(&pages)))
894                 goto out_fail;
895
896  out:
897         buffer->pages = nr_pages;
898         put_online_cpus();
899         mutex_unlock(&buffer->mutex);
900
901         return size;
902
903  free_pages:
904         list_for_each_entry_safe(bpage, tmp, &pages, list) {
905                 list_del_init(&bpage->list);
906                 free_buffer_page(bpage);
907         }
908         put_online_cpus();
909         mutex_unlock(&buffer->mutex);
910         return -ENOMEM;
911
912         /*
913          * Something went totally wrong, and we are too paranoid
914          * to even clean up the mess.
915          */
916  out_fail:
917         put_online_cpus();
918         mutex_unlock(&buffer->mutex);
919         return -1;
920 }
921 EXPORT_SYMBOL_GPL(ring_buffer_resize);
922
923 static inline void *
924 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
925 {
926         return bpage->data + index;
927 }
928
929 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
930 {
931         return bpage->page->data + index;
932 }
933
934 static inline struct ring_buffer_event *
935 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
936 {
937         return __rb_page_index(cpu_buffer->reader_page,
938                                cpu_buffer->reader_page->read);
939 }
940
941 static inline struct ring_buffer_event *
942 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
943 {
944         return __rb_page_index(cpu_buffer->head_page,
945                                cpu_buffer->head_page->read);
946 }
947
948 static inline struct ring_buffer_event *
949 rb_iter_head_event(struct ring_buffer_iter *iter)
950 {
951         return __rb_page_index(iter->head_page, iter->head);
952 }
953
954 static inline unsigned rb_page_write(struct buffer_page *bpage)
955 {
956         return local_read(&bpage->write);
957 }
958
959 static inline unsigned rb_page_commit(struct buffer_page *bpage)
960 {
961         return local_read(&bpage->page->commit);
962 }
963
964 /* Size is determined by what has been commited */
965 static inline unsigned rb_page_size(struct buffer_page *bpage)
966 {
967         return rb_page_commit(bpage);
968 }
969
970 static inline unsigned
971 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
972 {
973         return rb_page_commit(cpu_buffer->commit_page);
974 }
975
976 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
977 {
978         return rb_page_commit(cpu_buffer->head_page);
979 }
980
981 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
982                                struct buffer_page **bpage)
983 {
984         struct list_head *p = (*bpage)->list.next;
985
986         if (p == &cpu_buffer->pages)
987                 p = p->next;
988
989         *bpage = list_entry(p, struct buffer_page, list);
990 }
991
992 static inline unsigned
993 rb_event_index(struct ring_buffer_event *event)
994 {
995         unsigned long addr = (unsigned long)event;
996
997         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
998 }
999
1000 static int
1001 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1002              struct ring_buffer_event *event)
1003 {
1004         unsigned long addr = (unsigned long)event;
1005         unsigned long index;
1006
1007         index = rb_event_index(event);
1008         addr &= PAGE_MASK;
1009
1010         return cpu_buffer->commit_page->page == (void *)addr &&
1011                 rb_commit_index(cpu_buffer) == index;
1012 }
1013
1014 static void
1015 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1016                     struct ring_buffer_event *event)
1017 {
1018         unsigned long addr = (unsigned long)event;
1019         unsigned long index;
1020
1021         index = rb_event_index(event);
1022         addr &= PAGE_MASK;
1023
1024         while (cpu_buffer->commit_page->page != (void *)addr) {
1025                 if (RB_WARN_ON(cpu_buffer,
1026                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1027                         return;
1028                 cpu_buffer->commit_page->page->commit =
1029                         cpu_buffer->commit_page->write;
1030                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1031                 cpu_buffer->write_stamp =
1032                         cpu_buffer->commit_page->page->time_stamp;
1033         }
1034
1035         /* Now set the commit to the event's index */
1036         local_set(&cpu_buffer->commit_page->page->commit, index);
1037 }
1038
1039 static void
1040 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1041 {
1042         /*
1043          * We only race with interrupts and NMIs on this CPU.
1044          * If we own the commit event, then we can commit
1045          * all others that interrupted us, since the interruptions
1046          * are in stack format (they finish before they come
1047          * back to us). This allows us to do a simple loop to
1048          * assign the commit to the tail.
1049          */
1050  again:
1051         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1052                 cpu_buffer->commit_page->page->commit =
1053                         cpu_buffer->commit_page->write;
1054                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1055                 cpu_buffer->write_stamp =
1056                         cpu_buffer->commit_page->page->time_stamp;
1057                 /* add barrier to keep gcc from optimizing too much */
1058                 barrier();
1059         }
1060         while (rb_commit_index(cpu_buffer) !=
1061                rb_page_write(cpu_buffer->commit_page)) {
1062                 cpu_buffer->commit_page->page->commit =
1063                         cpu_buffer->commit_page->write;
1064                 barrier();
1065         }
1066
1067         /* again, keep gcc from optimizing */
1068         barrier();
1069
1070         /*
1071          * If an interrupt came in just after the first while loop
1072          * and pushed the tail page forward, we will be left with
1073          * a dangling commit that will never go forward.
1074          */
1075         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1076                 goto again;
1077 }
1078
1079 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1080 {
1081         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1082         cpu_buffer->reader_page->read = 0;
1083 }
1084
1085 static void rb_inc_iter(struct ring_buffer_iter *iter)
1086 {
1087         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1088
1089         /*
1090          * The iterator could be on the reader page (it starts there).
1091          * But the head could have moved, since the reader was
1092          * found. Check for this case and assign the iterator
1093          * to the head page instead of next.
1094          */
1095         if (iter->head_page == cpu_buffer->reader_page)
1096                 iter->head_page = cpu_buffer->head_page;
1097         else
1098                 rb_inc_page(cpu_buffer, &iter->head_page);
1099
1100         iter->read_stamp = iter->head_page->page->time_stamp;
1101         iter->head = 0;
1102 }
1103
1104 /**
1105  * ring_buffer_update_event - update event type and data
1106  * @event: the even to update
1107  * @type: the type of event
1108  * @length: the size of the event field in the ring buffer
1109  *
1110  * Update the type and data fields of the event. The length
1111  * is the actual size that is written to the ring buffer,
1112  * and with this, we can determine what to place into the
1113  * data field.
1114  */
1115 static void
1116 rb_update_event(struct ring_buffer_event *event,
1117                          unsigned type, unsigned length)
1118 {
1119         event->type_len = type;
1120
1121         switch (type) {
1122
1123         case RINGBUF_TYPE_PADDING:
1124         case RINGBUF_TYPE_TIME_EXTEND:
1125         case RINGBUF_TYPE_TIME_STAMP:
1126                 break;
1127
1128         case 0:
1129                 length -= RB_EVNT_HDR_SIZE;
1130                 if (length > RB_MAX_SMALL_DATA)
1131                         event->array[0] = length;
1132                 else
1133                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1134                 break;
1135         default:
1136                 BUG();
1137         }
1138 }
1139
1140 static unsigned rb_calculate_event_length(unsigned length)
1141 {
1142         struct ring_buffer_event event; /* Used only for sizeof array */
1143
1144         /* zero length can cause confusions */
1145         if (!length)
1146                 length = 1;
1147
1148         if (length > RB_MAX_SMALL_DATA)
1149                 length += sizeof(event.array[0]);
1150
1151         length += RB_EVNT_HDR_SIZE;
1152         length = ALIGN(length, RB_ALIGNMENT);
1153
1154         return length;
1155 }
1156
1157 static struct ring_buffer_event *
1158 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1159                   unsigned type, unsigned long length, u64 *ts)
1160 {
1161         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1162         struct buffer_page *next_page;
1163         unsigned long tail, write;
1164         struct ring_buffer *buffer = cpu_buffer->buffer;
1165         struct ring_buffer_event *event;
1166         unsigned long flags;
1167         bool lock_taken = false;
1168
1169         commit_page = cpu_buffer->commit_page;
1170         /* we just need to protect against interrupts */
1171         barrier();
1172         tail_page = cpu_buffer->tail_page;
1173         write = local_add_return(length, &tail_page->write);
1174         tail = write - length;
1175
1176         /* See if we shot pass the end of this buffer page */
1177         if (write > BUF_PAGE_SIZE)
1178                 goto next_page;
1179
1180         /* We reserved something on the buffer */
1181
1182         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1183                 return NULL;
1184
1185         event = __rb_page_index(tail_page, tail);
1186         rb_update_event(event, type, length);
1187
1188         /* The passed in type is zero for DATA */
1189         if (likely(!type))
1190                 local_inc(&tail_page->entries);
1191
1192         /*
1193          * If this is a commit and the tail is zero, then update
1194          * this page's time stamp.
1195          */
1196         if (!tail && rb_is_commit(cpu_buffer, event))
1197                 cpu_buffer->commit_page->page->time_stamp = *ts;
1198
1199         return event;
1200
1201  next_page:
1202
1203         next_page = tail_page;
1204
1205         local_irq_save(flags);
1206         /*
1207          * Since the write to the buffer is still not
1208          * fully lockless, we must be careful with NMIs.
1209          * The locks in the writers are taken when a write
1210          * crosses to a new page. The locks protect against
1211          * races with the readers (this will soon be fixed
1212          * with a lockless solution).
1213          *
1214          * Because we can not protect against NMIs, and we
1215          * want to keep traces reentrant, we need to manage
1216          * what happens when we are in an NMI.
1217          *
1218          * NMIs can happen after we take the lock.
1219          * If we are in an NMI, only take the lock
1220          * if it is not already taken. Otherwise
1221          * simply fail.
1222          */
1223         if (unlikely(in_nmi())) {
1224                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1225                         cpu_buffer->nmi_dropped++;
1226                         goto out_reset;
1227                 }
1228         } else
1229                 __raw_spin_lock(&cpu_buffer->lock);
1230
1231         lock_taken = true;
1232
1233         rb_inc_page(cpu_buffer, &next_page);
1234
1235         head_page = cpu_buffer->head_page;
1236         reader_page = cpu_buffer->reader_page;
1237
1238         /* we grabbed the lock before incrementing */
1239         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1240                 goto out_reset;
1241
1242         /*
1243          * If for some reason, we had an interrupt storm that made
1244          * it all the way around the buffer, bail, and warn
1245          * about it.
1246          */
1247         if (unlikely(next_page == commit_page)) {
1248                 cpu_buffer->commit_overrun++;
1249                 goto out_reset;
1250         }
1251
1252         if (next_page == head_page) {
1253                 if (!(buffer->flags & RB_FL_OVERWRITE))
1254                         goto out_reset;
1255
1256                 /* tail_page has not moved yet? */
1257                 if (tail_page == cpu_buffer->tail_page) {
1258                         /* count overflows */
1259                         cpu_buffer->overrun +=
1260                                 local_read(&head_page->entries);
1261
1262                         rb_inc_page(cpu_buffer, &head_page);
1263                         cpu_buffer->head_page = head_page;
1264                         cpu_buffer->head_page->read = 0;
1265                 }
1266         }
1267
1268         /*
1269          * If the tail page is still the same as what we think
1270          * it is, then it is up to us to update the tail
1271          * pointer.
1272          */
1273         if (tail_page == cpu_buffer->tail_page) {
1274                 local_set(&next_page->write, 0);
1275                 local_set(&next_page->entries, 0);
1276                 local_set(&next_page->page->commit, 0);
1277                 cpu_buffer->tail_page = next_page;
1278
1279                 /* reread the time stamp */
1280                 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1281                 cpu_buffer->tail_page->page->time_stamp = *ts;
1282         }
1283
1284         /*
1285          * The actual tail page has moved forward.
1286          */
1287         if (tail < BUF_PAGE_SIZE) {
1288                 /* Mark the rest of the page with padding */
1289                 event = __rb_page_index(tail_page, tail);
1290                 rb_event_set_padding(event);
1291         }
1292
1293         if (tail <= BUF_PAGE_SIZE)
1294                 /* Set the write back to the previous setting */
1295                 local_set(&tail_page->write, tail);
1296
1297         /*
1298          * If this was a commit entry that failed,
1299          * increment that too
1300          */
1301         if (tail_page == cpu_buffer->commit_page &&
1302             tail == rb_commit_index(cpu_buffer)) {
1303                 rb_set_commit_to_write(cpu_buffer);
1304         }
1305
1306         __raw_spin_unlock(&cpu_buffer->lock);
1307         local_irq_restore(flags);
1308
1309         /* fail and let the caller try again */
1310         return ERR_PTR(-EAGAIN);
1311
1312  out_reset:
1313         /* reset write */
1314         if (tail <= BUF_PAGE_SIZE)
1315                 local_set(&tail_page->write, tail);
1316
1317         if (likely(lock_taken))
1318                 __raw_spin_unlock(&cpu_buffer->lock);
1319         local_irq_restore(flags);
1320         return NULL;
1321 }
1322
1323 static int
1324 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1325                   u64 *ts, u64 *delta)
1326 {
1327         struct ring_buffer_event *event;
1328         static int once;
1329         int ret;
1330
1331         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1332                 printk(KERN_WARNING "Delta way too big! %llu"
1333                        " ts=%llu write stamp = %llu\n",
1334                        (unsigned long long)*delta,
1335                        (unsigned long long)*ts,
1336                        (unsigned long long)cpu_buffer->write_stamp);
1337                 WARN_ON(1);
1338         }
1339
1340         /*
1341          * The delta is too big, we to add a
1342          * new timestamp.
1343          */
1344         event = __rb_reserve_next(cpu_buffer,
1345                                   RINGBUF_TYPE_TIME_EXTEND,
1346                                   RB_LEN_TIME_EXTEND,
1347                                   ts);
1348         if (!event)
1349                 return -EBUSY;
1350
1351         if (PTR_ERR(event) == -EAGAIN)
1352                 return -EAGAIN;
1353
1354         /* Only a commited time event can update the write stamp */
1355         if (rb_is_commit(cpu_buffer, event)) {
1356                 /*
1357                  * If this is the first on the page, then we need to
1358                  * update the page itself, and just put in a zero.
1359                  */
1360                 if (rb_event_index(event)) {
1361                         event->time_delta = *delta & TS_MASK;
1362                         event->array[0] = *delta >> TS_SHIFT;
1363                 } else {
1364                         cpu_buffer->commit_page->page->time_stamp = *ts;
1365                         event->time_delta = 0;
1366                         event->array[0] = 0;
1367                 }
1368                 cpu_buffer->write_stamp = *ts;
1369                 /* let the caller know this was the commit */
1370                 ret = 1;
1371         } else {
1372                 /* Darn, this is just wasted space */
1373                 event->time_delta = 0;
1374                 event->array[0] = 0;
1375                 ret = 0;
1376         }
1377
1378         *delta = 0;
1379
1380         return ret;
1381 }
1382
1383 static struct ring_buffer_event *
1384 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1385                       unsigned type, unsigned long length)
1386 {
1387         struct ring_buffer_event *event;
1388         u64 ts, delta;
1389         int commit = 0;
1390         int nr_loops = 0;
1391
1392  again:
1393         /*
1394          * We allow for interrupts to reenter here and do a trace.
1395          * If one does, it will cause this original code to loop
1396          * back here. Even with heavy interrupts happening, this
1397          * should only happen a few times in a row. If this happens
1398          * 1000 times in a row, there must be either an interrupt
1399          * storm or we have something buggy.
1400          * Bail!
1401          */
1402         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1403                 return NULL;
1404
1405         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1406
1407         /*
1408          * Only the first commit can update the timestamp.
1409          * Yes there is a race here. If an interrupt comes in
1410          * just after the conditional and it traces too, then it
1411          * will also check the deltas. More than one timestamp may
1412          * also be made. But only the entry that did the actual
1413          * commit will be something other than zero.
1414          */
1415         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1416             rb_page_write(cpu_buffer->tail_page) ==
1417             rb_commit_index(cpu_buffer)) {
1418
1419                 delta = ts - cpu_buffer->write_stamp;
1420
1421                 /* make sure this delta is calculated here */
1422                 barrier();
1423
1424                 /* Did the write stamp get updated already? */
1425                 if (unlikely(ts < cpu_buffer->write_stamp))
1426                         delta = 0;
1427
1428                 if (test_time_stamp(delta)) {
1429
1430                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1431
1432                         if (commit == -EBUSY)
1433                                 return NULL;
1434
1435                         if (commit == -EAGAIN)
1436                                 goto again;
1437
1438                         RB_WARN_ON(cpu_buffer, commit < 0);
1439                 }
1440         } else
1441                 /* Non commits have zero deltas */
1442                 delta = 0;
1443
1444         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1445         if (PTR_ERR(event) == -EAGAIN)
1446                 goto again;
1447
1448         if (!event) {
1449                 if (unlikely(commit))
1450                         /*
1451                          * Ouch! We needed a timestamp and it was commited. But
1452                          * we didn't get our event reserved.
1453                          */
1454                         rb_set_commit_to_write(cpu_buffer);
1455                 return NULL;
1456         }
1457
1458         /*
1459          * If the timestamp was commited, make the commit our entry
1460          * now so that we will update it when needed.
1461          */
1462         if (commit)
1463                 rb_set_commit_event(cpu_buffer, event);
1464         else if (!rb_is_commit(cpu_buffer, event))
1465                 delta = 0;
1466
1467         event->time_delta = delta;
1468
1469         return event;
1470 }
1471
1472 #define TRACE_RECURSIVE_DEPTH 16
1473
1474 static int trace_recursive_lock(void)
1475 {
1476         current->trace_recursion++;
1477
1478         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1479                 return 0;
1480
1481         /* Disable all tracing before we do anything else */
1482         tracing_off_permanent();
1483
1484         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1485                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1486                     current->trace_recursion,
1487                     hardirq_count() >> HARDIRQ_SHIFT,
1488                     softirq_count() >> SOFTIRQ_SHIFT,
1489                     in_nmi());
1490
1491         WARN_ON_ONCE(1);
1492         return -1;
1493 }
1494
1495 static void trace_recursive_unlock(void)
1496 {
1497         WARN_ON_ONCE(!current->trace_recursion);
1498
1499         current->trace_recursion--;
1500 }
1501
1502 static DEFINE_PER_CPU(int, rb_need_resched);
1503
1504 /**
1505  * ring_buffer_lock_reserve - reserve a part of the buffer
1506  * @buffer: the ring buffer to reserve from
1507  * @length: the length of the data to reserve (excluding event header)
1508  *
1509  * Returns a reseverd event on the ring buffer to copy directly to.
1510  * The user of this interface will need to get the body to write into
1511  * and can use the ring_buffer_event_data() interface.
1512  *
1513  * The length is the length of the data needed, not the event length
1514  * which also includes the event header.
1515  *
1516  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1517  * If NULL is returned, then nothing has been allocated or locked.
1518  */
1519 struct ring_buffer_event *
1520 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1521 {
1522         struct ring_buffer_per_cpu *cpu_buffer;
1523         struct ring_buffer_event *event;
1524         int cpu, resched;
1525
1526         if (ring_buffer_flags != RB_BUFFERS_ON)
1527                 return NULL;
1528
1529         if (atomic_read(&buffer->record_disabled))
1530                 return NULL;
1531
1532         /* If we are tracing schedule, we don't want to recurse */
1533         resched = ftrace_preempt_disable();
1534
1535         if (trace_recursive_lock())
1536                 goto out_nocheck;
1537
1538         cpu = raw_smp_processor_id();
1539
1540         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1541                 goto out;
1542
1543         cpu_buffer = buffer->buffers[cpu];
1544
1545         if (atomic_read(&cpu_buffer->record_disabled))
1546                 goto out;
1547
1548         length = rb_calculate_event_length(length);
1549         if (length > BUF_PAGE_SIZE)
1550                 goto out;
1551
1552         event = rb_reserve_next_event(cpu_buffer, 0, length);
1553         if (!event)
1554                 goto out;
1555
1556         /*
1557          * Need to store resched state on this cpu.
1558          * Only the first needs to.
1559          */
1560
1561         if (preempt_count() == 1)
1562                 per_cpu(rb_need_resched, cpu) = resched;
1563
1564         return event;
1565
1566  out:
1567         trace_recursive_unlock();
1568
1569  out_nocheck:
1570         ftrace_preempt_enable(resched);
1571         return NULL;
1572 }
1573 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1574
1575 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1576                       struct ring_buffer_event *event)
1577 {
1578         local_inc(&cpu_buffer->entries);
1579
1580         /* Only process further if we own the commit */
1581         if (!rb_is_commit(cpu_buffer, event))
1582                 return;
1583
1584         cpu_buffer->write_stamp += event->time_delta;
1585
1586         rb_set_commit_to_write(cpu_buffer);
1587 }
1588
1589 /**
1590  * ring_buffer_unlock_commit - commit a reserved
1591  * @buffer: The buffer to commit to
1592  * @event: The event pointer to commit.
1593  *
1594  * This commits the data to the ring buffer, and releases any locks held.
1595  *
1596  * Must be paired with ring_buffer_lock_reserve.
1597  */
1598 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1599                               struct ring_buffer_event *event)
1600 {
1601         struct ring_buffer_per_cpu *cpu_buffer;
1602         int cpu = raw_smp_processor_id();
1603
1604         cpu_buffer = buffer->buffers[cpu];
1605
1606         rb_commit(cpu_buffer, event);
1607
1608         trace_recursive_unlock();
1609
1610         /*
1611          * Only the last preempt count needs to restore preemption.
1612          */
1613         if (preempt_count() == 1)
1614                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1615         else
1616                 preempt_enable_no_resched_notrace();
1617
1618         return 0;
1619 }
1620 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1621
1622 static inline void rb_event_discard(struct ring_buffer_event *event)
1623 {
1624         /* array[0] holds the actual length for the discarded event */
1625         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1626         event->type_len = RINGBUF_TYPE_PADDING;
1627         /* time delta must be non zero */
1628         if (!event->time_delta)
1629                 event->time_delta = 1;
1630 }
1631
1632 /**
1633  * ring_buffer_event_discard - discard any event in the ring buffer
1634  * @event: the event to discard
1635  *
1636  * Sometimes a event that is in the ring buffer needs to be ignored.
1637  * This function lets the user discard an event in the ring buffer
1638  * and then that event will not be read later.
1639  *
1640  * Note, it is up to the user to be careful with this, and protect
1641  * against races. If the user discards an event that has been consumed
1642  * it is possible that it could corrupt the ring buffer.
1643  */
1644 void ring_buffer_event_discard(struct ring_buffer_event *event)
1645 {
1646         rb_event_discard(event);
1647 }
1648 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1649
1650 /**
1651  * ring_buffer_commit_discard - discard an event that has not been committed
1652  * @buffer: the ring buffer
1653  * @event: non committed event to discard
1654  *
1655  * This is similar to ring_buffer_event_discard but must only be
1656  * performed on an event that has not been committed yet. The difference
1657  * is that this will also try to free the event from the ring buffer
1658  * if another event has not been added behind it.
1659  *
1660  * If another event has been added behind it, it will set the event
1661  * up as discarded, and perform the commit.
1662  *
1663  * If this function is called, do not call ring_buffer_unlock_commit on
1664  * the event.
1665  */
1666 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1667                                 struct ring_buffer_event *event)
1668 {
1669         struct ring_buffer_per_cpu *cpu_buffer;
1670         unsigned long new_index, old_index;
1671         struct buffer_page *bpage;
1672         unsigned long index;
1673         unsigned long addr;
1674         int cpu;
1675
1676         /* The event is discarded regardless */
1677         rb_event_discard(event);
1678
1679         /*
1680          * This must only be called if the event has not been
1681          * committed yet. Thus we can assume that preemption
1682          * is still disabled.
1683          */
1684         RB_WARN_ON(buffer, !preempt_count());
1685
1686         cpu = smp_processor_id();
1687         cpu_buffer = buffer->buffers[cpu];
1688
1689         new_index = rb_event_index(event);
1690         old_index = new_index + rb_event_length(event);
1691         addr = (unsigned long)event;
1692         addr &= PAGE_MASK;
1693
1694         bpage = cpu_buffer->tail_page;
1695
1696         if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1697                 /*
1698                  * This is on the tail page. It is possible that
1699                  * a write could come in and move the tail page
1700                  * and write to the next page. That is fine
1701                  * because we just shorten what is on this page.
1702                  */
1703                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1704                 if (index == old_index)
1705                         goto out;
1706         }
1707
1708         /*
1709          * The commit is still visible by the reader, so we
1710          * must increment entries.
1711          */
1712         local_inc(&cpu_buffer->entries);
1713  out:
1714         /*
1715          * If a write came in and pushed the tail page
1716          * we still need to update the commit pointer
1717          * if we were the commit.
1718          */
1719         if (rb_is_commit(cpu_buffer, event))
1720                 rb_set_commit_to_write(cpu_buffer);
1721
1722         trace_recursive_unlock();
1723
1724         /*
1725          * Only the last preempt count needs to restore preemption.
1726          */
1727         if (preempt_count() == 1)
1728                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1729         else
1730                 preempt_enable_no_resched_notrace();
1731
1732 }
1733 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1734
1735 /**
1736  * ring_buffer_write - write data to the buffer without reserving
1737  * @buffer: The ring buffer to write to.
1738  * @length: The length of the data being written (excluding the event header)
1739  * @data: The data to write to the buffer.
1740  *
1741  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1742  * one function. If you already have the data to write to the buffer, it
1743  * may be easier to simply call this function.
1744  *
1745  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1746  * and not the length of the event which would hold the header.
1747  */
1748 int ring_buffer_write(struct ring_buffer *buffer,
1749                         unsigned long length,
1750                         void *data)
1751 {
1752         struct ring_buffer_per_cpu *cpu_buffer;
1753         struct ring_buffer_event *event;
1754         unsigned long event_length;
1755         void *body;
1756         int ret = -EBUSY;
1757         int cpu, resched;
1758
1759         if (ring_buffer_flags != RB_BUFFERS_ON)
1760                 return -EBUSY;
1761
1762         if (atomic_read(&buffer->record_disabled))
1763                 return -EBUSY;
1764
1765         resched = ftrace_preempt_disable();
1766
1767         cpu = raw_smp_processor_id();
1768
1769         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1770                 goto out;
1771
1772         cpu_buffer = buffer->buffers[cpu];
1773
1774         if (atomic_read(&cpu_buffer->record_disabled))
1775                 goto out;
1776
1777         event_length = rb_calculate_event_length(length);
1778         event = rb_reserve_next_event(cpu_buffer, 0, event_length);
1779         if (!event)
1780                 goto out;
1781
1782         body = rb_event_data(event);
1783
1784         memcpy(body, data, length);
1785
1786         rb_commit(cpu_buffer, event);
1787
1788         ret = 0;
1789  out:
1790         ftrace_preempt_enable(resched);
1791
1792         return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(ring_buffer_write);
1795
1796 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1797 {
1798         struct buffer_page *reader = cpu_buffer->reader_page;
1799         struct buffer_page *head = cpu_buffer->head_page;
1800         struct buffer_page *commit = cpu_buffer->commit_page;
1801
1802         return reader->read == rb_page_commit(reader) &&
1803                 (commit == reader ||
1804                  (commit == head &&
1805                   head->read == rb_page_commit(commit)));
1806 }
1807
1808 /**
1809  * ring_buffer_record_disable - stop all writes into the buffer
1810  * @buffer: The ring buffer to stop writes to.
1811  *
1812  * This prevents all writes to the buffer. Any attempt to write
1813  * to the buffer after this will fail and return NULL.
1814  *
1815  * The caller should call synchronize_sched() after this.
1816  */
1817 void ring_buffer_record_disable(struct ring_buffer *buffer)
1818 {
1819         atomic_inc(&buffer->record_disabled);
1820 }
1821 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1822
1823 /**
1824  * ring_buffer_record_enable - enable writes to the buffer
1825  * @buffer: The ring buffer to enable writes
1826  *
1827  * Note, multiple disables will need the same number of enables
1828  * to truely enable the writing (much like preempt_disable).
1829  */
1830 void ring_buffer_record_enable(struct ring_buffer *buffer)
1831 {
1832         atomic_dec(&buffer->record_disabled);
1833 }
1834 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1835
1836 /**
1837  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1838  * @buffer: The ring buffer to stop writes to.
1839  * @cpu: The CPU buffer to stop
1840  *
1841  * This prevents all writes to the buffer. Any attempt to write
1842  * to the buffer after this will fail and return NULL.
1843  *
1844  * The caller should call synchronize_sched() after this.
1845  */
1846 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1847 {
1848         struct ring_buffer_per_cpu *cpu_buffer;
1849
1850         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1851                 return;
1852
1853         cpu_buffer = buffer->buffers[cpu];
1854         atomic_inc(&cpu_buffer->record_disabled);
1855 }
1856 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1857
1858 /**
1859  * ring_buffer_record_enable_cpu - enable writes to the buffer
1860  * @buffer: The ring buffer to enable writes
1861  * @cpu: The CPU to enable.
1862  *
1863  * Note, multiple disables will need the same number of enables
1864  * to truely enable the writing (much like preempt_disable).
1865  */
1866 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1867 {
1868         struct ring_buffer_per_cpu *cpu_buffer;
1869
1870         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1871                 return;
1872
1873         cpu_buffer = buffer->buffers[cpu];
1874         atomic_dec(&cpu_buffer->record_disabled);
1875 }
1876 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1877
1878 /**
1879  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1880  * @buffer: The ring buffer
1881  * @cpu: The per CPU buffer to get the entries from.
1882  */
1883 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1884 {
1885         struct ring_buffer_per_cpu *cpu_buffer;
1886         unsigned long ret;
1887
1888         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1889                 return 0;
1890
1891         cpu_buffer = buffer->buffers[cpu];
1892         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1893                 - cpu_buffer->read;
1894
1895         return ret;
1896 }
1897 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1898
1899 /**
1900  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1901  * @buffer: The ring buffer
1902  * @cpu: The per CPU buffer to get the number of overruns from
1903  */
1904 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1905 {
1906         struct ring_buffer_per_cpu *cpu_buffer;
1907         unsigned long ret;
1908
1909         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1910                 return 0;
1911
1912         cpu_buffer = buffer->buffers[cpu];
1913         ret = cpu_buffer->overrun;
1914
1915         return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1918
1919 /**
1920  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1921  * @buffer: The ring buffer
1922  * @cpu: The per CPU buffer to get the number of overruns from
1923  */
1924 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1925 {
1926         struct ring_buffer_per_cpu *cpu_buffer;
1927         unsigned long ret;
1928
1929         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1930                 return 0;
1931
1932         cpu_buffer = buffer->buffers[cpu];
1933         ret = cpu_buffer->nmi_dropped;
1934
1935         return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1938
1939 /**
1940  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1941  * @buffer: The ring buffer
1942  * @cpu: The per CPU buffer to get the number of overruns from
1943  */
1944 unsigned long
1945 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1946 {
1947         struct ring_buffer_per_cpu *cpu_buffer;
1948         unsigned long ret;
1949
1950         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1951                 return 0;
1952
1953         cpu_buffer = buffer->buffers[cpu];
1954         ret = cpu_buffer->commit_overrun;
1955
1956         return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1959
1960 /**
1961  * ring_buffer_entries - get the number of entries in a buffer
1962  * @buffer: The ring buffer
1963  *
1964  * Returns the total number of entries in the ring buffer
1965  * (all CPU entries)
1966  */
1967 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1968 {
1969         struct ring_buffer_per_cpu *cpu_buffer;
1970         unsigned long entries = 0;
1971         int cpu;
1972
1973         /* if you care about this being correct, lock the buffer */
1974         for_each_buffer_cpu(buffer, cpu) {
1975                 cpu_buffer = buffer->buffers[cpu];
1976                 entries += (local_read(&cpu_buffer->entries) -
1977                             cpu_buffer->overrun) - cpu_buffer->read;
1978         }
1979
1980         return entries;
1981 }
1982 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1983
1984 /**
1985  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1986  * @buffer: The ring buffer
1987  *
1988  * Returns the total number of overruns in the ring buffer
1989  * (all CPU entries)
1990  */
1991 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1992 {
1993         struct ring_buffer_per_cpu *cpu_buffer;
1994         unsigned long overruns = 0;
1995         int cpu;
1996
1997         /* if you care about this being correct, lock the buffer */
1998         for_each_buffer_cpu(buffer, cpu) {
1999                 cpu_buffer = buffer->buffers[cpu];
2000                 overruns += cpu_buffer->overrun;
2001         }
2002
2003         return overruns;
2004 }
2005 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2006
2007 static void rb_iter_reset(struct ring_buffer_iter *iter)
2008 {
2009         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2010
2011         /* Iterator usage is expected to have record disabled */
2012         if (list_empty(&cpu_buffer->reader_page->list)) {
2013                 iter->head_page = cpu_buffer->head_page;
2014                 iter->head = cpu_buffer->head_page->read;
2015         } else {
2016                 iter->head_page = cpu_buffer->reader_page;
2017                 iter->head = cpu_buffer->reader_page->read;
2018         }
2019         if (iter->head)
2020                 iter->read_stamp = cpu_buffer->read_stamp;
2021         else
2022                 iter->read_stamp = iter->head_page->page->time_stamp;
2023 }
2024
2025 /**
2026  * ring_buffer_iter_reset - reset an iterator
2027  * @iter: The iterator to reset
2028  *
2029  * Resets the iterator, so that it will start from the beginning
2030  * again.
2031  */
2032 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2033 {
2034         struct ring_buffer_per_cpu *cpu_buffer;
2035         unsigned long flags;
2036
2037         if (!iter)
2038                 return;
2039
2040         cpu_buffer = iter->cpu_buffer;
2041
2042         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2043         rb_iter_reset(iter);
2044         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2045 }
2046 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2047
2048 /**
2049  * ring_buffer_iter_empty - check if an iterator has no more to read
2050  * @iter: The iterator to check
2051  */
2052 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2053 {
2054         struct ring_buffer_per_cpu *cpu_buffer;
2055
2056         cpu_buffer = iter->cpu_buffer;
2057
2058         return iter->head_page == cpu_buffer->commit_page &&
2059                 iter->head == rb_commit_index(cpu_buffer);
2060 }
2061 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2062
2063 static void
2064 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2065                      struct ring_buffer_event *event)
2066 {
2067         u64 delta;
2068
2069         switch (event->type_len) {
2070         case RINGBUF_TYPE_PADDING:
2071                 return;
2072
2073         case RINGBUF_TYPE_TIME_EXTEND:
2074                 delta = event->array[0];
2075                 delta <<= TS_SHIFT;
2076                 delta += event->time_delta;
2077                 cpu_buffer->read_stamp += delta;
2078                 return;
2079
2080         case RINGBUF_TYPE_TIME_STAMP:
2081                 /* FIXME: not implemented */
2082                 return;
2083
2084         case RINGBUF_TYPE_DATA:
2085                 cpu_buffer->read_stamp += event->time_delta;
2086                 return;
2087
2088         default:
2089                 BUG();
2090         }
2091         return;
2092 }
2093
2094 static void
2095 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2096                           struct ring_buffer_event *event)
2097 {
2098         u64 delta;
2099
2100         switch (event->type_len) {
2101         case RINGBUF_TYPE_PADDING:
2102                 return;
2103
2104         case RINGBUF_TYPE_TIME_EXTEND:
2105                 delta = event->array[0];
2106                 delta <<= TS_SHIFT;
2107                 delta += event->time_delta;
2108                 iter->read_stamp += delta;
2109                 return;
2110
2111         case RINGBUF_TYPE_TIME_STAMP:
2112                 /* FIXME: not implemented */
2113                 return;
2114
2115         case RINGBUF_TYPE_DATA:
2116                 iter->read_stamp += event->time_delta;
2117                 return;
2118
2119         default:
2120                 BUG();
2121         }
2122         return;
2123 }
2124
2125 static struct buffer_page *
2126 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2127 {
2128         struct buffer_page *reader = NULL;
2129         unsigned long flags;
2130         int nr_loops = 0;
2131
2132         local_irq_save(flags);
2133         __raw_spin_lock(&cpu_buffer->lock);
2134
2135  again:
2136         /*
2137          * This should normally only loop twice. But because the
2138          * start of the reader inserts an empty page, it causes
2139          * a case where we will loop three times. There should be no
2140          * reason to loop four times (that I know of).
2141          */
2142         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2143                 reader = NULL;
2144                 goto out;
2145         }
2146
2147         reader = cpu_buffer->reader_page;
2148
2149         /* If there's more to read, return this page */
2150         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2151                 goto out;
2152
2153         /* Never should we have an index greater than the size */
2154         if (RB_WARN_ON(cpu_buffer,
2155                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2156                 goto out;
2157
2158         /* check if we caught up to the tail */
2159         reader = NULL;
2160         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2161                 goto out;
2162
2163         /*
2164          * Splice the empty reader page into the list around the head.
2165          * Reset the reader page to size zero.
2166          */
2167
2168         reader = cpu_buffer->head_page;
2169         cpu_buffer->reader_page->list.next = reader->list.next;
2170         cpu_buffer->reader_page->list.prev = reader->list.prev;
2171
2172         local_set(&cpu_buffer->reader_page->write, 0);
2173         local_set(&cpu_buffer->reader_page->entries, 0);
2174         local_set(&cpu_buffer->reader_page->page->commit, 0);
2175
2176         /* Make the reader page now replace the head */
2177         reader->list.prev->next = &cpu_buffer->reader_page->list;
2178         reader->list.next->prev = &cpu_buffer->reader_page->list;
2179
2180         /*
2181          * If the tail is on the reader, then we must set the head
2182          * to the inserted page, otherwise we set it one before.
2183          */
2184         cpu_buffer->head_page = cpu_buffer->reader_page;
2185
2186         if (cpu_buffer->commit_page != reader)
2187                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2188
2189         /* Finally update the reader page to the new head */
2190         cpu_buffer->reader_page = reader;
2191         rb_reset_reader_page(cpu_buffer);
2192
2193         goto again;
2194
2195  out:
2196         __raw_spin_unlock(&cpu_buffer->lock);
2197         local_irq_restore(flags);
2198
2199         return reader;
2200 }
2201
2202 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2203 {
2204         struct ring_buffer_event *event;
2205         struct buffer_page *reader;
2206         unsigned length;
2207
2208         reader = rb_get_reader_page(cpu_buffer);
2209
2210         /* This function should not be called when buffer is empty */
2211         if (RB_WARN_ON(cpu_buffer, !reader))
2212                 return;
2213
2214         event = rb_reader_event(cpu_buffer);
2215
2216         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2217                         || rb_discarded_event(event))
2218                 cpu_buffer->read++;
2219
2220         rb_update_read_stamp(cpu_buffer, event);
2221
2222         length = rb_event_length(event);
2223         cpu_buffer->reader_page->read += length;
2224 }
2225
2226 static void rb_advance_iter(struct ring_buffer_iter *iter)
2227 {
2228         struct ring_buffer *buffer;
2229         struct ring_buffer_per_cpu *cpu_buffer;
2230         struct ring_buffer_event *event;
2231         unsigned length;
2232
2233         cpu_buffer = iter->cpu_buffer;
2234         buffer = cpu_buffer->buffer;
2235
2236         /*
2237          * Check if we are at the end of the buffer.
2238          */
2239         if (iter->head >= rb_page_size(iter->head_page)) {
2240                 if (RB_WARN_ON(buffer,
2241                                iter->head_page == cpu_buffer->commit_page))
2242                         return;
2243                 rb_inc_iter(iter);
2244                 return;
2245         }
2246
2247         event = rb_iter_head_event(iter);
2248
2249         length = rb_event_length(event);
2250
2251         /*
2252          * This should not be called to advance the header if we are
2253          * at the tail of the buffer.
2254          */
2255         if (RB_WARN_ON(cpu_buffer,
2256                        (iter->head_page == cpu_buffer->commit_page) &&
2257                        (iter->head + length > rb_commit_index(cpu_buffer))))
2258                 return;
2259
2260         rb_update_iter_read_stamp(iter, event);
2261
2262         iter->head += length;
2263
2264         /* check for end of page padding */
2265         if ((iter->head >= rb_page_size(iter->head_page)) &&
2266             (iter->head_page != cpu_buffer->commit_page))
2267                 rb_advance_iter(iter);
2268 }
2269
2270 static struct ring_buffer_event *
2271 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2272 {
2273         struct ring_buffer_per_cpu *cpu_buffer;
2274         struct ring_buffer_event *event;
2275         struct buffer_page *reader;
2276         int nr_loops = 0;
2277
2278         cpu_buffer = buffer->buffers[cpu];
2279
2280  again:
2281         /*
2282          * We repeat when a timestamp is encountered. It is possible
2283          * to get multiple timestamps from an interrupt entering just
2284          * as one timestamp is about to be written. The max times
2285          * that this can happen is the number of nested interrupts we
2286          * can have.  Nesting 10 deep of interrupts is clearly
2287          * an anomaly.
2288          */
2289         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2290                 return NULL;
2291
2292         reader = rb_get_reader_page(cpu_buffer);
2293         if (!reader)
2294                 return NULL;
2295
2296         event = rb_reader_event(cpu_buffer);
2297
2298         switch (event->type_len) {
2299         case RINGBUF_TYPE_PADDING:
2300                 if (rb_null_event(event))
2301                         RB_WARN_ON(cpu_buffer, 1);
2302                 /*
2303                  * Because the writer could be discarding every
2304                  * event it creates (which would probably be bad)
2305                  * if we were to go back to "again" then we may never
2306                  * catch up, and will trigger the warn on, or lock
2307                  * the box. Return the padding, and we will release
2308                  * the current locks, and try again.
2309                  */
2310                 rb_advance_reader(cpu_buffer);
2311                 return event;
2312
2313         case RINGBUF_TYPE_TIME_EXTEND:
2314                 /* Internal data, OK to advance */
2315                 rb_advance_reader(cpu_buffer);
2316                 goto again;
2317
2318         case RINGBUF_TYPE_TIME_STAMP:
2319                 /* FIXME: not implemented */
2320                 rb_advance_reader(cpu_buffer);
2321                 goto again;
2322
2323         case RINGBUF_TYPE_DATA:
2324                 if (ts) {
2325                         *ts = cpu_buffer->read_stamp + event->time_delta;
2326                         ring_buffer_normalize_time_stamp(buffer,
2327                                                          cpu_buffer->cpu, ts);
2328                 }
2329                 return event;
2330
2331         default:
2332                 BUG();
2333         }
2334
2335         return NULL;
2336 }
2337 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2338
2339 static struct ring_buffer_event *
2340 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2341 {
2342         struct ring_buffer *buffer;
2343         struct ring_buffer_per_cpu *cpu_buffer;
2344         struct ring_buffer_event *event;
2345         int nr_loops = 0;
2346
2347         if (ring_buffer_iter_empty(iter))
2348                 return NULL;
2349
2350         cpu_buffer = iter->cpu_buffer;
2351         buffer = cpu_buffer->buffer;
2352
2353  again:
2354         /*
2355          * We repeat when a timestamp is encountered. It is possible
2356          * to get multiple timestamps from an interrupt entering just
2357          * as one timestamp is about to be written. The max times
2358          * that this can happen is the number of nested interrupts we
2359          * can have. Nesting 10 deep of interrupts is clearly
2360          * an anomaly.
2361          */
2362         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2363                 return NULL;
2364
2365         if (rb_per_cpu_empty(cpu_buffer))
2366                 return NULL;
2367
2368         event = rb_iter_head_event(iter);
2369
2370         switch (event->type_len) {
2371         case RINGBUF_TYPE_PADDING:
2372                 if (rb_null_event(event)) {
2373                         rb_inc_iter(iter);
2374                         goto again;
2375                 }
2376                 rb_advance_iter(iter);
2377                 return event;
2378
2379         case RINGBUF_TYPE_TIME_EXTEND:
2380                 /* Internal data, OK to advance */
2381                 rb_advance_iter(iter);
2382                 goto again;
2383
2384         case RINGBUF_TYPE_TIME_STAMP:
2385                 /* FIXME: not implemented */
2386                 rb_advance_iter(iter);
2387                 goto again;
2388
2389         case RINGBUF_TYPE_DATA:
2390                 if (ts) {
2391                         *ts = iter->read_stamp + event->time_delta;
2392                         ring_buffer_normalize_time_stamp(buffer,
2393                                                          cpu_buffer->cpu, ts);
2394                 }
2395                 return event;
2396
2397         default:
2398                 BUG();
2399         }
2400
2401         return NULL;
2402 }
2403 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2404
2405 /**
2406  * ring_buffer_peek - peek at the next event to be read
2407  * @buffer: The ring buffer to read
2408  * @cpu: The cpu to peak at
2409  * @ts: The timestamp counter of this event.
2410  *
2411  * This will return the event that will be read next, but does
2412  * not consume the data.
2413  */
2414 struct ring_buffer_event *
2415 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2416 {
2417         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2418         struct ring_buffer_event *event;
2419         unsigned long flags;
2420
2421         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2422                 return NULL;
2423
2424  again:
2425         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2426         event = rb_buffer_peek(buffer, cpu, ts);
2427         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2428
2429         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2430                 cpu_relax();
2431                 goto again;
2432         }
2433
2434         return event;
2435 }
2436
2437 /**
2438  * ring_buffer_iter_peek - peek at the next event to be read
2439  * @iter: The ring buffer iterator
2440  * @ts: The timestamp counter of this event.
2441  *
2442  * This will return the event that will be read next, but does
2443  * not increment the iterator.
2444  */
2445 struct ring_buffer_event *
2446 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2447 {
2448         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2449         struct ring_buffer_event *event;
2450         unsigned long flags;
2451
2452  again:
2453         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2454         event = rb_iter_peek(iter, ts);
2455         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2456
2457         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2458                 cpu_relax();
2459                 goto again;
2460         }
2461
2462         return event;
2463 }
2464
2465 /**
2466  * ring_buffer_consume - return an event and consume it
2467  * @buffer: The ring buffer to get the next event from
2468  *
2469  * Returns the next event in the ring buffer, and that event is consumed.
2470  * Meaning, that sequential reads will keep returning a different event,
2471  * and eventually empty the ring buffer if the producer is slower.
2472  */
2473 struct ring_buffer_event *
2474 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2475 {
2476         struct ring_buffer_per_cpu *cpu_buffer;
2477         struct ring_buffer_event *event = NULL;
2478         unsigned long flags;
2479
2480  again:
2481         /* might be called in atomic */
2482         preempt_disable();
2483
2484         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2485                 goto out;
2486
2487         cpu_buffer = buffer->buffers[cpu];
2488         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2489
2490         event = rb_buffer_peek(buffer, cpu, ts);
2491         if (!event)
2492                 goto out_unlock;
2493
2494         rb_advance_reader(cpu_buffer);
2495
2496  out_unlock:
2497         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2498
2499  out:
2500         preempt_enable();
2501
2502         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2503                 cpu_relax();
2504                 goto again;
2505         }
2506
2507         return event;
2508 }
2509 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2510
2511 /**
2512  * ring_buffer_read_start - start a non consuming read of the buffer
2513  * @buffer: The ring buffer to read from
2514  * @cpu: The cpu buffer to iterate over
2515  *
2516  * This starts up an iteration through the buffer. It also disables
2517  * the recording to the buffer until the reading is finished.
2518  * This prevents the reading from being corrupted. This is not
2519  * a consuming read, so a producer is not expected.
2520  *
2521  * Must be paired with ring_buffer_finish.
2522  */
2523 struct ring_buffer_iter *
2524 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2525 {
2526         struct ring_buffer_per_cpu *cpu_buffer;
2527         struct ring_buffer_iter *iter;
2528         unsigned long flags;
2529
2530         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2531                 return NULL;
2532
2533         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2534         if (!iter)
2535                 return NULL;
2536
2537         cpu_buffer = buffer->buffers[cpu];
2538
2539         iter->cpu_buffer = cpu_buffer;
2540
2541         atomic_inc(&cpu_buffer->record_disabled);
2542         synchronize_sched();
2543
2544         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2545         __raw_spin_lock(&cpu_buffer->lock);
2546         rb_iter_reset(iter);
2547         __raw_spin_unlock(&cpu_buffer->lock);
2548         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2549
2550         return iter;
2551 }
2552 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2553
2554 /**
2555  * ring_buffer_finish - finish reading the iterator of the buffer
2556  * @iter: The iterator retrieved by ring_buffer_start
2557  *
2558  * This re-enables the recording to the buffer, and frees the
2559  * iterator.
2560  */
2561 void
2562 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2563 {
2564         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2565
2566         atomic_dec(&cpu_buffer->record_disabled);
2567         kfree(iter);
2568 }
2569 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2570
2571 /**
2572  * ring_buffer_read - read the next item in the ring buffer by the iterator
2573  * @iter: The ring buffer iterator
2574  * @ts: The time stamp of the event read.
2575  *
2576  * This reads the next event in the ring buffer and increments the iterator.
2577  */
2578 struct ring_buffer_event *
2579 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2580 {
2581         struct ring_buffer_event *event;
2582         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2583         unsigned long flags;
2584
2585  again:
2586         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2587         event = rb_iter_peek(iter, ts);
2588         if (!event)
2589                 goto out;
2590
2591         rb_advance_iter(iter);
2592  out:
2593         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2594
2595         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2596                 cpu_relax();
2597                 goto again;
2598         }
2599
2600         return event;
2601 }
2602 EXPORT_SYMBOL_GPL(ring_buffer_read);
2603
2604 /**
2605  * ring_buffer_size - return the size of the ring buffer (in bytes)
2606  * @buffer: The ring buffer.
2607  */
2608 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2609 {
2610         return BUF_PAGE_SIZE * buffer->pages;
2611 }
2612 EXPORT_SYMBOL_GPL(ring_buffer_size);
2613
2614 static void
2615 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2616 {
2617         cpu_buffer->head_page
2618                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2619         local_set(&cpu_buffer->head_page->write, 0);
2620         local_set(&cpu_buffer->head_page->entries, 0);
2621         local_set(&cpu_buffer->head_page->page->commit, 0);
2622
2623         cpu_buffer->head_page->read = 0;
2624
2625         cpu_buffer->tail_page = cpu_buffer->head_page;
2626         cpu_buffer->commit_page = cpu_buffer->head_page;
2627
2628         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2629         local_set(&cpu_buffer->reader_page->write, 0);
2630         local_set(&cpu_buffer->reader_page->entries, 0);
2631         local_set(&cpu_buffer->reader_page->page->commit, 0);
2632         cpu_buffer->reader_page->read = 0;
2633
2634         cpu_buffer->nmi_dropped = 0;
2635         cpu_buffer->commit_overrun = 0;
2636         cpu_buffer->overrun = 0;
2637         cpu_buffer->read = 0;
2638         local_set(&cpu_buffer->entries, 0);
2639
2640         cpu_buffer->write_stamp = 0;
2641         cpu_buffer->read_stamp = 0;
2642 }
2643
2644 /**
2645  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2646  * @buffer: The ring buffer to reset a per cpu buffer of
2647  * @cpu: The CPU buffer to be reset
2648  */
2649 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2650 {
2651         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2652         unsigned long flags;
2653
2654         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2655                 return;
2656
2657         atomic_inc(&cpu_buffer->record_disabled);
2658
2659         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2660
2661         __raw_spin_lock(&cpu_buffer->lock);
2662
2663         rb_reset_cpu(cpu_buffer);
2664
2665         __raw_spin_unlock(&cpu_buffer->lock);
2666
2667         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2668
2669         atomic_dec(&cpu_buffer->record_disabled);
2670 }
2671 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2672
2673 /**
2674  * ring_buffer_reset - reset a ring buffer
2675  * @buffer: The ring buffer to reset all cpu buffers
2676  */
2677 void ring_buffer_reset(struct ring_buffer *buffer)
2678 {
2679         int cpu;
2680
2681         for_each_buffer_cpu(buffer, cpu)
2682                 ring_buffer_reset_cpu(buffer, cpu);
2683 }
2684 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2685
2686 /**
2687  * rind_buffer_empty - is the ring buffer empty?
2688  * @buffer: The ring buffer to test
2689  */
2690 int ring_buffer_empty(struct ring_buffer *buffer)
2691 {
2692         struct ring_buffer_per_cpu *cpu_buffer;
2693         int cpu;
2694
2695         /* yes this is racy, but if you don't like the race, lock the buffer */
2696         for_each_buffer_cpu(buffer, cpu) {
2697                 cpu_buffer = buffer->buffers[cpu];
2698                 if (!rb_per_cpu_empty(cpu_buffer))
2699                         return 0;
2700         }
2701
2702         return 1;
2703 }
2704 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2705
2706 /**
2707  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2708  * @buffer: The ring buffer
2709  * @cpu: The CPU buffer to test
2710  */
2711 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2712 {
2713         struct ring_buffer_per_cpu *cpu_buffer;
2714         int ret;
2715
2716         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2717                 return 1;
2718
2719         cpu_buffer = buffer->buffers[cpu];
2720         ret = rb_per_cpu_empty(cpu_buffer);
2721
2722
2723         return ret;
2724 }
2725 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2726
2727 /**
2728  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2729  * @buffer_a: One buffer to swap with
2730  * @buffer_b: The other buffer to swap with
2731  *
2732  * This function is useful for tracers that want to take a "snapshot"
2733  * of a CPU buffer and has another back up buffer lying around.
2734  * it is expected that the tracer handles the cpu buffer not being
2735  * used at the moment.
2736  */
2737 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2738                          struct ring_buffer *buffer_b, int cpu)
2739 {
2740         struct ring_buffer_per_cpu *cpu_buffer_a;
2741         struct ring_buffer_per_cpu *cpu_buffer_b;
2742         int ret = -EINVAL;
2743
2744         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2745             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2746                 goto out;
2747
2748         /* At least make sure the two buffers are somewhat the same */
2749         if (buffer_a->pages != buffer_b->pages)
2750                 goto out;
2751
2752         ret = -EAGAIN;
2753
2754         if (ring_buffer_flags != RB_BUFFERS_ON)
2755                 goto out;
2756
2757         if (atomic_read(&buffer_a->record_disabled))
2758                 goto out;
2759
2760         if (atomic_read(&buffer_b->record_disabled))
2761                 goto out;
2762
2763         cpu_buffer_a = buffer_a->buffers[cpu];
2764         cpu_buffer_b = buffer_b->buffers[cpu];
2765
2766         if (atomic_read(&cpu_buffer_a->record_disabled))
2767                 goto out;
2768
2769         if (atomic_read(&cpu_buffer_b->record_disabled))
2770                 goto out;
2771
2772         /*
2773          * We can't do a synchronize_sched here because this
2774          * function can be called in atomic context.
2775          * Normally this will be called from the same CPU as cpu.
2776          * If not it's up to the caller to protect this.
2777          */
2778         atomic_inc(&cpu_buffer_a->record_disabled);
2779         atomic_inc(&cpu_buffer_b->record_disabled);
2780
2781         buffer_a->buffers[cpu] = cpu_buffer_b;
2782         buffer_b->buffers[cpu] = cpu_buffer_a;
2783
2784         cpu_buffer_b->buffer = buffer_a;
2785         cpu_buffer_a->buffer = buffer_b;
2786
2787         atomic_dec(&cpu_buffer_a->record_disabled);
2788         atomic_dec(&cpu_buffer_b->record_disabled);
2789
2790         ret = 0;
2791 out:
2792         return ret;
2793 }
2794 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2795
2796 /**
2797  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2798  * @buffer: the buffer to allocate for.
2799  *
2800  * This function is used in conjunction with ring_buffer_read_page.
2801  * When reading a full page from the ring buffer, these functions
2802  * can be used to speed up the process. The calling function should
2803  * allocate a few pages first with this function. Then when it
2804  * needs to get pages from the ring buffer, it passes the result
2805  * of this function into ring_buffer_read_page, which will swap
2806  * the page that was allocated, with the read page of the buffer.
2807  *
2808  * Returns:
2809  *  The page allocated, or NULL on error.
2810  */
2811 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2812 {
2813         struct buffer_data_page *bpage;
2814         unsigned long addr;
2815
2816         addr = __get_free_page(GFP_KERNEL);
2817         if (!addr)
2818                 return NULL;
2819
2820         bpage = (void *)addr;
2821
2822         rb_init_page(bpage);
2823
2824         return bpage;
2825 }
2826 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2827
2828 /**
2829  * ring_buffer_free_read_page - free an allocated read page
2830  * @buffer: the buffer the page was allocate for
2831  * @data: the page to free
2832  *
2833  * Free a page allocated from ring_buffer_alloc_read_page.
2834  */
2835 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2836 {
2837         free_page((unsigned long)data);
2838 }
2839 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2840
2841 /**
2842  * ring_buffer_read_page - extract a page from the ring buffer
2843  * @buffer: buffer to extract from
2844  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2845  * @len: amount to extract
2846  * @cpu: the cpu of the buffer to extract
2847  * @full: should the extraction only happen when the page is full.
2848  *
2849  * This function will pull out a page from the ring buffer and consume it.
2850  * @data_page must be the address of the variable that was returned
2851  * from ring_buffer_alloc_read_page. This is because the page might be used
2852  * to swap with a page in the ring buffer.
2853  *
2854  * for example:
2855  *      rpage = ring_buffer_alloc_read_page(buffer);
2856  *      if (!rpage)
2857  *              return error;
2858  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2859  *      if (ret >= 0)
2860  *              process_page(rpage, ret);
2861  *
2862  * When @full is set, the function will not return true unless
2863  * the writer is off the reader page.
2864  *
2865  * Note: it is up to the calling functions to handle sleeps and wakeups.
2866  *  The ring buffer can be used anywhere in the kernel and can not
2867  *  blindly call wake_up. The layer that uses the ring buffer must be
2868  *  responsible for that.
2869  *
2870  * Returns:
2871  *  >=0 if data has been transferred, returns the offset of consumed data.
2872  *  <0 if no data has been transferred.
2873  */
2874 int ring_buffer_read_page(struct ring_buffer *buffer,
2875                           void **data_page, size_t len, int cpu, int full)
2876 {
2877         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2878         struct ring_buffer_event *event;
2879         struct buffer_data_page *bpage;
2880         struct buffer_page *reader;
2881         unsigned long flags;
2882         unsigned int commit;
2883         unsigned int read;
2884         u64 save_timestamp;
2885         int ret = -1;
2886
2887         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2888                 goto out;
2889
2890         /*
2891          * If len is not big enough to hold the page header, then
2892          * we can not copy anything.
2893          */
2894         if (len <= BUF_PAGE_HDR_SIZE)
2895                 goto out;
2896
2897         len -= BUF_PAGE_HDR_SIZE;
2898
2899         if (!data_page)
2900                 goto out;
2901
2902         bpage = *data_page;
2903         if (!bpage)
2904                 goto out;
2905
2906         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2907
2908         reader = rb_get_reader_page(cpu_buffer);
2909         if (!reader)
2910                 goto out_unlock;
2911
2912         event = rb_reader_event(cpu_buffer);
2913
2914         read = reader->read;
2915         commit = rb_page_commit(reader);
2916
2917         /*
2918          * If this page has been partially read or
2919          * if len is not big enough to read the rest of the page or
2920          * a writer is still on the page, then
2921          * we must copy the data from the page to the buffer.
2922          * Otherwise, we can simply swap the page with the one passed in.
2923          */
2924         if (read || (len < (commit - read)) ||
2925             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2926                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2927                 unsigned int rpos = read;
2928                 unsigned int pos = 0;
2929                 unsigned int size;
2930
2931                 if (full)
2932                         goto out_unlock;
2933
2934                 if (len > (commit - read))
2935                         len = (commit - read);
2936
2937                 size = rb_event_length(event);
2938
2939                 if (len < size)
2940                         goto out_unlock;
2941
2942                 /* save the current timestamp, since the user will need it */
2943                 save_timestamp = cpu_buffer->read_stamp;
2944
2945                 /* Need to copy one event at a time */
2946                 do {
2947                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2948
2949                         len -= size;
2950
2951                         rb_advance_reader(cpu_buffer);
2952                         rpos = reader->read;
2953                         pos += size;
2954
2955                         event = rb_reader_event(cpu_buffer);
2956                         size = rb_event_length(event);
2957                 } while (len > size);
2958
2959                 /* update bpage */
2960                 local_set(&bpage->commit, pos);
2961                 bpage->time_stamp = save_timestamp;
2962
2963                 /* we copied everything to the beginning */
2964                 read = 0;
2965         } else {
2966                 /* update the entry counter */
2967                 cpu_buffer->read += local_read(&reader->entries);
2968
2969                 /* swap the pages */
2970                 rb_init_page(bpage);
2971                 bpage = reader->page;
2972                 reader->page = *data_page;
2973                 local_set(&reader->write, 0);
2974                 local_set(&reader->entries, 0);
2975                 reader->read = 0;
2976                 *data_page = bpage;
2977         }
2978         ret = read;
2979
2980  out_unlock:
2981         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2982
2983  out:
2984         return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
2987
2988 static ssize_t
2989 rb_simple_read(struct file *filp, char __user *ubuf,
2990                size_t cnt, loff_t *ppos)
2991 {
2992         unsigned long *p = filp->private_data;
2993         char buf[64];
2994         int r;
2995
2996         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2997                 r = sprintf(buf, "permanently disabled\n");
2998         else
2999                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3000
3001         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3002 }
3003
3004 static ssize_t
3005 rb_simple_write(struct file *filp, const char __user *ubuf,
3006                 size_t cnt, loff_t *ppos)
3007 {
3008         unsigned long *p = filp->private_data;
3009         char buf[64];
3010         unsigned long val;
3011         int ret;
3012
3013         if (cnt >= sizeof(buf))
3014                 return -EINVAL;
3015
3016         if (copy_from_user(&buf, ubuf, cnt))
3017                 return -EFAULT;
3018
3019         buf[cnt] = 0;
3020
3021         ret = strict_strtoul(buf, 10, &val);
3022         if (ret < 0)
3023                 return ret;
3024
3025         if (val)
3026                 set_bit(RB_BUFFERS_ON_BIT, p);
3027         else
3028                 clear_bit(RB_BUFFERS_ON_BIT, p);
3029
3030         (*ppos)++;
3031
3032         return cnt;
3033 }
3034
3035 static const struct file_operations rb_simple_fops = {
3036         .open           = tracing_open_generic,
3037         .read           = rb_simple_read,
3038         .write          = rb_simple_write,
3039 };
3040
3041
3042 static __init int rb_init_debugfs(void)
3043 {
3044         struct dentry *d_tracer;
3045
3046         d_tracer = tracing_init_dentry();
3047
3048         trace_create_file("tracing_on", 0644, d_tracer,
3049                             &ring_buffer_flags, &rb_simple_fops);
3050
3051         return 0;
3052 }
3053
3054 fs_initcall(rb_init_debugfs);
3055
3056 #ifdef CONFIG_HOTPLUG_CPU
3057 static int rb_cpu_notify(struct notifier_block *self,
3058                          unsigned long action, void *hcpu)
3059 {
3060         struct ring_buffer *buffer =
3061                 container_of(self, struct ring_buffer, cpu_notify);
3062         long cpu = (long)hcpu;
3063
3064         switch (action) {
3065         case CPU_UP_PREPARE:
3066         case CPU_UP_PREPARE_FROZEN:
3067                 if (cpu_isset(cpu, *buffer->cpumask))
3068                         return NOTIFY_OK;
3069
3070                 buffer->buffers[cpu] =
3071                         rb_allocate_cpu_buffer(buffer, cpu);
3072                 if (!buffer->buffers[cpu]) {
3073                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3074                              cpu);
3075                         return NOTIFY_OK;
3076                 }
3077                 smp_wmb();
3078                 cpu_set(cpu, *buffer->cpumask);
3079                 break;
3080         case CPU_DOWN_PREPARE:
3081         case CPU_DOWN_PREPARE_FROZEN:
3082                 /*
3083                  * Do nothing.
3084                  *  If we were to free the buffer, then the user would
3085                  *  lose any trace that was in the buffer.
3086                  */
3087                 break;
3088         default:
3089                 break;
3090         }
3091         return NOTIFY_OK;
3092 }
3093 #endif