]> Pileus Git - ~andy/linux/blob - kernel/sched.c
2794c79b91977c0980d849b73905e1e644296937
[~andy/linux] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static inline unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load;
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 #define for_each_domain(cpu, domain) \
264         for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
267 #define this_rq()               (&__get_cpu_var(runqueues))
268 #define task_rq(p)              cpu_rq(task_cpu(p))
269 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
270
271 /*
272  * Default context-switch locking:
273  */
274 #ifndef prepare_arch_switch
275 # define prepare_arch_switch(rq, next)  do { } while (0)
276 # define finish_arch_switch(rq, next)   spin_unlock_irq(&(rq)->lock)
277 # define task_running(rq, p)            ((rq)->curr == (p))
278 #endif
279
280 /*
281  * task_rq_lock - lock the runqueue a given task resides on and disable
282  * interrupts.  Note the ordering: we can safely lookup the task_rq without
283  * explicitly disabling preemption.
284  */
285 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
286         __acquires(rq->lock)
287 {
288         struct runqueue *rq;
289
290 repeat_lock_task:
291         local_irq_save(*flags);
292         rq = task_rq(p);
293         spin_lock(&rq->lock);
294         if (unlikely(rq != task_rq(p))) {
295                 spin_unlock_irqrestore(&rq->lock, *flags);
296                 goto repeat_lock_task;
297         }
298         return rq;
299 }
300
301 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
302         __releases(rq->lock)
303 {
304         spin_unlock_irqrestore(&rq->lock, *flags);
305 }
306
307 #ifdef CONFIG_SCHEDSTATS
308 /*
309  * bump this up when changing the output format or the meaning of an existing
310  * format, so that tools can adapt (or abort)
311  */
312 #define SCHEDSTAT_VERSION 11
313
314 static int show_schedstat(struct seq_file *seq, void *v)
315 {
316         int cpu;
317
318         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
319         seq_printf(seq, "timestamp %lu\n", jiffies);
320         for_each_online_cpu(cpu) {
321                 runqueue_t *rq = cpu_rq(cpu);
322 #ifdef CONFIG_SMP
323                 struct sched_domain *sd;
324                 int dcnt = 0;
325 #endif
326
327                 /* runqueue-specific stats */
328                 seq_printf(seq,
329                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
330                     cpu, rq->yld_both_empty,
331                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
332                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
333                     rq->ttwu_cnt, rq->ttwu_local,
334                     rq->rq_sched_info.cpu_time,
335                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
336
337                 seq_printf(seq, "\n");
338
339 #ifdef CONFIG_SMP
340                 /* domain-specific stats */
341                 for_each_domain(cpu, sd) {
342                         enum idle_type itype;
343                         char mask_str[NR_CPUS];
344
345                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
346                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
347                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
348                                         itype++) {
349                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
350                                     sd->lb_cnt[itype],
351                                     sd->lb_balanced[itype],
352                                     sd->lb_failed[itype],
353                                     sd->lb_imbalance[itype],
354                                     sd->lb_gained[itype],
355                                     sd->lb_hot_gained[itype],
356                                     sd->lb_nobusyq[itype],
357                                     sd->lb_nobusyg[itype]);
358                         }
359                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
360                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
361                             sd->sbe_pushed, sd->sbe_attempts,
362                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
363                 }
364 #endif
365         }
366         return 0;
367 }
368
369 static int schedstat_open(struct inode *inode, struct file *file)
370 {
371         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
372         char *buf = kmalloc(size, GFP_KERNEL);
373         struct seq_file *m;
374         int res;
375
376         if (!buf)
377                 return -ENOMEM;
378         res = single_open(file, show_schedstat, NULL);
379         if (!res) {
380                 m = file->private_data;
381                 m->buf = buf;
382                 m->size = size;
383         } else
384                 kfree(buf);
385         return res;
386 }
387
388 struct file_operations proc_schedstat_operations = {
389         .open    = schedstat_open,
390         .read    = seq_read,
391         .llseek  = seq_lseek,
392         .release = single_release,
393 };
394
395 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
396 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
397 #else /* !CONFIG_SCHEDSTATS */
398 # define schedstat_inc(rq, field)       do { } while (0)
399 # define schedstat_add(rq, field, amt)  do { } while (0)
400 #endif
401
402 /*
403  * rq_lock - lock a given runqueue and disable interrupts.
404  */
405 static inline runqueue_t *this_rq_lock(void)
406         __acquires(rq->lock)
407 {
408         runqueue_t *rq;
409
410         local_irq_disable();
411         rq = this_rq();
412         spin_lock(&rq->lock);
413
414         return rq;
415 }
416
417 #ifdef CONFIG_SCHED_SMT
418 static int cpu_and_siblings_are_idle(int cpu)
419 {
420         int sib;
421         for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
422                 if (idle_cpu(sib))
423                         continue;
424                 return 0;
425         }
426
427         return 1;
428 }
429 #else
430 #define cpu_and_siblings_are_idle(A) idle_cpu(A)
431 #endif
432
433 #ifdef CONFIG_SCHEDSTATS
434 /*
435  * Called when a process is dequeued from the active array and given
436  * the cpu.  We should note that with the exception of interactive
437  * tasks, the expired queue will become the active queue after the active
438  * queue is empty, without explicitly dequeuing and requeuing tasks in the
439  * expired queue.  (Interactive tasks may be requeued directly to the
440  * active queue, thus delaying tasks in the expired queue from running;
441  * see scheduler_tick()).
442  *
443  * This function is only called from sched_info_arrive(), rather than
444  * dequeue_task(). Even though a task may be queued and dequeued multiple
445  * times as it is shuffled about, we're really interested in knowing how
446  * long it was from the *first* time it was queued to the time that it
447  * finally hit a cpu.
448  */
449 static inline void sched_info_dequeued(task_t *t)
450 {
451         t->sched_info.last_queued = 0;
452 }
453
454 /*
455  * Called when a task finally hits the cpu.  We can now calculate how
456  * long it was waiting to run.  We also note when it began so that we
457  * can keep stats on how long its timeslice is.
458  */
459 static inline void sched_info_arrive(task_t *t)
460 {
461         unsigned long now = jiffies, diff = 0;
462         struct runqueue *rq = task_rq(t);
463
464         if (t->sched_info.last_queued)
465                 diff = now - t->sched_info.last_queued;
466         sched_info_dequeued(t);
467         t->sched_info.run_delay += diff;
468         t->sched_info.last_arrival = now;
469         t->sched_info.pcnt++;
470
471         if (!rq)
472                 return;
473
474         rq->rq_sched_info.run_delay += diff;
475         rq->rq_sched_info.pcnt++;
476 }
477
478 /*
479  * Called when a process is queued into either the active or expired
480  * array.  The time is noted and later used to determine how long we
481  * had to wait for us to reach the cpu.  Since the expired queue will
482  * become the active queue after active queue is empty, without dequeuing
483  * and requeuing any tasks, we are interested in queuing to either. It
484  * is unusual but not impossible for tasks to be dequeued and immediately
485  * requeued in the same or another array: this can happen in sched_yield(),
486  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
487  * to runqueue.
488  *
489  * This function is only called from enqueue_task(), but also only updates
490  * the timestamp if it is already not set.  It's assumed that
491  * sched_info_dequeued() will clear that stamp when appropriate.
492  */
493 static inline void sched_info_queued(task_t *t)
494 {
495         if (!t->sched_info.last_queued)
496                 t->sched_info.last_queued = jiffies;
497 }
498
499 /*
500  * Called when a process ceases being the active-running process, either
501  * voluntarily or involuntarily.  Now we can calculate how long we ran.
502  */
503 static inline void sched_info_depart(task_t *t)
504 {
505         struct runqueue *rq = task_rq(t);
506         unsigned long diff = jiffies - t->sched_info.last_arrival;
507
508         t->sched_info.cpu_time += diff;
509
510         if (rq)
511                 rq->rq_sched_info.cpu_time += diff;
512 }
513
514 /*
515  * Called when tasks are switched involuntarily due, typically, to expiring
516  * their time slice.  (This may also be called when switching to or from
517  * the idle task.)  We are only called when prev != next.
518  */
519 static inline void sched_info_switch(task_t *prev, task_t *next)
520 {
521         struct runqueue *rq = task_rq(prev);
522
523         /*
524          * prev now departs the cpu.  It's not interesting to record
525          * stats about how efficient we were at scheduling the idle
526          * process, however.
527          */
528         if (prev != rq->idle)
529                 sched_info_depart(prev);
530
531         if (next != rq->idle)
532                 sched_info_arrive(next);
533 }
534 #else
535 #define sched_info_queued(t)            do { } while (0)
536 #define sched_info_switch(t, next)      do { } while (0)
537 #endif /* CONFIG_SCHEDSTATS */
538
539 /*
540  * Adding/removing a task to/from a priority array:
541  */
542 static void dequeue_task(struct task_struct *p, prio_array_t *array)
543 {
544         array->nr_active--;
545         list_del(&p->run_list);
546         if (list_empty(array->queue + p->prio))
547                 __clear_bit(p->prio, array->bitmap);
548 }
549
550 static void enqueue_task(struct task_struct *p, prio_array_t *array)
551 {
552         sched_info_queued(p);
553         list_add_tail(&p->run_list, array->queue + p->prio);
554         __set_bit(p->prio, array->bitmap);
555         array->nr_active++;
556         p->array = array;
557 }
558
559 /*
560  * Put task to the end of the run list without the overhead of dequeue
561  * followed by enqueue.
562  */
563 static void requeue_task(struct task_struct *p, prio_array_t *array)
564 {
565         list_move_tail(&p->run_list, array->queue + p->prio);
566 }
567
568 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
569 {
570         list_add(&p->run_list, array->queue + p->prio);
571         __set_bit(p->prio, array->bitmap);
572         array->nr_active++;
573         p->array = array;
574 }
575
576 /*
577  * effective_prio - return the priority that is based on the static
578  * priority but is modified by bonuses/penalties.
579  *
580  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
581  * into the -5 ... 0 ... +5 bonus/penalty range.
582  *
583  * We use 25% of the full 0...39 priority range so that:
584  *
585  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
586  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
587  *
588  * Both properties are important to certain workloads.
589  */
590 static int effective_prio(task_t *p)
591 {
592         int bonus, prio;
593
594         if (rt_task(p))
595                 return p->prio;
596
597         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
598
599         prio = p->static_prio - bonus;
600         if (prio < MAX_RT_PRIO)
601                 prio = MAX_RT_PRIO;
602         if (prio > MAX_PRIO-1)
603                 prio = MAX_PRIO-1;
604         return prio;
605 }
606
607 /*
608  * __activate_task - move a task to the runqueue.
609  */
610 static inline void __activate_task(task_t *p, runqueue_t *rq)
611 {
612         enqueue_task(p, rq->active);
613         rq->nr_running++;
614 }
615
616 /*
617  * __activate_idle_task - move idle task to the _front_ of runqueue.
618  */
619 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
620 {
621         enqueue_task_head(p, rq->active);
622         rq->nr_running++;
623 }
624
625 static void recalc_task_prio(task_t *p, unsigned long long now)
626 {
627         /* Caller must always ensure 'now >= p->timestamp' */
628         unsigned long long __sleep_time = now - p->timestamp;
629         unsigned long sleep_time;
630
631         if (__sleep_time > NS_MAX_SLEEP_AVG)
632                 sleep_time = NS_MAX_SLEEP_AVG;
633         else
634                 sleep_time = (unsigned long)__sleep_time;
635
636         if (likely(sleep_time > 0)) {
637                 /*
638                  * User tasks that sleep a long time are categorised as
639                  * idle and will get just interactive status to stay active &
640                  * prevent them suddenly becoming cpu hogs and starving
641                  * other processes.
642                  */
643                 if (p->mm && p->activated != -1 &&
644                         sleep_time > INTERACTIVE_SLEEP(p)) {
645                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
646                                                 DEF_TIMESLICE);
647                 } else {
648                         /*
649                          * The lower the sleep avg a task has the more
650                          * rapidly it will rise with sleep time.
651                          */
652                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
653
654                         /*
655                          * Tasks waking from uninterruptible sleep are
656                          * limited in their sleep_avg rise as they
657                          * are likely to be waiting on I/O
658                          */
659                         if (p->activated == -1 && p->mm) {
660                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
661                                         sleep_time = 0;
662                                 else if (p->sleep_avg + sleep_time >=
663                                                 INTERACTIVE_SLEEP(p)) {
664                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
665                                         sleep_time = 0;
666                                 }
667                         }
668
669                         /*
670                          * This code gives a bonus to interactive tasks.
671                          *
672                          * The boost works by updating the 'average sleep time'
673                          * value here, based on ->timestamp. The more time a
674                          * task spends sleeping, the higher the average gets -
675                          * and the higher the priority boost gets as well.
676                          */
677                         p->sleep_avg += sleep_time;
678
679                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
680                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
681                 }
682         }
683
684         p->prio = effective_prio(p);
685 }
686
687 /*
688  * activate_task - move a task to the runqueue and do priority recalculation
689  *
690  * Update all the scheduling statistics stuff. (sleep average
691  * calculation, priority modifiers, etc.)
692  */
693 static void activate_task(task_t *p, runqueue_t *rq, int local)
694 {
695         unsigned long long now;
696
697         now = sched_clock();
698 #ifdef CONFIG_SMP
699         if (!local) {
700                 /* Compensate for drifting sched_clock */
701                 runqueue_t *this_rq = this_rq();
702                 now = (now - this_rq->timestamp_last_tick)
703                         + rq->timestamp_last_tick;
704         }
705 #endif
706
707         recalc_task_prio(p, now);
708
709         /*
710          * This checks to make sure it's not an uninterruptible task
711          * that is now waking up.
712          */
713         if (!p->activated) {
714                 /*
715                  * Tasks which were woken up by interrupts (ie. hw events)
716                  * are most likely of interactive nature. So we give them
717                  * the credit of extending their sleep time to the period
718                  * of time they spend on the runqueue, waiting for execution
719                  * on a CPU, first time around:
720                  */
721                 if (in_interrupt())
722                         p->activated = 2;
723                 else {
724                         /*
725                          * Normal first-time wakeups get a credit too for
726                          * on-runqueue time, but it will be weighted down:
727                          */
728                         p->activated = 1;
729                 }
730         }
731         p->timestamp = now;
732
733         __activate_task(p, rq);
734 }
735
736 /*
737  * deactivate_task - remove a task from the runqueue.
738  */
739 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
740 {
741         rq->nr_running--;
742         dequeue_task(p, p->array);
743         p->array = NULL;
744 }
745
746 /*
747  * resched_task - mark a task 'to be rescheduled now'.
748  *
749  * On UP this means the setting of the need_resched flag, on SMP it
750  * might also involve a cross-CPU call to trigger the scheduler on
751  * the target CPU.
752  */
753 #ifdef CONFIG_SMP
754 static void resched_task(task_t *p)
755 {
756         int need_resched, nrpolling;
757
758         assert_spin_locked(&task_rq(p)->lock);
759
760         /* minimise the chance of sending an interrupt to poll_idle() */
761         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
762         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
763         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
764
765         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
766                 smp_send_reschedule(task_cpu(p));
767 }
768 #else
769 static inline void resched_task(task_t *p)
770 {
771         set_tsk_need_resched(p);
772 }
773 #endif
774
775 /**
776  * task_curr - is this task currently executing on a CPU?
777  * @p: the task in question.
778  */
779 inline int task_curr(const task_t *p)
780 {
781         return cpu_curr(task_cpu(p)) == p;
782 }
783
784 #ifdef CONFIG_SMP
785 enum request_type {
786         REQ_MOVE_TASK,
787         REQ_SET_DOMAIN,
788 };
789
790 typedef struct {
791         struct list_head list;
792         enum request_type type;
793
794         /* For REQ_MOVE_TASK */
795         task_t *task;
796         int dest_cpu;
797
798         /* For REQ_SET_DOMAIN */
799         struct sched_domain *sd;
800
801         struct completion done;
802 } migration_req_t;
803
804 /*
805  * The task's runqueue lock must be held.
806  * Returns true if you have to wait for migration thread.
807  */
808 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
809 {
810         runqueue_t *rq = task_rq(p);
811
812         /*
813          * If the task is not on a runqueue (and not running), then
814          * it is sufficient to simply update the task's cpu field.
815          */
816         if (!p->array && !task_running(rq, p)) {
817                 set_task_cpu(p, dest_cpu);
818                 return 0;
819         }
820
821         init_completion(&req->done);
822         req->type = REQ_MOVE_TASK;
823         req->task = p;
824         req->dest_cpu = dest_cpu;
825         list_add(&req->list, &rq->migration_queue);
826         return 1;
827 }
828
829 /*
830  * wait_task_inactive - wait for a thread to unschedule.
831  *
832  * The caller must ensure that the task *will* unschedule sometime soon,
833  * else this function might spin for a *long* time. This function can't
834  * be called with interrupts off, or it may introduce deadlock with
835  * smp_call_function() if an IPI is sent by the same process we are
836  * waiting to become inactive.
837  */
838 void wait_task_inactive(task_t * p)
839 {
840         unsigned long flags;
841         runqueue_t *rq;
842         int preempted;
843
844 repeat:
845         rq = task_rq_lock(p, &flags);
846         /* Must be off runqueue entirely, not preempted. */
847         if (unlikely(p->array || task_running(rq, p))) {
848                 /* If it's preempted, we yield.  It could be a while. */
849                 preempted = !task_running(rq, p);
850                 task_rq_unlock(rq, &flags);
851                 cpu_relax();
852                 if (preempted)
853                         yield();
854                 goto repeat;
855         }
856         task_rq_unlock(rq, &flags);
857 }
858
859 /***
860  * kick_process - kick a running thread to enter/exit the kernel
861  * @p: the to-be-kicked thread
862  *
863  * Cause a process which is running on another CPU to enter
864  * kernel-mode, without any delay. (to get signals handled.)
865  *
866  * NOTE: this function doesnt have to take the runqueue lock,
867  * because all it wants to ensure is that the remote task enters
868  * the kernel. If the IPI races and the task has been migrated
869  * to another CPU then no harm is done and the purpose has been
870  * achieved as well.
871  */
872 void kick_process(task_t *p)
873 {
874         int cpu;
875
876         preempt_disable();
877         cpu = task_cpu(p);
878         if ((cpu != smp_processor_id()) && task_curr(p))
879                 smp_send_reschedule(cpu);
880         preempt_enable();
881 }
882
883 /*
884  * Return a low guess at the load of a migration-source cpu.
885  *
886  * We want to under-estimate the load of migration sources, to
887  * balance conservatively.
888  */
889 static inline unsigned long source_load(int cpu)
890 {
891         runqueue_t *rq = cpu_rq(cpu);
892         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
893
894         return min(rq->cpu_load, load_now);
895 }
896
897 /*
898  * Return a high guess at the load of a migration-target cpu
899  */
900 static inline unsigned long target_load(int cpu)
901 {
902         runqueue_t *rq = cpu_rq(cpu);
903         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
904
905         return max(rq->cpu_load, load_now);
906 }
907
908 #endif
909
910 /*
911  * wake_idle() will wake a task on an idle cpu if task->cpu is
912  * not idle and an idle cpu is available.  The span of cpus to
913  * search starts with cpus closest then further out as needed,
914  * so we always favor a closer, idle cpu.
915  *
916  * Returns the CPU we should wake onto.
917  */
918 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
919 static int wake_idle(int cpu, task_t *p)
920 {
921         cpumask_t tmp;
922         struct sched_domain *sd;
923         int i;
924
925         if (idle_cpu(cpu))
926                 return cpu;
927
928         for_each_domain(cpu, sd) {
929                 if (sd->flags & SD_WAKE_IDLE) {
930                         cpus_and(tmp, sd->span, p->cpus_allowed);
931                         for_each_cpu_mask(i, tmp) {
932                                 if (idle_cpu(i))
933                                         return i;
934                         }
935                 }
936                 else
937                         break;
938         }
939         return cpu;
940 }
941 #else
942 static inline int wake_idle(int cpu, task_t *p)
943 {
944         return cpu;
945 }
946 #endif
947
948 /***
949  * try_to_wake_up - wake up a thread
950  * @p: the to-be-woken-up thread
951  * @state: the mask of task states that can be woken
952  * @sync: do a synchronous wakeup?
953  *
954  * Put it on the run-queue if it's not already there. The "current"
955  * thread is always on the run-queue (except when the actual
956  * re-schedule is in progress), and as such you're allowed to do
957  * the simpler "current->state = TASK_RUNNING" to mark yourself
958  * runnable without the overhead of this.
959  *
960  * returns failure only if the task is already active.
961  */
962 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
963 {
964         int cpu, this_cpu, success = 0;
965         unsigned long flags;
966         long old_state;
967         runqueue_t *rq;
968 #ifdef CONFIG_SMP
969         unsigned long load, this_load;
970         struct sched_domain *sd;
971         int new_cpu;
972 #endif
973
974         rq = task_rq_lock(p, &flags);
975         old_state = p->state;
976         if (!(old_state & state))
977                 goto out;
978
979         if (p->array)
980                 goto out_running;
981
982         cpu = task_cpu(p);
983         this_cpu = smp_processor_id();
984
985 #ifdef CONFIG_SMP
986         if (unlikely(task_running(rq, p)))
987                 goto out_activate;
988
989 #ifdef CONFIG_SCHEDSTATS
990         schedstat_inc(rq, ttwu_cnt);
991         if (cpu == this_cpu) {
992                 schedstat_inc(rq, ttwu_local);
993         } else {
994                 for_each_domain(this_cpu, sd) {
995                         if (cpu_isset(cpu, sd->span)) {
996                                 schedstat_inc(sd, ttwu_wake_remote);
997                                 break;
998                         }
999                 }
1000         }
1001 #endif
1002
1003         new_cpu = cpu;
1004         if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1005                 goto out_set_cpu;
1006
1007         load = source_load(cpu);
1008         this_load = target_load(this_cpu);
1009
1010         /*
1011          * If sync wakeup then subtract the (maximum possible) effect of
1012          * the currently running task from the load of the current CPU:
1013          */
1014         if (sync)
1015                 this_load -= SCHED_LOAD_SCALE;
1016
1017         /* Don't pull the task off an idle CPU to a busy one */
1018         if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
1019                 goto out_set_cpu;
1020
1021         new_cpu = this_cpu; /* Wake to this CPU if we can */
1022
1023         /*
1024          * Scan domains for affine wakeup and passive balancing
1025          * possibilities.
1026          */
1027         for_each_domain(this_cpu, sd) {
1028                 unsigned int imbalance;
1029                 /*
1030                  * Start passive balancing when half the imbalance_pct
1031                  * limit is reached.
1032                  */
1033                 imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
1034
1035                 if ((sd->flags & SD_WAKE_AFFINE) &&
1036                                 !task_hot(p, rq->timestamp_last_tick, sd)) {
1037                         /*
1038                          * This domain has SD_WAKE_AFFINE and p is cache cold
1039                          * in this domain.
1040                          */
1041                         if (cpu_isset(cpu, sd->span)) {
1042                                 schedstat_inc(sd, ttwu_move_affine);
1043                                 goto out_set_cpu;
1044                         }
1045                 } else if ((sd->flags & SD_WAKE_BALANCE) &&
1046                                 imbalance*this_load <= 100*load) {
1047                         /*
1048                          * This domain has SD_WAKE_BALANCE and there is
1049                          * an imbalance.
1050                          */
1051                         if (cpu_isset(cpu, sd->span)) {
1052                                 schedstat_inc(sd, ttwu_move_balance);
1053                                 goto out_set_cpu;
1054                         }
1055                 }
1056         }
1057
1058         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1059 out_set_cpu:
1060         new_cpu = wake_idle(new_cpu, p);
1061         if (new_cpu != cpu) {
1062                 set_task_cpu(p, new_cpu);
1063                 task_rq_unlock(rq, &flags);
1064                 /* might preempt at this point */
1065                 rq = task_rq_lock(p, &flags);
1066                 old_state = p->state;
1067                 if (!(old_state & state))
1068                         goto out;
1069                 if (p->array)
1070                         goto out_running;
1071
1072                 this_cpu = smp_processor_id();
1073                 cpu = task_cpu(p);
1074         }
1075
1076 out_activate:
1077 #endif /* CONFIG_SMP */
1078         if (old_state == TASK_UNINTERRUPTIBLE) {
1079                 rq->nr_uninterruptible--;
1080                 /*
1081                  * Tasks on involuntary sleep don't earn
1082                  * sleep_avg beyond just interactive state.
1083                  */
1084                 p->activated = -1;
1085         }
1086
1087         /*
1088          * Sync wakeups (i.e. those types of wakeups where the waker
1089          * has indicated that it will leave the CPU in short order)
1090          * don't trigger a preemption, if the woken up task will run on
1091          * this cpu. (in this case the 'I will reschedule' promise of
1092          * the waker guarantees that the freshly woken up task is going
1093          * to be considered on this CPU.)
1094          */
1095         activate_task(p, rq, cpu == this_cpu);
1096         if (!sync || cpu != this_cpu) {
1097                 if (TASK_PREEMPTS_CURR(p, rq))
1098                         resched_task(rq->curr);
1099         }
1100         success = 1;
1101
1102 out_running:
1103         p->state = TASK_RUNNING;
1104 out:
1105         task_rq_unlock(rq, &flags);
1106
1107         return success;
1108 }
1109
1110 int fastcall wake_up_process(task_t * p)
1111 {
1112         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1113                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1114 }
1115
1116 EXPORT_SYMBOL(wake_up_process);
1117
1118 int fastcall wake_up_state(task_t *p, unsigned int state)
1119 {
1120         return try_to_wake_up(p, state, 0);
1121 }
1122
1123 #ifdef CONFIG_SMP
1124 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1125                            struct sched_domain *sd);
1126 #endif
1127
1128 /*
1129  * Perform scheduler related setup for a newly forked process p.
1130  * p is forked by current.
1131  */
1132 void fastcall sched_fork(task_t *p)
1133 {
1134         /*
1135          * We mark the process as running here, but have not actually
1136          * inserted it onto the runqueue yet. This guarantees that
1137          * nobody will actually run it, and a signal or other external
1138          * event cannot wake it up and insert it on the runqueue either.
1139          */
1140         p->state = TASK_RUNNING;
1141         INIT_LIST_HEAD(&p->run_list);
1142         p->array = NULL;
1143         spin_lock_init(&p->switch_lock);
1144 #ifdef CONFIG_SCHEDSTATS
1145         memset(&p->sched_info, 0, sizeof(p->sched_info));
1146 #endif
1147 #ifdef CONFIG_PREEMPT
1148         /*
1149          * During context-switch we hold precisely one spinlock, which
1150          * schedule_tail drops. (in the common case it's this_rq()->lock,
1151          * but it also can be p->switch_lock.) So we compensate with a count
1152          * of 1. Also, we want to start with kernel preemption disabled.
1153          */
1154         p->thread_info->preempt_count = 1;
1155 #endif
1156         /*
1157          * Share the timeslice between parent and child, thus the
1158          * total amount of pending timeslices in the system doesn't change,
1159          * resulting in more scheduling fairness.
1160          */
1161         local_irq_disable();
1162         p->time_slice = (current->time_slice + 1) >> 1;
1163         /*
1164          * The remainder of the first timeslice might be recovered by
1165          * the parent if the child exits early enough.
1166          */
1167         p->first_time_slice = 1;
1168         current->time_slice >>= 1;
1169         p->timestamp = sched_clock();
1170         if (unlikely(!current->time_slice)) {
1171                 /*
1172                  * This case is rare, it happens when the parent has only
1173                  * a single jiffy left from its timeslice. Taking the
1174                  * runqueue lock is not a problem.
1175                  */
1176                 current->time_slice = 1;
1177                 preempt_disable();
1178                 scheduler_tick();
1179                 local_irq_enable();
1180                 preempt_enable();
1181         } else
1182                 local_irq_enable();
1183 }
1184
1185 /*
1186  * wake_up_new_task - wake up a newly created task for the first time.
1187  *
1188  * This function will do some initial scheduler statistics housekeeping
1189  * that must be done for every newly created context, then puts the task
1190  * on the runqueue and wakes it.
1191  */
1192 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1193 {
1194         unsigned long flags;
1195         int this_cpu, cpu;
1196         runqueue_t *rq, *this_rq;
1197
1198         rq = task_rq_lock(p, &flags);
1199         cpu = task_cpu(p);
1200         this_cpu = smp_processor_id();
1201
1202         BUG_ON(p->state != TASK_RUNNING);
1203
1204         /*
1205          * We decrease the sleep average of forking parents
1206          * and children as well, to keep max-interactive tasks
1207          * from forking tasks that are max-interactive. The parent
1208          * (current) is done further down, under its lock.
1209          */
1210         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1211                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1212
1213         p->prio = effective_prio(p);
1214
1215         if (likely(cpu == this_cpu)) {
1216                 if (!(clone_flags & CLONE_VM)) {
1217                         /*
1218                          * The VM isn't cloned, so we're in a good position to
1219                          * do child-runs-first in anticipation of an exec. This
1220                          * usually avoids a lot of COW overhead.
1221                          */
1222                         if (unlikely(!current->array))
1223                                 __activate_task(p, rq);
1224                         else {
1225                                 p->prio = current->prio;
1226                                 list_add_tail(&p->run_list, &current->run_list);
1227                                 p->array = current->array;
1228                                 p->array->nr_active++;
1229                                 rq->nr_running++;
1230                         }
1231                         set_need_resched();
1232                 } else
1233                         /* Run child last */
1234                         __activate_task(p, rq);
1235                 /*
1236                  * We skip the following code due to cpu == this_cpu
1237                  *
1238                  *   task_rq_unlock(rq, &flags);
1239                  *   this_rq = task_rq_lock(current, &flags);
1240                  */
1241                 this_rq = rq;
1242         } else {
1243                 this_rq = cpu_rq(this_cpu);
1244
1245                 /*
1246                  * Not the local CPU - must adjust timestamp. This should
1247                  * get optimised away in the !CONFIG_SMP case.
1248                  */
1249                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1250                                         + rq->timestamp_last_tick;
1251                 __activate_task(p, rq);
1252                 if (TASK_PREEMPTS_CURR(p, rq))
1253                         resched_task(rq->curr);
1254
1255                 /*
1256                  * Parent and child are on different CPUs, now get the
1257                  * parent runqueue to update the parent's ->sleep_avg:
1258                  */
1259                 task_rq_unlock(rq, &flags);
1260                 this_rq = task_rq_lock(current, &flags);
1261         }
1262         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1263                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1264         task_rq_unlock(this_rq, &flags);
1265 }
1266
1267 /*
1268  * Potentially available exiting-child timeslices are
1269  * retrieved here - this way the parent does not get
1270  * penalized for creating too many threads.
1271  *
1272  * (this cannot be used to 'generate' timeslices
1273  * artificially, because any timeslice recovered here
1274  * was given away by the parent in the first place.)
1275  */
1276 void fastcall sched_exit(task_t * p)
1277 {
1278         unsigned long flags;
1279         runqueue_t *rq;
1280
1281         /*
1282          * If the child was a (relative-) CPU hog then decrease
1283          * the sleep_avg of the parent as well.
1284          */
1285         rq = task_rq_lock(p->parent, &flags);
1286         if (p->first_time_slice) {
1287                 p->parent->time_slice += p->time_slice;
1288                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1289                         p->parent->time_slice = task_timeslice(p);
1290         }
1291         if (p->sleep_avg < p->parent->sleep_avg)
1292                 p->parent->sleep_avg = p->parent->sleep_avg /
1293                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1294                 (EXIT_WEIGHT + 1);
1295         task_rq_unlock(rq, &flags);
1296 }
1297
1298 /**
1299  * finish_task_switch - clean up after a task-switch
1300  * @prev: the thread we just switched away from.
1301  *
1302  * We enter this with the runqueue still locked, and finish_arch_switch()
1303  * will unlock it along with doing any other architecture-specific cleanup
1304  * actions.
1305  *
1306  * Note that we may have delayed dropping an mm in context_switch(). If
1307  * so, we finish that here outside of the runqueue lock.  (Doing it
1308  * with the lock held can cause deadlocks; see schedule() for
1309  * details.)
1310  */
1311 static inline void finish_task_switch(task_t *prev)
1312         __releases(rq->lock)
1313 {
1314         runqueue_t *rq = this_rq();
1315         struct mm_struct *mm = rq->prev_mm;
1316         unsigned long prev_task_flags;
1317
1318         rq->prev_mm = NULL;
1319
1320         /*
1321          * A task struct has one reference for the use as "current".
1322          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1323          * calls schedule one last time. The schedule call will never return,
1324          * and the scheduled task must drop that reference.
1325          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1326          * still held, otherwise prev could be scheduled on another cpu, die
1327          * there before we look at prev->state, and then the reference would
1328          * be dropped twice.
1329          *              Manfred Spraul <manfred@colorfullife.com>
1330          */
1331         prev_task_flags = prev->flags;
1332         finish_arch_switch(rq, prev);
1333         if (mm)
1334                 mmdrop(mm);
1335         if (unlikely(prev_task_flags & PF_DEAD))
1336                 put_task_struct(prev);
1337 }
1338
1339 /**
1340  * schedule_tail - first thing a freshly forked thread must call.
1341  * @prev: the thread we just switched away from.
1342  */
1343 asmlinkage void schedule_tail(task_t *prev)
1344         __releases(rq->lock)
1345 {
1346         finish_task_switch(prev);
1347
1348         if (current->set_child_tid)
1349                 put_user(current->pid, current->set_child_tid);
1350 }
1351
1352 /*
1353  * context_switch - switch to the new MM and the new
1354  * thread's register state.
1355  */
1356 static inline
1357 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1358 {
1359         struct mm_struct *mm = next->mm;
1360         struct mm_struct *oldmm = prev->active_mm;
1361
1362         if (unlikely(!mm)) {
1363                 next->active_mm = oldmm;
1364                 atomic_inc(&oldmm->mm_count);
1365                 enter_lazy_tlb(oldmm, next);
1366         } else
1367                 switch_mm(oldmm, mm, next);
1368
1369         if (unlikely(!prev->mm)) {
1370                 prev->active_mm = NULL;
1371                 WARN_ON(rq->prev_mm);
1372                 rq->prev_mm = oldmm;
1373         }
1374
1375         /* Here we just switch the register state and the stack. */
1376         switch_to(prev, next, prev);
1377
1378         return prev;
1379 }
1380
1381 /*
1382  * nr_running, nr_uninterruptible and nr_context_switches:
1383  *
1384  * externally visible scheduler statistics: current number of runnable
1385  * threads, current number of uninterruptible-sleeping threads, total
1386  * number of context switches performed since bootup.
1387  */
1388 unsigned long nr_running(void)
1389 {
1390         unsigned long i, sum = 0;
1391
1392         for_each_online_cpu(i)
1393                 sum += cpu_rq(i)->nr_running;
1394
1395         return sum;
1396 }
1397
1398 unsigned long nr_uninterruptible(void)
1399 {
1400         unsigned long i, sum = 0;
1401
1402         for_each_cpu(i)
1403                 sum += cpu_rq(i)->nr_uninterruptible;
1404
1405         /*
1406          * Since we read the counters lockless, it might be slightly
1407          * inaccurate. Do not allow it to go below zero though:
1408          */
1409         if (unlikely((long)sum < 0))
1410                 sum = 0;
1411
1412         return sum;
1413 }
1414
1415 unsigned long long nr_context_switches(void)
1416 {
1417         unsigned long long i, sum = 0;
1418
1419         for_each_cpu(i)
1420                 sum += cpu_rq(i)->nr_switches;
1421
1422         return sum;
1423 }
1424
1425 unsigned long nr_iowait(void)
1426 {
1427         unsigned long i, sum = 0;
1428
1429         for_each_cpu(i)
1430                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1431
1432         return sum;
1433 }
1434
1435 #ifdef CONFIG_SMP
1436
1437 /*
1438  * double_rq_lock - safely lock two runqueues
1439  *
1440  * Note this does not disable interrupts like task_rq_lock,
1441  * you need to do so manually before calling.
1442  */
1443 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1444         __acquires(rq1->lock)
1445         __acquires(rq2->lock)
1446 {
1447         if (rq1 == rq2) {
1448                 spin_lock(&rq1->lock);
1449                 __acquire(rq2->lock);   /* Fake it out ;) */
1450         } else {
1451                 if (rq1 < rq2) {
1452                         spin_lock(&rq1->lock);
1453                         spin_lock(&rq2->lock);
1454                 } else {
1455                         spin_lock(&rq2->lock);
1456                         spin_lock(&rq1->lock);
1457                 }
1458         }
1459 }
1460
1461 /*
1462  * double_rq_unlock - safely unlock two runqueues
1463  *
1464  * Note this does not restore interrupts like task_rq_unlock,
1465  * you need to do so manually after calling.
1466  */
1467 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1468         __releases(rq1->lock)
1469         __releases(rq2->lock)
1470 {
1471         spin_unlock(&rq1->lock);
1472         if (rq1 != rq2)
1473                 spin_unlock(&rq2->lock);
1474         else
1475                 __release(rq2->lock);
1476 }
1477
1478 /*
1479  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1480  */
1481 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1482         __releases(this_rq->lock)
1483         __acquires(busiest->lock)
1484         __acquires(this_rq->lock)
1485 {
1486         if (unlikely(!spin_trylock(&busiest->lock))) {
1487                 if (busiest < this_rq) {
1488                         spin_unlock(&this_rq->lock);
1489                         spin_lock(&busiest->lock);
1490                         spin_lock(&this_rq->lock);
1491                 } else
1492                         spin_lock(&busiest->lock);
1493         }
1494 }
1495
1496 /*
1497  * find_idlest_cpu - find the least busy runqueue.
1498  */
1499 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1500                            struct sched_domain *sd)
1501 {
1502         unsigned long load, min_load, this_load;
1503         int i, min_cpu;
1504         cpumask_t mask;
1505
1506         min_cpu = UINT_MAX;
1507         min_load = ULONG_MAX;
1508
1509         cpus_and(mask, sd->span, p->cpus_allowed);
1510
1511         for_each_cpu_mask(i, mask) {
1512                 load = target_load(i);
1513
1514                 if (load < min_load) {
1515                         min_cpu = i;
1516                         min_load = load;
1517
1518                         /* break out early on an idle CPU: */
1519                         if (!min_load)
1520                                 break;
1521                 }
1522         }
1523
1524         /* add +1 to account for the new task */
1525         this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
1526
1527         /*
1528          * Would with the addition of the new task to the
1529          * current CPU there be an imbalance between this
1530          * CPU and the idlest CPU?
1531          *
1532          * Use half of the balancing threshold - new-context is
1533          * a good opportunity to balance.
1534          */
1535         if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
1536                 return min_cpu;
1537
1538         return this_cpu;
1539 }
1540
1541 /*
1542  * If dest_cpu is allowed for this process, migrate the task to it.
1543  * This is accomplished by forcing the cpu_allowed mask to only
1544  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1545  * the cpu_allowed mask is restored.
1546  */
1547 static void sched_migrate_task(task_t *p, int dest_cpu)
1548 {
1549         migration_req_t req;
1550         runqueue_t *rq;
1551         unsigned long flags;
1552
1553         rq = task_rq_lock(p, &flags);
1554         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1555             || unlikely(cpu_is_offline(dest_cpu)))
1556                 goto out;
1557
1558         /* force the process onto the specified CPU */
1559         if (migrate_task(p, dest_cpu, &req)) {
1560                 /* Need to wait for migration thread (might exit: take ref). */
1561                 struct task_struct *mt = rq->migration_thread;
1562                 get_task_struct(mt);
1563                 task_rq_unlock(rq, &flags);
1564                 wake_up_process(mt);
1565                 put_task_struct(mt);
1566                 wait_for_completion(&req.done);
1567                 return;
1568         }
1569 out:
1570         task_rq_unlock(rq, &flags);
1571 }
1572
1573 /*
1574  * sched_exec(): find the highest-level, exec-balance-capable
1575  * domain and try to migrate the task to the least loaded CPU.
1576  *
1577  * execve() is a valuable balancing opportunity, because at this point
1578  * the task has the smallest effective memory and cache footprint.
1579  */
1580 void sched_exec(void)
1581 {
1582         struct sched_domain *tmp, *sd = NULL;
1583         int new_cpu, this_cpu = get_cpu();
1584
1585         /* Prefer the current CPU if there's only this task running */
1586         if (this_rq()->nr_running <= 1)
1587                 goto out;
1588
1589         for_each_domain(this_cpu, tmp)
1590                 if (tmp->flags & SD_BALANCE_EXEC)
1591                         sd = tmp;
1592
1593         if (sd) {
1594                 schedstat_inc(sd, sbe_attempts);
1595                 new_cpu = find_idlest_cpu(current, this_cpu, sd);
1596                 if (new_cpu != this_cpu) {
1597                         schedstat_inc(sd, sbe_pushed);
1598                         put_cpu();
1599                         sched_migrate_task(current, new_cpu);
1600                         return;
1601                 }
1602         }
1603 out:
1604         put_cpu();
1605 }
1606
1607 /*
1608  * pull_task - move a task from a remote runqueue to the local runqueue.
1609  * Both runqueues must be locked.
1610  */
1611 static inline
1612 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1613                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1614 {
1615         dequeue_task(p, src_array);
1616         src_rq->nr_running--;
1617         set_task_cpu(p, this_cpu);
1618         this_rq->nr_running++;
1619         enqueue_task(p, this_array);
1620         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1621                                 + this_rq->timestamp_last_tick;
1622         /*
1623          * Note that idle threads have a prio of MAX_PRIO, for this test
1624          * to be always true for them.
1625          */
1626         if (TASK_PREEMPTS_CURR(p, this_rq))
1627                 resched_task(this_rq->curr);
1628 }
1629
1630 /*
1631  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1632  */
1633 static inline
1634 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1635              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1636 {
1637         /*
1638          * We do not migrate tasks that are:
1639          * 1) running (obviously), or
1640          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1641          * 3) are cache-hot on their current CPU.
1642          */
1643         if (!cpu_isset(this_cpu, p->cpus_allowed))
1644                 return 0;
1645         *all_pinned = 0;
1646
1647         if (task_running(rq, p))
1648                 return 0;
1649
1650         /*
1651          * Aggressive migration if:
1652          * 1) the [whole] cpu is idle, or
1653          * 2) too many balance attempts have failed.
1654          */
1655
1656         if (cpu_and_siblings_are_idle(this_cpu) || \
1657                         sd->nr_balance_failed > sd->cache_nice_tries)
1658                 return 1;
1659
1660         if (task_hot(p, rq->timestamp_last_tick, sd))
1661                 return 0;
1662         return 1;
1663 }
1664
1665 /*
1666  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1667  * as part of a balancing operation within "domain". Returns the number of
1668  * tasks moved.
1669  *
1670  * Called with both runqueues locked.
1671  */
1672 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1673                       unsigned long max_nr_move, struct sched_domain *sd,
1674                       enum idle_type idle, int *all_pinned)
1675 {
1676         prio_array_t *array, *dst_array;
1677         struct list_head *head, *curr;
1678         int idx, pulled = 0, pinned = 0;
1679         task_t *tmp;
1680
1681         if (max_nr_move == 0)
1682                 goto out;
1683
1684         pinned = 1;
1685
1686         /*
1687          * We first consider expired tasks. Those will likely not be
1688          * executed in the near future, and they are most likely to
1689          * be cache-cold, thus switching CPUs has the least effect
1690          * on them.
1691          */
1692         if (busiest->expired->nr_active) {
1693                 array = busiest->expired;
1694                 dst_array = this_rq->expired;
1695         } else {
1696                 array = busiest->active;
1697                 dst_array = this_rq->active;
1698         }
1699
1700 new_array:
1701         /* Start searching at priority 0: */
1702         idx = 0;
1703 skip_bitmap:
1704         if (!idx)
1705                 idx = sched_find_first_bit(array->bitmap);
1706         else
1707                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1708         if (idx >= MAX_PRIO) {
1709                 if (array == busiest->expired && busiest->active->nr_active) {
1710                         array = busiest->active;
1711                         dst_array = this_rq->active;
1712                         goto new_array;
1713                 }
1714                 goto out;
1715         }
1716
1717         head = array->queue + idx;
1718         curr = head->prev;
1719 skip_queue:
1720         tmp = list_entry(curr, task_t, run_list);
1721
1722         curr = curr->prev;
1723
1724         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1725                 if (curr != head)
1726                         goto skip_queue;
1727                 idx++;
1728                 goto skip_bitmap;
1729         }
1730
1731 #ifdef CONFIG_SCHEDSTATS
1732         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1733                 schedstat_inc(sd, lb_hot_gained[idle]);
1734 #endif
1735
1736         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1737         pulled++;
1738
1739         /* We only want to steal up to the prescribed number of tasks. */
1740         if (pulled < max_nr_move) {
1741                 if (curr != head)
1742                         goto skip_queue;
1743                 idx++;
1744                 goto skip_bitmap;
1745         }
1746 out:
1747         /*
1748          * Right now, this is the only place pull_task() is called,
1749          * so we can safely collect pull_task() stats here rather than
1750          * inside pull_task().
1751          */
1752         schedstat_add(sd, lb_gained[idle], pulled);
1753
1754         if (all_pinned)
1755                 *all_pinned = pinned;
1756         return pulled;
1757 }
1758
1759 /*
1760  * find_busiest_group finds and returns the busiest CPU group within the
1761  * domain. It calculates and returns the number of tasks which should be
1762  * moved to restore balance via the imbalance parameter.
1763  */
1764 static struct sched_group *
1765 find_busiest_group(struct sched_domain *sd, int this_cpu,
1766                    unsigned long *imbalance, enum idle_type idle)
1767 {
1768         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1769         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1770
1771         max_load = this_load = total_load = total_pwr = 0;
1772
1773         do {
1774                 unsigned long load;
1775                 int local_group;
1776                 int i;
1777
1778                 local_group = cpu_isset(this_cpu, group->cpumask);
1779
1780                 /* Tally up the load of all CPUs in the group */
1781                 avg_load = 0;
1782
1783                 for_each_cpu_mask(i, group->cpumask) {
1784                         /* Bias balancing toward cpus of our domain */
1785                         if (local_group)
1786                                 load = target_load(i);
1787                         else
1788                                 load = source_load(i);
1789
1790                         avg_load += load;
1791                 }
1792
1793                 total_load += avg_load;
1794                 total_pwr += group->cpu_power;
1795
1796                 /* Adjust by relative CPU power of the group */
1797                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1798
1799                 if (local_group) {
1800                         this_load = avg_load;
1801                         this = group;
1802                         goto nextgroup;
1803                 } else if (avg_load > max_load) {
1804                         max_load = avg_load;
1805                         busiest = group;
1806                 }
1807 nextgroup:
1808                 group = group->next;
1809         } while (group != sd->groups);
1810
1811         if (!busiest || this_load >= max_load)
1812                 goto out_balanced;
1813
1814         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1815
1816         if (this_load >= avg_load ||
1817                         100*max_load <= sd->imbalance_pct*this_load)
1818                 goto out_balanced;
1819
1820         /*
1821          * We're trying to get all the cpus to the average_load, so we don't
1822          * want to push ourselves above the average load, nor do we wish to
1823          * reduce the max loaded cpu below the average load, as either of these
1824          * actions would just result in more rebalancing later, and ping-pong
1825          * tasks around. Thus we look for the minimum possible imbalance.
1826          * Negative imbalances (*we* are more loaded than anyone else) will
1827          * be counted as no imbalance for these purposes -- we can't fix that
1828          * by pulling tasks to us.  Be careful of negative numbers as they'll
1829          * appear as very large values with unsigned longs.
1830          */
1831         /* How much load to actually move to equalise the imbalance */
1832         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1833                                 (avg_load - this_load) * this->cpu_power)
1834                         / SCHED_LOAD_SCALE;
1835
1836         if (*imbalance < SCHED_LOAD_SCALE) {
1837                 unsigned long pwr_now = 0, pwr_move = 0;
1838                 unsigned long tmp;
1839
1840                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1841                         *imbalance = 1;
1842                         return busiest;
1843                 }
1844
1845                 /*
1846                  * OK, we don't have enough imbalance to justify moving tasks,
1847                  * however we may be able to increase total CPU power used by
1848                  * moving them.
1849                  */
1850
1851                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1852                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1853                 pwr_now /= SCHED_LOAD_SCALE;
1854
1855                 /* Amount of load we'd subtract */
1856                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1857                 if (max_load > tmp)
1858                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1859                                                         max_load - tmp);
1860
1861                 /* Amount of load we'd add */
1862                 if (max_load*busiest->cpu_power <
1863                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1864                         tmp = max_load*busiest->cpu_power/this->cpu_power;
1865                 else
1866                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1867                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1868                 pwr_move /= SCHED_LOAD_SCALE;
1869
1870                 /* Move if we gain throughput */
1871                 if (pwr_move <= pwr_now)
1872                         goto out_balanced;
1873
1874                 *imbalance = 1;
1875                 return busiest;
1876         }
1877
1878         /* Get rid of the scaling factor, rounding down as we divide */
1879         *imbalance = *imbalance / SCHED_LOAD_SCALE;
1880
1881         return busiest;
1882
1883 out_balanced:
1884         if (busiest && (idle == NEWLY_IDLE ||
1885                         (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) {
1886                 *imbalance = 1;
1887                 return busiest;
1888         }
1889
1890         *imbalance = 0;
1891         return NULL;
1892 }
1893
1894 /*
1895  * find_busiest_queue - find the busiest runqueue among the cpus in group.
1896  */
1897 static runqueue_t *find_busiest_queue(struct sched_group *group)
1898 {
1899         unsigned long load, max_load = 0;
1900         runqueue_t *busiest = NULL;
1901         int i;
1902
1903         for_each_cpu_mask(i, group->cpumask) {
1904                 load = source_load(i);
1905
1906                 if (load > max_load) {
1907                         max_load = load;
1908                         busiest = cpu_rq(i);
1909                 }
1910         }
1911
1912         return busiest;
1913 }
1914
1915 /*
1916  * Check this_cpu to ensure it is balanced within domain. Attempt to move
1917  * tasks if there is an imbalance.
1918  *
1919  * Called with this_rq unlocked.
1920  */
1921 static int load_balance(int this_cpu, runqueue_t *this_rq,
1922                         struct sched_domain *sd, enum idle_type idle)
1923 {
1924         struct sched_group *group;
1925         runqueue_t *busiest;
1926         unsigned long imbalance;
1927         int nr_moved, all_pinned;
1928         int active_balance = 0;
1929
1930         spin_lock(&this_rq->lock);
1931         schedstat_inc(sd, lb_cnt[idle]);
1932
1933         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
1934         if (!group) {
1935                 schedstat_inc(sd, lb_nobusyg[idle]);
1936                 goto out_balanced;
1937         }
1938
1939         busiest = find_busiest_queue(group);
1940         if (!busiest) {
1941                 schedstat_inc(sd, lb_nobusyq[idle]);
1942                 goto out_balanced;
1943         }
1944
1945         /*
1946          * This should be "impossible", but since load
1947          * balancing is inherently racy and statistical,
1948          * it could happen in theory.
1949          */
1950         if (unlikely(busiest == this_rq)) {
1951                 WARN_ON(1);
1952                 goto out_balanced;
1953         }
1954
1955         schedstat_add(sd, lb_imbalance[idle], imbalance);
1956
1957         nr_moved = 0;
1958         if (busiest->nr_running > 1) {
1959                 /*
1960                  * Attempt to move tasks. If find_busiest_group has found
1961                  * an imbalance but busiest->nr_running <= 1, the group is
1962                  * still unbalanced. nr_moved simply stays zero, so it is
1963                  * correctly treated as an imbalance.
1964                  */
1965                 double_lock_balance(this_rq, busiest);
1966                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
1967                                                 imbalance, sd, idle,
1968                                                 &all_pinned);
1969                 spin_unlock(&busiest->lock);
1970
1971                 /* All tasks on this runqueue were pinned by CPU affinity */
1972                 if (unlikely(all_pinned))
1973                         goto out_balanced;
1974         }
1975
1976         spin_unlock(&this_rq->lock);
1977
1978         if (!nr_moved) {
1979                 schedstat_inc(sd, lb_failed[idle]);
1980                 sd->nr_balance_failed++;
1981
1982                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1983
1984                         spin_lock(&busiest->lock);
1985                         if (!busiest->active_balance) {
1986                                 busiest->active_balance = 1;
1987                                 busiest->push_cpu = this_cpu;
1988                                 active_balance = 1;
1989                         }
1990                         spin_unlock(&busiest->lock);
1991                         if (active_balance)
1992                                 wake_up_process(busiest->migration_thread);
1993
1994                         /*
1995                          * We've kicked active balancing, reset the failure
1996                          * counter.
1997                          */
1998                         sd->nr_balance_failed = sd->cache_nice_tries;
1999                 }
2000         } else
2001                 sd->nr_balance_failed = 0;
2002
2003         if (likely(!active_balance)) {
2004                 /* We were unbalanced, so reset the balancing interval */
2005                 sd->balance_interval = sd->min_interval;
2006         } else {
2007                 /*
2008                  * If we've begun active balancing, start to back off. This
2009                  * case may not be covered by the all_pinned logic if there
2010                  * is only 1 task on the busy runqueue (because we don't call
2011                  * move_tasks).
2012                  */
2013                 if (sd->balance_interval < sd->max_interval)
2014                         sd->balance_interval *= 2;
2015         }
2016
2017         return nr_moved;
2018
2019 out_balanced:
2020         spin_unlock(&this_rq->lock);
2021
2022         schedstat_inc(sd, lb_balanced[idle]);
2023
2024         /* tune up the balancing interval */
2025         if (sd->balance_interval < sd->max_interval)
2026                 sd->balance_interval *= 2;
2027
2028         return 0;
2029 }
2030
2031 /*
2032  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2033  * tasks if there is an imbalance.
2034  *
2035  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2036  * this_rq is locked.
2037  */
2038 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2039                                 struct sched_domain *sd)
2040 {
2041         struct sched_group *group;
2042         runqueue_t *busiest = NULL;
2043         unsigned long imbalance;
2044         int nr_moved = 0;
2045
2046         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2047         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2048         if (!group) {
2049                 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2050                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2051                 goto out;
2052         }
2053
2054         busiest = find_busiest_queue(group);
2055         if (!busiest || busiest == this_rq) {
2056                 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2057                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2058                 goto out;
2059         }
2060
2061         /* Attempt to move tasks */
2062         double_lock_balance(this_rq, busiest);
2063
2064         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2065         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2066                                         imbalance, sd, NEWLY_IDLE, NULL);
2067         if (!nr_moved)
2068                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2069
2070         spin_unlock(&busiest->lock);
2071
2072 out:
2073         return nr_moved;
2074 }
2075
2076 /*
2077  * idle_balance is called by schedule() if this_cpu is about to become
2078  * idle. Attempts to pull tasks from other CPUs.
2079  */
2080 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2081 {
2082         struct sched_domain *sd;
2083
2084         for_each_domain(this_cpu, sd) {
2085                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2086                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2087                                 /* We've pulled tasks over so stop searching */
2088                                 break;
2089                         }
2090                 }
2091         }
2092 }
2093
2094 /*
2095  * active_load_balance is run by migration threads. It pushes running tasks
2096  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2097  * running on each physical CPU where possible, and avoids physical /
2098  * logical imbalances.
2099  *
2100  * Called with busiest_rq locked.
2101  */
2102 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2103 {
2104         struct sched_domain *sd;
2105         struct sched_group *cpu_group;
2106         runqueue_t *target_rq;
2107         cpumask_t visited_cpus;
2108         int cpu;
2109
2110         /*
2111          * Search for suitable CPUs to push tasks to in successively higher
2112          * domains with SD_LOAD_BALANCE set.
2113          */
2114         visited_cpus = CPU_MASK_NONE;
2115         for_each_domain(busiest_cpu, sd) {
2116                 if (!(sd->flags & SD_LOAD_BALANCE))
2117                         /* no more domains to search */
2118                         break;
2119
2120                 schedstat_inc(sd, alb_cnt);
2121
2122                 cpu_group = sd->groups;
2123                 do {
2124                         for_each_cpu_mask(cpu, cpu_group->cpumask) {
2125                                 if (busiest_rq->nr_running <= 1)
2126                                         /* no more tasks left to move */
2127                                         return;
2128                                 if (cpu_isset(cpu, visited_cpus))
2129                                         continue;
2130                                 cpu_set(cpu, visited_cpus);
2131                                 if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu)
2132                                         continue;
2133
2134                                 target_rq = cpu_rq(cpu);
2135                                 /*
2136                                  * This condition is "impossible", if it occurs
2137                                  * we need to fix it.  Originally reported by
2138                                  * Bjorn Helgaas on a 128-cpu setup.
2139                                  */
2140                                 BUG_ON(busiest_rq == target_rq);
2141
2142                                 /* move a task from busiest_rq to target_rq */
2143                                 double_lock_balance(busiest_rq, target_rq);
2144                                 if (move_tasks(target_rq, cpu, busiest_rq,
2145                                                 1, sd, SCHED_IDLE, NULL)) {
2146                                         schedstat_inc(sd, alb_pushed);
2147                                 } else {
2148                                         schedstat_inc(sd, alb_failed);
2149                                 }
2150                                 spin_unlock(&target_rq->lock);
2151                         }
2152                         cpu_group = cpu_group->next;
2153                 } while (cpu_group != sd->groups);
2154         }
2155 }
2156
2157 /*
2158  * rebalance_tick will get called every timer tick, on every CPU.
2159  *
2160  * It checks each scheduling domain to see if it is due to be balanced,
2161  * and initiates a balancing operation if so.
2162  *
2163  * Balancing parameters are set up in arch_init_sched_domains.
2164  */
2165
2166 /* Don't have all balancing operations going off at once */
2167 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2168
2169 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2170                            enum idle_type idle)
2171 {
2172         unsigned long old_load, this_load;
2173         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2174         struct sched_domain *sd;
2175
2176         /* Update our load */
2177         old_load = this_rq->cpu_load;
2178         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2179         /*
2180          * Round up the averaging division if load is increasing. This
2181          * prevents us from getting stuck on 9 if the load is 10, for
2182          * example.
2183          */
2184         if (this_load > old_load)
2185                 old_load++;
2186         this_rq->cpu_load = (old_load + this_load) / 2;
2187
2188         for_each_domain(this_cpu, sd) {
2189                 unsigned long interval;
2190
2191                 if (!(sd->flags & SD_LOAD_BALANCE))
2192                         continue;
2193
2194                 interval = sd->balance_interval;
2195                 if (idle != SCHED_IDLE)
2196                         interval *= sd->busy_factor;
2197
2198                 /* scale ms to jiffies */
2199                 interval = msecs_to_jiffies(interval);
2200                 if (unlikely(!interval))
2201                         interval = 1;
2202
2203                 if (j - sd->last_balance >= interval) {
2204                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2205                                 /* We've pulled tasks over so no longer idle */
2206                                 idle = NOT_IDLE;
2207                         }
2208                         sd->last_balance += interval;
2209                 }
2210         }
2211 }
2212 #else
2213 /*
2214  * on UP we do not need to balance between CPUs:
2215  */
2216 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2217 {
2218 }
2219 static inline void idle_balance(int cpu, runqueue_t *rq)
2220 {
2221 }
2222 #endif
2223
2224 static inline int wake_priority_sleeper(runqueue_t *rq)
2225 {
2226         int ret = 0;
2227 #ifdef CONFIG_SCHED_SMT
2228         spin_lock(&rq->lock);
2229         /*
2230          * If an SMT sibling task has been put to sleep for priority
2231          * reasons reschedule the idle task to see if it can now run.
2232          */
2233         if (rq->nr_running) {
2234                 resched_task(rq->idle);
2235                 ret = 1;
2236         }
2237         spin_unlock(&rq->lock);
2238 #endif
2239         return ret;
2240 }
2241
2242 DEFINE_PER_CPU(struct kernel_stat, kstat);
2243
2244 EXPORT_PER_CPU_SYMBOL(kstat);
2245
2246 /*
2247  * This is called on clock ticks and on context switches.
2248  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2249  */
2250 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2251                                     unsigned long long now)
2252 {
2253         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2254         p->sched_time += now - last;
2255 }
2256
2257 /*
2258  * Return current->sched_time plus any more ns on the sched_clock
2259  * that have not yet been banked.
2260  */
2261 unsigned long long current_sched_time(const task_t *tsk)
2262 {
2263         unsigned long long ns;
2264         unsigned long flags;
2265         local_irq_save(flags);
2266         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2267         ns = tsk->sched_time + (sched_clock() - ns);
2268         local_irq_restore(flags);
2269         return ns;
2270 }
2271
2272 /*
2273  * We place interactive tasks back into the active array, if possible.
2274  *
2275  * To guarantee that this does not starve expired tasks we ignore the
2276  * interactivity of a task if the first expired task had to wait more
2277  * than a 'reasonable' amount of time. This deadline timeout is
2278  * load-dependent, as the frequency of array switched decreases with
2279  * increasing number of running tasks. We also ignore the interactivity
2280  * if a better static_prio task has expired:
2281  */
2282 #define EXPIRED_STARVING(rq) \
2283         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2284                 (jiffies - (rq)->expired_timestamp >= \
2285                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2286                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2287
2288 /*
2289  * Account user cpu time to a process.
2290  * @p: the process that the cpu time gets accounted to
2291  * @hardirq_offset: the offset to subtract from hardirq_count()
2292  * @cputime: the cpu time spent in user space since the last update
2293  */
2294 void account_user_time(struct task_struct *p, cputime_t cputime)
2295 {
2296         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2297         cputime64_t tmp;
2298
2299         p->utime = cputime_add(p->utime, cputime);
2300
2301         /* Add user time to cpustat. */
2302         tmp = cputime_to_cputime64(cputime);
2303         if (TASK_NICE(p) > 0)
2304                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2305         else
2306                 cpustat->user = cputime64_add(cpustat->user, tmp);
2307 }
2308
2309 /*
2310  * Account system cpu time to a process.
2311  * @p: the process that the cpu time gets accounted to
2312  * @hardirq_offset: the offset to subtract from hardirq_count()
2313  * @cputime: the cpu time spent in kernel space since the last update
2314  */
2315 void account_system_time(struct task_struct *p, int hardirq_offset,
2316                          cputime_t cputime)
2317 {
2318         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2319         runqueue_t *rq = this_rq();
2320         cputime64_t tmp;
2321
2322         p->stime = cputime_add(p->stime, cputime);
2323
2324         /* Add system time to cpustat. */
2325         tmp = cputime_to_cputime64(cputime);
2326         if (hardirq_count() - hardirq_offset)
2327                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2328         else if (softirq_count())
2329                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2330         else if (p != rq->idle)
2331                 cpustat->system = cputime64_add(cpustat->system, tmp);
2332         else if (atomic_read(&rq->nr_iowait) > 0)
2333                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2334         else
2335                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2336         /* Account for system time used */
2337         acct_update_integrals(p);
2338         /* Update rss highwater mark */
2339         update_mem_hiwater(p);
2340 }
2341
2342 /*
2343  * Account for involuntary wait time.
2344  * @p: the process from which the cpu time has been stolen
2345  * @steal: the cpu time spent in involuntary wait
2346  */
2347 void account_steal_time(struct task_struct *p, cputime_t steal)
2348 {
2349         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2350         cputime64_t tmp = cputime_to_cputime64(steal);
2351         runqueue_t *rq = this_rq();
2352
2353         if (p == rq->idle) {
2354                 p->stime = cputime_add(p->stime, steal);
2355                 if (atomic_read(&rq->nr_iowait) > 0)
2356                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2357                 else
2358                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2359         } else
2360                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2361 }
2362
2363 /*
2364  * This function gets called by the timer code, with HZ frequency.
2365  * We call it with interrupts disabled.
2366  *
2367  * It also gets called by the fork code, when changing the parent's
2368  * timeslices.
2369  */
2370 void scheduler_tick(void)
2371 {
2372         int cpu = smp_processor_id();
2373         runqueue_t *rq = this_rq();
2374         task_t *p = current;
2375         unsigned long long now = sched_clock();
2376
2377         update_cpu_clock(p, rq, now);
2378
2379         rq->timestamp_last_tick = now;
2380
2381         if (p == rq->idle) {
2382                 if (wake_priority_sleeper(rq))
2383                         goto out;
2384                 rebalance_tick(cpu, rq, SCHED_IDLE);
2385                 return;
2386         }
2387
2388         /* Task might have expired already, but not scheduled off yet */
2389         if (p->array != rq->active) {
2390                 set_tsk_need_resched(p);
2391                 goto out;
2392         }
2393         spin_lock(&rq->lock);
2394         /*
2395          * The task was running during this tick - update the
2396          * time slice counter. Note: we do not update a thread's
2397          * priority until it either goes to sleep or uses up its
2398          * timeslice. This makes it possible for interactive tasks
2399          * to use up their timeslices at their highest priority levels.
2400          */
2401         if (rt_task(p)) {
2402                 /*
2403                  * RR tasks need a special form of timeslice management.
2404                  * FIFO tasks have no timeslices.
2405                  */
2406                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2407                         p->time_slice = task_timeslice(p);
2408                         p->first_time_slice = 0;
2409                         set_tsk_need_resched(p);
2410
2411                         /* put it at the end of the queue: */
2412                         requeue_task(p, rq->active);
2413                 }
2414                 goto out_unlock;
2415         }
2416         if (!--p->time_slice) {
2417                 dequeue_task(p, rq->active);
2418                 set_tsk_need_resched(p);
2419                 p->prio = effective_prio(p);
2420                 p->time_slice = task_timeslice(p);
2421                 p->first_time_slice = 0;
2422
2423                 if (!rq->expired_timestamp)
2424                         rq->expired_timestamp = jiffies;
2425                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2426                         enqueue_task(p, rq->expired);
2427                         if (p->static_prio < rq->best_expired_prio)
2428                                 rq->best_expired_prio = p->static_prio;
2429                 } else
2430                         enqueue_task(p, rq->active);
2431         } else {
2432                 /*
2433                  * Prevent a too long timeslice allowing a task to monopolize
2434                  * the CPU. We do this by splitting up the timeslice into
2435                  * smaller pieces.
2436                  *
2437                  * Note: this does not mean the task's timeslices expire or
2438                  * get lost in any way, they just might be preempted by
2439                  * another task of equal priority. (one with higher
2440                  * priority would have preempted this task already.) We
2441                  * requeue this task to the end of the list on this priority
2442                  * level, which is in essence a round-robin of tasks with
2443                  * equal priority.
2444                  *
2445                  * This only applies to tasks in the interactive
2446                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2447                  */
2448                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2449                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2450                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2451                         (p->array == rq->active)) {
2452
2453                         requeue_task(p, rq->active);
2454                         set_tsk_need_resched(p);
2455                 }
2456         }
2457 out_unlock:
2458         spin_unlock(&rq->lock);
2459 out:
2460         rebalance_tick(cpu, rq, NOT_IDLE);
2461 }
2462
2463 #ifdef CONFIG_SCHED_SMT
2464 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2465 {
2466         struct sched_domain *sd = this_rq->sd;
2467         cpumask_t sibling_map;
2468         int i;
2469
2470         if (!(sd->flags & SD_SHARE_CPUPOWER))
2471                 return;
2472
2473         /*
2474          * Unlock the current runqueue because we have to lock in
2475          * CPU order to avoid deadlocks. Caller knows that we might
2476          * unlock. We keep IRQs disabled.
2477          */
2478         spin_unlock(&this_rq->lock);
2479
2480         sibling_map = sd->span;
2481
2482         for_each_cpu_mask(i, sibling_map)
2483                 spin_lock(&cpu_rq(i)->lock);
2484         /*
2485          * We clear this CPU from the mask. This both simplifies the
2486          * inner loop and keps this_rq locked when we exit:
2487          */
2488         cpu_clear(this_cpu, sibling_map);
2489
2490         for_each_cpu_mask(i, sibling_map) {
2491                 runqueue_t *smt_rq = cpu_rq(i);
2492
2493                 /*
2494                  * If an SMT sibling task is sleeping due to priority
2495                  * reasons wake it up now.
2496                  */
2497                 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2498                         resched_task(smt_rq->idle);
2499         }
2500
2501         for_each_cpu_mask(i, sibling_map)
2502                 spin_unlock(&cpu_rq(i)->lock);
2503         /*
2504          * We exit with this_cpu's rq still held and IRQs
2505          * still disabled:
2506          */
2507 }
2508
2509 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2510 {
2511         struct sched_domain *sd = this_rq->sd;
2512         cpumask_t sibling_map;
2513         prio_array_t *array;
2514         int ret = 0, i;
2515         task_t *p;
2516
2517         if (!(sd->flags & SD_SHARE_CPUPOWER))
2518                 return 0;
2519
2520         /*
2521          * The same locking rules and details apply as for
2522          * wake_sleeping_dependent():
2523          */
2524         spin_unlock(&this_rq->lock);
2525         sibling_map = sd->span;
2526         for_each_cpu_mask(i, sibling_map)
2527                 spin_lock(&cpu_rq(i)->lock);
2528         cpu_clear(this_cpu, sibling_map);
2529
2530         /*
2531          * Establish next task to be run - it might have gone away because
2532          * we released the runqueue lock above:
2533          */
2534         if (!this_rq->nr_running)
2535                 goto out_unlock;
2536         array = this_rq->active;
2537         if (!array->nr_active)
2538                 array = this_rq->expired;
2539         BUG_ON(!array->nr_active);
2540
2541         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2542                 task_t, run_list);
2543
2544         for_each_cpu_mask(i, sibling_map) {
2545                 runqueue_t *smt_rq = cpu_rq(i);
2546                 task_t *smt_curr = smt_rq->curr;
2547
2548                 /*
2549                  * If a user task with lower static priority than the
2550                  * running task on the SMT sibling is trying to schedule,
2551                  * delay it till there is proportionately less timeslice
2552                  * left of the sibling task to prevent a lower priority
2553                  * task from using an unfair proportion of the
2554                  * physical cpu's resources. -ck
2555                  */
2556                 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2557                         task_timeslice(p) || rt_task(smt_curr)) &&
2558                         p->mm && smt_curr->mm && !rt_task(p))
2559                                 ret = 1;
2560
2561                 /*
2562                  * Reschedule a lower priority task on the SMT sibling,
2563                  * or wake it up if it has been put to sleep for priority
2564                  * reasons.
2565                  */
2566                 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2567                         task_timeslice(smt_curr) || rt_task(p)) &&
2568                         smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2569                         (smt_curr == smt_rq->idle && smt_rq->nr_running))
2570                                 resched_task(smt_curr);
2571         }
2572 out_unlock:
2573         for_each_cpu_mask(i, sibling_map)
2574                 spin_unlock(&cpu_rq(i)->lock);
2575         return ret;
2576 }
2577 #else
2578 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2579 {
2580 }
2581
2582 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2583 {
2584         return 0;
2585 }
2586 #endif
2587
2588 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2589
2590 void fastcall add_preempt_count(int val)
2591 {
2592         /*
2593          * Underflow?
2594          */
2595         BUG_ON((preempt_count() < 0));
2596         preempt_count() += val;
2597         /*
2598          * Spinlock count overflowing soon?
2599          */
2600         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2601 }
2602 EXPORT_SYMBOL(add_preempt_count);
2603
2604 void fastcall sub_preempt_count(int val)
2605 {
2606         /*
2607          * Underflow?
2608          */
2609         BUG_ON(val > preempt_count());
2610         /*
2611          * Is the spinlock portion underflowing?
2612          */
2613         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2614         preempt_count() -= val;
2615 }
2616 EXPORT_SYMBOL(sub_preempt_count);
2617
2618 #endif
2619
2620 /*
2621  * schedule() is the main scheduler function.
2622  */
2623 asmlinkage void __sched schedule(void)
2624 {
2625         long *switch_count;
2626         task_t *prev, *next;
2627         runqueue_t *rq;
2628         prio_array_t *array;
2629         struct list_head *queue;
2630         unsigned long long now;
2631         unsigned long run_time;
2632         int cpu, idx;
2633
2634         /*
2635          * Test if we are atomic.  Since do_exit() needs to call into
2636          * schedule() atomically, we ignore that path for now.
2637          * Otherwise, whine if we are scheduling when we should not be.
2638          */
2639         if (likely(!current->exit_state)) {
2640                 if (unlikely(in_atomic())) {
2641                         printk(KERN_ERR "scheduling while atomic: "
2642                                 "%s/0x%08x/%d\n",
2643                                 current->comm, preempt_count(), current->pid);
2644                         dump_stack();
2645                 }
2646         }
2647         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2648
2649 need_resched:
2650         preempt_disable();
2651         prev = current;
2652         release_kernel_lock(prev);
2653 need_resched_nonpreemptible:
2654         rq = this_rq();
2655
2656         /*
2657          * The idle thread is not allowed to schedule!
2658          * Remove this check after it has been exercised a bit.
2659          */
2660         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2661                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2662                 dump_stack();
2663         }
2664
2665         schedstat_inc(rq, sched_cnt);
2666         now = sched_clock();
2667         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2668                 run_time = now - prev->timestamp;
2669                 if (unlikely((long long)(now - prev->timestamp) < 0))
2670                         run_time = 0;
2671         } else
2672                 run_time = NS_MAX_SLEEP_AVG;
2673
2674         /*
2675          * Tasks charged proportionately less run_time at high sleep_avg to
2676          * delay them losing their interactive status
2677          */
2678         run_time /= (CURRENT_BONUS(prev) ? : 1);
2679
2680         spin_lock_irq(&rq->lock);
2681
2682         if (unlikely(prev->flags & PF_DEAD))
2683                 prev->state = EXIT_DEAD;
2684
2685         switch_count = &prev->nivcsw;
2686         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2687                 switch_count = &prev->nvcsw;
2688                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2689                                 unlikely(signal_pending(prev))))
2690                         prev->state = TASK_RUNNING;
2691                 else {
2692                         if (prev->state == TASK_UNINTERRUPTIBLE)
2693                                 rq->nr_uninterruptible++;
2694                         deactivate_task(prev, rq);
2695                 }
2696         }
2697
2698         cpu = smp_processor_id();
2699         if (unlikely(!rq->nr_running)) {
2700 go_idle:
2701                 idle_balance(cpu, rq);
2702                 if (!rq->nr_running) {
2703                         next = rq->idle;
2704                         rq->expired_timestamp = 0;
2705                         wake_sleeping_dependent(cpu, rq);
2706                         /*
2707                          * wake_sleeping_dependent() might have released
2708                          * the runqueue, so break out if we got new
2709                          * tasks meanwhile:
2710                          */
2711                         if (!rq->nr_running)
2712                                 goto switch_tasks;
2713                 }
2714         } else {
2715                 if (dependent_sleeper(cpu, rq)) {
2716                         next = rq->idle;
2717                         goto switch_tasks;
2718                 }
2719                 /*
2720                  * dependent_sleeper() releases and reacquires the runqueue
2721                  * lock, hence go into the idle loop if the rq went
2722                  * empty meanwhile:
2723                  */
2724                 if (unlikely(!rq->nr_running))
2725                         goto go_idle;
2726         }
2727
2728         array = rq->active;
2729         if (unlikely(!array->nr_active)) {
2730                 /*
2731                  * Switch the active and expired arrays.
2732                  */
2733                 schedstat_inc(rq, sched_switch);
2734                 rq->active = rq->expired;
2735                 rq->expired = array;
2736                 array = rq->active;
2737                 rq->expired_timestamp = 0;
2738                 rq->best_expired_prio = MAX_PRIO;
2739         }
2740
2741         idx = sched_find_first_bit(array->bitmap);
2742         queue = array->queue + idx;
2743         next = list_entry(queue->next, task_t, run_list);
2744
2745         if (!rt_task(next) && next->activated > 0) {
2746                 unsigned long long delta = now - next->timestamp;
2747                 if (unlikely((long long)(now - next->timestamp) < 0))
2748                         delta = 0;
2749
2750                 if (next->activated == 1)
2751                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2752
2753                 array = next->array;
2754                 dequeue_task(next, array);
2755                 recalc_task_prio(next, next->timestamp + delta);
2756                 enqueue_task(next, array);
2757         }
2758         next->activated = 0;
2759 switch_tasks:
2760         if (next == rq->idle)
2761                 schedstat_inc(rq, sched_goidle);
2762         prefetch(next);
2763         clear_tsk_need_resched(prev);
2764         rcu_qsctr_inc(task_cpu(prev));
2765
2766         update_cpu_clock(prev, rq, now);
2767
2768         prev->sleep_avg -= run_time;
2769         if ((long)prev->sleep_avg <= 0)
2770                 prev->sleep_avg = 0;
2771         prev->timestamp = prev->last_ran = now;
2772
2773         sched_info_switch(prev, next);
2774         if (likely(prev != next)) {
2775                 next->timestamp = now;
2776                 rq->nr_switches++;
2777                 rq->curr = next;
2778                 ++*switch_count;
2779
2780                 prepare_arch_switch(rq, next);
2781                 prev = context_switch(rq, prev, next);
2782                 barrier();
2783
2784                 finish_task_switch(prev);
2785         } else
2786                 spin_unlock_irq(&rq->lock);
2787
2788         prev = current;
2789         if (unlikely(reacquire_kernel_lock(prev) < 0))
2790                 goto need_resched_nonpreemptible;
2791         preempt_enable_no_resched();
2792         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2793                 goto need_resched;
2794 }
2795
2796 EXPORT_SYMBOL(schedule);
2797
2798 #ifdef CONFIG_PREEMPT
2799 /*
2800  * this is is the entry point to schedule() from in-kernel preemption
2801  * off of preempt_enable.  Kernel preemptions off return from interrupt
2802  * occur there and call schedule directly.
2803  */
2804 asmlinkage void __sched preempt_schedule(void)
2805 {
2806         struct thread_info *ti = current_thread_info();
2807 #ifdef CONFIG_PREEMPT_BKL
2808         struct task_struct *task = current;
2809         int saved_lock_depth;
2810 #endif
2811         /*
2812          * If there is a non-zero preempt_count or interrupts are disabled,
2813          * we do not want to preempt the current task.  Just return..
2814          */
2815         if (unlikely(ti->preempt_count || irqs_disabled()))
2816                 return;
2817
2818 need_resched:
2819         add_preempt_count(PREEMPT_ACTIVE);
2820         /*
2821          * We keep the big kernel semaphore locked, but we
2822          * clear ->lock_depth so that schedule() doesnt
2823          * auto-release the semaphore:
2824          */
2825 #ifdef CONFIG_PREEMPT_BKL
2826         saved_lock_depth = task->lock_depth;
2827         task->lock_depth = -1;
2828 #endif
2829         schedule();
2830 #ifdef CONFIG_PREEMPT_BKL
2831         task->lock_depth = saved_lock_depth;
2832 #endif
2833         sub_preempt_count(PREEMPT_ACTIVE);
2834
2835         /* we could miss a preemption opportunity between schedule and now */
2836         barrier();
2837         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2838                 goto need_resched;
2839 }
2840
2841 EXPORT_SYMBOL(preempt_schedule);
2842
2843 /*
2844  * this is is the entry point to schedule() from kernel preemption
2845  * off of irq context.
2846  * Note, that this is called and return with irqs disabled. This will
2847  * protect us against recursive calling from irq.
2848  */
2849 asmlinkage void __sched preempt_schedule_irq(void)
2850 {
2851         struct thread_info *ti = current_thread_info();
2852 #ifdef CONFIG_PREEMPT_BKL
2853         struct task_struct *task = current;
2854         int saved_lock_depth;
2855 #endif
2856         /* Catch callers which need to be fixed*/
2857         BUG_ON(ti->preempt_count || !irqs_disabled());
2858
2859 need_resched:
2860         add_preempt_count(PREEMPT_ACTIVE);
2861         /*
2862          * We keep the big kernel semaphore locked, but we
2863          * clear ->lock_depth so that schedule() doesnt
2864          * auto-release the semaphore:
2865          */
2866 #ifdef CONFIG_PREEMPT_BKL
2867         saved_lock_depth = task->lock_depth;
2868         task->lock_depth = -1;
2869 #endif
2870         local_irq_enable();
2871         schedule();
2872         local_irq_disable();
2873 #ifdef CONFIG_PREEMPT_BKL
2874         task->lock_depth = saved_lock_depth;
2875 #endif
2876         sub_preempt_count(PREEMPT_ACTIVE);
2877
2878         /* we could miss a preemption opportunity between schedule and now */
2879         barrier();
2880         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2881                 goto need_resched;
2882 }
2883
2884 #endif /* CONFIG_PREEMPT */
2885
2886 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
2887 {
2888         task_t *p = curr->private;
2889         return try_to_wake_up(p, mode, sync);
2890 }
2891
2892 EXPORT_SYMBOL(default_wake_function);
2893
2894 /*
2895  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
2896  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
2897  * number) then we wake all the non-exclusive tasks and one exclusive task.
2898  *
2899  * There are circumstances in which we can try to wake a task which has already
2900  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
2901  * zero in this (rare) case, and we handle it by continuing to scan the queue.
2902  */
2903 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2904                              int nr_exclusive, int sync, void *key)
2905 {
2906         struct list_head *tmp, *next;
2907
2908         list_for_each_safe(tmp, next, &q->task_list) {
2909                 wait_queue_t *curr;
2910                 unsigned flags;
2911                 curr = list_entry(tmp, wait_queue_t, task_list);
2912                 flags = curr->flags;
2913                 if (curr->func(curr, mode, sync, key) &&
2914                     (flags & WQ_FLAG_EXCLUSIVE) &&
2915                     !--nr_exclusive)
2916                         break;
2917         }
2918 }
2919
2920 /**
2921  * __wake_up - wake up threads blocked on a waitqueue.
2922  * @q: the waitqueue
2923  * @mode: which threads
2924  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2925  * @key: is directly passed to the wakeup function
2926  */
2927 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
2928                                 int nr_exclusive, void *key)
2929 {
2930         unsigned long flags;
2931
2932         spin_lock_irqsave(&q->lock, flags);
2933         __wake_up_common(q, mode, nr_exclusive, 0, key);
2934         spin_unlock_irqrestore(&q->lock, flags);
2935 }
2936
2937 EXPORT_SYMBOL(__wake_up);
2938
2939 /*
2940  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2941  */
2942 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
2943 {
2944         __wake_up_common(q, mode, 1, 0, NULL);
2945 }
2946
2947 /**
2948  * __wake_up_sync - wake up threads blocked on a waitqueue.
2949  * @q: the waitqueue
2950  * @mode: which threads
2951  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2952  *
2953  * The sync wakeup differs that the waker knows that it will schedule
2954  * away soon, so while the target thread will be woken up, it will not
2955  * be migrated to another CPU - ie. the two threads are 'synchronized'
2956  * with each other. This can prevent needless bouncing between CPUs.
2957  *
2958  * On UP it can prevent extra preemption.
2959  */
2960 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2961 {
2962         unsigned long flags;
2963         int sync = 1;
2964
2965         if (unlikely(!q))
2966                 return;
2967
2968         if (unlikely(!nr_exclusive))
2969                 sync = 0;
2970
2971         spin_lock_irqsave(&q->lock, flags);
2972         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
2973         spin_unlock_irqrestore(&q->lock, flags);
2974 }
2975 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
2976
2977 void fastcall complete(struct completion *x)
2978 {
2979         unsigned long flags;
2980
2981         spin_lock_irqsave(&x->wait.lock, flags);
2982         x->done++;
2983         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2984                          1, 0, NULL);
2985         spin_unlock_irqrestore(&x->wait.lock, flags);
2986 }
2987 EXPORT_SYMBOL(complete);
2988
2989 void fastcall complete_all(struct completion *x)
2990 {
2991         unsigned long flags;
2992
2993         spin_lock_irqsave(&x->wait.lock, flags);
2994         x->done += UINT_MAX/2;
2995         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2996                          0, 0, NULL);
2997         spin_unlock_irqrestore(&x->wait.lock, flags);
2998 }
2999 EXPORT_SYMBOL(complete_all);
3000
3001 void fastcall __sched wait_for_completion(struct completion *x)
3002 {
3003         might_sleep();
3004         spin_lock_irq(&x->wait.lock);
3005         if (!x->done) {
3006                 DECLARE_WAITQUEUE(wait, current);
3007
3008                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3009                 __add_wait_queue_tail(&x->wait, &wait);
3010                 do {
3011                         __set_current_state(TASK_UNINTERRUPTIBLE);
3012                         spin_unlock_irq(&x->wait.lock);
3013                         schedule();
3014                         spin_lock_irq(&x->wait.lock);
3015                 } while (!x->done);
3016                 __remove_wait_queue(&x->wait, &wait);
3017         }
3018         x->done--;
3019         spin_unlock_irq(&x->wait.lock);
3020 }
3021 EXPORT_SYMBOL(wait_for_completion);
3022
3023 unsigned long fastcall __sched
3024 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3025 {
3026         might_sleep();
3027
3028         spin_lock_irq(&x->wait.lock);
3029         if (!x->done) {
3030                 DECLARE_WAITQUEUE(wait, current);
3031
3032                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3033                 __add_wait_queue_tail(&x->wait, &wait);
3034                 do {
3035                         __set_current_state(TASK_UNINTERRUPTIBLE);
3036                         spin_unlock_irq(&x->wait.lock);
3037                         timeout = schedule_timeout(timeout);
3038                         spin_lock_irq(&x->wait.lock);
3039                         if (!timeout) {
3040                                 __remove_wait_queue(&x->wait, &wait);
3041                                 goto out;
3042                         }
3043                 } while (!x->done);
3044                 __remove_wait_queue(&x->wait, &wait);
3045         }
3046         x->done--;
3047 out:
3048         spin_unlock_irq(&x->wait.lock);
3049         return timeout;
3050 }
3051 EXPORT_SYMBOL(wait_for_completion_timeout);
3052
3053 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3054 {
3055         int ret = 0;
3056
3057         might_sleep();
3058
3059         spin_lock_irq(&x->wait.lock);
3060         if (!x->done) {
3061                 DECLARE_WAITQUEUE(wait, current);
3062
3063                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3064                 __add_wait_queue_tail(&x->wait, &wait);
3065                 do {
3066                         if (signal_pending(current)) {
3067                                 ret = -ERESTARTSYS;
3068                                 __remove_wait_queue(&x->wait, &wait);
3069                                 goto out;
3070                         }
3071                         __set_current_state(TASK_INTERRUPTIBLE);
3072                         spin_unlock_irq(&x->wait.lock);
3073                         schedule();
3074                         spin_lock_irq(&x->wait.lock);
3075                 } while (!x->done);
3076                 __remove_wait_queue(&x->wait, &wait);
3077         }
3078         x->done--;
3079 out:
3080         spin_unlock_irq(&x->wait.lock);
3081
3082         return ret;
3083 }
3084 EXPORT_SYMBOL(wait_for_completion_interruptible);
3085
3086 unsigned long fastcall __sched
3087 wait_for_completion_interruptible_timeout(struct completion *x,
3088                                           unsigned long timeout)
3089 {
3090         might_sleep();
3091
3092         spin_lock_irq(&x->wait.lock);
3093         if (!x->done) {
3094                 DECLARE_WAITQUEUE(wait, current);
3095
3096                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3097                 __add_wait_queue_tail(&x->wait, &wait);
3098                 do {
3099                         if (signal_pending(current)) {
3100                                 timeout = -ERESTARTSYS;
3101                                 __remove_wait_queue(&x->wait, &wait);
3102                                 goto out;
3103                         }
3104                         __set_current_state(TASK_INTERRUPTIBLE);
3105                         spin_unlock_irq(&x->wait.lock);
3106                         timeout = schedule_timeout(timeout);
3107                         spin_lock_irq(&x->wait.lock);
3108                         if (!timeout) {
3109                                 __remove_wait_queue(&x->wait, &wait);
3110                                 goto out;
3111                         }
3112                 } while (!x->done);
3113                 __remove_wait_queue(&x->wait, &wait);
3114         }
3115         x->done--;
3116 out:
3117         spin_unlock_irq(&x->wait.lock);
3118         return timeout;
3119 }
3120 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3121
3122
3123 #define SLEEP_ON_VAR                                    \
3124         unsigned long flags;                            \
3125         wait_queue_t wait;                              \
3126         init_waitqueue_entry(&wait, current);
3127
3128 #define SLEEP_ON_HEAD                                   \
3129         spin_lock_irqsave(&q->lock,flags);              \
3130         __add_wait_queue(q, &wait);                     \
3131         spin_unlock(&q->lock);
3132
3133 #define SLEEP_ON_TAIL                                   \
3134         spin_lock_irq(&q->lock);                        \
3135         __remove_wait_queue(q, &wait);                  \
3136         spin_unlock_irqrestore(&q->lock, flags);
3137
3138 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3139 {
3140         SLEEP_ON_VAR
3141
3142         current->state = TASK_INTERRUPTIBLE;
3143
3144         SLEEP_ON_HEAD
3145         schedule();
3146         SLEEP_ON_TAIL
3147 }
3148
3149 EXPORT_SYMBOL(interruptible_sleep_on);
3150
3151 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3152 {
3153         SLEEP_ON_VAR
3154
3155         current->state = TASK_INTERRUPTIBLE;
3156
3157         SLEEP_ON_HEAD
3158         timeout = schedule_timeout(timeout);
3159         SLEEP_ON_TAIL
3160
3161         return timeout;
3162 }
3163
3164 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3165
3166 void fastcall __sched sleep_on(wait_queue_head_t *q)
3167 {
3168         SLEEP_ON_VAR
3169
3170         current->state = TASK_UNINTERRUPTIBLE;
3171
3172         SLEEP_ON_HEAD
3173         schedule();
3174         SLEEP_ON_TAIL
3175 }
3176
3177 EXPORT_SYMBOL(sleep_on);
3178
3179 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3180 {
3181         SLEEP_ON_VAR
3182
3183         current->state = TASK_UNINTERRUPTIBLE;
3184
3185         SLEEP_ON_HEAD
3186         timeout = schedule_timeout(timeout);
3187         SLEEP_ON_TAIL
3188
3189         return timeout;
3190 }
3191
3192 EXPORT_SYMBOL(sleep_on_timeout);
3193
3194 void set_user_nice(task_t *p, long nice)
3195 {
3196         unsigned long flags;
3197         prio_array_t *array;
3198         runqueue_t *rq;
3199         int old_prio, new_prio, delta;
3200
3201         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3202                 return;
3203         /*
3204          * We have to be careful, if called from sys_setpriority(),
3205          * the task might be in the middle of scheduling on another CPU.
3206          */
3207         rq = task_rq_lock(p, &flags);
3208         /*
3209          * The RT priorities are set via sched_setscheduler(), but we still
3210          * allow the 'normal' nice value to be set - but as expected
3211          * it wont have any effect on scheduling until the task is
3212          * not SCHED_NORMAL:
3213          */
3214         if (rt_task(p)) {
3215                 p->static_prio = NICE_TO_PRIO(nice);
3216                 goto out_unlock;
3217         }
3218         array = p->array;
3219         if (array)
3220                 dequeue_task(p, array);
3221
3222         old_prio = p->prio;
3223         new_prio = NICE_TO_PRIO(nice);
3224         delta = new_prio - old_prio;
3225         p->static_prio = NICE_TO_PRIO(nice);
3226         p->prio += delta;
3227
3228         if (array) {
3229                 enqueue_task(p, array);
3230                 /*
3231                  * If the task increased its priority or is running and
3232                  * lowered its priority, then reschedule its CPU:
3233                  */
3234                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3235                         resched_task(rq->curr);
3236         }
3237 out_unlock:
3238         task_rq_unlock(rq, &flags);
3239 }
3240
3241 EXPORT_SYMBOL(set_user_nice);
3242
3243 /*
3244  * can_nice - check if a task can reduce its nice value
3245  * @p: task
3246  * @nice: nice value
3247  */
3248 int can_nice(const task_t *p, const int nice)
3249 {
3250         /* convert nice value [19,-20] to rlimit style value [0,39] */
3251         int nice_rlim = 19 - nice;
3252         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3253                 capable(CAP_SYS_NICE));
3254 }
3255
3256 #ifdef __ARCH_WANT_SYS_NICE
3257
3258 /*
3259  * sys_nice - change the priority of the current process.
3260  * @increment: priority increment
3261  *
3262  * sys_setpriority is a more generic, but much slower function that
3263  * does similar things.
3264  */
3265 asmlinkage long sys_nice(int increment)
3266 {
3267         int retval;
3268         long nice;
3269
3270         /*
3271          * Setpriority might change our priority at the same moment.
3272          * We don't have to worry. Conceptually one call occurs first
3273          * and we have a single winner.
3274          */
3275         if (increment < -40)
3276                 increment = -40;
3277         if (increment > 40)
3278                 increment = 40;
3279
3280         nice = PRIO_TO_NICE(current->static_prio) + increment;
3281         if (nice < -20)
3282                 nice = -20;
3283         if (nice > 19)
3284                 nice = 19;
3285
3286         if (increment < 0 && !can_nice(current, nice))
3287                 return -EPERM;
3288
3289         retval = security_task_setnice(current, nice);
3290         if (retval)
3291                 return retval;
3292
3293         set_user_nice(current, nice);
3294         return 0;
3295 }
3296
3297 #endif
3298
3299 /**
3300  * task_prio - return the priority value of a given task.
3301  * @p: the task in question.
3302  *
3303  * This is the priority value as seen by users in /proc.
3304  * RT tasks are offset by -200. Normal tasks are centered
3305  * around 0, value goes from -16 to +15.
3306  */
3307 int task_prio(const task_t *p)
3308 {
3309         return p->prio - MAX_RT_PRIO;
3310 }
3311
3312 /**
3313  * task_nice - return the nice value of a given task.
3314  * @p: the task in question.
3315  */
3316 int task_nice(const task_t *p)
3317 {
3318         return TASK_NICE(p);
3319 }
3320
3321 /*
3322  * The only users of task_nice are binfmt_elf and binfmt_elf32.
3323  * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3324  * Therefore, task_nice is needed if there is a compat_mode.
3325  */
3326 #ifdef CONFIG_COMPAT
3327 EXPORT_SYMBOL_GPL(task_nice);
3328 #endif
3329
3330 /**
3331  * idle_cpu - is a given cpu idle currently?
3332  * @cpu: the processor in question.
3333  */
3334 int idle_cpu(int cpu)
3335 {
3336         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3337 }
3338
3339 EXPORT_SYMBOL_GPL(idle_cpu);
3340
3341 /**
3342  * idle_task - return the idle task for a given cpu.
3343  * @cpu: the processor in question.
3344  */
3345 task_t *idle_task(int cpu)
3346 {
3347         return cpu_rq(cpu)->idle;
3348 }
3349
3350 /**
3351  * find_process_by_pid - find a process with a matching PID value.
3352  * @pid: the pid in question.
3353  */
3354 static inline task_t *find_process_by_pid(pid_t pid)
3355 {
3356         return pid ? find_task_by_pid(pid) : current;
3357 }
3358
3359 /* Actually do priority change: must hold rq lock. */
3360 static void __setscheduler(struct task_struct *p, int policy, int prio)
3361 {
3362         BUG_ON(p->array);
3363         p->policy = policy;
3364         p->rt_priority = prio;
3365         if (policy != SCHED_NORMAL)
3366                 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3367         else
3368                 p->prio = p->static_prio;
3369 }
3370
3371 /**
3372  * sched_setscheduler - change the scheduling policy and/or RT priority of
3373  * a thread.
3374  * @p: the task in question.
3375  * @policy: new policy.
3376  * @param: structure containing the new RT priority.
3377  */
3378 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3379 {
3380         int retval;
3381         int oldprio, oldpolicy = -1;
3382         prio_array_t *array;
3383         unsigned long flags;
3384         runqueue_t *rq;
3385
3386 recheck:
3387         /* double check policy once rq lock held */
3388         if (policy < 0)
3389                 policy = oldpolicy = p->policy;
3390         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3391                                 policy != SCHED_NORMAL)
3392                         return -EINVAL;
3393         /*
3394          * Valid priorities for SCHED_FIFO and SCHED_RR are
3395          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3396          */
3397         if (param->sched_priority < 0 ||
3398             param->sched_priority > MAX_USER_RT_PRIO-1)
3399                 return -EINVAL;
3400         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3401                 return -EINVAL;
3402
3403         if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
3404             param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
3405             !capable(CAP_SYS_NICE))
3406                 return -EPERM;
3407         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3408             !capable(CAP_SYS_NICE))
3409                 return -EPERM;
3410
3411         retval = security_task_setscheduler(p, policy, param);
3412         if (retval)
3413                 return retval;
3414         /*
3415          * To be able to change p->policy safely, the apropriate
3416          * runqueue lock must be held.
3417          */
3418         rq = task_rq_lock(p, &flags);
3419         /* recheck policy now with rq lock held */
3420         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3421                 policy = oldpolicy = -1;
3422                 task_rq_unlock(rq, &flags);
3423                 goto recheck;
3424         }
3425         array = p->array;
3426         if (array)
3427                 deactivate_task(p, rq);
3428         oldprio = p->prio;
3429         __setscheduler(p, policy, param->sched_priority);
3430         if (array) {
3431                 __activate_task(p, rq);
3432                 /*
3433                  * Reschedule if we are currently running on this runqueue and
3434                  * our priority decreased, or if we are not currently running on
3435                  * this runqueue and our priority is higher than the current's
3436                  */
3437                 if (task_running(rq, p)) {
3438                         if (p->prio > oldprio)
3439                                 resched_task(rq->curr);
3440                 } else if (TASK_PREEMPTS_CURR(p, rq))
3441                         resched_task(rq->curr);
3442         }
3443         task_rq_unlock(rq, &flags);
3444         return 0;
3445 }
3446 EXPORT_SYMBOL_GPL(sched_setscheduler);
3447
3448 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3449 {
3450         int retval;
3451         struct sched_param lparam;
3452         struct task_struct *p;
3453
3454         if (!param || pid < 0)
3455                 return -EINVAL;
3456         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3457                 return -EFAULT;
3458         read_lock_irq(&tasklist_lock);
3459         p = find_process_by_pid(pid);
3460         if (!p) {
3461                 read_unlock_irq(&tasklist_lock);
3462                 return -ESRCH;
3463         }
3464         retval = sched_setscheduler(p, policy, &lparam);
3465         read_unlock_irq(&tasklist_lock);
3466         return retval;
3467 }
3468
3469 /**
3470  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3471  * @pid: the pid in question.
3472  * @policy: new policy.
3473  * @param: structure containing the new RT priority.
3474  */
3475 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3476                                        struct sched_param __user *param)
3477 {
3478         return do_sched_setscheduler(pid, policy, param);
3479 }
3480
3481 /**
3482  * sys_sched_setparam - set/change the RT priority of a thread
3483  * @pid: the pid in question.
3484  * @param: structure containing the new RT priority.
3485  */
3486 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3487 {
3488         return do_sched_setscheduler(pid, -1, param);
3489 }
3490
3491 /**
3492  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3493  * @pid: the pid in question.
3494  */
3495 asmlinkage long sys_sched_getscheduler(pid_t pid)
3496 {
3497         int retval = -EINVAL;
3498         task_t *p;
3499
3500         if (pid < 0)
3501                 goto out_nounlock;
3502
3503         retval = -ESRCH;
3504         read_lock(&tasklist_lock);
3505         p = find_process_by_pid(pid);
3506         if (p) {
3507                 retval = security_task_getscheduler(p);
3508                 if (!retval)
3509                         retval = p->policy;
3510         }
3511         read_unlock(&tasklist_lock);
3512
3513 out_nounlock:
3514         return retval;
3515 }
3516
3517 /**
3518  * sys_sched_getscheduler - get the RT priority of a thread
3519  * @pid: the pid in question.
3520  * @param: structure containing the RT priority.
3521  */
3522 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3523 {
3524         struct sched_param lp;
3525         int retval = -EINVAL;
3526         task_t *p;
3527
3528         if (!param || pid < 0)
3529                 goto out_nounlock;
3530
3531         read_lock(&tasklist_lock);
3532         p = find_process_by_pid(pid);
3533         retval = -ESRCH;
3534         if (!p)
3535                 goto out_unlock;
3536
3537         retval = security_task_getscheduler(p);
3538         if (retval)
3539                 goto out_unlock;
3540
3541         lp.sched_priority = p->rt_priority;
3542         read_unlock(&tasklist_lock);
3543
3544         /*
3545          * This one might sleep, we cannot do it with a spinlock held ...
3546          */
3547         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3548
3549 out_nounlock:
3550         return retval;
3551
3552 out_unlock:
3553         read_unlock(&tasklist_lock);
3554         return retval;
3555 }
3556
3557 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3558 {
3559         task_t *p;
3560         int retval;
3561         cpumask_t cpus_allowed;
3562
3563         lock_cpu_hotplug();
3564         read_lock(&tasklist_lock);
3565
3566         p = find_process_by_pid(pid);
3567         if (!p) {
3568                 read_unlock(&tasklist_lock);
3569                 unlock_cpu_hotplug();
3570                 return -ESRCH;
3571         }
3572
3573         /*
3574          * It is not safe to call set_cpus_allowed with the
3575          * tasklist_lock held.  We will bump the task_struct's
3576          * usage count and then drop tasklist_lock.
3577          */
3578         get_task_struct(p);
3579         read_unlock(&tasklist_lock);
3580
3581         retval = -EPERM;
3582         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3583                         !capable(CAP_SYS_NICE))
3584                 goto out_unlock;
3585
3586         cpus_allowed = cpuset_cpus_allowed(p);
3587         cpus_and(new_mask, new_mask, cpus_allowed);
3588         retval = set_cpus_allowed(p, new_mask);
3589
3590 out_unlock:
3591         put_task_struct(p);
3592         unlock_cpu_hotplug();
3593         return retval;
3594 }
3595
3596 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3597                              cpumask_t *new_mask)
3598 {
3599         if (len < sizeof(cpumask_t)) {
3600                 memset(new_mask, 0, sizeof(cpumask_t));
3601         } else if (len > sizeof(cpumask_t)) {
3602                 len = sizeof(cpumask_t);
3603         }
3604         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3605 }
3606
3607 /**
3608  * sys_sched_setaffinity - set the cpu affinity of a process
3609  * @pid: pid of the process
3610  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3611  * @user_mask_ptr: user-space pointer to the new cpu mask
3612  */
3613 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3614                                       unsigned long __user *user_mask_ptr)
3615 {
3616         cpumask_t new_mask;
3617         int retval;
3618
3619         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3620         if (retval)
3621                 return retval;
3622
3623         return sched_setaffinity(pid, new_mask);
3624 }
3625
3626 /*
3627  * Represents all cpu's present in the system
3628  * In systems capable of hotplug, this map could dynamically grow
3629  * as new cpu's are detected in the system via any platform specific
3630  * method, such as ACPI for e.g.
3631  */
3632
3633 cpumask_t cpu_present_map;
3634 EXPORT_SYMBOL(cpu_present_map);
3635
3636 #ifndef CONFIG_SMP
3637 cpumask_t cpu_online_map = CPU_MASK_ALL;
3638 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3639 #endif
3640
3641 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3642 {
3643         int retval;
3644         task_t *p;
3645
3646         lock_cpu_hotplug();
3647         read_lock(&tasklist_lock);
3648
3649         retval = -ESRCH;
3650         p = find_process_by_pid(pid);
3651         if (!p)
3652                 goto out_unlock;
3653
3654         retval = 0;
3655         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3656
3657 out_unlock:
3658         read_unlock(&tasklist_lock);
3659         unlock_cpu_hotplug();
3660         if (retval)
3661                 return retval;
3662
3663         return 0;
3664 }
3665
3666 /**
3667  * sys_sched_getaffinity - get the cpu affinity of a process
3668  * @pid: pid of the process
3669  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3670  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3671  */
3672 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3673                                       unsigned long __user *user_mask_ptr)
3674 {
3675         int ret;
3676         cpumask_t mask;
3677
3678         if (len < sizeof(cpumask_t))
3679                 return -EINVAL;
3680
3681         ret = sched_getaffinity(pid, &mask);
3682         if (ret < 0)
3683                 return ret;
3684
3685         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3686                 return -EFAULT;
3687
3688         return sizeof(cpumask_t);
3689 }
3690
3691 /**
3692  * sys_sched_yield - yield the current processor to other threads.
3693  *
3694  * this function yields the current CPU by moving the calling thread
3695  * to the expired array. If there are no other threads running on this
3696  * CPU then this function will return.
3697  */
3698 asmlinkage long sys_sched_yield(void)
3699 {
3700         runqueue_t *rq = this_rq_lock();
3701         prio_array_t *array = current->array;
3702         prio_array_t *target = rq->expired;
3703
3704         schedstat_inc(rq, yld_cnt);
3705         /*
3706          * We implement yielding by moving the task into the expired
3707          * queue.
3708          *
3709          * (special rule: RT tasks will just roundrobin in the active
3710          *  array.)
3711          */
3712         if (rt_task(current))
3713                 target = rq->active;
3714
3715         if (current->array->nr_active == 1) {
3716                 schedstat_inc(rq, yld_act_empty);
3717                 if (!rq->expired->nr_active)
3718                         schedstat_inc(rq, yld_both_empty);
3719         } else if (!rq->expired->nr_active)
3720                 schedstat_inc(rq, yld_exp_empty);
3721
3722         if (array != target) {
3723                 dequeue_task(current, array);
3724                 enqueue_task(current, target);
3725         } else
3726                 /*
3727                  * requeue_task is cheaper so perform that if possible.
3728                  */
3729                 requeue_task(current, array);
3730
3731         /*
3732          * Since we are going to call schedule() anyway, there's
3733          * no need to preempt or enable interrupts:
3734          */
3735         __release(rq->lock);
3736         _raw_spin_unlock(&rq->lock);
3737         preempt_enable_no_resched();
3738
3739         schedule();
3740
3741         return 0;
3742 }
3743
3744 static inline void __cond_resched(void)
3745 {
3746         do {
3747                 add_preempt_count(PREEMPT_ACTIVE);
3748                 schedule();
3749                 sub_preempt_count(PREEMPT_ACTIVE);
3750         } while (need_resched());
3751 }
3752
3753 int __sched cond_resched(void)
3754 {
3755         if (need_resched()) {
3756                 __cond_resched();
3757                 return 1;
3758         }
3759         return 0;
3760 }
3761
3762 EXPORT_SYMBOL(cond_resched);
3763
3764 /*
3765  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3766  * call schedule, and on return reacquire the lock.
3767  *
3768  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3769  * operations here to prevent schedule() from being called twice (once via
3770  * spin_unlock(), once by hand).
3771  */
3772 int cond_resched_lock(spinlock_t * lock)
3773 {
3774         int ret = 0;
3775
3776         if (need_lockbreak(lock)) {
3777                 spin_unlock(lock);
3778                 cpu_relax();
3779                 ret = 1;
3780                 spin_lock(lock);
3781         }
3782         if (need_resched()) {
3783                 _raw_spin_unlock(lock);
3784                 preempt_enable_no_resched();
3785                 __cond_resched();
3786                 ret = 1;
3787                 spin_lock(lock);
3788         }
3789         return ret;
3790 }
3791
3792 EXPORT_SYMBOL(cond_resched_lock);
3793
3794 int __sched cond_resched_softirq(void)
3795 {
3796         BUG_ON(!in_softirq());
3797
3798         if (need_resched()) {
3799                 __local_bh_enable();
3800                 __cond_resched();
3801                 local_bh_disable();
3802                 return 1;
3803         }
3804         return 0;
3805 }
3806
3807 EXPORT_SYMBOL(cond_resched_softirq);
3808
3809
3810 /**
3811  * yield - yield the current processor to other threads.
3812  *
3813  * this is a shortcut for kernel-space yielding - it marks the
3814  * thread runnable and calls sys_sched_yield().
3815  */
3816 void __sched yield(void)
3817 {
3818         set_current_state(TASK_RUNNING);
3819         sys_sched_yield();
3820 }
3821
3822 EXPORT_SYMBOL(yield);
3823
3824 /*
3825  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
3826  * that process accounting knows that this is a task in IO wait state.
3827  *
3828  * But don't do that if it is a deliberate, throttling IO wait (this task
3829  * has set its backing_dev_info: the queue against which it should throttle)
3830  */
3831 void __sched io_schedule(void)
3832 {
3833         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3834
3835         atomic_inc(&rq->nr_iowait);
3836         schedule();
3837         atomic_dec(&rq->nr_iowait);
3838 }
3839
3840 EXPORT_SYMBOL(io_schedule);
3841
3842 long __sched io_schedule_timeout(long timeout)
3843 {
3844         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3845         long ret;
3846
3847         atomic_inc(&rq->nr_iowait);
3848         ret = schedule_timeout(timeout);
3849         atomic_dec(&rq->nr_iowait);
3850         return ret;
3851 }
3852
3853 /**
3854  * sys_sched_get_priority_max - return maximum RT priority.
3855  * @policy: scheduling class.
3856  *
3857  * this syscall returns the maximum rt_priority that can be used
3858  * by a given scheduling class.
3859  */
3860 asmlinkage long sys_sched_get_priority_max(int policy)
3861 {
3862         int ret = -EINVAL;
3863
3864         switch (policy) {
3865         case SCHED_FIFO:
3866         case SCHED_RR:
3867                 ret = MAX_USER_RT_PRIO-1;
3868                 break;
3869         case SCHED_NORMAL:
3870                 ret = 0;
3871                 break;
3872         }
3873         return ret;
3874 }
3875
3876 /**
3877  * sys_sched_get_priority_min - return minimum RT priority.
3878  * @policy: scheduling class.
3879  *
3880  * this syscall returns the minimum rt_priority that can be used
3881  * by a given scheduling class.
3882  */
3883 asmlinkage long sys_sched_get_priority_min(int policy)
3884 {
3885         int ret = -EINVAL;
3886
3887         switch (policy) {
3888         case SCHED_FIFO:
3889         case SCHED_RR:
3890                 ret = 1;
3891                 break;
3892         case SCHED_NORMAL:
3893                 ret = 0;
3894         }
3895         return ret;
3896 }
3897
3898 /**
3899  * sys_sched_rr_get_interval - return the default timeslice of a process.
3900  * @pid: pid of the process.
3901  * @interval: userspace pointer to the timeslice value.
3902  *
3903  * this syscall writes the default timeslice value of a given process
3904  * into the user-space timespec buffer. A value of '0' means infinity.
3905  */
3906 asmlinkage
3907 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
3908 {
3909         int retval = -EINVAL;
3910         struct timespec t;
3911         task_t *p;
3912
3913         if (pid < 0)
3914                 goto out_nounlock;
3915
3916         retval = -ESRCH;
3917         read_lock(&tasklist_lock);
3918         p = find_process_by_pid(pid);
3919         if (!p)
3920                 goto out_unlock;
3921
3922         retval = security_task_getscheduler(p);
3923         if (retval)
3924                 goto out_unlock;
3925
3926         jiffies_to_timespec(p->policy & SCHED_FIFO ?
3927                                 0 : task_timeslice(p), &t);
3928         read_unlock(&tasklist_lock);
3929         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3930 out_nounlock:
3931         return retval;
3932 out_unlock:
3933         read_unlock(&tasklist_lock);
3934         return retval;
3935 }
3936
3937 static inline struct task_struct *eldest_child(struct task_struct *p)
3938 {
3939         if (list_empty(&p->children)) return NULL;
3940         return list_entry(p->children.next,struct task_struct,sibling);
3941 }
3942
3943 static inline struct task_struct *older_sibling(struct task_struct *p)
3944 {
3945         if (p->sibling.prev==&p->parent->children) return NULL;
3946         return list_entry(p->sibling.prev,struct task_struct,sibling);
3947 }
3948
3949 static inline struct task_struct *younger_sibling(struct task_struct *p)
3950 {
3951         if (p->sibling.next==&p->parent->children) return NULL;
3952         return list_entry(p->sibling.next,struct task_struct,sibling);
3953 }
3954
3955 static void show_task(task_t * p)
3956 {
3957         task_t *relative;
3958         unsigned state;
3959         unsigned long free = 0;
3960         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
3961
3962         printk("%-13.13s ", p->comm);
3963         state = p->state ? __ffs(p->state) + 1 : 0;
3964         if (state < ARRAY_SIZE(stat_nam))
3965                 printk(stat_nam[state]);
3966         else
3967                 printk("?");
3968 #if (BITS_PER_LONG == 32)
3969         if (state == TASK_RUNNING)
3970                 printk(" running ");
3971         else
3972                 printk(" %08lX ", thread_saved_pc(p));
3973 #else
3974         if (state == TASK_RUNNING)
3975                 printk("  running task   ");
3976         else
3977                 printk(" %016lx ", thread_saved_pc(p));
3978 #endif
3979 #ifdef CONFIG_DEBUG_STACK_USAGE
3980         {
3981                 unsigned long * n = (unsigned long *) (p->thread_info+1);
3982                 while (!*n)
3983                         n++;
3984                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
3985         }
3986 #endif
3987         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
3988         if ((relative = eldest_child(p)))
3989                 printk("%5d ", relative->pid);
3990         else
3991                 printk("      ");
3992         if ((relative = younger_sibling(p)))
3993                 printk("%7d", relative->pid);
3994         else
3995                 printk("       ");
3996         if ((relative = older_sibling(p)))
3997                 printk(" %5d", relative->pid);
3998         else
3999                 printk("      ");
4000         if (!p->mm)
4001                 printk(" (L-TLB)\n");
4002         else
4003                 printk(" (NOTLB)\n");
4004
4005         if (state != TASK_RUNNING)
4006                 show_stack(p, NULL);
4007 }
4008
4009 void show_state(void)
4010 {
4011         task_t *g, *p;
4012
4013 #if (BITS_PER_LONG == 32)
4014         printk("\n"
4015                "                                               sibling\n");
4016         printk("  task             PC      pid father child younger older\n");
4017 #else
4018         printk("\n"
4019                "                                                       sibling\n");
4020         printk("  task                 PC          pid father child younger older\n");
4021 #endif
4022         read_lock(&tasklist_lock);
4023         do_each_thread(g, p) {
4024                 /*
4025                  * reset the NMI-timeout, listing all files on a slow
4026                  * console might take alot of time:
4027                  */
4028                 touch_nmi_watchdog();
4029                 show_task(p);
4030         } while_each_thread(g, p);
4031
4032         read_unlock(&tasklist_lock);
4033 }
4034
4035 void __devinit init_idle(task_t *idle, int cpu)
4036 {
4037         runqueue_t *rq = cpu_rq(cpu);
4038         unsigned long flags;
4039
4040         idle->sleep_avg = 0;
4041         idle->array = NULL;
4042         idle->prio = MAX_PRIO;
4043         idle->state = TASK_RUNNING;
4044         idle->cpus_allowed = cpumask_of_cpu(cpu);
4045         set_task_cpu(idle, cpu);
4046
4047         spin_lock_irqsave(&rq->lock, flags);
4048         rq->curr = rq->idle = idle;
4049         set_tsk_need_resched(idle);
4050         spin_unlock_irqrestore(&rq->lock, flags);
4051
4052         /* Set the preempt count _outside_ the spinlocks! */
4053 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4054         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4055 #else
4056         idle->thread_info->preempt_count = 0;
4057 #endif
4058 }
4059
4060 /*
4061  * In a system that switches off the HZ timer nohz_cpu_mask
4062  * indicates which cpus entered this state. This is used
4063  * in the rcu update to wait only for active cpus. For system
4064  * which do not switch off the HZ timer nohz_cpu_mask should
4065  * always be CPU_MASK_NONE.
4066  */
4067 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4068
4069 #ifdef CONFIG_SMP
4070 /*
4071  * This is how migration works:
4072  *
4073  * 1) we queue a migration_req_t structure in the source CPU's
4074  *    runqueue and wake up that CPU's migration thread.
4075  * 2) we down() the locked semaphore => thread blocks.
4076  * 3) migration thread wakes up (implicitly it forces the migrated
4077  *    thread off the CPU)
4078  * 4) it gets the migration request and checks whether the migrated
4079  *    task is still in the wrong runqueue.
4080  * 5) if it's in the wrong runqueue then the migration thread removes
4081  *    it and puts it into the right queue.
4082  * 6) migration thread up()s the semaphore.
4083  * 7) we wake up and the migration is done.
4084  */
4085
4086 /*
4087  * Change a given task's CPU affinity. Migrate the thread to a
4088  * proper CPU and schedule it away if the CPU it's executing on
4089  * is removed from the allowed bitmask.
4090  *
4091  * NOTE: the caller must have a valid reference to the task, the
4092  * task must not exit() & deallocate itself prematurely.  The
4093  * call is not atomic; no spinlocks may be held.
4094  */
4095 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4096 {
4097         unsigned long flags;
4098         int ret = 0;
4099         migration_req_t req;
4100         runqueue_t *rq;
4101
4102         rq = task_rq_lock(p, &flags);
4103         if (!cpus_intersects(new_mask, cpu_online_map)) {
4104                 ret = -EINVAL;
4105                 goto out;
4106         }
4107
4108         p->cpus_allowed = new_mask;
4109         /* Can the task run on the task's current CPU? If so, we're done */
4110         if (cpu_isset(task_cpu(p), new_mask))
4111                 goto out;
4112
4113         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4114                 /* Need help from migration thread: drop lock and wait. */
4115                 task_rq_unlock(rq, &flags);
4116                 wake_up_process(rq->migration_thread);
4117                 wait_for_completion(&req.done);
4118                 tlb_migrate_finish(p->mm);
4119                 return 0;
4120         }
4121 out:
4122         task_rq_unlock(rq, &flags);
4123         return ret;
4124 }
4125
4126 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4127
4128 /*
4129  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4130  * this because either it can't run here any more (set_cpus_allowed()
4131  * away from this CPU, or CPU going down), or because we're
4132  * attempting to rebalance this task on exec (sched_exec).
4133  *
4134  * So we race with normal scheduler movements, but that's OK, as long
4135  * as the task is no longer on this CPU.
4136  */
4137 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4138 {
4139         runqueue_t *rq_dest, *rq_src;
4140
4141         if (unlikely(cpu_is_offline(dest_cpu)))
4142                 return;
4143
4144         rq_src = cpu_rq(src_cpu);
4145         rq_dest = cpu_rq(dest_cpu);
4146
4147         double_rq_lock(rq_src, rq_dest);
4148         /* Already moved. */
4149         if (task_cpu(p) != src_cpu)
4150                 goto out;
4151         /* Affinity changed (again). */
4152         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4153                 goto out;
4154
4155         set_task_cpu(p, dest_cpu);
4156         if (p->array) {
4157                 /*
4158                  * Sync timestamp with rq_dest's before activating.
4159                  * The same thing could be achieved by doing this step
4160                  * afterwards, and pretending it was a local activate.
4161                  * This way is cleaner and logically correct.
4162                  */
4163                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4164                                 + rq_dest->timestamp_last_tick;
4165                 deactivate_task(p, rq_src);
4166                 activate_task(p, rq_dest, 0);
4167                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4168                         resched_task(rq_dest->curr);
4169         }
4170
4171 out:
4172         double_rq_unlock(rq_src, rq_dest);
4173 }
4174
4175 /*
4176  * migration_thread - this is a highprio system thread that performs
4177  * thread migration by bumping thread off CPU then 'pushing' onto
4178  * another runqueue.
4179  */
4180 static int migration_thread(void * data)
4181 {
4182         runqueue_t *rq;
4183         int cpu = (long)data;
4184
4185         rq = cpu_rq(cpu);
4186         BUG_ON(rq->migration_thread != current);
4187
4188         set_current_state(TASK_INTERRUPTIBLE);
4189         while (!kthread_should_stop()) {
4190                 struct list_head *head;
4191                 migration_req_t *req;
4192
4193                 if (current->flags & PF_FREEZE)
4194                         refrigerator(PF_FREEZE);
4195
4196                 spin_lock_irq(&rq->lock);
4197
4198                 if (cpu_is_offline(cpu)) {
4199                         spin_unlock_irq(&rq->lock);
4200                         goto wait_to_die;
4201                 }
4202
4203                 if (rq->active_balance) {
4204                         active_load_balance(rq, cpu);
4205                         rq->active_balance = 0;
4206                 }
4207
4208                 head = &rq->migration_queue;
4209
4210                 if (list_empty(head)) {
4211                         spin_unlock_irq(&rq->lock);
4212                         schedule();
4213                         set_current_state(TASK_INTERRUPTIBLE);
4214                         continue;
4215                 }
4216                 req = list_entry(head->next, migration_req_t, list);
4217                 list_del_init(head->next);
4218
4219                 if (req->type == REQ_MOVE_TASK) {
4220                         spin_unlock(&rq->lock);
4221                         __migrate_task(req->task, cpu, req->dest_cpu);
4222                         local_irq_enable();
4223                 } else if (req->type == REQ_SET_DOMAIN) {
4224                         rq->sd = req->sd;
4225                         spin_unlock_irq(&rq->lock);
4226                 } else {
4227                         spin_unlock_irq(&rq->lock);
4228                         WARN_ON(1);
4229                 }
4230
4231                 complete(&req->done);
4232         }
4233         __set_current_state(TASK_RUNNING);
4234         return 0;
4235
4236 wait_to_die:
4237         /* Wait for kthread_stop */
4238         set_current_state(TASK_INTERRUPTIBLE);
4239         while (!kthread_should_stop()) {
4240                 schedule();
4241                 set_current_state(TASK_INTERRUPTIBLE);
4242         }
4243         __set_current_state(TASK_RUNNING);
4244         return 0;
4245 }
4246
4247 #ifdef CONFIG_HOTPLUG_CPU
4248 /* Figure out where task on dead CPU should go, use force if neccessary. */
4249 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4250 {
4251         int dest_cpu;
4252         cpumask_t mask;
4253
4254         /* On same node? */
4255         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4256         cpus_and(mask, mask, tsk->cpus_allowed);
4257         dest_cpu = any_online_cpu(mask);
4258
4259         /* On any allowed CPU? */
4260         if (dest_cpu == NR_CPUS)
4261                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4262
4263         /* No more Mr. Nice Guy. */
4264         if (dest_cpu == NR_CPUS) {
4265                 cpus_setall(tsk->cpus_allowed);
4266                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4267
4268                 /*
4269                  * Don't tell them about moving exiting tasks or
4270                  * kernel threads (both mm NULL), since they never
4271                  * leave kernel.
4272                  */
4273                 if (tsk->mm && printk_ratelimit())
4274                         printk(KERN_INFO "process %d (%s) no "
4275                                "longer affine to cpu%d\n",
4276                                tsk->pid, tsk->comm, dead_cpu);
4277         }
4278         __migrate_task(tsk, dead_cpu, dest_cpu);
4279 }
4280
4281 /*
4282  * While a dead CPU has no uninterruptible tasks queued at this point,
4283  * it might still have a nonzero ->nr_uninterruptible counter, because
4284  * for performance reasons the counter is not stricly tracking tasks to
4285  * their home CPUs. So we just add the counter to another CPU's counter,
4286  * to keep the global sum constant after CPU-down:
4287  */
4288 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4289 {
4290         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4291         unsigned long flags;
4292
4293         local_irq_save(flags);
4294         double_rq_lock(rq_src, rq_dest);
4295         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4296         rq_src->nr_uninterruptible = 0;
4297         double_rq_unlock(rq_src, rq_dest);
4298         local_irq_restore(flags);
4299 }
4300
4301 /* Run through task list and migrate tasks from the dead cpu. */
4302 static void migrate_live_tasks(int src_cpu)
4303 {
4304         struct task_struct *tsk, *t;
4305
4306         write_lock_irq(&tasklist_lock);
4307
4308         do_each_thread(t, tsk) {
4309                 if (tsk == current)
4310                         continue;
4311
4312                 if (task_cpu(tsk) == src_cpu)
4313                         move_task_off_dead_cpu(src_cpu, tsk);
4314         } while_each_thread(t, tsk);
4315
4316         write_unlock_irq(&tasklist_lock);
4317 }
4318
4319 /* Schedules idle task to be the next runnable task on current CPU.
4320  * It does so by boosting its priority to highest possible and adding it to
4321  * the _front_ of runqueue. Used by CPU offline code.
4322  */
4323 void sched_idle_next(void)
4324 {
4325         int cpu = smp_processor_id();
4326         runqueue_t *rq = this_rq();
4327         struct task_struct *p = rq->idle;
4328         unsigned long flags;
4329
4330         /* cpu has to be offline */
4331         BUG_ON(cpu_online(cpu));
4332
4333         /* Strictly not necessary since rest of the CPUs are stopped by now
4334          * and interrupts disabled on current cpu.
4335          */
4336         spin_lock_irqsave(&rq->lock, flags);
4337
4338         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4339         /* Add idle task to _front_ of it's priority queue */
4340         __activate_idle_task(p, rq);
4341
4342         spin_unlock_irqrestore(&rq->lock, flags);
4343 }
4344
4345 /* Ensures that the idle task is using init_mm right before its cpu goes
4346  * offline.
4347  */
4348 void idle_task_exit(void)
4349 {
4350         struct mm_struct *mm = current->active_mm;
4351
4352         BUG_ON(cpu_online(smp_processor_id()));
4353
4354         if (mm != &init_mm)
4355                 switch_mm(mm, &init_mm, current);
4356         mmdrop(mm);
4357 }
4358
4359 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4360 {
4361         struct runqueue *rq = cpu_rq(dead_cpu);
4362
4363         /* Must be exiting, otherwise would be on tasklist. */
4364         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4365
4366         /* Cannot have done final schedule yet: would have vanished. */
4367         BUG_ON(tsk->flags & PF_DEAD);
4368
4369         get_task_struct(tsk);
4370
4371         /*
4372          * Drop lock around migration; if someone else moves it,
4373          * that's OK.  No task can be added to this CPU, so iteration is
4374          * fine.
4375          */
4376         spin_unlock_irq(&rq->lock);
4377         move_task_off_dead_cpu(dead_cpu, tsk);
4378         spin_lock_irq(&rq->lock);
4379
4380         put_task_struct(tsk);
4381 }
4382
4383 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4384 static void migrate_dead_tasks(unsigned int dead_cpu)
4385 {
4386         unsigned arr, i;
4387         struct runqueue *rq = cpu_rq(dead_cpu);
4388
4389         for (arr = 0; arr < 2; arr++) {
4390                 for (i = 0; i < MAX_PRIO; i++) {
4391                         struct list_head *list = &rq->arrays[arr].queue[i];
4392                         while (!list_empty(list))
4393                                 migrate_dead(dead_cpu,
4394                                              list_entry(list->next, task_t,
4395                                                         run_list));
4396                 }
4397         }
4398 }
4399 #endif /* CONFIG_HOTPLUG_CPU */
4400
4401 /*
4402  * migration_call - callback that gets triggered when a CPU is added.
4403  * Here we can start up the necessary migration thread for the new CPU.
4404  */
4405 static int migration_call(struct notifier_block *nfb, unsigned long action,
4406                           void *hcpu)
4407 {
4408         int cpu = (long)hcpu;
4409         struct task_struct *p;
4410         struct runqueue *rq;
4411         unsigned long flags;
4412
4413         switch (action) {
4414         case CPU_UP_PREPARE:
4415                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4416                 if (IS_ERR(p))
4417                         return NOTIFY_BAD;
4418                 p->flags |= PF_NOFREEZE;
4419                 kthread_bind(p, cpu);
4420                 /* Must be high prio: stop_machine expects to yield to it. */
4421                 rq = task_rq_lock(p, &flags);
4422                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4423                 task_rq_unlock(rq, &flags);
4424                 cpu_rq(cpu)->migration_thread = p;
4425                 break;
4426         case CPU_ONLINE:
4427                 /* Strictly unneccessary, as first user will wake it. */
4428                 wake_up_process(cpu_rq(cpu)->migration_thread);
4429                 break;
4430 #ifdef CONFIG_HOTPLUG_CPU
4431         case CPU_UP_CANCELED:
4432                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4433                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4434                 kthread_stop(cpu_rq(cpu)->migration_thread);
4435                 cpu_rq(cpu)->migration_thread = NULL;
4436                 break;
4437         case CPU_DEAD:
4438                 migrate_live_tasks(cpu);
4439                 rq = cpu_rq(cpu);
4440                 kthread_stop(rq->migration_thread);
4441                 rq->migration_thread = NULL;
4442                 /* Idle task back to normal (off runqueue, low prio) */
4443                 rq = task_rq_lock(rq->idle, &flags);
4444                 deactivate_task(rq->idle, rq);
4445                 rq->idle->static_prio = MAX_PRIO;
4446                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4447                 migrate_dead_tasks(cpu);
4448                 task_rq_unlock(rq, &flags);
4449                 migrate_nr_uninterruptible(rq);
4450                 BUG_ON(rq->nr_running != 0);
4451
4452                 /* No need to migrate the tasks: it was best-effort if
4453                  * they didn't do lock_cpu_hotplug().  Just wake up
4454                  * the requestors. */
4455                 spin_lock_irq(&rq->lock);
4456                 while (!list_empty(&rq->migration_queue)) {
4457                         migration_req_t *req;
4458                         req = list_entry(rq->migration_queue.next,
4459                                          migration_req_t, list);
4460                         BUG_ON(req->type != REQ_MOVE_TASK);
4461                         list_del_init(&req->list);
4462                         complete(&req->done);
4463                 }
4464                 spin_unlock_irq(&rq->lock);
4465                 break;
4466 #endif
4467         }
4468         return NOTIFY_OK;
4469 }
4470
4471 /* Register at highest priority so that task migration (migrate_all_tasks)
4472  * happens before everything else.
4473  */
4474 static struct notifier_block __devinitdata migration_notifier = {
4475         .notifier_call = migration_call,
4476         .priority = 10
4477 };
4478
4479 int __init migration_init(void)
4480 {
4481         void *cpu = (void *)(long)smp_processor_id();
4482         /* Start one for boot CPU. */
4483         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4484         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4485         register_cpu_notifier(&migration_notifier);
4486         return 0;
4487 }
4488 #endif
4489
4490 #ifdef CONFIG_SMP
4491 #define SCHED_DOMAIN_DEBUG
4492 #ifdef SCHED_DOMAIN_DEBUG
4493 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4494 {
4495         int level = 0;
4496
4497         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4498
4499         do {
4500                 int i;
4501                 char str[NR_CPUS];
4502                 struct sched_group *group = sd->groups;
4503                 cpumask_t groupmask;
4504
4505                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4506                 cpus_clear(groupmask);
4507
4508                 printk(KERN_DEBUG);
4509                 for (i = 0; i < level + 1; i++)
4510                         printk(" ");
4511                 printk("domain %d: ", level);
4512
4513                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4514                         printk("does not load-balance\n");
4515                         if (sd->parent)
4516                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4517                         break;
4518                 }
4519
4520                 printk("span %s\n", str);
4521
4522                 if (!cpu_isset(cpu, sd->span))
4523                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4524                 if (!cpu_isset(cpu, group->cpumask))
4525                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4526
4527                 printk(KERN_DEBUG);
4528                 for (i = 0; i < level + 2; i++)
4529                         printk(" ");
4530                 printk("groups:");
4531                 do {
4532                         if (!group) {
4533                                 printk("\n");
4534                                 printk(KERN_ERR "ERROR: group is NULL\n");
4535                                 break;
4536                         }
4537
4538                         if (!group->cpu_power) {
4539                                 printk("\n");
4540                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4541                         }
4542
4543                         if (!cpus_weight(group->cpumask)) {
4544                                 printk("\n");
4545                                 printk(KERN_ERR "ERROR: empty group\n");
4546                         }
4547
4548                         if (cpus_intersects(groupmask, group->cpumask)) {
4549                                 printk("\n");
4550                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4551                         }
4552
4553                         cpus_or(groupmask, groupmask, group->cpumask);
4554
4555                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4556                         printk(" %s", str);
4557
4558                         group = group->next;
4559                 } while (group != sd->groups);
4560                 printk("\n");
4561
4562                 if (!cpus_equal(sd->span, groupmask))
4563                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4564
4565                 level++;
4566                 sd = sd->parent;
4567
4568                 if (sd) {
4569                         if (!cpus_subset(groupmask, sd->span))
4570                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4571                 }
4572
4573         } while (sd);
4574 }
4575 #else
4576 #define sched_domain_debug(sd, cpu) {}
4577 #endif
4578
4579 /*
4580  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4581  * hold the hotplug lock.
4582  */
4583 void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4584 {
4585         migration_req_t req;
4586         unsigned long flags;
4587         runqueue_t *rq = cpu_rq(cpu);
4588         int local = 1;
4589
4590         sched_domain_debug(sd, cpu);
4591
4592         spin_lock_irqsave(&rq->lock, flags);
4593
4594         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4595                 rq->sd = sd;
4596         } else {
4597                 init_completion(&req.done);
4598                 req.type = REQ_SET_DOMAIN;
4599                 req.sd = sd;
4600                 list_add(&req.list, &rq->migration_queue);
4601                 local = 0;
4602         }
4603
4604         spin_unlock_irqrestore(&rq->lock, flags);
4605
4606         if (!local) {
4607                 wake_up_process(rq->migration_thread);
4608                 wait_for_completion(&req.done);
4609         }
4610 }
4611
4612 /* cpus with isolated domains */
4613 cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4614
4615 /* Setup the mask of cpus configured for isolated domains */
4616 static int __init isolated_cpu_setup(char *str)
4617 {
4618         int ints[NR_CPUS], i;
4619
4620         str = get_options(str, ARRAY_SIZE(ints), ints);
4621         cpus_clear(cpu_isolated_map);
4622         for (i = 1; i <= ints[0]; i++)
4623                 if (ints[i] < NR_CPUS)
4624                         cpu_set(ints[i], cpu_isolated_map);
4625         return 1;
4626 }
4627
4628 __setup ("isolcpus=", isolated_cpu_setup);
4629
4630 /*
4631  * init_sched_build_groups takes an array of groups, the cpumask we wish
4632  * to span, and a pointer to a function which identifies what group a CPU
4633  * belongs to. The return value of group_fn must be a valid index into the
4634  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4635  * keep track of groups covered with a cpumask_t).
4636  *
4637  * init_sched_build_groups will build a circular linked list of the groups
4638  * covered by the given span, and will set each group's ->cpumask correctly,
4639  * and ->cpu_power to 0.
4640  */
4641 void __devinit init_sched_build_groups(struct sched_group groups[],
4642                         cpumask_t span, int (*group_fn)(int cpu))
4643 {
4644         struct sched_group *first = NULL, *last = NULL;
4645         cpumask_t covered = CPU_MASK_NONE;
4646         int i;
4647
4648         for_each_cpu_mask(i, span) {
4649                 int group = group_fn(i);
4650                 struct sched_group *sg = &groups[group];
4651                 int j;
4652
4653                 if (cpu_isset(i, covered))
4654                         continue;
4655
4656                 sg->cpumask = CPU_MASK_NONE;
4657                 sg->cpu_power = 0;
4658
4659                 for_each_cpu_mask(j, span) {
4660                         if (group_fn(j) != group)
4661                                 continue;
4662
4663                         cpu_set(j, covered);
4664                         cpu_set(j, sg->cpumask);
4665                 }
4666                 if (!first)
4667                         first = sg;
4668                 if (last)
4669                         last->next = sg;
4670                 last = sg;
4671         }
4672         last->next = first;
4673 }
4674
4675
4676 #ifdef ARCH_HAS_SCHED_DOMAIN
4677 extern void __devinit arch_init_sched_domains(void);
4678 extern void __devinit arch_destroy_sched_domains(void);
4679 #else
4680 #ifdef CONFIG_SCHED_SMT
4681 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4682 static struct sched_group sched_group_cpus[NR_CPUS];
4683 static int __devinit cpu_to_cpu_group(int cpu)
4684 {
4685         return cpu;
4686 }
4687 #endif
4688
4689 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4690 static struct sched_group sched_group_phys[NR_CPUS];
4691 static int __devinit cpu_to_phys_group(int cpu)
4692 {
4693 #ifdef CONFIG_SCHED_SMT
4694         return first_cpu(cpu_sibling_map[cpu]);
4695 #else
4696         return cpu;
4697 #endif
4698 }
4699
4700 #ifdef CONFIG_NUMA
4701
4702 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4703 static struct sched_group sched_group_nodes[MAX_NUMNODES];
4704 static int __devinit cpu_to_node_group(int cpu)
4705 {
4706         return cpu_to_node(cpu);
4707 }
4708 #endif
4709
4710 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4711 /*
4712  * The domains setup code relies on siblings not spanning
4713  * multiple nodes. Make sure the architecture has a proper
4714  * siblings map:
4715  */
4716 static void check_sibling_maps(void)
4717 {
4718         int i, j;
4719
4720         for_each_online_cpu(i) {
4721                 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4722                         if (cpu_to_node(i) != cpu_to_node(j)) {
4723                                 printk(KERN_INFO "warning: CPU %d siblings map "
4724                                         "to different node - isolating "
4725                                         "them.\n", i);
4726                                 cpu_sibling_map[i] = cpumask_of_cpu(i);
4727                                 break;
4728                         }
4729                 }
4730         }
4731 }
4732 #endif
4733
4734 /*
4735  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
4736  */
4737 static void __devinit arch_init_sched_domains(void)
4738 {
4739         int i;
4740         cpumask_t cpu_default_map;
4741
4742 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4743         check_sibling_maps();
4744 #endif
4745         /*
4746          * Setup mask for cpus without special case scheduling requirements.
4747          * For now this just excludes isolated cpus, but could be used to
4748          * exclude other special cases in the future.
4749          */
4750         cpus_complement(cpu_default_map, cpu_isolated_map);
4751         cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4752
4753         /*
4754          * Set up domains. Isolated domains just stay on the dummy domain.
4755          */
4756         for_each_cpu_mask(i, cpu_default_map) {
4757                 int group;
4758                 struct sched_domain *sd = NULL, *p;
4759                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4760
4761                 cpus_and(nodemask, nodemask, cpu_default_map);
4762
4763 #ifdef CONFIG_NUMA
4764                 sd = &per_cpu(node_domains, i);
4765                 group = cpu_to_node_group(i);
4766                 *sd = SD_NODE_INIT;
4767                 sd->span = cpu_default_map;
4768                 sd->groups = &sched_group_nodes[group];
4769 #endif
4770
4771                 p = sd;
4772                 sd = &per_cpu(phys_domains, i);
4773                 group = cpu_to_phys_group(i);
4774                 *sd = SD_CPU_INIT;
4775                 sd->span = nodemask;
4776                 sd->parent = p;
4777                 sd->groups = &sched_group_phys[group];
4778
4779 #ifdef CONFIG_SCHED_SMT
4780                 p = sd;
4781                 sd = &per_cpu(cpu_domains, i);
4782                 group = cpu_to_cpu_group(i);
4783                 *sd = SD_SIBLING_INIT;
4784                 sd->span = cpu_sibling_map[i];
4785                 cpus_and(sd->span, sd->span, cpu_default_map);
4786                 sd->parent = p;
4787                 sd->groups = &sched_group_cpus[group];
4788 #endif
4789         }
4790
4791 #ifdef CONFIG_SCHED_SMT
4792         /* Set up CPU (sibling) groups */
4793         for_each_online_cpu(i) {
4794                 cpumask_t this_sibling_map = cpu_sibling_map[i];
4795                 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4796                 if (i != first_cpu(this_sibling_map))
4797                         continue;
4798
4799                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4800                                                 &cpu_to_cpu_group);
4801         }
4802 #endif
4803
4804         /* Set up physical groups */
4805         for (i = 0; i < MAX_NUMNODES; i++) {
4806                 cpumask_t nodemask = node_to_cpumask(i);
4807
4808                 cpus_and(nodemask, nodemask, cpu_default_map);
4809                 if (cpus_empty(nodemask))
4810                         continue;
4811
4812                 init_sched_build_groups(sched_group_phys, nodemask,
4813                                                 &cpu_to_phys_group);
4814         }
4815
4816 #ifdef CONFIG_NUMA
4817         /* Set up node groups */
4818         init_sched_build_groups(sched_group_nodes, cpu_default_map,
4819                                         &cpu_to_node_group);
4820 #endif
4821
4822         /* Calculate CPU power for physical packages and nodes */
4823         for_each_cpu_mask(i, cpu_default_map) {
4824                 int power;
4825                 struct sched_domain *sd;
4826 #ifdef CONFIG_SCHED_SMT
4827                 sd = &per_cpu(cpu_domains, i);
4828                 power = SCHED_LOAD_SCALE;
4829                 sd->groups->cpu_power = power;
4830 #endif
4831
4832                 sd = &per_cpu(phys_domains, i);
4833                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4834                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
4835                 sd->groups->cpu_power = power;
4836
4837 #ifdef CONFIG_NUMA
4838                 if (i == first_cpu(sd->groups->cpumask)) {
4839                         /* Only add "power" once for each physical package. */
4840                         sd = &per_cpu(node_domains, i);
4841                         sd->groups->cpu_power += power;
4842                 }
4843 #endif
4844         }
4845
4846         /* Attach the domains */
4847         for_each_online_cpu(i) {
4848                 struct sched_domain *sd;
4849 #ifdef CONFIG_SCHED_SMT
4850                 sd = &per_cpu(cpu_domains, i);
4851 #else
4852                 sd = &per_cpu(phys_domains, i);
4853 #endif
4854                 cpu_attach_domain(sd, i);
4855         }
4856 }
4857
4858 #ifdef CONFIG_HOTPLUG_CPU
4859 static void __devinit arch_destroy_sched_domains(void)
4860 {
4861         /* Do nothing: everything is statically allocated. */
4862 }
4863 #endif
4864
4865 #endif /* ARCH_HAS_SCHED_DOMAIN */
4866
4867 /*
4868  * Initial dummy domain for early boot and for hotplug cpu. Being static,
4869  * it is initialized to zero, so all balancing flags are cleared which is
4870  * what we want.
4871  */
4872 static struct sched_domain sched_domain_dummy;
4873
4874 #ifdef CONFIG_HOTPLUG_CPU
4875 /*
4876  * Force a reinitialization of the sched domains hierarchy.  The domains
4877  * and groups cannot be updated in place without racing with the balancing
4878  * code, so we temporarily attach all running cpus to a "dummy" domain
4879  * which will prevent rebalancing while the sched domains are recalculated.
4880  */
4881 static int update_sched_domains(struct notifier_block *nfb,
4882                                 unsigned long action, void *hcpu)
4883 {
4884         int i;
4885
4886         switch (action) {
4887         case CPU_UP_PREPARE:
4888         case CPU_DOWN_PREPARE:
4889                 for_each_online_cpu(i)
4890                         cpu_attach_domain(&sched_domain_dummy, i);
4891                 arch_destroy_sched_domains();
4892                 return NOTIFY_OK;
4893
4894         case CPU_UP_CANCELED:
4895         case CPU_DOWN_FAILED:
4896         case CPU_ONLINE:
4897         case CPU_DEAD:
4898                 /*
4899                  * Fall through and re-initialise the domains.
4900                  */
4901                 break;
4902         default:
4903                 return NOTIFY_DONE;
4904         }
4905
4906         /* The hotplug lock is already held by cpu_up/cpu_down */
4907         arch_init_sched_domains();
4908
4909         return NOTIFY_OK;
4910 }
4911 #endif
4912
4913 void __init sched_init_smp(void)
4914 {
4915         lock_cpu_hotplug();
4916         arch_init_sched_domains();
4917         unlock_cpu_hotplug();
4918         /* XXX: Theoretical race here - CPU may be hotplugged now */
4919         hotcpu_notifier(update_sched_domains, 0);
4920 }
4921 #else
4922 void __init sched_init_smp(void)
4923 {
4924 }
4925 #endif /* CONFIG_SMP */
4926
4927 int in_sched_functions(unsigned long addr)
4928 {
4929         /* Linker adds these: start and end of __sched functions */
4930         extern char __sched_text_start[], __sched_text_end[];
4931         return in_lock_functions(addr) ||
4932                 (addr >= (unsigned long)__sched_text_start
4933                 && addr < (unsigned long)__sched_text_end);
4934 }
4935
4936 void __init sched_init(void)
4937 {
4938         runqueue_t *rq;
4939         int i, j, k;
4940
4941         for (i = 0; i < NR_CPUS; i++) {
4942                 prio_array_t *array;
4943
4944                 rq = cpu_rq(i);
4945                 spin_lock_init(&rq->lock);
4946                 rq->active = rq->arrays;
4947                 rq->expired = rq->arrays + 1;
4948                 rq->best_expired_prio = MAX_PRIO;
4949
4950 #ifdef CONFIG_SMP
4951                 rq->sd = &sched_domain_dummy;
4952                 rq->cpu_load = 0;
4953                 rq->active_balance = 0;
4954                 rq->push_cpu = 0;
4955                 rq->migration_thread = NULL;
4956                 INIT_LIST_HEAD(&rq->migration_queue);
4957 #endif
4958                 atomic_set(&rq->nr_iowait, 0);
4959
4960                 for (j = 0; j < 2; j++) {
4961                         array = rq->arrays + j;
4962                         for (k = 0; k < MAX_PRIO; k++) {
4963                                 INIT_LIST_HEAD(array->queue + k);
4964                                 __clear_bit(k, array->bitmap);
4965                         }
4966                         // delimiter for bitsearch
4967                         __set_bit(MAX_PRIO, array->bitmap);
4968                 }
4969         }
4970
4971         /*
4972          * The boot idle thread does lazy MMU switching as well:
4973          */
4974         atomic_inc(&init_mm.mm_count);
4975         enter_lazy_tlb(&init_mm, current);
4976
4977         /*
4978          * Make us the idle thread. Technically, schedule() should not be
4979          * called from this thread, however somewhere below it might be,
4980          * but because we are the idle thread, we just pick up running again
4981          * when this runqueue becomes "idle".
4982          */
4983         init_idle(current, smp_processor_id());
4984 }
4985
4986 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4987 void __might_sleep(char *file, int line)
4988 {
4989 #if defined(in_atomic)
4990         static unsigned long prev_jiffy;        /* ratelimiting */
4991
4992         if ((in_atomic() || irqs_disabled()) &&
4993             system_state == SYSTEM_RUNNING && !oops_in_progress) {
4994                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
4995                         return;
4996                 prev_jiffy = jiffies;
4997                 printk(KERN_ERR "Debug: sleeping function called from invalid"
4998                                 " context at %s:%d\n", file, line);
4999                 printk("in_atomic():%d, irqs_disabled():%d\n",
5000                         in_atomic(), irqs_disabled());
5001                 dump_stack();
5002         }
5003 #endif
5004 }
5005 EXPORT_SYMBOL(__might_sleep);
5006 #endif
5007
5008 #ifdef CONFIG_MAGIC_SYSRQ
5009 void normalize_rt_tasks(void)
5010 {
5011         struct task_struct *p;
5012         prio_array_t *array;
5013         unsigned long flags;
5014         runqueue_t *rq;
5015
5016         read_lock_irq(&tasklist_lock);
5017         for_each_process (p) {
5018                 if (!rt_task(p))
5019                         continue;
5020
5021                 rq = task_rq_lock(p, &flags);
5022
5023                 array = p->array;
5024                 if (array)
5025                         deactivate_task(p, task_rq(p));
5026                 __setscheduler(p, SCHED_NORMAL, 0);
5027                 if (array) {
5028                         __activate_task(p, task_rq(p));
5029                         resched_task(rq->curr);
5030                 }
5031
5032                 task_rq_unlock(rq, &flags);
5033         }
5034         read_unlock_irq(&tasklist_lock);
5035 }
5036
5037 #endif /* CONFIG_MAGIC_SYSRQ */