]> Pileus Git - ~andy/linux/blob - kernel/sched.c
[PATCH] sched: reduce active load balancing
[~andy/linux] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static inline unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load;
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 #define for_each_domain(cpu, domain) \
264         for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
267 #define this_rq()               (&__get_cpu_var(runqueues))
268 #define task_rq(p)              cpu_rq(task_cpu(p))
269 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
270
271 /*
272  * Default context-switch locking:
273  */
274 #ifndef prepare_arch_switch
275 # define prepare_arch_switch(rq, next)  do { } while (0)
276 # define finish_arch_switch(rq, next)   spin_unlock_irq(&(rq)->lock)
277 # define task_running(rq, p)            ((rq)->curr == (p))
278 #endif
279
280 /*
281  * task_rq_lock - lock the runqueue a given task resides on and disable
282  * interrupts.  Note the ordering: we can safely lookup the task_rq without
283  * explicitly disabling preemption.
284  */
285 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
286         __acquires(rq->lock)
287 {
288         struct runqueue *rq;
289
290 repeat_lock_task:
291         local_irq_save(*flags);
292         rq = task_rq(p);
293         spin_lock(&rq->lock);
294         if (unlikely(rq != task_rq(p))) {
295                 spin_unlock_irqrestore(&rq->lock, *flags);
296                 goto repeat_lock_task;
297         }
298         return rq;
299 }
300
301 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
302         __releases(rq->lock)
303 {
304         spin_unlock_irqrestore(&rq->lock, *flags);
305 }
306
307 #ifdef CONFIG_SCHEDSTATS
308 /*
309  * bump this up when changing the output format or the meaning of an existing
310  * format, so that tools can adapt (or abort)
311  */
312 #define SCHEDSTAT_VERSION 11
313
314 static int show_schedstat(struct seq_file *seq, void *v)
315 {
316         int cpu;
317
318         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
319         seq_printf(seq, "timestamp %lu\n", jiffies);
320         for_each_online_cpu(cpu) {
321                 runqueue_t *rq = cpu_rq(cpu);
322 #ifdef CONFIG_SMP
323                 struct sched_domain *sd;
324                 int dcnt = 0;
325 #endif
326
327                 /* runqueue-specific stats */
328                 seq_printf(seq,
329                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
330                     cpu, rq->yld_both_empty,
331                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
332                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
333                     rq->ttwu_cnt, rq->ttwu_local,
334                     rq->rq_sched_info.cpu_time,
335                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
336
337                 seq_printf(seq, "\n");
338
339 #ifdef CONFIG_SMP
340                 /* domain-specific stats */
341                 for_each_domain(cpu, sd) {
342                         enum idle_type itype;
343                         char mask_str[NR_CPUS];
344
345                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
346                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
347                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
348                                         itype++) {
349                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
350                                     sd->lb_cnt[itype],
351                                     sd->lb_balanced[itype],
352                                     sd->lb_failed[itype],
353                                     sd->lb_imbalance[itype],
354                                     sd->lb_gained[itype],
355                                     sd->lb_hot_gained[itype],
356                                     sd->lb_nobusyq[itype],
357                                     sd->lb_nobusyg[itype]);
358                         }
359                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
360                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
361                             sd->sbe_pushed, sd->sbe_attempts,
362                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
363                 }
364 #endif
365         }
366         return 0;
367 }
368
369 static int schedstat_open(struct inode *inode, struct file *file)
370 {
371         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
372         char *buf = kmalloc(size, GFP_KERNEL);
373         struct seq_file *m;
374         int res;
375
376         if (!buf)
377                 return -ENOMEM;
378         res = single_open(file, show_schedstat, NULL);
379         if (!res) {
380                 m = file->private_data;
381                 m->buf = buf;
382                 m->size = size;
383         } else
384                 kfree(buf);
385         return res;
386 }
387
388 struct file_operations proc_schedstat_operations = {
389         .open    = schedstat_open,
390         .read    = seq_read,
391         .llseek  = seq_lseek,
392         .release = single_release,
393 };
394
395 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
396 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
397 #else /* !CONFIG_SCHEDSTATS */
398 # define schedstat_inc(rq, field)       do { } while (0)
399 # define schedstat_add(rq, field, amt)  do { } while (0)
400 #endif
401
402 /*
403  * rq_lock - lock a given runqueue and disable interrupts.
404  */
405 static inline runqueue_t *this_rq_lock(void)
406         __acquires(rq->lock)
407 {
408         runqueue_t *rq;
409
410         local_irq_disable();
411         rq = this_rq();
412         spin_lock(&rq->lock);
413
414         return rq;
415 }
416
417 #ifdef CONFIG_SCHED_SMT
418 static int cpu_and_siblings_are_idle(int cpu)
419 {
420         int sib;
421         for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
422                 if (idle_cpu(sib))
423                         continue;
424                 return 0;
425         }
426
427         return 1;
428 }
429 #else
430 #define cpu_and_siblings_are_idle(A) idle_cpu(A)
431 #endif
432
433 #ifdef CONFIG_SCHEDSTATS
434 /*
435  * Called when a process is dequeued from the active array and given
436  * the cpu.  We should note that with the exception of interactive
437  * tasks, the expired queue will become the active queue after the active
438  * queue is empty, without explicitly dequeuing and requeuing tasks in the
439  * expired queue.  (Interactive tasks may be requeued directly to the
440  * active queue, thus delaying tasks in the expired queue from running;
441  * see scheduler_tick()).
442  *
443  * This function is only called from sched_info_arrive(), rather than
444  * dequeue_task(). Even though a task may be queued and dequeued multiple
445  * times as it is shuffled about, we're really interested in knowing how
446  * long it was from the *first* time it was queued to the time that it
447  * finally hit a cpu.
448  */
449 static inline void sched_info_dequeued(task_t *t)
450 {
451         t->sched_info.last_queued = 0;
452 }
453
454 /*
455  * Called when a task finally hits the cpu.  We can now calculate how
456  * long it was waiting to run.  We also note when it began so that we
457  * can keep stats on how long its timeslice is.
458  */
459 static inline void sched_info_arrive(task_t *t)
460 {
461         unsigned long now = jiffies, diff = 0;
462         struct runqueue *rq = task_rq(t);
463
464         if (t->sched_info.last_queued)
465                 diff = now - t->sched_info.last_queued;
466         sched_info_dequeued(t);
467         t->sched_info.run_delay += diff;
468         t->sched_info.last_arrival = now;
469         t->sched_info.pcnt++;
470
471         if (!rq)
472                 return;
473
474         rq->rq_sched_info.run_delay += diff;
475         rq->rq_sched_info.pcnt++;
476 }
477
478 /*
479  * Called when a process is queued into either the active or expired
480  * array.  The time is noted and later used to determine how long we
481  * had to wait for us to reach the cpu.  Since the expired queue will
482  * become the active queue after active queue is empty, without dequeuing
483  * and requeuing any tasks, we are interested in queuing to either. It
484  * is unusual but not impossible for tasks to be dequeued and immediately
485  * requeued in the same or another array: this can happen in sched_yield(),
486  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
487  * to runqueue.
488  *
489  * This function is only called from enqueue_task(), but also only updates
490  * the timestamp if it is already not set.  It's assumed that
491  * sched_info_dequeued() will clear that stamp when appropriate.
492  */
493 static inline void sched_info_queued(task_t *t)
494 {
495         if (!t->sched_info.last_queued)
496                 t->sched_info.last_queued = jiffies;
497 }
498
499 /*
500  * Called when a process ceases being the active-running process, either
501  * voluntarily or involuntarily.  Now we can calculate how long we ran.
502  */
503 static inline void sched_info_depart(task_t *t)
504 {
505         struct runqueue *rq = task_rq(t);
506         unsigned long diff = jiffies - t->sched_info.last_arrival;
507
508         t->sched_info.cpu_time += diff;
509
510         if (rq)
511                 rq->rq_sched_info.cpu_time += diff;
512 }
513
514 /*
515  * Called when tasks are switched involuntarily due, typically, to expiring
516  * their time slice.  (This may also be called when switching to or from
517  * the idle task.)  We are only called when prev != next.
518  */
519 static inline void sched_info_switch(task_t *prev, task_t *next)
520 {
521         struct runqueue *rq = task_rq(prev);
522
523         /*
524          * prev now departs the cpu.  It's not interesting to record
525          * stats about how efficient we were at scheduling the idle
526          * process, however.
527          */
528         if (prev != rq->idle)
529                 sched_info_depart(prev);
530
531         if (next != rq->idle)
532                 sched_info_arrive(next);
533 }
534 #else
535 #define sched_info_queued(t)            do { } while (0)
536 #define sched_info_switch(t, next)      do { } while (0)
537 #endif /* CONFIG_SCHEDSTATS */
538
539 /*
540  * Adding/removing a task to/from a priority array:
541  */
542 static void dequeue_task(struct task_struct *p, prio_array_t *array)
543 {
544         array->nr_active--;
545         list_del(&p->run_list);
546         if (list_empty(array->queue + p->prio))
547                 __clear_bit(p->prio, array->bitmap);
548 }
549
550 static void enqueue_task(struct task_struct *p, prio_array_t *array)
551 {
552         sched_info_queued(p);
553         list_add_tail(&p->run_list, array->queue + p->prio);
554         __set_bit(p->prio, array->bitmap);
555         array->nr_active++;
556         p->array = array;
557 }
558
559 /*
560  * Put task to the end of the run list without the overhead of dequeue
561  * followed by enqueue.
562  */
563 static void requeue_task(struct task_struct *p, prio_array_t *array)
564 {
565         list_move_tail(&p->run_list, array->queue + p->prio);
566 }
567
568 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
569 {
570         list_add(&p->run_list, array->queue + p->prio);
571         __set_bit(p->prio, array->bitmap);
572         array->nr_active++;
573         p->array = array;
574 }
575
576 /*
577  * effective_prio - return the priority that is based on the static
578  * priority but is modified by bonuses/penalties.
579  *
580  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
581  * into the -5 ... 0 ... +5 bonus/penalty range.
582  *
583  * We use 25% of the full 0...39 priority range so that:
584  *
585  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
586  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
587  *
588  * Both properties are important to certain workloads.
589  */
590 static int effective_prio(task_t *p)
591 {
592         int bonus, prio;
593
594         if (rt_task(p))
595                 return p->prio;
596
597         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
598
599         prio = p->static_prio - bonus;
600         if (prio < MAX_RT_PRIO)
601                 prio = MAX_RT_PRIO;
602         if (prio > MAX_PRIO-1)
603                 prio = MAX_PRIO-1;
604         return prio;
605 }
606
607 /*
608  * __activate_task - move a task to the runqueue.
609  */
610 static inline void __activate_task(task_t *p, runqueue_t *rq)
611 {
612         enqueue_task(p, rq->active);
613         rq->nr_running++;
614 }
615
616 /*
617  * __activate_idle_task - move idle task to the _front_ of runqueue.
618  */
619 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
620 {
621         enqueue_task_head(p, rq->active);
622         rq->nr_running++;
623 }
624
625 static void recalc_task_prio(task_t *p, unsigned long long now)
626 {
627         /* Caller must always ensure 'now >= p->timestamp' */
628         unsigned long long __sleep_time = now - p->timestamp;
629         unsigned long sleep_time;
630
631         if (__sleep_time > NS_MAX_SLEEP_AVG)
632                 sleep_time = NS_MAX_SLEEP_AVG;
633         else
634                 sleep_time = (unsigned long)__sleep_time;
635
636         if (likely(sleep_time > 0)) {
637                 /*
638                  * User tasks that sleep a long time are categorised as
639                  * idle and will get just interactive status to stay active &
640                  * prevent them suddenly becoming cpu hogs and starving
641                  * other processes.
642                  */
643                 if (p->mm && p->activated != -1 &&
644                         sleep_time > INTERACTIVE_SLEEP(p)) {
645                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
646                                                 DEF_TIMESLICE);
647                 } else {
648                         /*
649                          * The lower the sleep avg a task has the more
650                          * rapidly it will rise with sleep time.
651                          */
652                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
653
654                         /*
655                          * Tasks waking from uninterruptible sleep are
656                          * limited in their sleep_avg rise as they
657                          * are likely to be waiting on I/O
658                          */
659                         if (p->activated == -1 && p->mm) {
660                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
661                                         sleep_time = 0;
662                                 else if (p->sleep_avg + sleep_time >=
663                                                 INTERACTIVE_SLEEP(p)) {
664                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
665                                         sleep_time = 0;
666                                 }
667                         }
668
669                         /*
670                          * This code gives a bonus to interactive tasks.
671                          *
672                          * The boost works by updating the 'average sleep time'
673                          * value here, based on ->timestamp. The more time a
674                          * task spends sleeping, the higher the average gets -
675                          * and the higher the priority boost gets as well.
676                          */
677                         p->sleep_avg += sleep_time;
678
679                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
680                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
681                 }
682         }
683
684         p->prio = effective_prio(p);
685 }
686
687 /*
688  * activate_task - move a task to the runqueue and do priority recalculation
689  *
690  * Update all the scheduling statistics stuff. (sleep average
691  * calculation, priority modifiers, etc.)
692  */
693 static void activate_task(task_t *p, runqueue_t *rq, int local)
694 {
695         unsigned long long now;
696
697         now = sched_clock();
698 #ifdef CONFIG_SMP
699         if (!local) {
700                 /* Compensate for drifting sched_clock */
701                 runqueue_t *this_rq = this_rq();
702                 now = (now - this_rq->timestamp_last_tick)
703                         + rq->timestamp_last_tick;
704         }
705 #endif
706
707         recalc_task_prio(p, now);
708
709         /*
710          * This checks to make sure it's not an uninterruptible task
711          * that is now waking up.
712          */
713         if (!p->activated) {
714                 /*
715                  * Tasks which were woken up by interrupts (ie. hw events)
716                  * are most likely of interactive nature. So we give them
717                  * the credit of extending their sleep time to the period
718                  * of time they spend on the runqueue, waiting for execution
719                  * on a CPU, first time around:
720                  */
721                 if (in_interrupt())
722                         p->activated = 2;
723                 else {
724                         /*
725                          * Normal first-time wakeups get a credit too for
726                          * on-runqueue time, but it will be weighted down:
727                          */
728                         p->activated = 1;
729                 }
730         }
731         p->timestamp = now;
732
733         __activate_task(p, rq);
734 }
735
736 /*
737  * deactivate_task - remove a task from the runqueue.
738  */
739 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
740 {
741         rq->nr_running--;
742         dequeue_task(p, p->array);
743         p->array = NULL;
744 }
745
746 /*
747  * resched_task - mark a task 'to be rescheduled now'.
748  *
749  * On UP this means the setting of the need_resched flag, on SMP it
750  * might also involve a cross-CPU call to trigger the scheduler on
751  * the target CPU.
752  */
753 #ifdef CONFIG_SMP
754 static void resched_task(task_t *p)
755 {
756         int need_resched, nrpolling;
757
758         assert_spin_locked(&task_rq(p)->lock);
759
760         /* minimise the chance of sending an interrupt to poll_idle() */
761         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
762         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
763         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
764
765         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
766                 smp_send_reschedule(task_cpu(p));
767 }
768 #else
769 static inline void resched_task(task_t *p)
770 {
771         set_tsk_need_resched(p);
772 }
773 #endif
774
775 /**
776  * task_curr - is this task currently executing on a CPU?
777  * @p: the task in question.
778  */
779 inline int task_curr(const task_t *p)
780 {
781         return cpu_curr(task_cpu(p)) == p;
782 }
783
784 #ifdef CONFIG_SMP
785 enum request_type {
786         REQ_MOVE_TASK,
787         REQ_SET_DOMAIN,
788 };
789
790 typedef struct {
791         struct list_head list;
792         enum request_type type;
793
794         /* For REQ_MOVE_TASK */
795         task_t *task;
796         int dest_cpu;
797
798         /* For REQ_SET_DOMAIN */
799         struct sched_domain *sd;
800
801         struct completion done;
802 } migration_req_t;
803
804 /*
805  * The task's runqueue lock must be held.
806  * Returns true if you have to wait for migration thread.
807  */
808 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
809 {
810         runqueue_t *rq = task_rq(p);
811
812         /*
813          * If the task is not on a runqueue (and not running), then
814          * it is sufficient to simply update the task's cpu field.
815          */
816         if (!p->array && !task_running(rq, p)) {
817                 set_task_cpu(p, dest_cpu);
818                 return 0;
819         }
820
821         init_completion(&req->done);
822         req->type = REQ_MOVE_TASK;
823         req->task = p;
824         req->dest_cpu = dest_cpu;
825         list_add(&req->list, &rq->migration_queue);
826         return 1;
827 }
828
829 /*
830  * wait_task_inactive - wait for a thread to unschedule.
831  *
832  * The caller must ensure that the task *will* unschedule sometime soon,
833  * else this function might spin for a *long* time. This function can't
834  * be called with interrupts off, or it may introduce deadlock with
835  * smp_call_function() if an IPI is sent by the same process we are
836  * waiting to become inactive.
837  */
838 void wait_task_inactive(task_t * p)
839 {
840         unsigned long flags;
841         runqueue_t *rq;
842         int preempted;
843
844 repeat:
845         rq = task_rq_lock(p, &flags);
846         /* Must be off runqueue entirely, not preempted. */
847         if (unlikely(p->array || task_running(rq, p))) {
848                 /* If it's preempted, we yield.  It could be a while. */
849                 preempted = !task_running(rq, p);
850                 task_rq_unlock(rq, &flags);
851                 cpu_relax();
852                 if (preempted)
853                         yield();
854                 goto repeat;
855         }
856         task_rq_unlock(rq, &flags);
857 }
858
859 /***
860  * kick_process - kick a running thread to enter/exit the kernel
861  * @p: the to-be-kicked thread
862  *
863  * Cause a process which is running on another CPU to enter
864  * kernel-mode, without any delay. (to get signals handled.)
865  *
866  * NOTE: this function doesnt have to take the runqueue lock,
867  * because all it wants to ensure is that the remote task enters
868  * the kernel. If the IPI races and the task has been migrated
869  * to another CPU then no harm is done and the purpose has been
870  * achieved as well.
871  */
872 void kick_process(task_t *p)
873 {
874         int cpu;
875
876         preempt_disable();
877         cpu = task_cpu(p);
878         if ((cpu != smp_processor_id()) && task_curr(p))
879                 smp_send_reschedule(cpu);
880         preempt_enable();
881 }
882
883 /*
884  * Return a low guess at the load of a migration-source cpu.
885  *
886  * We want to under-estimate the load of migration sources, to
887  * balance conservatively.
888  */
889 static inline unsigned long source_load(int cpu)
890 {
891         runqueue_t *rq = cpu_rq(cpu);
892         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
893
894         return min(rq->cpu_load, load_now);
895 }
896
897 /*
898  * Return a high guess at the load of a migration-target cpu
899  */
900 static inline unsigned long target_load(int cpu)
901 {
902         runqueue_t *rq = cpu_rq(cpu);
903         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
904
905         return max(rq->cpu_load, load_now);
906 }
907
908 #endif
909
910 /*
911  * wake_idle() will wake a task on an idle cpu if task->cpu is
912  * not idle and an idle cpu is available.  The span of cpus to
913  * search starts with cpus closest then further out as needed,
914  * so we always favor a closer, idle cpu.
915  *
916  * Returns the CPU we should wake onto.
917  */
918 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
919 static int wake_idle(int cpu, task_t *p)
920 {
921         cpumask_t tmp;
922         struct sched_domain *sd;
923         int i;
924
925         if (idle_cpu(cpu))
926                 return cpu;
927
928         for_each_domain(cpu, sd) {
929                 if (sd->flags & SD_WAKE_IDLE) {
930                         cpus_and(tmp, sd->span, p->cpus_allowed);
931                         for_each_cpu_mask(i, tmp) {
932                                 if (idle_cpu(i))
933                                         return i;
934                         }
935                 }
936                 else
937                         break;
938         }
939         return cpu;
940 }
941 #else
942 static inline int wake_idle(int cpu, task_t *p)
943 {
944         return cpu;
945 }
946 #endif
947
948 /***
949  * try_to_wake_up - wake up a thread
950  * @p: the to-be-woken-up thread
951  * @state: the mask of task states that can be woken
952  * @sync: do a synchronous wakeup?
953  *
954  * Put it on the run-queue if it's not already there. The "current"
955  * thread is always on the run-queue (except when the actual
956  * re-schedule is in progress), and as such you're allowed to do
957  * the simpler "current->state = TASK_RUNNING" to mark yourself
958  * runnable without the overhead of this.
959  *
960  * returns failure only if the task is already active.
961  */
962 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
963 {
964         int cpu, this_cpu, success = 0;
965         unsigned long flags;
966         long old_state;
967         runqueue_t *rq;
968 #ifdef CONFIG_SMP
969         unsigned long load, this_load;
970         struct sched_domain *sd;
971         int new_cpu;
972 #endif
973
974         rq = task_rq_lock(p, &flags);
975         old_state = p->state;
976         if (!(old_state & state))
977                 goto out;
978
979         if (p->array)
980                 goto out_running;
981
982         cpu = task_cpu(p);
983         this_cpu = smp_processor_id();
984
985 #ifdef CONFIG_SMP
986         if (unlikely(task_running(rq, p)))
987                 goto out_activate;
988
989 #ifdef CONFIG_SCHEDSTATS
990         schedstat_inc(rq, ttwu_cnt);
991         if (cpu == this_cpu) {
992                 schedstat_inc(rq, ttwu_local);
993         } else {
994                 for_each_domain(this_cpu, sd) {
995                         if (cpu_isset(cpu, sd->span)) {
996                                 schedstat_inc(sd, ttwu_wake_remote);
997                                 break;
998                         }
999                 }
1000         }
1001 #endif
1002
1003         new_cpu = cpu;
1004         if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1005                 goto out_set_cpu;
1006
1007         load = source_load(cpu);
1008         this_load = target_load(this_cpu);
1009
1010         /*
1011          * If sync wakeup then subtract the (maximum possible) effect of
1012          * the currently running task from the load of the current CPU:
1013          */
1014         if (sync)
1015                 this_load -= SCHED_LOAD_SCALE;
1016
1017         /* Don't pull the task off an idle CPU to a busy one */
1018         if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
1019                 goto out_set_cpu;
1020
1021         new_cpu = this_cpu; /* Wake to this CPU if we can */
1022
1023         /*
1024          * Scan domains for affine wakeup and passive balancing
1025          * possibilities.
1026          */
1027         for_each_domain(this_cpu, sd) {
1028                 unsigned int imbalance;
1029                 /*
1030                  * Start passive balancing when half the imbalance_pct
1031                  * limit is reached.
1032                  */
1033                 imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
1034
1035                 if ((sd->flags & SD_WAKE_AFFINE) &&
1036                                 !task_hot(p, rq->timestamp_last_tick, sd)) {
1037                         /*
1038                          * This domain has SD_WAKE_AFFINE and p is cache cold
1039                          * in this domain.
1040                          */
1041                         if (cpu_isset(cpu, sd->span)) {
1042                                 schedstat_inc(sd, ttwu_move_affine);
1043                                 goto out_set_cpu;
1044                         }
1045                 } else if ((sd->flags & SD_WAKE_BALANCE) &&
1046                                 imbalance*this_load <= 100*load) {
1047                         /*
1048                          * This domain has SD_WAKE_BALANCE and there is
1049                          * an imbalance.
1050                          */
1051                         if (cpu_isset(cpu, sd->span)) {
1052                                 schedstat_inc(sd, ttwu_move_balance);
1053                                 goto out_set_cpu;
1054                         }
1055                 }
1056         }
1057
1058         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1059 out_set_cpu:
1060         new_cpu = wake_idle(new_cpu, p);
1061         if (new_cpu != cpu) {
1062                 set_task_cpu(p, new_cpu);
1063                 task_rq_unlock(rq, &flags);
1064                 /* might preempt at this point */
1065                 rq = task_rq_lock(p, &flags);
1066                 old_state = p->state;
1067                 if (!(old_state & state))
1068                         goto out;
1069                 if (p->array)
1070                         goto out_running;
1071
1072                 this_cpu = smp_processor_id();
1073                 cpu = task_cpu(p);
1074         }
1075
1076 out_activate:
1077 #endif /* CONFIG_SMP */
1078         if (old_state == TASK_UNINTERRUPTIBLE) {
1079                 rq->nr_uninterruptible--;
1080                 /*
1081                  * Tasks on involuntary sleep don't earn
1082                  * sleep_avg beyond just interactive state.
1083                  */
1084                 p->activated = -1;
1085         }
1086
1087         /*
1088          * Sync wakeups (i.e. those types of wakeups where the waker
1089          * has indicated that it will leave the CPU in short order)
1090          * don't trigger a preemption, if the woken up task will run on
1091          * this cpu. (in this case the 'I will reschedule' promise of
1092          * the waker guarantees that the freshly woken up task is going
1093          * to be considered on this CPU.)
1094          */
1095         activate_task(p, rq, cpu == this_cpu);
1096         if (!sync || cpu != this_cpu) {
1097                 if (TASK_PREEMPTS_CURR(p, rq))
1098                         resched_task(rq->curr);
1099         }
1100         success = 1;
1101
1102 out_running:
1103         p->state = TASK_RUNNING;
1104 out:
1105         task_rq_unlock(rq, &flags);
1106
1107         return success;
1108 }
1109
1110 int fastcall wake_up_process(task_t * p)
1111 {
1112         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1113                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1114 }
1115
1116 EXPORT_SYMBOL(wake_up_process);
1117
1118 int fastcall wake_up_state(task_t *p, unsigned int state)
1119 {
1120         return try_to_wake_up(p, state, 0);
1121 }
1122
1123 #ifdef CONFIG_SMP
1124 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1125                            struct sched_domain *sd);
1126 #endif
1127
1128 /*
1129  * Perform scheduler related setup for a newly forked process p.
1130  * p is forked by current.
1131  */
1132 void fastcall sched_fork(task_t *p)
1133 {
1134         /*
1135          * We mark the process as running here, but have not actually
1136          * inserted it onto the runqueue yet. This guarantees that
1137          * nobody will actually run it, and a signal or other external
1138          * event cannot wake it up and insert it on the runqueue either.
1139          */
1140         p->state = TASK_RUNNING;
1141         INIT_LIST_HEAD(&p->run_list);
1142         p->array = NULL;
1143         spin_lock_init(&p->switch_lock);
1144 #ifdef CONFIG_SCHEDSTATS
1145         memset(&p->sched_info, 0, sizeof(p->sched_info));
1146 #endif
1147 #ifdef CONFIG_PREEMPT
1148         /*
1149          * During context-switch we hold precisely one spinlock, which
1150          * schedule_tail drops. (in the common case it's this_rq()->lock,
1151          * but it also can be p->switch_lock.) So we compensate with a count
1152          * of 1. Also, we want to start with kernel preemption disabled.
1153          */
1154         p->thread_info->preempt_count = 1;
1155 #endif
1156         /*
1157          * Share the timeslice between parent and child, thus the
1158          * total amount of pending timeslices in the system doesn't change,
1159          * resulting in more scheduling fairness.
1160          */
1161         local_irq_disable();
1162         p->time_slice = (current->time_slice + 1) >> 1;
1163         /*
1164          * The remainder of the first timeslice might be recovered by
1165          * the parent if the child exits early enough.
1166          */
1167         p->first_time_slice = 1;
1168         current->time_slice >>= 1;
1169         p->timestamp = sched_clock();
1170         if (unlikely(!current->time_slice)) {
1171                 /*
1172                  * This case is rare, it happens when the parent has only
1173                  * a single jiffy left from its timeslice. Taking the
1174                  * runqueue lock is not a problem.
1175                  */
1176                 current->time_slice = 1;
1177                 preempt_disable();
1178                 scheduler_tick();
1179                 local_irq_enable();
1180                 preempt_enable();
1181         } else
1182                 local_irq_enable();
1183 }
1184
1185 /*
1186  * wake_up_new_task - wake up a newly created task for the first time.
1187  *
1188  * This function will do some initial scheduler statistics housekeeping
1189  * that must be done for every newly created context, then puts the task
1190  * on the runqueue and wakes it.
1191  */
1192 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1193 {
1194         unsigned long flags;
1195         int this_cpu, cpu;
1196         runqueue_t *rq, *this_rq;
1197
1198         rq = task_rq_lock(p, &flags);
1199         cpu = task_cpu(p);
1200         this_cpu = smp_processor_id();
1201
1202         BUG_ON(p->state != TASK_RUNNING);
1203
1204         /*
1205          * We decrease the sleep average of forking parents
1206          * and children as well, to keep max-interactive tasks
1207          * from forking tasks that are max-interactive. The parent
1208          * (current) is done further down, under its lock.
1209          */
1210         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1211                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1212
1213         p->prio = effective_prio(p);
1214
1215         if (likely(cpu == this_cpu)) {
1216                 if (!(clone_flags & CLONE_VM)) {
1217                         /*
1218                          * The VM isn't cloned, so we're in a good position to
1219                          * do child-runs-first in anticipation of an exec. This
1220                          * usually avoids a lot of COW overhead.
1221                          */
1222                         if (unlikely(!current->array))
1223                                 __activate_task(p, rq);
1224                         else {
1225                                 p->prio = current->prio;
1226                                 list_add_tail(&p->run_list, &current->run_list);
1227                                 p->array = current->array;
1228                                 p->array->nr_active++;
1229                                 rq->nr_running++;
1230                         }
1231                         set_need_resched();
1232                 } else
1233                         /* Run child last */
1234                         __activate_task(p, rq);
1235                 /*
1236                  * We skip the following code due to cpu == this_cpu
1237                  *
1238                  *   task_rq_unlock(rq, &flags);
1239                  *   this_rq = task_rq_lock(current, &flags);
1240                  */
1241                 this_rq = rq;
1242         } else {
1243                 this_rq = cpu_rq(this_cpu);
1244
1245                 /*
1246                  * Not the local CPU - must adjust timestamp. This should
1247                  * get optimised away in the !CONFIG_SMP case.
1248                  */
1249                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1250                                         + rq->timestamp_last_tick;
1251                 __activate_task(p, rq);
1252                 if (TASK_PREEMPTS_CURR(p, rq))
1253                         resched_task(rq->curr);
1254
1255                 /*
1256                  * Parent and child are on different CPUs, now get the
1257                  * parent runqueue to update the parent's ->sleep_avg:
1258                  */
1259                 task_rq_unlock(rq, &flags);
1260                 this_rq = task_rq_lock(current, &flags);
1261         }
1262         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1263                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1264         task_rq_unlock(this_rq, &flags);
1265 }
1266
1267 /*
1268  * Potentially available exiting-child timeslices are
1269  * retrieved here - this way the parent does not get
1270  * penalized for creating too many threads.
1271  *
1272  * (this cannot be used to 'generate' timeslices
1273  * artificially, because any timeslice recovered here
1274  * was given away by the parent in the first place.)
1275  */
1276 void fastcall sched_exit(task_t * p)
1277 {
1278         unsigned long flags;
1279         runqueue_t *rq;
1280
1281         /*
1282          * If the child was a (relative-) CPU hog then decrease
1283          * the sleep_avg of the parent as well.
1284          */
1285         rq = task_rq_lock(p->parent, &flags);
1286         if (p->first_time_slice) {
1287                 p->parent->time_slice += p->time_slice;
1288                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1289                         p->parent->time_slice = task_timeslice(p);
1290         }
1291         if (p->sleep_avg < p->parent->sleep_avg)
1292                 p->parent->sleep_avg = p->parent->sleep_avg /
1293                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1294                 (EXIT_WEIGHT + 1);
1295         task_rq_unlock(rq, &flags);
1296 }
1297
1298 /**
1299  * finish_task_switch - clean up after a task-switch
1300  * @prev: the thread we just switched away from.
1301  *
1302  * We enter this with the runqueue still locked, and finish_arch_switch()
1303  * will unlock it along with doing any other architecture-specific cleanup
1304  * actions.
1305  *
1306  * Note that we may have delayed dropping an mm in context_switch(). If
1307  * so, we finish that here outside of the runqueue lock.  (Doing it
1308  * with the lock held can cause deadlocks; see schedule() for
1309  * details.)
1310  */
1311 static inline void finish_task_switch(task_t *prev)
1312         __releases(rq->lock)
1313 {
1314         runqueue_t *rq = this_rq();
1315         struct mm_struct *mm = rq->prev_mm;
1316         unsigned long prev_task_flags;
1317
1318         rq->prev_mm = NULL;
1319
1320         /*
1321          * A task struct has one reference for the use as "current".
1322          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1323          * calls schedule one last time. The schedule call will never return,
1324          * and the scheduled task must drop that reference.
1325          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1326          * still held, otherwise prev could be scheduled on another cpu, die
1327          * there before we look at prev->state, and then the reference would
1328          * be dropped twice.
1329          *              Manfred Spraul <manfred@colorfullife.com>
1330          */
1331         prev_task_flags = prev->flags;
1332         finish_arch_switch(rq, prev);
1333         if (mm)
1334                 mmdrop(mm);
1335         if (unlikely(prev_task_flags & PF_DEAD))
1336                 put_task_struct(prev);
1337 }
1338
1339 /**
1340  * schedule_tail - first thing a freshly forked thread must call.
1341  * @prev: the thread we just switched away from.
1342  */
1343 asmlinkage void schedule_tail(task_t *prev)
1344         __releases(rq->lock)
1345 {
1346         finish_task_switch(prev);
1347
1348         if (current->set_child_tid)
1349                 put_user(current->pid, current->set_child_tid);
1350 }
1351
1352 /*
1353  * context_switch - switch to the new MM and the new
1354  * thread's register state.
1355  */
1356 static inline
1357 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1358 {
1359         struct mm_struct *mm = next->mm;
1360         struct mm_struct *oldmm = prev->active_mm;
1361
1362         if (unlikely(!mm)) {
1363                 next->active_mm = oldmm;
1364                 atomic_inc(&oldmm->mm_count);
1365                 enter_lazy_tlb(oldmm, next);
1366         } else
1367                 switch_mm(oldmm, mm, next);
1368
1369         if (unlikely(!prev->mm)) {
1370                 prev->active_mm = NULL;
1371                 WARN_ON(rq->prev_mm);
1372                 rq->prev_mm = oldmm;
1373         }
1374
1375         /* Here we just switch the register state and the stack. */
1376         switch_to(prev, next, prev);
1377
1378         return prev;
1379 }
1380
1381 /*
1382  * nr_running, nr_uninterruptible and nr_context_switches:
1383  *
1384  * externally visible scheduler statistics: current number of runnable
1385  * threads, current number of uninterruptible-sleeping threads, total
1386  * number of context switches performed since bootup.
1387  */
1388 unsigned long nr_running(void)
1389 {
1390         unsigned long i, sum = 0;
1391
1392         for_each_online_cpu(i)
1393                 sum += cpu_rq(i)->nr_running;
1394
1395         return sum;
1396 }
1397
1398 unsigned long nr_uninterruptible(void)
1399 {
1400         unsigned long i, sum = 0;
1401
1402         for_each_cpu(i)
1403                 sum += cpu_rq(i)->nr_uninterruptible;
1404
1405         /*
1406          * Since we read the counters lockless, it might be slightly
1407          * inaccurate. Do not allow it to go below zero though:
1408          */
1409         if (unlikely((long)sum < 0))
1410                 sum = 0;
1411
1412         return sum;
1413 }
1414
1415 unsigned long long nr_context_switches(void)
1416 {
1417         unsigned long long i, sum = 0;
1418
1419         for_each_cpu(i)
1420                 sum += cpu_rq(i)->nr_switches;
1421
1422         return sum;
1423 }
1424
1425 unsigned long nr_iowait(void)
1426 {
1427         unsigned long i, sum = 0;
1428
1429         for_each_cpu(i)
1430                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1431
1432         return sum;
1433 }
1434
1435 #ifdef CONFIG_SMP
1436
1437 /*
1438  * double_rq_lock - safely lock two runqueues
1439  *
1440  * Note this does not disable interrupts like task_rq_lock,
1441  * you need to do so manually before calling.
1442  */
1443 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1444         __acquires(rq1->lock)
1445         __acquires(rq2->lock)
1446 {
1447         if (rq1 == rq2) {
1448                 spin_lock(&rq1->lock);
1449                 __acquire(rq2->lock);   /* Fake it out ;) */
1450         } else {
1451                 if (rq1 < rq2) {
1452                         spin_lock(&rq1->lock);
1453                         spin_lock(&rq2->lock);
1454                 } else {
1455                         spin_lock(&rq2->lock);
1456                         spin_lock(&rq1->lock);
1457                 }
1458         }
1459 }
1460
1461 /*
1462  * double_rq_unlock - safely unlock two runqueues
1463  *
1464  * Note this does not restore interrupts like task_rq_unlock,
1465  * you need to do so manually after calling.
1466  */
1467 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1468         __releases(rq1->lock)
1469         __releases(rq2->lock)
1470 {
1471         spin_unlock(&rq1->lock);
1472         if (rq1 != rq2)
1473                 spin_unlock(&rq2->lock);
1474         else
1475                 __release(rq2->lock);
1476 }
1477
1478 /*
1479  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1480  */
1481 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1482         __releases(this_rq->lock)
1483         __acquires(busiest->lock)
1484         __acquires(this_rq->lock)
1485 {
1486         if (unlikely(!spin_trylock(&busiest->lock))) {
1487                 if (busiest < this_rq) {
1488                         spin_unlock(&this_rq->lock);
1489                         spin_lock(&busiest->lock);
1490                         spin_lock(&this_rq->lock);
1491                 } else
1492                         spin_lock(&busiest->lock);
1493         }
1494 }
1495
1496 /*
1497  * find_idlest_cpu - find the least busy runqueue.
1498  */
1499 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1500                            struct sched_domain *sd)
1501 {
1502         unsigned long load, min_load, this_load;
1503         int i, min_cpu;
1504         cpumask_t mask;
1505
1506         min_cpu = UINT_MAX;
1507         min_load = ULONG_MAX;
1508
1509         cpus_and(mask, sd->span, p->cpus_allowed);
1510
1511         for_each_cpu_mask(i, mask) {
1512                 load = target_load(i);
1513
1514                 if (load < min_load) {
1515                         min_cpu = i;
1516                         min_load = load;
1517
1518                         /* break out early on an idle CPU: */
1519                         if (!min_load)
1520                                 break;
1521                 }
1522         }
1523
1524         /* add +1 to account for the new task */
1525         this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
1526
1527         /*
1528          * Would with the addition of the new task to the
1529          * current CPU there be an imbalance between this
1530          * CPU and the idlest CPU?
1531          *
1532          * Use half of the balancing threshold - new-context is
1533          * a good opportunity to balance.
1534          */
1535         if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
1536                 return min_cpu;
1537
1538         return this_cpu;
1539 }
1540
1541 /*
1542  * If dest_cpu is allowed for this process, migrate the task to it.
1543  * This is accomplished by forcing the cpu_allowed mask to only
1544  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1545  * the cpu_allowed mask is restored.
1546  */
1547 static void sched_migrate_task(task_t *p, int dest_cpu)
1548 {
1549         migration_req_t req;
1550         runqueue_t *rq;
1551         unsigned long flags;
1552
1553         rq = task_rq_lock(p, &flags);
1554         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1555             || unlikely(cpu_is_offline(dest_cpu)))
1556                 goto out;
1557
1558         /* force the process onto the specified CPU */
1559         if (migrate_task(p, dest_cpu, &req)) {
1560                 /* Need to wait for migration thread (might exit: take ref). */
1561                 struct task_struct *mt = rq->migration_thread;
1562                 get_task_struct(mt);
1563                 task_rq_unlock(rq, &flags);
1564                 wake_up_process(mt);
1565                 put_task_struct(mt);
1566                 wait_for_completion(&req.done);
1567                 return;
1568         }
1569 out:
1570         task_rq_unlock(rq, &flags);
1571 }
1572
1573 /*
1574  * sched_exec(): find the highest-level, exec-balance-capable
1575  * domain and try to migrate the task to the least loaded CPU.
1576  *
1577  * execve() is a valuable balancing opportunity, because at this point
1578  * the task has the smallest effective memory and cache footprint.
1579  */
1580 void sched_exec(void)
1581 {
1582         struct sched_domain *tmp, *sd = NULL;
1583         int new_cpu, this_cpu = get_cpu();
1584
1585         /* Prefer the current CPU if there's only this task running */
1586         if (this_rq()->nr_running <= 1)
1587                 goto out;
1588
1589         for_each_domain(this_cpu, tmp)
1590                 if (tmp->flags & SD_BALANCE_EXEC)
1591                         sd = tmp;
1592
1593         if (sd) {
1594                 schedstat_inc(sd, sbe_attempts);
1595                 new_cpu = find_idlest_cpu(current, this_cpu, sd);
1596                 if (new_cpu != this_cpu) {
1597                         schedstat_inc(sd, sbe_pushed);
1598                         put_cpu();
1599                         sched_migrate_task(current, new_cpu);
1600                         return;
1601                 }
1602         }
1603 out:
1604         put_cpu();
1605 }
1606
1607 /*
1608  * pull_task - move a task from a remote runqueue to the local runqueue.
1609  * Both runqueues must be locked.
1610  */
1611 static inline
1612 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1613                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1614 {
1615         dequeue_task(p, src_array);
1616         src_rq->nr_running--;
1617         set_task_cpu(p, this_cpu);
1618         this_rq->nr_running++;
1619         enqueue_task(p, this_array);
1620         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1621                                 + this_rq->timestamp_last_tick;
1622         /*
1623          * Note that idle threads have a prio of MAX_PRIO, for this test
1624          * to be always true for them.
1625          */
1626         if (TASK_PREEMPTS_CURR(p, this_rq))
1627                 resched_task(this_rq->curr);
1628 }
1629
1630 /*
1631  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1632  */
1633 static inline
1634 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1635              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1636 {
1637         /*
1638          * We do not migrate tasks that are:
1639          * 1) running (obviously), or
1640          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1641          * 3) are cache-hot on their current CPU.
1642          */
1643         if (!cpu_isset(this_cpu, p->cpus_allowed))
1644                 return 0;
1645         *all_pinned = 0;
1646
1647         if (task_running(rq, p))
1648                 return 0;
1649
1650         /*
1651          * Aggressive migration if:
1652          * 1) the [whole] cpu is idle, or
1653          * 2) too many balance attempts have failed.
1654          */
1655
1656         if (cpu_and_siblings_are_idle(this_cpu) || \
1657                         sd->nr_balance_failed > sd->cache_nice_tries)
1658                 return 1;
1659
1660         if (task_hot(p, rq->timestamp_last_tick, sd))
1661                 return 0;
1662         return 1;
1663 }
1664
1665 /*
1666  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1667  * as part of a balancing operation within "domain". Returns the number of
1668  * tasks moved.
1669  *
1670  * Called with both runqueues locked.
1671  */
1672 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1673                       unsigned long max_nr_move, struct sched_domain *sd,
1674                       enum idle_type idle, int *all_pinned)
1675 {
1676         prio_array_t *array, *dst_array;
1677         struct list_head *head, *curr;
1678         int idx, pulled = 0, pinned = 0;
1679         task_t *tmp;
1680
1681         if (max_nr_move == 0)
1682                 goto out;
1683
1684         pinned = 1;
1685
1686         /*
1687          * We first consider expired tasks. Those will likely not be
1688          * executed in the near future, and they are most likely to
1689          * be cache-cold, thus switching CPUs has the least effect
1690          * on them.
1691          */
1692         if (busiest->expired->nr_active) {
1693                 array = busiest->expired;
1694                 dst_array = this_rq->expired;
1695         } else {
1696                 array = busiest->active;
1697                 dst_array = this_rq->active;
1698         }
1699
1700 new_array:
1701         /* Start searching at priority 0: */
1702         idx = 0;
1703 skip_bitmap:
1704         if (!idx)
1705                 idx = sched_find_first_bit(array->bitmap);
1706         else
1707                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1708         if (idx >= MAX_PRIO) {
1709                 if (array == busiest->expired && busiest->active->nr_active) {
1710                         array = busiest->active;
1711                         dst_array = this_rq->active;
1712                         goto new_array;
1713                 }
1714                 goto out;
1715         }
1716
1717         head = array->queue + idx;
1718         curr = head->prev;
1719 skip_queue:
1720         tmp = list_entry(curr, task_t, run_list);
1721
1722         curr = curr->prev;
1723
1724         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1725                 if (curr != head)
1726                         goto skip_queue;
1727                 idx++;
1728                 goto skip_bitmap;
1729         }
1730
1731 #ifdef CONFIG_SCHEDSTATS
1732         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1733                 schedstat_inc(sd, lb_hot_gained[idle]);
1734 #endif
1735
1736         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1737         pulled++;
1738
1739         /* We only want to steal up to the prescribed number of tasks. */
1740         if (pulled < max_nr_move) {
1741                 if (curr != head)
1742                         goto skip_queue;
1743                 idx++;
1744                 goto skip_bitmap;
1745         }
1746 out:
1747         /*
1748          * Right now, this is the only place pull_task() is called,
1749          * so we can safely collect pull_task() stats here rather than
1750          * inside pull_task().
1751          */
1752         schedstat_add(sd, lb_gained[idle], pulled);
1753
1754         if (all_pinned)
1755                 *all_pinned = pinned;
1756         return pulled;
1757 }
1758
1759 /*
1760  * find_busiest_group finds and returns the busiest CPU group within the
1761  * domain. It calculates and returns the number of tasks which should be
1762  * moved to restore balance via the imbalance parameter.
1763  */
1764 static struct sched_group *
1765 find_busiest_group(struct sched_domain *sd, int this_cpu,
1766                    unsigned long *imbalance, enum idle_type idle)
1767 {
1768         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1769         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1770
1771         max_load = this_load = total_load = total_pwr = 0;
1772
1773         do {
1774                 unsigned long load;
1775                 int local_group;
1776                 int i;
1777
1778                 local_group = cpu_isset(this_cpu, group->cpumask);
1779
1780                 /* Tally up the load of all CPUs in the group */
1781                 avg_load = 0;
1782
1783                 for_each_cpu_mask(i, group->cpumask) {
1784                         /* Bias balancing toward cpus of our domain */
1785                         if (local_group)
1786                                 load = target_load(i);
1787                         else
1788                                 load = source_load(i);
1789
1790                         avg_load += load;
1791                 }
1792
1793                 total_load += avg_load;
1794                 total_pwr += group->cpu_power;
1795
1796                 /* Adjust by relative CPU power of the group */
1797                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1798
1799                 if (local_group) {
1800                         this_load = avg_load;
1801                         this = group;
1802                         goto nextgroup;
1803                 } else if (avg_load > max_load) {
1804                         max_load = avg_load;
1805                         busiest = group;
1806                 }
1807 nextgroup:
1808                 group = group->next;
1809         } while (group != sd->groups);
1810
1811         if (!busiest || this_load >= max_load)
1812                 goto out_balanced;
1813
1814         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1815
1816         if (this_load >= avg_load ||
1817                         100*max_load <= sd->imbalance_pct*this_load)
1818                 goto out_balanced;
1819
1820         /*
1821          * We're trying to get all the cpus to the average_load, so we don't
1822          * want to push ourselves above the average load, nor do we wish to
1823          * reduce the max loaded cpu below the average load, as either of these
1824          * actions would just result in more rebalancing later, and ping-pong
1825          * tasks around. Thus we look for the minimum possible imbalance.
1826          * Negative imbalances (*we* are more loaded than anyone else) will
1827          * be counted as no imbalance for these purposes -- we can't fix that
1828          * by pulling tasks to us.  Be careful of negative numbers as they'll
1829          * appear as very large values with unsigned longs.
1830          */
1831         /* How much load to actually move to equalise the imbalance */
1832         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1833                                 (avg_load - this_load) * this->cpu_power)
1834                         / SCHED_LOAD_SCALE;
1835
1836         if (*imbalance < SCHED_LOAD_SCALE) {
1837                 unsigned long pwr_now = 0, pwr_move = 0;
1838                 unsigned long tmp;
1839
1840                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1841                         *imbalance = 1;
1842                         return busiest;
1843                 }
1844
1845                 /*
1846                  * OK, we don't have enough imbalance to justify moving tasks,
1847                  * however we may be able to increase total CPU power used by
1848                  * moving them.
1849                  */
1850
1851                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1852                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1853                 pwr_now /= SCHED_LOAD_SCALE;
1854
1855                 /* Amount of load we'd subtract */
1856                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1857                 if (max_load > tmp)
1858                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1859                                                         max_load - tmp);
1860
1861                 /* Amount of load we'd add */
1862                 if (max_load*busiest->cpu_power <
1863                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1864                         tmp = max_load*busiest->cpu_power/this->cpu_power;
1865                 else
1866                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1867                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1868                 pwr_move /= SCHED_LOAD_SCALE;
1869
1870                 /* Move if we gain throughput */
1871                 if (pwr_move <= pwr_now)
1872                         goto out_balanced;
1873
1874                 *imbalance = 1;
1875                 return busiest;
1876         }
1877
1878         /* Get rid of the scaling factor, rounding down as we divide */
1879         *imbalance = *imbalance / SCHED_LOAD_SCALE;
1880
1881         return busiest;
1882
1883 out_balanced:
1884         if (busiest && (idle == NEWLY_IDLE ||
1885                         (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) {
1886                 *imbalance = 1;
1887                 return busiest;
1888         }
1889
1890         *imbalance = 0;
1891         return NULL;
1892 }
1893
1894 /*
1895  * find_busiest_queue - find the busiest runqueue among the cpus in group.
1896  */
1897 static runqueue_t *find_busiest_queue(struct sched_group *group)
1898 {
1899         unsigned long load, max_load = 0;
1900         runqueue_t *busiest = NULL;
1901         int i;
1902
1903         for_each_cpu_mask(i, group->cpumask) {
1904                 load = source_load(i);
1905
1906                 if (load > max_load) {
1907                         max_load = load;
1908                         busiest = cpu_rq(i);
1909                 }
1910         }
1911
1912         return busiest;
1913 }
1914
1915 /*
1916  * Check this_cpu to ensure it is balanced within domain. Attempt to move
1917  * tasks if there is an imbalance.
1918  *
1919  * Called with this_rq unlocked.
1920  */
1921 static int load_balance(int this_cpu, runqueue_t *this_rq,
1922                         struct sched_domain *sd, enum idle_type idle)
1923 {
1924         struct sched_group *group;
1925         runqueue_t *busiest;
1926         unsigned long imbalance;
1927         int nr_moved, all_pinned;
1928         int active_balance = 0;
1929
1930         spin_lock(&this_rq->lock);
1931         schedstat_inc(sd, lb_cnt[idle]);
1932
1933         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
1934         if (!group) {
1935                 schedstat_inc(sd, lb_nobusyg[idle]);
1936                 goto out_balanced;
1937         }
1938
1939         busiest = find_busiest_queue(group);
1940         if (!busiest) {
1941                 schedstat_inc(sd, lb_nobusyq[idle]);
1942                 goto out_balanced;
1943         }
1944
1945         /*
1946          * This should be "impossible", but since load
1947          * balancing is inherently racy and statistical,
1948          * it could happen in theory.
1949          */
1950         if (unlikely(busiest == this_rq)) {
1951                 WARN_ON(1);
1952                 goto out_balanced;
1953         }
1954
1955         schedstat_add(sd, lb_imbalance[idle], imbalance);
1956
1957         nr_moved = 0;
1958         if (busiest->nr_running > 1) {
1959                 /*
1960                  * Attempt to move tasks. If find_busiest_group has found
1961                  * an imbalance but busiest->nr_running <= 1, the group is
1962                  * still unbalanced. nr_moved simply stays zero, so it is
1963                  * correctly treated as an imbalance.
1964                  */
1965                 double_lock_balance(this_rq, busiest);
1966                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
1967                                                 imbalance, sd, idle,
1968                                                 &all_pinned);
1969                 spin_unlock(&busiest->lock);
1970
1971                 /* All tasks on this runqueue were pinned by CPU affinity */
1972                 if (unlikely(all_pinned))
1973                         goto out_balanced;
1974         }
1975
1976         spin_unlock(&this_rq->lock);
1977
1978         if (!nr_moved) {
1979                 schedstat_inc(sd, lb_failed[idle]);
1980                 sd->nr_balance_failed++;
1981
1982                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1983
1984                         spin_lock(&busiest->lock);
1985                         if (!busiest->active_balance) {
1986                                 busiest->active_balance = 1;
1987                                 busiest->push_cpu = this_cpu;
1988                                 active_balance = 1;
1989                         }
1990                         spin_unlock(&busiest->lock);
1991                         if (active_balance)
1992                                 wake_up_process(busiest->migration_thread);
1993
1994                         /*
1995                          * We've kicked active balancing, reset the failure
1996                          * counter.
1997                          */
1998                         sd->nr_balance_failed = sd->cache_nice_tries;
1999                 }
2000         } else
2001                 sd->nr_balance_failed = 0;
2002
2003         if (likely(!active_balance)) {
2004                 /* We were unbalanced, so reset the balancing interval */
2005                 sd->balance_interval = sd->min_interval;
2006         } else {
2007                 /*
2008                  * If we've begun active balancing, start to back off. This
2009                  * case may not be covered by the all_pinned logic if there
2010                  * is only 1 task on the busy runqueue (because we don't call
2011                  * move_tasks).
2012                  */
2013                 if (sd->balance_interval < sd->max_interval)
2014                         sd->balance_interval *= 2;
2015         }
2016
2017         return nr_moved;
2018
2019 out_balanced:
2020         spin_unlock(&this_rq->lock);
2021
2022         schedstat_inc(sd, lb_balanced[idle]);
2023
2024         sd->nr_balance_failed = 0;
2025         /* tune up the balancing interval */
2026         if (sd->balance_interval < sd->max_interval)
2027                 sd->balance_interval *= 2;
2028
2029         return 0;
2030 }
2031
2032 /*
2033  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2034  * tasks if there is an imbalance.
2035  *
2036  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2037  * this_rq is locked.
2038  */
2039 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2040                                 struct sched_domain *sd)
2041 {
2042         struct sched_group *group;
2043         runqueue_t *busiest = NULL;
2044         unsigned long imbalance;
2045         int nr_moved = 0;
2046
2047         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2048         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2049         if (!group) {
2050                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2051                 goto out_balanced;
2052         }
2053
2054         busiest = find_busiest_queue(group);
2055         if (!busiest || busiest == this_rq) {
2056                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2057                 goto out_balanced;
2058         }
2059
2060         /* Attempt to move tasks */
2061         double_lock_balance(this_rq, busiest);
2062
2063         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2064         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2065                                         imbalance, sd, NEWLY_IDLE, NULL);
2066         if (!nr_moved)
2067                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2068         else
2069                 sd->nr_balance_failed = 0;
2070
2071         spin_unlock(&busiest->lock);
2072         return nr_moved;
2073
2074 out_balanced:
2075         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2076         sd->nr_balance_failed = 0;
2077         return 0;
2078 }
2079
2080 /*
2081  * idle_balance is called by schedule() if this_cpu is about to become
2082  * idle. Attempts to pull tasks from other CPUs.
2083  */
2084 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2085 {
2086         struct sched_domain *sd;
2087
2088         for_each_domain(this_cpu, sd) {
2089                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2090                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2091                                 /* We've pulled tasks over so stop searching */
2092                                 break;
2093                         }
2094                 }
2095         }
2096 }
2097
2098 /*
2099  * active_load_balance is run by migration threads. It pushes running tasks
2100  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2101  * running on each physical CPU where possible, and avoids physical /
2102  * logical imbalances.
2103  *
2104  * Called with busiest_rq locked.
2105  */
2106 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2107 {
2108         struct sched_domain *sd;
2109         struct sched_group *cpu_group;
2110         runqueue_t *target_rq;
2111         cpumask_t visited_cpus;
2112         int cpu;
2113
2114         /*
2115          * Search for suitable CPUs to push tasks to in successively higher
2116          * domains with SD_LOAD_BALANCE set.
2117          */
2118         visited_cpus = CPU_MASK_NONE;
2119         for_each_domain(busiest_cpu, sd) {
2120                 if (!(sd->flags & SD_LOAD_BALANCE))
2121                         /* no more domains to search */
2122                         break;
2123
2124                 schedstat_inc(sd, alb_cnt);
2125
2126                 cpu_group = sd->groups;
2127                 do {
2128                         for_each_cpu_mask(cpu, cpu_group->cpumask) {
2129                                 if (busiest_rq->nr_running <= 1)
2130                                         /* no more tasks left to move */
2131                                         return;
2132                                 if (cpu_isset(cpu, visited_cpus))
2133                                         continue;
2134                                 cpu_set(cpu, visited_cpus);
2135                                 if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu)
2136                                         continue;
2137
2138                                 target_rq = cpu_rq(cpu);
2139                                 /*
2140                                  * This condition is "impossible", if it occurs
2141                                  * we need to fix it.  Originally reported by
2142                                  * Bjorn Helgaas on a 128-cpu setup.
2143                                  */
2144                                 BUG_ON(busiest_rq == target_rq);
2145
2146                                 /* move a task from busiest_rq to target_rq */
2147                                 double_lock_balance(busiest_rq, target_rq);
2148                                 if (move_tasks(target_rq, cpu, busiest_rq,
2149                                                 1, sd, SCHED_IDLE, NULL)) {
2150                                         schedstat_inc(sd, alb_pushed);
2151                                 } else {
2152                                         schedstat_inc(sd, alb_failed);
2153                                 }
2154                                 spin_unlock(&target_rq->lock);
2155                         }
2156                         cpu_group = cpu_group->next;
2157                 } while (cpu_group != sd->groups);
2158         }
2159 }
2160
2161 /*
2162  * rebalance_tick will get called every timer tick, on every CPU.
2163  *
2164  * It checks each scheduling domain to see if it is due to be balanced,
2165  * and initiates a balancing operation if so.
2166  *
2167  * Balancing parameters are set up in arch_init_sched_domains.
2168  */
2169
2170 /* Don't have all balancing operations going off at once */
2171 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2172
2173 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2174                            enum idle_type idle)
2175 {
2176         unsigned long old_load, this_load;
2177         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2178         struct sched_domain *sd;
2179
2180         /* Update our load */
2181         old_load = this_rq->cpu_load;
2182         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2183         /*
2184          * Round up the averaging division if load is increasing. This
2185          * prevents us from getting stuck on 9 if the load is 10, for
2186          * example.
2187          */
2188         if (this_load > old_load)
2189                 old_load++;
2190         this_rq->cpu_load = (old_load + this_load) / 2;
2191
2192         for_each_domain(this_cpu, sd) {
2193                 unsigned long interval;
2194
2195                 if (!(sd->flags & SD_LOAD_BALANCE))
2196                         continue;
2197
2198                 interval = sd->balance_interval;
2199                 if (idle != SCHED_IDLE)
2200                         interval *= sd->busy_factor;
2201
2202                 /* scale ms to jiffies */
2203                 interval = msecs_to_jiffies(interval);
2204                 if (unlikely(!interval))
2205                         interval = 1;
2206
2207                 if (j - sd->last_balance >= interval) {
2208                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2209                                 /* We've pulled tasks over so no longer idle */
2210                                 idle = NOT_IDLE;
2211                         }
2212                         sd->last_balance += interval;
2213                 }
2214         }
2215 }
2216 #else
2217 /*
2218  * on UP we do not need to balance between CPUs:
2219  */
2220 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2221 {
2222 }
2223 static inline void idle_balance(int cpu, runqueue_t *rq)
2224 {
2225 }
2226 #endif
2227
2228 static inline int wake_priority_sleeper(runqueue_t *rq)
2229 {
2230         int ret = 0;
2231 #ifdef CONFIG_SCHED_SMT
2232         spin_lock(&rq->lock);
2233         /*
2234          * If an SMT sibling task has been put to sleep for priority
2235          * reasons reschedule the idle task to see if it can now run.
2236          */
2237         if (rq->nr_running) {
2238                 resched_task(rq->idle);
2239                 ret = 1;
2240         }
2241         spin_unlock(&rq->lock);
2242 #endif
2243         return ret;
2244 }
2245
2246 DEFINE_PER_CPU(struct kernel_stat, kstat);
2247
2248 EXPORT_PER_CPU_SYMBOL(kstat);
2249
2250 /*
2251  * This is called on clock ticks and on context switches.
2252  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2253  */
2254 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2255                                     unsigned long long now)
2256 {
2257         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2258         p->sched_time += now - last;
2259 }
2260
2261 /*
2262  * Return current->sched_time plus any more ns on the sched_clock
2263  * that have not yet been banked.
2264  */
2265 unsigned long long current_sched_time(const task_t *tsk)
2266 {
2267         unsigned long long ns;
2268         unsigned long flags;
2269         local_irq_save(flags);
2270         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2271         ns = tsk->sched_time + (sched_clock() - ns);
2272         local_irq_restore(flags);
2273         return ns;
2274 }
2275
2276 /*
2277  * We place interactive tasks back into the active array, if possible.
2278  *
2279  * To guarantee that this does not starve expired tasks we ignore the
2280  * interactivity of a task if the first expired task had to wait more
2281  * than a 'reasonable' amount of time. This deadline timeout is
2282  * load-dependent, as the frequency of array switched decreases with
2283  * increasing number of running tasks. We also ignore the interactivity
2284  * if a better static_prio task has expired:
2285  */
2286 #define EXPIRED_STARVING(rq) \
2287         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2288                 (jiffies - (rq)->expired_timestamp >= \
2289                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2290                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2291
2292 /*
2293  * Account user cpu time to a process.
2294  * @p: the process that the cpu time gets accounted to
2295  * @hardirq_offset: the offset to subtract from hardirq_count()
2296  * @cputime: the cpu time spent in user space since the last update
2297  */
2298 void account_user_time(struct task_struct *p, cputime_t cputime)
2299 {
2300         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2301         cputime64_t tmp;
2302
2303         p->utime = cputime_add(p->utime, cputime);
2304
2305         /* Add user time to cpustat. */
2306         tmp = cputime_to_cputime64(cputime);
2307         if (TASK_NICE(p) > 0)
2308                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2309         else
2310                 cpustat->user = cputime64_add(cpustat->user, tmp);
2311 }
2312
2313 /*
2314  * Account system cpu time to a process.
2315  * @p: the process that the cpu time gets accounted to
2316  * @hardirq_offset: the offset to subtract from hardirq_count()
2317  * @cputime: the cpu time spent in kernel space since the last update
2318  */
2319 void account_system_time(struct task_struct *p, int hardirq_offset,
2320                          cputime_t cputime)
2321 {
2322         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2323         runqueue_t *rq = this_rq();
2324         cputime64_t tmp;
2325
2326         p->stime = cputime_add(p->stime, cputime);
2327
2328         /* Add system time to cpustat. */
2329         tmp = cputime_to_cputime64(cputime);
2330         if (hardirq_count() - hardirq_offset)
2331                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2332         else if (softirq_count())
2333                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2334         else if (p != rq->idle)
2335                 cpustat->system = cputime64_add(cpustat->system, tmp);
2336         else if (atomic_read(&rq->nr_iowait) > 0)
2337                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2338         else
2339                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2340         /* Account for system time used */
2341         acct_update_integrals(p);
2342         /* Update rss highwater mark */
2343         update_mem_hiwater(p);
2344 }
2345
2346 /*
2347  * Account for involuntary wait time.
2348  * @p: the process from which the cpu time has been stolen
2349  * @steal: the cpu time spent in involuntary wait
2350  */
2351 void account_steal_time(struct task_struct *p, cputime_t steal)
2352 {
2353         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2354         cputime64_t tmp = cputime_to_cputime64(steal);
2355         runqueue_t *rq = this_rq();
2356
2357         if (p == rq->idle) {
2358                 p->stime = cputime_add(p->stime, steal);
2359                 if (atomic_read(&rq->nr_iowait) > 0)
2360                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2361                 else
2362                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2363         } else
2364                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2365 }
2366
2367 /*
2368  * This function gets called by the timer code, with HZ frequency.
2369  * We call it with interrupts disabled.
2370  *
2371  * It also gets called by the fork code, when changing the parent's
2372  * timeslices.
2373  */
2374 void scheduler_tick(void)
2375 {
2376         int cpu = smp_processor_id();
2377         runqueue_t *rq = this_rq();
2378         task_t *p = current;
2379         unsigned long long now = sched_clock();
2380
2381         update_cpu_clock(p, rq, now);
2382
2383         rq->timestamp_last_tick = now;
2384
2385         if (p == rq->idle) {
2386                 if (wake_priority_sleeper(rq))
2387                         goto out;
2388                 rebalance_tick(cpu, rq, SCHED_IDLE);
2389                 return;
2390         }
2391
2392         /* Task might have expired already, but not scheduled off yet */
2393         if (p->array != rq->active) {
2394                 set_tsk_need_resched(p);
2395                 goto out;
2396         }
2397         spin_lock(&rq->lock);
2398         /*
2399          * The task was running during this tick - update the
2400          * time slice counter. Note: we do not update a thread's
2401          * priority until it either goes to sleep or uses up its
2402          * timeslice. This makes it possible for interactive tasks
2403          * to use up their timeslices at their highest priority levels.
2404          */
2405         if (rt_task(p)) {
2406                 /*
2407                  * RR tasks need a special form of timeslice management.
2408                  * FIFO tasks have no timeslices.
2409                  */
2410                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2411                         p->time_slice = task_timeslice(p);
2412                         p->first_time_slice = 0;
2413                         set_tsk_need_resched(p);
2414
2415                         /* put it at the end of the queue: */
2416                         requeue_task(p, rq->active);
2417                 }
2418                 goto out_unlock;
2419         }
2420         if (!--p->time_slice) {
2421                 dequeue_task(p, rq->active);
2422                 set_tsk_need_resched(p);
2423                 p->prio = effective_prio(p);
2424                 p->time_slice = task_timeslice(p);
2425                 p->first_time_slice = 0;
2426
2427                 if (!rq->expired_timestamp)
2428                         rq->expired_timestamp = jiffies;
2429                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2430                         enqueue_task(p, rq->expired);
2431                         if (p->static_prio < rq->best_expired_prio)
2432                                 rq->best_expired_prio = p->static_prio;
2433                 } else
2434                         enqueue_task(p, rq->active);
2435         } else {
2436                 /*
2437                  * Prevent a too long timeslice allowing a task to monopolize
2438                  * the CPU. We do this by splitting up the timeslice into
2439                  * smaller pieces.
2440                  *
2441                  * Note: this does not mean the task's timeslices expire or
2442                  * get lost in any way, they just might be preempted by
2443                  * another task of equal priority. (one with higher
2444                  * priority would have preempted this task already.) We
2445                  * requeue this task to the end of the list on this priority
2446                  * level, which is in essence a round-robin of tasks with
2447                  * equal priority.
2448                  *
2449                  * This only applies to tasks in the interactive
2450                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2451                  */
2452                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2453                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2454                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2455                         (p->array == rq->active)) {
2456
2457                         requeue_task(p, rq->active);
2458                         set_tsk_need_resched(p);
2459                 }
2460         }
2461 out_unlock:
2462         spin_unlock(&rq->lock);
2463 out:
2464         rebalance_tick(cpu, rq, NOT_IDLE);
2465 }
2466
2467 #ifdef CONFIG_SCHED_SMT
2468 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2469 {
2470         struct sched_domain *sd = this_rq->sd;
2471         cpumask_t sibling_map;
2472         int i;
2473
2474         if (!(sd->flags & SD_SHARE_CPUPOWER))
2475                 return;
2476
2477         /*
2478          * Unlock the current runqueue because we have to lock in
2479          * CPU order to avoid deadlocks. Caller knows that we might
2480          * unlock. We keep IRQs disabled.
2481          */
2482         spin_unlock(&this_rq->lock);
2483
2484         sibling_map = sd->span;
2485
2486         for_each_cpu_mask(i, sibling_map)
2487                 spin_lock(&cpu_rq(i)->lock);
2488         /*
2489          * We clear this CPU from the mask. This both simplifies the
2490          * inner loop and keps this_rq locked when we exit:
2491          */
2492         cpu_clear(this_cpu, sibling_map);
2493
2494         for_each_cpu_mask(i, sibling_map) {
2495                 runqueue_t *smt_rq = cpu_rq(i);
2496
2497                 /*
2498                  * If an SMT sibling task is sleeping due to priority
2499                  * reasons wake it up now.
2500                  */
2501                 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2502                         resched_task(smt_rq->idle);
2503         }
2504
2505         for_each_cpu_mask(i, sibling_map)
2506                 spin_unlock(&cpu_rq(i)->lock);
2507         /*
2508          * We exit with this_cpu's rq still held and IRQs
2509          * still disabled:
2510          */
2511 }
2512
2513 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2514 {
2515         struct sched_domain *sd = this_rq->sd;
2516         cpumask_t sibling_map;
2517         prio_array_t *array;
2518         int ret = 0, i;
2519         task_t *p;
2520
2521         if (!(sd->flags & SD_SHARE_CPUPOWER))
2522                 return 0;
2523
2524         /*
2525          * The same locking rules and details apply as for
2526          * wake_sleeping_dependent():
2527          */
2528         spin_unlock(&this_rq->lock);
2529         sibling_map = sd->span;
2530         for_each_cpu_mask(i, sibling_map)
2531                 spin_lock(&cpu_rq(i)->lock);
2532         cpu_clear(this_cpu, sibling_map);
2533
2534         /*
2535          * Establish next task to be run - it might have gone away because
2536          * we released the runqueue lock above:
2537          */
2538         if (!this_rq->nr_running)
2539                 goto out_unlock;
2540         array = this_rq->active;
2541         if (!array->nr_active)
2542                 array = this_rq->expired;
2543         BUG_ON(!array->nr_active);
2544
2545         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2546                 task_t, run_list);
2547
2548         for_each_cpu_mask(i, sibling_map) {
2549                 runqueue_t *smt_rq = cpu_rq(i);
2550                 task_t *smt_curr = smt_rq->curr;
2551
2552                 /*
2553                  * If a user task with lower static priority than the
2554                  * running task on the SMT sibling is trying to schedule,
2555                  * delay it till there is proportionately less timeslice
2556                  * left of the sibling task to prevent a lower priority
2557                  * task from using an unfair proportion of the
2558                  * physical cpu's resources. -ck
2559                  */
2560                 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2561                         task_timeslice(p) || rt_task(smt_curr)) &&
2562                         p->mm && smt_curr->mm && !rt_task(p))
2563                                 ret = 1;
2564
2565                 /*
2566                  * Reschedule a lower priority task on the SMT sibling,
2567                  * or wake it up if it has been put to sleep for priority
2568                  * reasons.
2569                  */
2570                 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2571                         task_timeslice(smt_curr) || rt_task(p)) &&
2572                         smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2573                         (smt_curr == smt_rq->idle && smt_rq->nr_running))
2574                                 resched_task(smt_curr);
2575         }
2576 out_unlock:
2577         for_each_cpu_mask(i, sibling_map)
2578                 spin_unlock(&cpu_rq(i)->lock);
2579         return ret;
2580 }
2581 #else
2582 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2583 {
2584 }
2585
2586 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2587 {
2588         return 0;
2589 }
2590 #endif
2591
2592 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2593
2594 void fastcall add_preempt_count(int val)
2595 {
2596         /*
2597          * Underflow?
2598          */
2599         BUG_ON((preempt_count() < 0));
2600         preempt_count() += val;
2601         /*
2602          * Spinlock count overflowing soon?
2603          */
2604         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2605 }
2606 EXPORT_SYMBOL(add_preempt_count);
2607
2608 void fastcall sub_preempt_count(int val)
2609 {
2610         /*
2611          * Underflow?
2612          */
2613         BUG_ON(val > preempt_count());
2614         /*
2615          * Is the spinlock portion underflowing?
2616          */
2617         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2618         preempt_count() -= val;
2619 }
2620 EXPORT_SYMBOL(sub_preempt_count);
2621
2622 #endif
2623
2624 /*
2625  * schedule() is the main scheduler function.
2626  */
2627 asmlinkage void __sched schedule(void)
2628 {
2629         long *switch_count;
2630         task_t *prev, *next;
2631         runqueue_t *rq;
2632         prio_array_t *array;
2633         struct list_head *queue;
2634         unsigned long long now;
2635         unsigned long run_time;
2636         int cpu, idx;
2637
2638         /*
2639          * Test if we are atomic.  Since do_exit() needs to call into
2640          * schedule() atomically, we ignore that path for now.
2641          * Otherwise, whine if we are scheduling when we should not be.
2642          */
2643         if (likely(!current->exit_state)) {
2644                 if (unlikely(in_atomic())) {
2645                         printk(KERN_ERR "scheduling while atomic: "
2646                                 "%s/0x%08x/%d\n",
2647                                 current->comm, preempt_count(), current->pid);
2648                         dump_stack();
2649                 }
2650         }
2651         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2652
2653 need_resched:
2654         preempt_disable();
2655         prev = current;
2656         release_kernel_lock(prev);
2657 need_resched_nonpreemptible:
2658         rq = this_rq();
2659
2660         /*
2661          * The idle thread is not allowed to schedule!
2662          * Remove this check after it has been exercised a bit.
2663          */
2664         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2665                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2666                 dump_stack();
2667         }
2668
2669         schedstat_inc(rq, sched_cnt);
2670         now = sched_clock();
2671         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2672                 run_time = now - prev->timestamp;
2673                 if (unlikely((long long)(now - prev->timestamp) < 0))
2674                         run_time = 0;
2675         } else
2676                 run_time = NS_MAX_SLEEP_AVG;
2677
2678         /*
2679          * Tasks charged proportionately less run_time at high sleep_avg to
2680          * delay them losing their interactive status
2681          */
2682         run_time /= (CURRENT_BONUS(prev) ? : 1);
2683
2684         spin_lock_irq(&rq->lock);
2685
2686         if (unlikely(prev->flags & PF_DEAD))
2687                 prev->state = EXIT_DEAD;
2688
2689         switch_count = &prev->nivcsw;
2690         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2691                 switch_count = &prev->nvcsw;
2692                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2693                                 unlikely(signal_pending(prev))))
2694                         prev->state = TASK_RUNNING;
2695                 else {
2696                         if (prev->state == TASK_UNINTERRUPTIBLE)
2697                                 rq->nr_uninterruptible++;
2698                         deactivate_task(prev, rq);
2699                 }
2700         }
2701
2702         cpu = smp_processor_id();
2703         if (unlikely(!rq->nr_running)) {
2704 go_idle:
2705                 idle_balance(cpu, rq);
2706                 if (!rq->nr_running) {
2707                         next = rq->idle;
2708                         rq->expired_timestamp = 0;
2709                         wake_sleeping_dependent(cpu, rq);
2710                         /*
2711                          * wake_sleeping_dependent() might have released
2712                          * the runqueue, so break out if we got new
2713                          * tasks meanwhile:
2714                          */
2715                         if (!rq->nr_running)
2716                                 goto switch_tasks;
2717                 }
2718         } else {
2719                 if (dependent_sleeper(cpu, rq)) {
2720                         next = rq->idle;
2721                         goto switch_tasks;
2722                 }
2723                 /*
2724                  * dependent_sleeper() releases and reacquires the runqueue
2725                  * lock, hence go into the idle loop if the rq went
2726                  * empty meanwhile:
2727                  */
2728                 if (unlikely(!rq->nr_running))
2729                         goto go_idle;
2730         }
2731
2732         array = rq->active;
2733         if (unlikely(!array->nr_active)) {
2734                 /*
2735                  * Switch the active and expired arrays.
2736                  */
2737                 schedstat_inc(rq, sched_switch);
2738                 rq->active = rq->expired;
2739                 rq->expired = array;
2740                 array = rq->active;
2741                 rq->expired_timestamp = 0;
2742                 rq->best_expired_prio = MAX_PRIO;
2743         }
2744
2745         idx = sched_find_first_bit(array->bitmap);
2746         queue = array->queue + idx;
2747         next = list_entry(queue->next, task_t, run_list);
2748
2749         if (!rt_task(next) && next->activated > 0) {
2750                 unsigned long long delta = now - next->timestamp;
2751                 if (unlikely((long long)(now - next->timestamp) < 0))
2752                         delta = 0;
2753
2754                 if (next->activated == 1)
2755                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2756
2757                 array = next->array;
2758                 dequeue_task(next, array);
2759                 recalc_task_prio(next, next->timestamp + delta);
2760                 enqueue_task(next, array);
2761         }
2762         next->activated = 0;
2763 switch_tasks:
2764         if (next == rq->idle)
2765                 schedstat_inc(rq, sched_goidle);
2766         prefetch(next);
2767         clear_tsk_need_resched(prev);
2768         rcu_qsctr_inc(task_cpu(prev));
2769
2770         update_cpu_clock(prev, rq, now);
2771
2772         prev->sleep_avg -= run_time;
2773         if ((long)prev->sleep_avg <= 0)
2774                 prev->sleep_avg = 0;
2775         prev->timestamp = prev->last_ran = now;
2776
2777         sched_info_switch(prev, next);
2778         if (likely(prev != next)) {
2779                 next->timestamp = now;
2780                 rq->nr_switches++;
2781                 rq->curr = next;
2782                 ++*switch_count;
2783
2784                 prepare_arch_switch(rq, next);
2785                 prev = context_switch(rq, prev, next);
2786                 barrier();
2787
2788                 finish_task_switch(prev);
2789         } else
2790                 spin_unlock_irq(&rq->lock);
2791
2792         prev = current;
2793         if (unlikely(reacquire_kernel_lock(prev) < 0))
2794                 goto need_resched_nonpreemptible;
2795         preempt_enable_no_resched();
2796         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2797                 goto need_resched;
2798 }
2799
2800 EXPORT_SYMBOL(schedule);
2801
2802 #ifdef CONFIG_PREEMPT
2803 /*
2804  * this is is the entry point to schedule() from in-kernel preemption
2805  * off of preempt_enable.  Kernel preemptions off return from interrupt
2806  * occur there and call schedule directly.
2807  */
2808 asmlinkage void __sched preempt_schedule(void)
2809 {
2810         struct thread_info *ti = current_thread_info();
2811 #ifdef CONFIG_PREEMPT_BKL
2812         struct task_struct *task = current;
2813         int saved_lock_depth;
2814 #endif
2815         /*
2816          * If there is a non-zero preempt_count or interrupts are disabled,
2817          * we do not want to preempt the current task.  Just return..
2818          */
2819         if (unlikely(ti->preempt_count || irqs_disabled()))
2820                 return;
2821
2822 need_resched:
2823         add_preempt_count(PREEMPT_ACTIVE);
2824         /*
2825          * We keep the big kernel semaphore locked, but we
2826          * clear ->lock_depth so that schedule() doesnt
2827          * auto-release the semaphore:
2828          */
2829 #ifdef CONFIG_PREEMPT_BKL
2830         saved_lock_depth = task->lock_depth;
2831         task->lock_depth = -1;
2832 #endif
2833         schedule();
2834 #ifdef CONFIG_PREEMPT_BKL
2835         task->lock_depth = saved_lock_depth;
2836 #endif
2837         sub_preempt_count(PREEMPT_ACTIVE);
2838
2839         /* we could miss a preemption opportunity between schedule and now */
2840         barrier();
2841         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2842                 goto need_resched;
2843 }
2844
2845 EXPORT_SYMBOL(preempt_schedule);
2846
2847 /*
2848  * this is is the entry point to schedule() from kernel preemption
2849  * off of irq context.
2850  * Note, that this is called and return with irqs disabled. This will
2851  * protect us against recursive calling from irq.
2852  */
2853 asmlinkage void __sched preempt_schedule_irq(void)
2854 {
2855         struct thread_info *ti = current_thread_info();
2856 #ifdef CONFIG_PREEMPT_BKL
2857         struct task_struct *task = current;
2858         int saved_lock_depth;
2859 #endif
2860         /* Catch callers which need to be fixed*/
2861         BUG_ON(ti->preempt_count || !irqs_disabled());
2862
2863 need_resched:
2864         add_preempt_count(PREEMPT_ACTIVE);
2865         /*
2866          * We keep the big kernel semaphore locked, but we
2867          * clear ->lock_depth so that schedule() doesnt
2868          * auto-release the semaphore:
2869          */
2870 #ifdef CONFIG_PREEMPT_BKL
2871         saved_lock_depth = task->lock_depth;
2872         task->lock_depth = -1;
2873 #endif
2874         local_irq_enable();
2875         schedule();
2876         local_irq_disable();
2877 #ifdef CONFIG_PREEMPT_BKL
2878         task->lock_depth = saved_lock_depth;
2879 #endif
2880         sub_preempt_count(PREEMPT_ACTIVE);
2881
2882         /* we could miss a preemption opportunity between schedule and now */
2883         barrier();
2884         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2885                 goto need_resched;
2886 }
2887
2888 #endif /* CONFIG_PREEMPT */
2889
2890 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
2891 {
2892         task_t *p = curr->private;
2893         return try_to_wake_up(p, mode, sync);
2894 }
2895
2896 EXPORT_SYMBOL(default_wake_function);
2897
2898 /*
2899  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
2900  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
2901  * number) then we wake all the non-exclusive tasks and one exclusive task.
2902  *
2903  * There are circumstances in which we can try to wake a task which has already
2904  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
2905  * zero in this (rare) case, and we handle it by continuing to scan the queue.
2906  */
2907 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2908                              int nr_exclusive, int sync, void *key)
2909 {
2910         struct list_head *tmp, *next;
2911
2912         list_for_each_safe(tmp, next, &q->task_list) {
2913                 wait_queue_t *curr;
2914                 unsigned flags;
2915                 curr = list_entry(tmp, wait_queue_t, task_list);
2916                 flags = curr->flags;
2917                 if (curr->func(curr, mode, sync, key) &&
2918                     (flags & WQ_FLAG_EXCLUSIVE) &&
2919                     !--nr_exclusive)
2920                         break;
2921         }
2922 }
2923
2924 /**
2925  * __wake_up - wake up threads blocked on a waitqueue.
2926  * @q: the waitqueue
2927  * @mode: which threads
2928  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2929  * @key: is directly passed to the wakeup function
2930  */
2931 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
2932                                 int nr_exclusive, void *key)
2933 {
2934         unsigned long flags;
2935
2936         spin_lock_irqsave(&q->lock, flags);
2937         __wake_up_common(q, mode, nr_exclusive, 0, key);
2938         spin_unlock_irqrestore(&q->lock, flags);
2939 }
2940
2941 EXPORT_SYMBOL(__wake_up);
2942
2943 /*
2944  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2945  */
2946 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
2947 {
2948         __wake_up_common(q, mode, 1, 0, NULL);
2949 }
2950
2951 /**
2952  * __wake_up_sync - wake up threads blocked on a waitqueue.
2953  * @q: the waitqueue
2954  * @mode: which threads
2955  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2956  *
2957  * The sync wakeup differs that the waker knows that it will schedule
2958  * away soon, so while the target thread will be woken up, it will not
2959  * be migrated to another CPU - ie. the two threads are 'synchronized'
2960  * with each other. This can prevent needless bouncing between CPUs.
2961  *
2962  * On UP it can prevent extra preemption.
2963  */
2964 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2965 {
2966         unsigned long flags;
2967         int sync = 1;
2968
2969         if (unlikely(!q))
2970                 return;
2971
2972         if (unlikely(!nr_exclusive))
2973                 sync = 0;
2974
2975         spin_lock_irqsave(&q->lock, flags);
2976         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
2977         spin_unlock_irqrestore(&q->lock, flags);
2978 }
2979 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
2980
2981 void fastcall complete(struct completion *x)
2982 {
2983         unsigned long flags;
2984
2985         spin_lock_irqsave(&x->wait.lock, flags);
2986         x->done++;
2987         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2988                          1, 0, NULL);
2989         spin_unlock_irqrestore(&x->wait.lock, flags);
2990 }
2991 EXPORT_SYMBOL(complete);
2992
2993 void fastcall complete_all(struct completion *x)
2994 {
2995         unsigned long flags;
2996
2997         spin_lock_irqsave(&x->wait.lock, flags);
2998         x->done += UINT_MAX/2;
2999         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3000                          0, 0, NULL);
3001         spin_unlock_irqrestore(&x->wait.lock, flags);
3002 }
3003 EXPORT_SYMBOL(complete_all);
3004
3005 void fastcall __sched wait_for_completion(struct completion *x)
3006 {
3007         might_sleep();
3008         spin_lock_irq(&x->wait.lock);
3009         if (!x->done) {
3010                 DECLARE_WAITQUEUE(wait, current);
3011
3012                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3013                 __add_wait_queue_tail(&x->wait, &wait);
3014                 do {
3015                         __set_current_state(TASK_UNINTERRUPTIBLE);
3016                         spin_unlock_irq(&x->wait.lock);
3017                         schedule();
3018                         spin_lock_irq(&x->wait.lock);
3019                 } while (!x->done);
3020                 __remove_wait_queue(&x->wait, &wait);
3021         }
3022         x->done--;
3023         spin_unlock_irq(&x->wait.lock);
3024 }
3025 EXPORT_SYMBOL(wait_for_completion);
3026
3027 unsigned long fastcall __sched
3028 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3029 {
3030         might_sleep();
3031
3032         spin_lock_irq(&x->wait.lock);
3033         if (!x->done) {
3034                 DECLARE_WAITQUEUE(wait, current);
3035
3036                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3037                 __add_wait_queue_tail(&x->wait, &wait);
3038                 do {
3039                         __set_current_state(TASK_UNINTERRUPTIBLE);
3040                         spin_unlock_irq(&x->wait.lock);
3041                         timeout = schedule_timeout(timeout);
3042                         spin_lock_irq(&x->wait.lock);
3043                         if (!timeout) {
3044                                 __remove_wait_queue(&x->wait, &wait);
3045                                 goto out;
3046                         }
3047                 } while (!x->done);
3048                 __remove_wait_queue(&x->wait, &wait);
3049         }
3050         x->done--;
3051 out:
3052         spin_unlock_irq(&x->wait.lock);
3053         return timeout;
3054 }
3055 EXPORT_SYMBOL(wait_for_completion_timeout);
3056
3057 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3058 {
3059         int ret = 0;
3060
3061         might_sleep();
3062
3063         spin_lock_irq(&x->wait.lock);
3064         if (!x->done) {
3065                 DECLARE_WAITQUEUE(wait, current);
3066
3067                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3068                 __add_wait_queue_tail(&x->wait, &wait);
3069                 do {
3070                         if (signal_pending(current)) {
3071                                 ret = -ERESTARTSYS;
3072                                 __remove_wait_queue(&x->wait, &wait);
3073                                 goto out;
3074                         }
3075                         __set_current_state(TASK_INTERRUPTIBLE);
3076                         spin_unlock_irq(&x->wait.lock);
3077                         schedule();
3078                         spin_lock_irq(&x->wait.lock);
3079                 } while (!x->done);
3080                 __remove_wait_queue(&x->wait, &wait);
3081         }
3082         x->done--;
3083 out:
3084         spin_unlock_irq(&x->wait.lock);
3085
3086         return ret;
3087 }
3088 EXPORT_SYMBOL(wait_for_completion_interruptible);
3089
3090 unsigned long fastcall __sched
3091 wait_for_completion_interruptible_timeout(struct completion *x,
3092                                           unsigned long timeout)
3093 {
3094         might_sleep();
3095
3096         spin_lock_irq(&x->wait.lock);
3097         if (!x->done) {
3098                 DECLARE_WAITQUEUE(wait, current);
3099
3100                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3101                 __add_wait_queue_tail(&x->wait, &wait);
3102                 do {
3103                         if (signal_pending(current)) {
3104                                 timeout = -ERESTARTSYS;
3105                                 __remove_wait_queue(&x->wait, &wait);
3106                                 goto out;
3107                         }
3108                         __set_current_state(TASK_INTERRUPTIBLE);
3109                         spin_unlock_irq(&x->wait.lock);
3110                         timeout = schedule_timeout(timeout);
3111                         spin_lock_irq(&x->wait.lock);
3112                         if (!timeout) {
3113                                 __remove_wait_queue(&x->wait, &wait);
3114                                 goto out;
3115                         }
3116                 } while (!x->done);
3117                 __remove_wait_queue(&x->wait, &wait);
3118         }
3119         x->done--;
3120 out:
3121         spin_unlock_irq(&x->wait.lock);
3122         return timeout;
3123 }
3124 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3125
3126
3127 #define SLEEP_ON_VAR                                    \
3128         unsigned long flags;                            \
3129         wait_queue_t wait;                              \
3130         init_waitqueue_entry(&wait, current);
3131
3132 #define SLEEP_ON_HEAD                                   \
3133         spin_lock_irqsave(&q->lock,flags);              \
3134         __add_wait_queue(q, &wait);                     \
3135         spin_unlock(&q->lock);
3136
3137 #define SLEEP_ON_TAIL                                   \
3138         spin_lock_irq(&q->lock);                        \
3139         __remove_wait_queue(q, &wait);                  \
3140         spin_unlock_irqrestore(&q->lock, flags);
3141
3142 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3143 {
3144         SLEEP_ON_VAR
3145
3146         current->state = TASK_INTERRUPTIBLE;
3147
3148         SLEEP_ON_HEAD
3149         schedule();
3150         SLEEP_ON_TAIL
3151 }
3152
3153 EXPORT_SYMBOL(interruptible_sleep_on);
3154
3155 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3156 {
3157         SLEEP_ON_VAR
3158
3159         current->state = TASK_INTERRUPTIBLE;
3160
3161         SLEEP_ON_HEAD
3162         timeout = schedule_timeout(timeout);
3163         SLEEP_ON_TAIL
3164
3165         return timeout;
3166 }
3167
3168 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3169
3170 void fastcall __sched sleep_on(wait_queue_head_t *q)
3171 {
3172         SLEEP_ON_VAR
3173
3174         current->state = TASK_UNINTERRUPTIBLE;
3175
3176         SLEEP_ON_HEAD
3177         schedule();
3178         SLEEP_ON_TAIL
3179 }
3180
3181 EXPORT_SYMBOL(sleep_on);
3182
3183 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3184 {
3185         SLEEP_ON_VAR
3186
3187         current->state = TASK_UNINTERRUPTIBLE;
3188
3189         SLEEP_ON_HEAD
3190         timeout = schedule_timeout(timeout);
3191         SLEEP_ON_TAIL
3192
3193         return timeout;
3194 }
3195
3196 EXPORT_SYMBOL(sleep_on_timeout);
3197
3198 void set_user_nice(task_t *p, long nice)
3199 {
3200         unsigned long flags;
3201         prio_array_t *array;
3202         runqueue_t *rq;
3203         int old_prio, new_prio, delta;
3204
3205         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3206                 return;
3207         /*
3208          * We have to be careful, if called from sys_setpriority(),
3209          * the task might be in the middle of scheduling on another CPU.
3210          */
3211         rq = task_rq_lock(p, &flags);
3212         /*
3213          * The RT priorities are set via sched_setscheduler(), but we still
3214          * allow the 'normal' nice value to be set - but as expected
3215          * it wont have any effect on scheduling until the task is
3216          * not SCHED_NORMAL:
3217          */
3218         if (rt_task(p)) {
3219                 p->static_prio = NICE_TO_PRIO(nice);
3220                 goto out_unlock;
3221         }
3222         array = p->array;
3223         if (array)
3224                 dequeue_task(p, array);
3225
3226         old_prio = p->prio;
3227         new_prio = NICE_TO_PRIO(nice);
3228         delta = new_prio - old_prio;
3229         p->static_prio = NICE_TO_PRIO(nice);
3230         p->prio += delta;
3231
3232         if (array) {
3233                 enqueue_task(p, array);
3234                 /*
3235                  * If the task increased its priority or is running and
3236                  * lowered its priority, then reschedule its CPU:
3237                  */
3238                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3239                         resched_task(rq->curr);
3240         }
3241 out_unlock:
3242         task_rq_unlock(rq, &flags);
3243 }
3244
3245 EXPORT_SYMBOL(set_user_nice);
3246
3247 /*
3248  * can_nice - check if a task can reduce its nice value
3249  * @p: task
3250  * @nice: nice value
3251  */
3252 int can_nice(const task_t *p, const int nice)
3253 {
3254         /* convert nice value [19,-20] to rlimit style value [0,39] */
3255         int nice_rlim = 19 - nice;
3256         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3257                 capable(CAP_SYS_NICE));
3258 }
3259
3260 #ifdef __ARCH_WANT_SYS_NICE
3261
3262 /*
3263  * sys_nice - change the priority of the current process.
3264  * @increment: priority increment
3265  *
3266  * sys_setpriority is a more generic, but much slower function that
3267  * does similar things.
3268  */
3269 asmlinkage long sys_nice(int increment)
3270 {
3271         int retval;
3272         long nice;
3273
3274         /*
3275          * Setpriority might change our priority at the same moment.
3276          * We don't have to worry. Conceptually one call occurs first
3277          * and we have a single winner.
3278          */
3279         if (increment < -40)
3280                 increment = -40;
3281         if (increment > 40)
3282                 increment = 40;
3283
3284         nice = PRIO_TO_NICE(current->static_prio) + increment;
3285         if (nice < -20)
3286                 nice = -20;
3287         if (nice > 19)
3288                 nice = 19;
3289
3290         if (increment < 0 && !can_nice(current, nice))
3291                 return -EPERM;
3292
3293         retval = security_task_setnice(current, nice);
3294         if (retval)
3295                 return retval;
3296
3297         set_user_nice(current, nice);
3298         return 0;
3299 }
3300
3301 #endif
3302
3303 /**
3304  * task_prio - return the priority value of a given task.
3305  * @p: the task in question.
3306  *
3307  * This is the priority value as seen by users in /proc.
3308  * RT tasks are offset by -200. Normal tasks are centered
3309  * around 0, value goes from -16 to +15.
3310  */
3311 int task_prio(const task_t *p)
3312 {
3313         return p->prio - MAX_RT_PRIO;
3314 }
3315
3316 /**
3317  * task_nice - return the nice value of a given task.
3318  * @p: the task in question.
3319  */
3320 int task_nice(const task_t *p)
3321 {
3322         return TASK_NICE(p);
3323 }
3324
3325 /*
3326  * The only users of task_nice are binfmt_elf and binfmt_elf32.
3327  * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3328  * Therefore, task_nice is needed if there is a compat_mode.
3329  */
3330 #ifdef CONFIG_COMPAT
3331 EXPORT_SYMBOL_GPL(task_nice);
3332 #endif
3333
3334 /**
3335  * idle_cpu - is a given cpu idle currently?
3336  * @cpu: the processor in question.
3337  */
3338 int idle_cpu(int cpu)
3339 {
3340         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3341 }
3342
3343 EXPORT_SYMBOL_GPL(idle_cpu);
3344
3345 /**
3346  * idle_task - return the idle task for a given cpu.
3347  * @cpu: the processor in question.
3348  */
3349 task_t *idle_task(int cpu)
3350 {
3351         return cpu_rq(cpu)->idle;
3352 }
3353
3354 /**
3355  * find_process_by_pid - find a process with a matching PID value.
3356  * @pid: the pid in question.
3357  */
3358 static inline task_t *find_process_by_pid(pid_t pid)
3359 {
3360         return pid ? find_task_by_pid(pid) : current;
3361 }
3362
3363 /* Actually do priority change: must hold rq lock. */
3364 static void __setscheduler(struct task_struct *p, int policy, int prio)
3365 {
3366         BUG_ON(p->array);
3367         p->policy = policy;
3368         p->rt_priority = prio;
3369         if (policy != SCHED_NORMAL)
3370                 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3371         else
3372                 p->prio = p->static_prio;
3373 }
3374
3375 /**
3376  * sched_setscheduler - change the scheduling policy and/or RT priority of
3377  * a thread.
3378  * @p: the task in question.
3379  * @policy: new policy.
3380  * @param: structure containing the new RT priority.
3381  */
3382 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3383 {
3384         int retval;
3385         int oldprio, oldpolicy = -1;
3386         prio_array_t *array;
3387         unsigned long flags;
3388         runqueue_t *rq;
3389
3390 recheck:
3391         /* double check policy once rq lock held */
3392         if (policy < 0)
3393                 policy = oldpolicy = p->policy;
3394         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3395                                 policy != SCHED_NORMAL)
3396                         return -EINVAL;
3397         /*
3398          * Valid priorities for SCHED_FIFO and SCHED_RR are
3399          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3400          */
3401         if (param->sched_priority < 0 ||
3402             param->sched_priority > MAX_USER_RT_PRIO-1)
3403                 return -EINVAL;
3404         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3405                 return -EINVAL;
3406
3407         if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
3408             param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
3409             !capable(CAP_SYS_NICE))
3410                 return -EPERM;
3411         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3412             !capable(CAP_SYS_NICE))
3413                 return -EPERM;
3414
3415         retval = security_task_setscheduler(p, policy, param);
3416         if (retval)
3417                 return retval;
3418         /*
3419          * To be able to change p->policy safely, the apropriate
3420          * runqueue lock must be held.
3421          */
3422         rq = task_rq_lock(p, &flags);
3423         /* recheck policy now with rq lock held */
3424         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3425                 policy = oldpolicy = -1;
3426                 task_rq_unlock(rq, &flags);
3427                 goto recheck;
3428         }
3429         array = p->array;
3430         if (array)
3431                 deactivate_task(p, rq);
3432         oldprio = p->prio;
3433         __setscheduler(p, policy, param->sched_priority);
3434         if (array) {
3435                 __activate_task(p, rq);
3436                 /*
3437                  * Reschedule if we are currently running on this runqueue and
3438                  * our priority decreased, or if we are not currently running on
3439                  * this runqueue and our priority is higher than the current's
3440                  */
3441                 if (task_running(rq, p)) {
3442                         if (p->prio > oldprio)
3443                                 resched_task(rq->curr);
3444                 } else if (TASK_PREEMPTS_CURR(p, rq))
3445                         resched_task(rq->curr);
3446         }
3447         task_rq_unlock(rq, &flags);
3448         return 0;
3449 }
3450 EXPORT_SYMBOL_GPL(sched_setscheduler);
3451
3452 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3453 {
3454         int retval;
3455         struct sched_param lparam;
3456         struct task_struct *p;
3457
3458         if (!param || pid < 0)
3459                 return -EINVAL;
3460         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3461                 return -EFAULT;
3462         read_lock_irq(&tasklist_lock);
3463         p = find_process_by_pid(pid);
3464         if (!p) {
3465                 read_unlock_irq(&tasklist_lock);
3466                 return -ESRCH;
3467         }
3468         retval = sched_setscheduler(p, policy, &lparam);
3469         read_unlock_irq(&tasklist_lock);
3470         return retval;
3471 }
3472
3473 /**
3474  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3475  * @pid: the pid in question.
3476  * @policy: new policy.
3477  * @param: structure containing the new RT priority.
3478  */
3479 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3480                                        struct sched_param __user *param)
3481 {
3482         return do_sched_setscheduler(pid, policy, param);
3483 }
3484
3485 /**
3486  * sys_sched_setparam - set/change the RT priority of a thread
3487  * @pid: the pid in question.
3488  * @param: structure containing the new RT priority.
3489  */
3490 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3491 {
3492         return do_sched_setscheduler(pid, -1, param);
3493 }
3494
3495 /**
3496  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3497  * @pid: the pid in question.
3498  */
3499 asmlinkage long sys_sched_getscheduler(pid_t pid)
3500 {
3501         int retval = -EINVAL;
3502         task_t *p;
3503
3504         if (pid < 0)
3505                 goto out_nounlock;
3506
3507         retval = -ESRCH;
3508         read_lock(&tasklist_lock);
3509         p = find_process_by_pid(pid);
3510         if (p) {
3511                 retval = security_task_getscheduler(p);
3512                 if (!retval)
3513                         retval = p->policy;
3514         }
3515         read_unlock(&tasklist_lock);
3516
3517 out_nounlock:
3518         return retval;
3519 }
3520
3521 /**
3522  * sys_sched_getscheduler - get the RT priority of a thread
3523  * @pid: the pid in question.
3524  * @param: structure containing the RT priority.
3525  */
3526 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3527 {
3528         struct sched_param lp;
3529         int retval = -EINVAL;
3530         task_t *p;
3531
3532         if (!param || pid < 0)
3533                 goto out_nounlock;
3534
3535         read_lock(&tasklist_lock);
3536         p = find_process_by_pid(pid);
3537         retval = -ESRCH;
3538         if (!p)
3539                 goto out_unlock;
3540
3541         retval = security_task_getscheduler(p);
3542         if (retval)
3543                 goto out_unlock;
3544
3545         lp.sched_priority = p->rt_priority;
3546         read_unlock(&tasklist_lock);
3547
3548         /*
3549          * This one might sleep, we cannot do it with a spinlock held ...
3550          */
3551         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3552
3553 out_nounlock:
3554         return retval;
3555
3556 out_unlock:
3557         read_unlock(&tasklist_lock);
3558         return retval;
3559 }
3560
3561 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3562 {
3563         task_t *p;
3564         int retval;
3565         cpumask_t cpus_allowed;
3566
3567         lock_cpu_hotplug();
3568         read_lock(&tasklist_lock);
3569
3570         p = find_process_by_pid(pid);
3571         if (!p) {
3572                 read_unlock(&tasklist_lock);
3573                 unlock_cpu_hotplug();
3574                 return -ESRCH;
3575         }
3576
3577         /*
3578          * It is not safe to call set_cpus_allowed with the
3579          * tasklist_lock held.  We will bump the task_struct's
3580          * usage count and then drop tasklist_lock.
3581          */
3582         get_task_struct(p);
3583         read_unlock(&tasklist_lock);
3584
3585         retval = -EPERM;
3586         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3587                         !capable(CAP_SYS_NICE))
3588                 goto out_unlock;
3589
3590         cpus_allowed = cpuset_cpus_allowed(p);
3591         cpus_and(new_mask, new_mask, cpus_allowed);
3592         retval = set_cpus_allowed(p, new_mask);
3593
3594 out_unlock:
3595         put_task_struct(p);
3596         unlock_cpu_hotplug();
3597         return retval;
3598 }
3599
3600 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3601                              cpumask_t *new_mask)
3602 {
3603         if (len < sizeof(cpumask_t)) {
3604                 memset(new_mask, 0, sizeof(cpumask_t));
3605         } else if (len > sizeof(cpumask_t)) {
3606                 len = sizeof(cpumask_t);
3607         }
3608         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3609 }
3610
3611 /**
3612  * sys_sched_setaffinity - set the cpu affinity of a process
3613  * @pid: pid of the process
3614  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3615  * @user_mask_ptr: user-space pointer to the new cpu mask
3616  */
3617 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3618                                       unsigned long __user *user_mask_ptr)
3619 {
3620         cpumask_t new_mask;
3621         int retval;
3622
3623         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3624         if (retval)
3625                 return retval;
3626
3627         return sched_setaffinity(pid, new_mask);
3628 }
3629
3630 /*
3631  * Represents all cpu's present in the system
3632  * In systems capable of hotplug, this map could dynamically grow
3633  * as new cpu's are detected in the system via any platform specific
3634  * method, such as ACPI for e.g.
3635  */
3636
3637 cpumask_t cpu_present_map;
3638 EXPORT_SYMBOL(cpu_present_map);
3639
3640 #ifndef CONFIG_SMP
3641 cpumask_t cpu_online_map = CPU_MASK_ALL;
3642 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3643 #endif
3644
3645 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3646 {
3647         int retval;
3648         task_t *p;
3649
3650         lock_cpu_hotplug();
3651         read_lock(&tasklist_lock);
3652
3653         retval = -ESRCH;
3654         p = find_process_by_pid(pid);
3655         if (!p)
3656                 goto out_unlock;
3657
3658         retval = 0;
3659         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3660
3661 out_unlock:
3662         read_unlock(&tasklist_lock);
3663         unlock_cpu_hotplug();
3664         if (retval)
3665                 return retval;
3666
3667         return 0;
3668 }
3669
3670 /**
3671  * sys_sched_getaffinity - get the cpu affinity of a process
3672  * @pid: pid of the process
3673  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3674  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3675  */
3676 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3677                                       unsigned long __user *user_mask_ptr)
3678 {
3679         int ret;
3680         cpumask_t mask;
3681
3682         if (len < sizeof(cpumask_t))
3683                 return -EINVAL;
3684
3685         ret = sched_getaffinity(pid, &mask);
3686         if (ret < 0)
3687                 return ret;
3688
3689         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3690                 return -EFAULT;
3691
3692         return sizeof(cpumask_t);
3693 }
3694
3695 /**
3696  * sys_sched_yield - yield the current processor to other threads.
3697  *
3698  * this function yields the current CPU by moving the calling thread
3699  * to the expired array. If there are no other threads running on this
3700  * CPU then this function will return.
3701  */
3702 asmlinkage long sys_sched_yield(void)
3703 {
3704         runqueue_t *rq = this_rq_lock();
3705         prio_array_t *array = current->array;
3706         prio_array_t *target = rq->expired;
3707
3708         schedstat_inc(rq, yld_cnt);
3709         /*
3710          * We implement yielding by moving the task into the expired
3711          * queue.
3712          *
3713          * (special rule: RT tasks will just roundrobin in the active
3714          *  array.)
3715          */
3716         if (rt_task(current))
3717                 target = rq->active;
3718
3719         if (current->array->nr_active == 1) {
3720                 schedstat_inc(rq, yld_act_empty);
3721                 if (!rq->expired->nr_active)
3722                         schedstat_inc(rq, yld_both_empty);
3723         } else if (!rq->expired->nr_active)
3724                 schedstat_inc(rq, yld_exp_empty);
3725
3726         if (array != target) {
3727                 dequeue_task(current, array);
3728                 enqueue_task(current, target);
3729         } else
3730                 /*
3731                  * requeue_task is cheaper so perform that if possible.
3732                  */
3733                 requeue_task(current, array);
3734
3735         /*
3736          * Since we are going to call schedule() anyway, there's
3737          * no need to preempt or enable interrupts:
3738          */
3739         __release(rq->lock);
3740         _raw_spin_unlock(&rq->lock);
3741         preempt_enable_no_resched();
3742
3743         schedule();
3744
3745         return 0;
3746 }
3747
3748 static inline void __cond_resched(void)
3749 {
3750         do {
3751                 add_preempt_count(PREEMPT_ACTIVE);
3752                 schedule();
3753                 sub_preempt_count(PREEMPT_ACTIVE);
3754         } while (need_resched());
3755 }
3756
3757 int __sched cond_resched(void)
3758 {
3759         if (need_resched()) {
3760                 __cond_resched();
3761                 return 1;
3762         }
3763         return 0;
3764 }
3765
3766 EXPORT_SYMBOL(cond_resched);
3767
3768 /*
3769  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3770  * call schedule, and on return reacquire the lock.
3771  *
3772  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3773  * operations here to prevent schedule() from being called twice (once via
3774  * spin_unlock(), once by hand).
3775  */
3776 int cond_resched_lock(spinlock_t * lock)
3777 {
3778         int ret = 0;
3779
3780         if (need_lockbreak(lock)) {
3781                 spin_unlock(lock);
3782                 cpu_relax();
3783                 ret = 1;
3784                 spin_lock(lock);
3785         }
3786         if (need_resched()) {
3787                 _raw_spin_unlock(lock);
3788                 preempt_enable_no_resched();
3789                 __cond_resched();
3790                 ret = 1;
3791                 spin_lock(lock);
3792         }
3793         return ret;
3794 }
3795
3796 EXPORT_SYMBOL(cond_resched_lock);
3797
3798 int __sched cond_resched_softirq(void)
3799 {
3800         BUG_ON(!in_softirq());
3801
3802         if (need_resched()) {
3803                 __local_bh_enable();
3804                 __cond_resched();
3805                 local_bh_disable();
3806                 return 1;
3807         }
3808         return 0;
3809 }
3810
3811 EXPORT_SYMBOL(cond_resched_softirq);
3812
3813
3814 /**
3815  * yield - yield the current processor to other threads.
3816  *
3817  * this is a shortcut for kernel-space yielding - it marks the
3818  * thread runnable and calls sys_sched_yield().
3819  */
3820 void __sched yield(void)
3821 {
3822         set_current_state(TASK_RUNNING);
3823         sys_sched_yield();
3824 }
3825
3826 EXPORT_SYMBOL(yield);
3827
3828 /*
3829  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
3830  * that process accounting knows that this is a task in IO wait state.
3831  *
3832  * But don't do that if it is a deliberate, throttling IO wait (this task
3833  * has set its backing_dev_info: the queue against which it should throttle)
3834  */
3835 void __sched io_schedule(void)
3836 {
3837         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3838
3839         atomic_inc(&rq->nr_iowait);
3840         schedule();
3841         atomic_dec(&rq->nr_iowait);
3842 }
3843
3844 EXPORT_SYMBOL(io_schedule);
3845
3846 long __sched io_schedule_timeout(long timeout)
3847 {
3848         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3849         long ret;
3850
3851         atomic_inc(&rq->nr_iowait);
3852         ret = schedule_timeout(timeout);
3853         atomic_dec(&rq->nr_iowait);
3854         return ret;
3855 }
3856
3857 /**
3858  * sys_sched_get_priority_max - return maximum RT priority.
3859  * @policy: scheduling class.
3860  *
3861  * this syscall returns the maximum rt_priority that can be used
3862  * by a given scheduling class.
3863  */
3864 asmlinkage long sys_sched_get_priority_max(int policy)
3865 {
3866         int ret = -EINVAL;
3867
3868         switch (policy) {
3869         case SCHED_FIFO:
3870         case SCHED_RR:
3871                 ret = MAX_USER_RT_PRIO-1;
3872                 break;
3873         case SCHED_NORMAL:
3874                 ret = 0;
3875                 break;
3876         }
3877         return ret;
3878 }
3879
3880 /**
3881  * sys_sched_get_priority_min - return minimum RT priority.
3882  * @policy: scheduling class.
3883  *
3884  * this syscall returns the minimum rt_priority that can be used
3885  * by a given scheduling class.
3886  */
3887 asmlinkage long sys_sched_get_priority_min(int policy)
3888 {
3889         int ret = -EINVAL;
3890
3891         switch (policy) {
3892         case SCHED_FIFO:
3893         case SCHED_RR:
3894                 ret = 1;
3895                 break;
3896         case SCHED_NORMAL:
3897                 ret = 0;
3898         }
3899         return ret;
3900 }
3901
3902 /**
3903  * sys_sched_rr_get_interval - return the default timeslice of a process.
3904  * @pid: pid of the process.
3905  * @interval: userspace pointer to the timeslice value.
3906  *
3907  * this syscall writes the default timeslice value of a given process
3908  * into the user-space timespec buffer. A value of '0' means infinity.
3909  */
3910 asmlinkage
3911 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
3912 {
3913         int retval = -EINVAL;
3914         struct timespec t;
3915         task_t *p;
3916
3917         if (pid < 0)
3918                 goto out_nounlock;
3919
3920         retval = -ESRCH;
3921         read_lock(&tasklist_lock);
3922         p = find_process_by_pid(pid);
3923         if (!p)
3924                 goto out_unlock;
3925
3926         retval = security_task_getscheduler(p);
3927         if (retval)
3928                 goto out_unlock;
3929
3930         jiffies_to_timespec(p->policy & SCHED_FIFO ?
3931                                 0 : task_timeslice(p), &t);
3932         read_unlock(&tasklist_lock);
3933         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3934 out_nounlock:
3935         return retval;
3936 out_unlock:
3937         read_unlock(&tasklist_lock);
3938         return retval;
3939 }
3940
3941 static inline struct task_struct *eldest_child(struct task_struct *p)
3942 {
3943         if (list_empty(&p->children)) return NULL;
3944         return list_entry(p->children.next,struct task_struct,sibling);
3945 }
3946
3947 static inline struct task_struct *older_sibling(struct task_struct *p)
3948 {
3949         if (p->sibling.prev==&p->parent->children) return NULL;
3950         return list_entry(p->sibling.prev,struct task_struct,sibling);
3951 }
3952
3953 static inline struct task_struct *younger_sibling(struct task_struct *p)
3954 {
3955         if (p->sibling.next==&p->parent->children) return NULL;
3956         return list_entry(p->sibling.next,struct task_struct,sibling);
3957 }
3958
3959 static void show_task(task_t * p)
3960 {
3961         task_t *relative;
3962         unsigned state;
3963         unsigned long free = 0;
3964         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
3965
3966         printk("%-13.13s ", p->comm);
3967         state = p->state ? __ffs(p->state) + 1 : 0;
3968         if (state < ARRAY_SIZE(stat_nam))
3969                 printk(stat_nam[state]);
3970         else
3971                 printk("?");
3972 #if (BITS_PER_LONG == 32)
3973         if (state == TASK_RUNNING)
3974                 printk(" running ");
3975         else
3976                 printk(" %08lX ", thread_saved_pc(p));
3977 #else
3978         if (state == TASK_RUNNING)
3979                 printk("  running task   ");
3980         else
3981                 printk(" %016lx ", thread_saved_pc(p));
3982 #endif
3983 #ifdef CONFIG_DEBUG_STACK_USAGE
3984         {
3985                 unsigned long * n = (unsigned long *) (p->thread_info+1);
3986                 while (!*n)
3987                         n++;
3988                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
3989         }
3990 #endif
3991         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
3992         if ((relative = eldest_child(p)))
3993                 printk("%5d ", relative->pid);
3994         else
3995                 printk("      ");
3996         if ((relative = younger_sibling(p)))
3997                 printk("%7d", relative->pid);
3998         else
3999                 printk("       ");
4000         if ((relative = older_sibling(p)))
4001                 printk(" %5d", relative->pid);
4002         else
4003                 printk("      ");
4004         if (!p->mm)
4005                 printk(" (L-TLB)\n");
4006         else
4007                 printk(" (NOTLB)\n");
4008
4009         if (state != TASK_RUNNING)
4010                 show_stack(p, NULL);
4011 }
4012
4013 void show_state(void)
4014 {
4015         task_t *g, *p;
4016
4017 #if (BITS_PER_LONG == 32)
4018         printk("\n"
4019                "                                               sibling\n");
4020         printk("  task             PC      pid father child younger older\n");
4021 #else
4022         printk("\n"
4023                "                                                       sibling\n");
4024         printk("  task                 PC          pid father child younger older\n");
4025 #endif
4026         read_lock(&tasklist_lock);
4027         do_each_thread(g, p) {
4028                 /*
4029                  * reset the NMI-timeout, listing all files on a slow
4030                  * console might take alot of time:
4031                  */
4032                 touch_nmi_watchdog();
4033                 show_task(p);
4034         } while_each_thread(g, p);
4035
4036         read_unlock(&tasklist_lock);
4037 }
4038
4039 void __devinit init_idle(task_t *idle, int cpu)
4040 {
4041         runqueue_t *rq = cpu_rq(cpu);
4042         unsigned long flags;
4043
4044         idle->sleep_avg = 0;
4045         idle->array = NULL;
4046         idle->prio = MAX_PRIO;
4047         idle->state = TASK_RUNNING;
4048         idle->cpus_allowed = cpumask_of_cpu(cpu);
4049         set_task_cpu(idle, cpu);
4050
4051         spin_lock_irqsave(&rq->lock, flags);
4052         rq->curr = rq->idle = idle;
4053         set_tsk_need_resched(idle);
4054         spin_unlock_irqrestore(&rq->lock, flags);
4055
4056         /* Set the preempt count _outside_ the spinlocks! */
4057 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4058         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4059 #else
4060         idle->thread_info->preempt_count = 0;
4061 #endif
4062 }
4063
4064 /*
4065  * In a system that switches off the HZ timer nohz_cpu_mask
4066  * indicates which cpus entered this state. This is used
4067  * in the rcu update to wait only for active cpus. For system
4068  * which do not switch off the HZ timer nohz_cpu_mask should
4069  * always be CPU_MASK_NONE.
4070  */
4071 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4072
4073 #ifdef CONFIG_SMP
4074 /*
4075  * This is how migration works:
4076  *
4077  * 1) we queue a migration_req_t structure in the source CPU's
4078  *    runqueue and wake up that CPU's migration thread.
4079  * 2) we down() the locked semaphore => thread blocks.
4080  * 3) migration thread wakes up (implicitly it forces the migrated
4081  *    thread off the CPU)
4082  * 4) it gets the migration request and checks whether the migrated
4083  *    task is still in the wrong runqueue.
4084  * 5) if it's in the wrong runqueue then the migration thread removes
4085  *    it and puts it into the right queue.
4086  * 6) migration thread up()s the semaphore.
4087  * 7) we wake up and the migration is done.
4088  */
4089
4090 /*
4091  * Change a given task's CPU affinity. Migrate the thread to a
4092  * proper CPU and schedule it away if the CPU it's executing on
4093  * is removed from the allowed bitmask.
4094  *
4095  * NOTE: the caller must have a valid reference to the task, the
4096  * task must not exit() & deallocate itself prematurely.  The
4097  * call is not atomic; no spinlocks may be held.
4098  */
4099 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4100 {
4101         unsigned long flags;
4102         int ret = 0;
4103         migration_req_t req;
4104         runqueue_t *rq;
4105
4106         rq = task_rq_lock(p, &flags);
4107         if (!cpus_intersects(new_mask, cpu_online_map)) {
4108                 ret = -EINVAL;
4109                 goto out;
4110         }
4111
4112         p->cpus_allowed = new_mask;
4113         /* Can the task run on the task's current CPU? If so, we're done */
4114         if (cpu_isset(task_cpu(p), new_mask))
4115                 goto out;
4116
4117         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4118                 /* Need help from migration thread: drop lock and wait. */
4119                 task_rq_unlock(rq, &flags);
4120                 wake_up_process(rq->migration_thread);
4121                 wait_for_completion(&req.done);
4122                 tlb_migrate_finish(p->mm);
4123                 return 0;
4124         }
4125 out:
4126         task_rq_unlock(rq, &flags);
4127         return ret;
4128 }
4129
4130 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4131
4132 /*
4133  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4134  * this because either it can't run here any more (set_cpus_allowed()
4135  * away from this CPU, or CPU going down), or because we're
4136  * attempting to rebalance this task on exec (sched_exec).
4137  *
4138  * So we race with normal scheduler movements, but that's OK, as long
4139  * as the task is no longer on this CPU.
4140  */
4141 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4142 {
4143         runqueue_t *rq_dest, *rq_src;
4144
4145         if (unlikely(cpu_is_offline(dest_cpu)))
4146                 return;
4147
4148         rq_src = cpu_rq(src_cpu);
4149         rq_dest = cpu_rq(dest_cpu);
4150
4151         double_rq_lock(rq_src, rq_dest);
4152         /* Already moved. */
4153         if (task_cpu(p) != src_cpu)
4154                 goto out;
4155         /* Affinity changed (again). */
4156         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4157                 goto out;
4158
4159         set_task_cpu(p, dest_cpu);
4160         if (p->array) {
4161                 /*
4162                  * Sync timestamp with rq_dest's before activating.
4163                  * The same thing could be achieved by doing this step
4164                  * afterwards, and pretending it was a local activate.
4165                  * This way is cleaner and logically correct.
4166                  */
4167                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4168                                 + rq_dest->timestamp_last_tick;
4169                 deactivate_task(p, rq_src);
4170                 activate_task(p, rq_dest, 0);
4171                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4172                         resched_task(rq_dest->curr);
4173         }
4174
4175 out:
4176         double_rq_unlock(rq_src, rq_dest);
4177 }
4178
4179 /*
4180  * migration_thread - this is a highprio system thread that performs
4181  * thread migration by bumping thread off CPU then 'pushing' onto
4182  * another runqueue.
4183  */
4184 static int migration_thread(void * data)
4185 {
4186         runqueue_t *rq;
4187         int cpu = (long)data;
4188
4189         rq = cpu_rq(cpu);
4190         BUG_ON(rq->migration_thread != current);
4191
4192         set_current_state(TASK_INTERRUPTIBLE);
4193         while (!kthread_should_stop()) {
4194                 struct list_head *head;
4195                 migration_req_t *req;
4196
4197                 if (current->flags & PF_FREEZE)
4198                         refrigerator(PF_FREEZE);
4199
4200                 spin_lock_irq(&rq->lock);
4201
4202                 if (cpu_is_offline(cpu)) {
4203                         spin_unlock_irq(&rq->lock);
4204                         goto wait_to_die;
4205                 }
4206
4207                 if (rq->active_balance) {
4208                         active_load_balance(rq, cpu);
4209                         rq->active_balance = 0;
4210                 }
4211
4212                 head = &rq->migration_queue;
4213
4214                 if (list_empty(head)) {
4215                         spin_unlock_irq(&rq->lock);
4216                         schedule();
4217                         set_current_state(TASK_INTERRUPTIBLE);
4218                         continue;
4219                 }
4220                 req = list_entry(head->next, migration_req_t, list);
4221                 list_del_init(head->next);
4222
4223                 if (req->type == REQ_MOVE_TASK) {
4224                         spin_unlock(&rq->lock);
4225                         __migrate_task(req->task, cpu, req->dest_cpu);
4226                         local_irq_enable();
4227                 } else if (req->type == REQ_SET_DOMAIN) {
4228                         rq->sd = req->sd;
4229                         spin_unlock_irq(&rq->lock);
4230                 } else {
4231                         spin_unlock_irq(&rq->lock);
4232                         WARN_ON(1);
4233                 }
4234
4235                 complete(&req->done);
4236         }
4237         __set_current_state(TASK_RUNNING);
4238         return 0;
4239
4240 wait_to_die:
4241         /* Wait for kthread_stop */
4242         set_current_state(TASK_INTERRUPTIBLE);
4243         while (!kthread_should_stop()) {
4244                 schedule();
4245                 set_current_state(TASK_INTERRUPTIBLE);
4246         }
4247         __set_current_state(TASK_RUNNING);
4248         return 0;
4249 }
4250
4251 #ifdef CONFIG_HOTPLUG_CPU
4252 /* Figure out where task on dead CPU should go, use force if neccessary. */
4253 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4254 {
4255         int dest_cpu;
4256         cpumask_t mask;
4257
4258         /* On same node? */
4259         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4260         cpus_and(mask, mask, tsk->cpus_allowed);
4261         dest_cpu = any_online_cpu(mask);
4262
4263         /* On any allowed CPU? */
4264         if (dest_cpu == NR_CPUS)
4265                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4266
4267         /* No more Mr. Nice Guy. */
4268         if (dest_cpu == NR_CPUS) {
4269                 cpus_setall(tsk->cpus_allowed);
4270                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4271
4272                 /*
4273                  * Don't tell them about moving exiting tasks or
4274                  * kernel threads (both mm NULL), since they never
4275                  * leave kernel.
4276                  */
4277                 if (tsk->mm && printk_ratelimit())
4278                         printk(KERN_INFO "process %d (%s) no "
4279                                "longer affine to cpu%d\n",
4280                                tsk->pid, tsk->comm, dead_cpu);
4281         }
4282         __migrate_task(tsk, dead_cpu, dest_cpu);
4283 }
4284
4285 /*
4286  * While a dead CPU has no uninterruptible tasks queued at this point,
4287  * it might still have a nonzero ->nr_uninterruptible counter, because
4288  * for performance reasons the counter is not stricly tracking tasks to
4289  * their home CPUs. So we just add the counter to another CPU's counter,
4290  * to keep the global sum constant after CPU-down:
4291  */
4292 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4293 {
4294         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4295         unsigned long flags;
4296
4297         local_irq_save(flags);
4298         double_rq_lock(rq_src, rq_dest);
4299         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4300         rq_src->nr_uninterruptible = 0;
4301         double_rq_unlock(rq_src, rq_dest);
4302         local_irq_restore(flags);
4303 }
4304
4305 /* Run through task list and migrate tasks from the dead cpu. */
4306 static void migrate_live_tasks(int src_cpu)
4307 {
4308         struct task_struct *tsk, *t;
4309
4310         write_lock_irq(&tasklist_lock);
4311
4312         do_each_thread(t, tsk) {
4313                 if (tsk == current)
4314                         continue;
4315
4316                 if (task_cpu(tsk) == src_cpu)
4317                         move_task_off_dead_cpu(src_cpu, tsk);
4318         } while_each_thread(t, tsk);
4319
4320         write_unlock_irq(&tasklist_lock);
4321 }
4322
4323 /* Schedules idle task to be the next runnable task on current CPU.
4324  * It does so by boosting its priority to highest possible and adding it to
4325  * the _front_ of runqueue. Used by CPU offline code.
4326  */
4327 void sched_idle_next(void)
4328 {
4329         int cpu = smp_processor_id();
4330         runqueue_t *rq = this_rq();
4331         struct task_struct *p = rq->idle;
4332         unsigned long flags;
4333
4334         /* cpu has to be offline */
4335         BUG_ON(cpu_online(cpu));
4336
4337         /* Strictly not necessary since rest of the CPUs are stopped by now
4338          * and interrupts disabled on current cpu.
4339          */
4340         spin_lock_irqsave(&rq->lock, flags);
4341
4342         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4343         /* Add idle task to _front_ of it's priority queue */
4344         __activate_idle_task(p, rq);
4345
4346         spin_unlock_irqrestore(&rq->lock, flags);
4347 }
4348
4349 /* Ensures that the idle task is using init_mm right before its cpu goes
4350  * offline.
4351  */
4352 void idle_task_exit(void)
4353 {
4354         struct mm_struct *mm = current->active_mm;
4355
4356         BUG_ON(cpu_online(smp_processor_id()));
4357
4358         if (mm != &init_mm)
4359                 switch_mm(mm, &init_mm, current);
4360         mmdrop(mm);
4361 }
4362
4363 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4364 {
4365         struct runqueue *rq = cpu_rq(dead_cpu);
4366
4367         /* Must be exiting, otherwise would be on tasklist. */
4368         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4369
4370         /* Cannot have done final schedule yet: would have vanished. */
4371         BUG_ON(tsk->flags & PF_DEAD);
4372
4373         get_task_struct(tsk);
4374
4375         /*
4376          * Drop lock around migration; if someone else moves it,
4377          * that's OK.  No task can be added to this CPU, so iteration is
4378          * fine.
4379          */
4380         spin_unlock_irq(&rq->lock);
4381         move_task_off_dead_cpu(dead_cpu, tsk);
4382         spin_lock_irq(&rq->lock);
4383
4384         put_task_struct(tsk);
4385 }
4386
4387 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4388 static void migrate_dead_tasks(unsigned int dead_cpu)
4389 {
4390         unsigned arr, i;
4391         struct runqueue *rq = cpu_rq(dead_cpu);
4392
4393         for (arr = 0; arr < 2; arr++) {
4394                 for (i = 0; i < MAX_PRIO; i++) {
4395                         struct list_head *list = &rq->arrays[arr].queue[i];
4396                         while (!list_empty(list))
4397                                 migrate_dead(dead_cpu,
4398                                              list_entry(list->next, task_t,
4399                                                         run_list));
4400                 }
4401         }
4402 }
4403 #endif /* CONFIG_HOTPLUG_CPU */
4404
4405 /*
4406  * migration_call - callback that gets triggered when a CPU is added.
4407  * Here we can start up the necessary migration thread for the new CPU.
4408  */
4409 static int migration_call(struct notifier_block *nfb, unsigned long action,
4410                           void *hcpu)
4411 {
4412         int cpu = (long)hcpu;
4413         struct task_struct *p;
4414         struct runqueue *rq;
4415         unsigned long flags;
4416
4417         switch (action) {
4418         case CPU_UP_PREPARE:
4419                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4420                 if (IS_ERR(p))
4421                         return NOTIFY_BAD;
4422                 p->flags |= PF_NOFREEZE;
4423                 kthread_bind(p, cpu);
4424                 /* Must be high prio: stop_machine expects to yield to it. */
4425                 rq = task_rq_lock(p, &flags);
4426                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4427                 task_rq_unlock(rq, &flags);
4428                 cpu_rq(cpu)->migration_thread = p;
4429                 break;
4430         case CPU_ONLINE:
4431                 /* Strictly unneccessary, as first user will wake it. */
4432                 wake_up_process(cpu_rq(cpu)->migration_thread);
4433                 break;
4434 #ifdef CONFIG_HOTPLUG_CPU
4435         case CPU_UP_CANCELED:
4436                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4437                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4438                 kthread_stop(cpu_rq(cpu)->migration_thread);
4439                 cpu_rq(cpu)->migration_thread = NULL;
4440                 break;
4441         case CPU_DEAD:
4442                 migrate_live_tasks(cpu);
4443                 rq = cpu_rq(cpu);
4444                 kthread_stop(rq->migration_thread);
4445                 rq->migration_thread = NULL;
4446                 /* Idle task back to normal (off runqueue, low prio) */
4447                 rq = task_rq_lock(rq->idle, &flags);
4448                 deactivate_task(rq->idle, rq);
4449                 rq->idle->static_prio = MAX_PRIO;
4450                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4451                 migrate_dead_tasks(cpu);
4452                 task_rq_unlock(rq, &flags);
4453                 migrate_nr_uninterruptible(rq);
4454                 BUG_ON(rq->nr_running != 0);
4455
4456                 /* No need to migrate the tasks: it was best-effort if
4457                  * they didn't do lock_cpu_hotplug().  Just wake up
4458                  * the requestors. */
4459                 spin_lock_irq(&rq->lock);
4460                 while (!list_empty(&rq->migration_queue)) {
4461                         migration_req_t *req;
4462                         req = list_entry(rq->migration_queue.next,
4463                                          migration_req_t, list);
4464                         BUG_ON(req->type != REQ_MOVE_TASK);
4465                         list_del_init(&req->list);
4466                         complete(&req->done);
4467                 }
4468                 spin_unlock_irq(&rq->lock);
4469                 break;
4470 #endif
4471         }
4472         return NOTIFY_OK;
4473 }
4474
4475 /* Register at highest priority so that task migration (migrate_all_tasks)
4476  * happens before everything else.
4477  */
4478 static struct notifier_block __devinitdata migration_notifier = {
4479         .notifier_call = migration_call,
4480         .priority = 10
4481 };
4482
4483 int __init migration_init(void)
4484 {
4485         void *cpu = (void *)(long)smp_processor_id();
4486         /* Start one for boot CPU. */
4487         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4488         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4489         register_cpu_notifier(&migration_notifier);
4490         return 0;
4491 }
4492 #endif
4493
4494 #ifdef CONFIG_SMP
4495 #define SCHED_DOMAIN_DEBUG
4496 #ifdef SCHED_DOMAIN_DEBUG
4497 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4498 {
4499         int level = 0;
4500
4501         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4502
4503         do {
4504                 int i;
4505                 char str[NR_CPUS];
4506                 struct sched_group *group = sd->groups;
4507                 cpumask_t groupmask;
4508
4509                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4510                 cpus_clear(groupmask);
4511
4512                 printk(KERN_DEBUG);
4513                 for (i = 0; i < level + 1; i++)
4514                         printk(" ");
4515                 printk("domain %d: ", level);
4516
4517                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4518                         printk("does not load-balance\n");
4519                         if (sd->parent)
4520                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4521                         break;
4522                 }
4523
4524                 printk("span %s\n", str);
4525
4526                 if (!cpu_isset(cpu, sd->span))
4527                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4528                 if (!cpu_isset(cpu, group->cpumask))
4529                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4530
4531                 printk(KERN_DEBUG);
4532                 for (i = 0; i < level + 2; i++)
4533                         printk(" ");
4534                 printk("groups:");
4535                 do {
4536                         if (!group) {
4537                                 printk("\n");
4538                                 printk(KERN_ERR "ERROR: group is NULL\n");
4539                                 break;
4540                         }
4541
4542                         if (!group->cpu_power) {
4543                                 printk("\n");
4544                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4545                         }
4546
4547                         if (!cpus_weight(group->cpumask)) {
4548                                 printk("\n");
4549                                 printk(KERN_ERR "ERROR: empty group\n");
4550                         }
4551
4552                         if (cpus_intersects(groupmask, group->cpumask)) {
4553                                 printk("\n");
4554                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4555                         }
4556
4557                         cpus_or(groupmask, groupmask, group->cpumask);
4558
4559                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4560                         printk(" %s", str);
4561
4562                         group = group->next;
4563                 } while (group != sd->groups);
4564                 printk("\n");
4565
4566                 if (!cpus_equal(sd->span, groupmask))
4567                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4568
4569                 level++;
4570                 sd = sd->parent;
4571
4572                 if (sd) {
4573                         if (!cpus_subset(groupmask, sd->span))
4574                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4575                 }
4576
4577         } while (sd);
4578 }
4579 #else
4580 #define sched_domain_debug(sd, cpu) {}
4581 #endif
4582
4583 /*
4584  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4585  * hold the hotplug lock.
4586  */
4587 void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4588 {
4589         migration_req_t req;
4590         unsigned long flags;
4591         runqueue_t *rq = cpu_rq(cpu);
4592         int local = 1;
4593
4594         sched_domain_debug(sd, cpu);
4595
4596         spin_lock_irqsave(&rq->lock, flags);
4597
4598         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4599                 rq->sd = sd;
4600         } else {
4601                 init_completion(&req.done);
4602                 req.type = REQ_SET_DOMAIN;
4603                 req.sd = sd;
4604                 list_add(&req.list, &rq->migration_queue);
4605                 local = 0;
4606         }
4607
4608         spin_unlock_irqrestore(&rq->lock, flags);
4609
4610         if (!local) {
4611                 wake_up_process(rq->migration_thread);
4612                 wait_for_completion(&req.done);
4613         }
4614 }
4615
4616 /* cpus with isolated domains */
4617 cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4618
4619 /* Setup the mask of cpus configured for isolated domains */
4620 static int __init isolated_cpu_setup(char *str)
4621 {
4622         int ints[NR_CPUS], i;
4623
4624         str = get_options(str, ARRAY_SIZE(ints), ints);
4625         cpus_clear(cpu_isolated_map);
4626         for (i = 1; i <= ints[0]; i++)
4627                 if (ints[i] < NR_CPUS)
4628                         cpu_set(ints[i], cpu_isolated_map);
4629         return 1;
4630 }
4631
4632 __setup ("isolcpus=", isolated_cpu_setup);
4633
4634 /*
4635  * init_sched_build_groups takes an array of groups, the cpumask we wish
4636  * to span, and a pointer to a function which identifies what group a CPU
4637  * belongs to. The return value of group_fn must be a valid index into the
4638  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4639  * keep track of groups covered with a cpumask_t).
4640  *
4641  * init_sched_build_groups will build a circular linked list of the groups
4642  * covered by the given span, and will set each group's ->cpumask correctly,
4643  * and ->cpu_power to 0.
4644  */
4645 void __devinit init_sched_build_groups(struct sched_group groups[],
4646                         cpumask_t span, int (*group_fn)(int cpu))
4647 {
4648         struct sched_group *first = NULL, *last = NULL;
4649         cpumask_t covered = CPU_MASK_NONE;
4650         int i;
4651
4652         for_each_cpu_mask(i, span) {
4653                 int group = group_fn(i);
4654                 struct sched_group *sg = &groups[group];
4655                 int j;
4656
4657                 if (cpu_isset(i, covered))
4658                         continue;
4659
4660                 sg->cpumask = CPU_MASK_NONE;
4661                 sg->cpu_power = 0;
4662
4663                 for_each_cpu_mask(j, span) {
4664                         if (group_fn(j) != group)
4665                                 continue;
4666
4667                         cpu_set(j, covered);
4668                         cpu_set(j, sg->cpumask);
4669                 }
4670                 if (!first)
4671                         first = sg;
4672                 if (last)
4673                         last->next = sg;
4674                 last = sg;
4675         }
4676         last->next = first;
4677 }
4678
4679
4680 #ifdef ARCH_HAS_SCHED_DOMAIN
4681 extern void __devinit arch_init_sched_domains(void);
4682 extern void __devinit arch_destroy_sched_domains(void);
4683 #else
4684 #ifdef CONFIG_SCHED_SMT
4685 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4686 static struct sched_group sched_group_cpus[NR_CPUS];
4687 static int __devinit cpu_to_cpu_group(int cpu)
4688 {
4689         return cpu;
4690 }
4691 #endif
4692
4693 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4694 static struct sched_group sched_group_phys[NR_CPUS];
4695 static int __devinit cpu_to_phys_group(int cpu)
4696 {
4697 #ifdef CONFIG_SCHED_SMT
4698         return first_cpu(cpu_sibling_map[cpu]);
4699 #else
4700         return cpu;
4701 #endif
4702 }
4703
4704 #ifdef CONFIG_NUMA
4705
4706 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4707 static struct sched_group sched_group_nodes[MAX_NUMNODES];
4708 static int __devinit cpu_to_node_group(int cpu)
4709 {
4710         return cpu_to_node(cpu);
4711 }
4712 #endif
4713
4714 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4715 /*
4716  * The domains setup code relies on siblings not spanning
4717  * multiple nodes. Make sure the architecture has a proper
4718  * siblings map:
4719  */
4720 static void check_sibling_maps(void)
4721 {
4722         int i, j;
4723
4724         for_each_online_cpu(i) {
4725                 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4726                         if (cpu_to_node(i) != cpu_to_node(j)) {
4727                                 printk(KERN_INFO "warning: CPU %d siblings map "
4728                                         "to different node - isolating "
4729                                         "them.\n", i);
4730                                 cpu_sibling_map[i] = cpumask_of_cpu(i);
4731                                 break;
4732                         }
4733                 }
4734         }
4735 }
4736 #endif
4737
4738 /*
4739  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
4740  */
4741 static void __devinit arch_init_sched_domains(void)
4742 {
4743         int i;
4744         cpumask_t cpu_default_map;
4745
4746 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4747         check_sibling_maps();
4748 #endif
4749         /*
4750          * Setup mask for cpus without special case scheduling requirements.
4751          * For now this just excludes isolated cpus, but could be used to
4752          * exclude other special cases in the future.
4753          */
4754         cpus_complement(cpu_default_map, cpu_isolated_map);
4755         cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4756
4757         /*
4758          * Set up domains. Isolated domains just stay on the dummy domain.
4759          */
4760         for_each_cpu_mask(i, cpu_default_map) {
4761                 int group;
4762                 struct sched_domain *sd = NULL, *p;
4763                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4764
4765                 cpus_and(nodemask, nodemask, cpu_default_map);
4766
4767 #ifdef CONFIG_NUMA
4768                 sd = &per_cpu(node_domains, i);
4769                 group = cpu_to_node_group(i);
4770                 *sd = SD_NODE_INIT;
4771                 sd->span = cpu_default_map;
4772                 sd->groups = &sched_group_nodes[group];
4773 #endif
4774
4775                 p = sd;
4776                 sd = &per_cpu(phys_domains, i);
4777                 group = cpu_to_phys_group(i);
4778                 *sd = SD_CPU_INIT;
4779                 sd->span = nodemask;
4780                 sd->parent = p;
4781                 sd->groups = &sched_group_phys[group];
4782
4783 #ifdef CONFIG_SCHED_SMT
4784                 p = sd;
4785                 sd = &per_cpu(cpu_domains, i);
4786                 group = cpu_to_cpu_group(i);
4787                 *sd = SD_SIBLING_INIT;
4788                 sd->span = cpu_sibling_map[i];
4789                 cpus_and(sd->span, sd->span, cpu_default_map);
4790                 sd->parent = p;
4791                 sd->groups = &sched_group_cpus[group];
4792 #endif
4793         }
4794
4795 #ifdef CONFIG_SCHED_SMT
4796         /* Set up CPU (sibling) groups */
4797         for_each_online_cpu(i) {
4798                 cpumask_t this_sibling_map = cpu_sibling_map[i];
4799                 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4800                 if (i != first_cpu(this_sibling_map))
4801                         continue;
4802
4803                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4804                                                 &cpu_to_cpu_group);
4805         }
4806 #endif
4807
4808         /* Set up physical groups */
4809         for (i = 0; i < MAX_NUMNODES; i++) {
4810                 cpumask_t nodemask = node_to_cpumask(i);
4811
4812                 cpus_and(nodemask, nodemask, cpu_default_map);
4813                 if (cpus_empty(nodemask))
4814                         continue;
4815
4816                 init_sched_build_groups(sched_group_phys, nodemask,
4817                                                 &cpu_to_phys_group);
4818         }
4819
4820 #ifdef CONFIG_NUMA
4821         /* Set up node groups */
4822         init_sched_build_groups(sched_group_nodes, cpu_default_map,
4823                                         &cpu_to_node_group);
4824 #endif
4825
4826         /* Calculate CPU power for physical packages and nodes */
4827         for_each_cpu_mask(i, cpu_default_map) {
4828                 int power;
4829                 struct sched_domain *sd;
4830 #ifdef CONFIG_SCHED_SMT
4831                 sd = &per_cpu(cpu_domains, i);
4832                 power = SCHED_LOAD_SCALE;
4833                 sd->groups->cpu_power = power;
4834 #endif
4835
4836                 sd = &per_cpu(phys_domains, i);
4837                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4838                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
4839                 sd->groups->cpu_power = power;
4840
4841 #ifdef CONFIG_NUMA
4842                 if (i == first_cpu(sd->groups->cpumask)) {
4843                         /* Only add "power" once for each physical package. */
4844                         sd = &per_cpu(node_domains, i);
4845                         sd->groups->cpu_power += power;
4846                 }
4847 #endif
4848         }
4849
4850         /* Attach the domains */
4851         for_each_online_cpu(i) {
4852                 struct sched_domain *sd;
4853 #ifdef CONFIG_SCHED_SMT
4854                 sd = &per_cpu(cpu_domains, i);
4855 #else
4856                 sd = &per_cpu(phys_domains, i);
4857 #endif
4858                 cpu_attach_domain(sd, i);
4859         }
4860 }
4861
4862 #ifdef CONFIG_HOTPLUG_CPU
4863 static void __devinit arch_destroy_sched_domains(void)
4864 {
4865         /* Do nothing: everything is statically allocated. */
4866 }
4867 #endif
4868
4869 #endif /* ARCH_HAS_SCHED_DOMAIN */
4870
4871 /*
4872  * Initial dummy domain for early boot and for hotplug cpu. Being static,
4873  * it is initialized to zero, so all balancing flags are cleared which is
4874  * what we want.
4875  */
4876 static struct sched_domain sched_domain_dummy;
4877
4878 #ifdef CONFIG_HOTPLUG_CPU
4879 /*
4880  * Force a reinitialization of the sched domains hierarchy.  The domains
4881  * and groups cannot be updated in place without racing with the balancing
4882  * code, so we temporarily attach all running cpus to a "dummy" domain
4883  * which will prevent rebalancing while the sched domains are recalculated.
4884  */
4885 static int update_sched_domains(struct notifier_block *nfb,
4886                                 unsigned long action, void *hcpu)
4887 {
4888         int i;
4889
4890         switch (action) {
4891         case CPU_UP_PREPARE:
4892         case CPU_DOWN_PREPARE:
4893                 for_each_online_cpu(i)
4894                         cpu_attach_domain(&sched_domain_dummy, i);
4895                 arch_destroy_sched_domains();
4896                 return NOTIFY_OK;
4897
4898         case CPU_UP_CANCELED:
4899         case CPU_DOWN_FAILED:
4900         case CPU_ONLINE:
4901         case CPU_DEAD:
4902                 /*
4903                  * Fall through and re-initialise the domains.
4904                  */
4905                 break;
4906         default:
4907                 return NOTIFY_DONE;
4908         }
4909
4910         /* The hotplug lock is already held by cpu_up/cpu_down */
4911         arch_init_sched_domains();
4912
4913         return NOTIFY_OK;
4914 }
4915 #endif
4916
4917 void __init sched_init_smp(void)
4918 {
4919         lock_cpu_hotplug();
4920         arch_init_sched_domains();
4921         unlock_cpu_hotplug();
4922         /* XXX: Theoretical race here - CPU may be hotplugged now */
4923         hotcpu_notifier(update_sched_domains, 0);
4924 }
4925 #else
4926 void __init sched_init_smp(void)
4927 {
4928 }
4929 #endif /* CONFIG_SMP */
4930
4931 int in_sched_functions(unsigned long addr)
4932 {
4933         /* Linker adds these: start and end of __sched functions */
4934         extern char __sched_text_start[], __sched_text_end[];
4935         return in_lock_functions(addr) ||
4936                 (addr >= (unsigned long)__sched_text_start
4937                 && addr < (unsigned long)__sched_text_end);
4938 }
4939
4940 void __init sched_init(void)
4941 {
4942         runqueue_t *rq;
4943         int i, j, k;
4944
4945         for (i = 0; i < NR_CPUS; i++) {
4946                 prio_array_t *array;
4947
4948                 rq = cpu_rq(i);
4949                 spin_lock_init(&rq->lock);
4950                 rq->active = rq->arrays;
4951                 rq->expired = rq->arrays + 1;
4952                 rq->best_expired_prio = MAX_PRIO;
4953
4954 #ifdef CONFIG_SMP
4955                 rq->sd = &sched_domain_dummy;
4956                 rq->cpu_load = 0;
4957                 rq->active_balance = 0;
4958                 rq->push_cpu = 0;
4959                 rq->migration_thread = NULL;
4960                 INIT_LIST_HEAD(&rq->migration_queue);
4961 #endif
4962                 atomic_set(&rq->nr_iowait, 0);
4963
4964                 for (j = 0; j < 2; j++) {
4965                         array = rq->arrays + j;
4966                         for (k = 0; k < MAX_PRIO; k++) {
4967                                 INIT_LIST_HEAD(array->queue + k);
4968                                 __clear_bit(k, array->bitmap);
4969                         }
4970                         // delimiter for bitsearch
4971                         __set_bit(MAX_PRIO, array->bitmap);
4972                 }
4973         }
4974
4975         /*
4976          * The boot idle thread does lazy MMU switching as well:
4977          */
4978         atomic_inc(&init_mm.mm_count);
4979         enter_lazy_tlb(&init_mm, current);
4980
4981         /*
4982          * Make us the idle thread. Technically, schedule() should not be
4983          * called from this thread, however somewhere below it might be,
4984          * but because we are the idle thread, we just pick up running again
4985          * when this runqueue becomes "idle".
4986          */
4987         init_idle(current, smp_processor_id());
4988 }
4989
4990 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4991 void __might_sleep(char *file, int line)
4992 {
4993 #if defined(in_atomic)
4994         static unsigned long prev_jiffy;        /* ratelimiting */
4995
4996         if ((in_atomic() || irqs_disabled()) &&
4997             system_state == SYSTEM_RUNNING && !oops_in_progress) {
4998                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
4999                         return;
5000                 prev_jiffy = jiffies;
5001                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5002                                 " context at %s:%d\n", file, line);
5003                 printk("in_atomic():%d, irqs_disabled():%d\n",
5004                         in_atomic(), irqs_disabled());
5005                 dump_stack();
5006         }
5007 #endif
5008 }
5009 EXPORT_SYMBOL(__might_sleep);
5010 #endif
5011
5012 #ifdef CONFIG_MAGIC_SYSRQ
5013 void normalize_rt_tasks(void)
5014 {
5015         struct task_struct *p;
5016         prio_array_t *array;
5017         unsigned long flags;
5018         runqueue_t *rq;
5019
5020         read_lock_irq(&tasklist_lock);
5021         for_each_process (p) {
5022                 if (!rt_task(p))
5023                         continue;
5024
5025                 rq = task_rq_lock(p, &flags);
5026
5027                 array = p->array;
5028                 if (array)
5029                         deactivate_task(p, task_rq(p));
5030                 __setscheduler(p, SCHED_NORMAL, 0);
5031                 if (array) {
5032                         __activate_task(p, task_rq(p));
5033                         resched_task(rq->curr);
5034                 }
5035
5036                 task_rq_unlock(rq, &flags);
5037         }
5038         read_unlock_irq(&tasklist_lock);
5039 }
5040
5041 #endif /* CONFIG_MAGIC_SYSRQ */