]> Pileus Git - ~andy/linux/blob - kernel/sched/rt.c
sched,rt: fix isolated CPUs leaving root_task_group indefinitely throttled
[~andy/linux] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11
12 struct rt_bandwidth def_rt_bandwidth;
13
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16         struct rt_bandwidth *rt_b =
17                 container_of(timer, struct rt_bandwidth, rt_period_timer);
18         ktime_t now;
19         int overrun;
20         int idle = 0;
21
22         for (;;) {
23                 now = hrtimer_cb_get_time(timer);
24                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25
26                 if (!overrun)
27                         break;
28
29                 idle = do_sched_rt_period_timer(rt_b, overrun);
30         }
31
32         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37         rt_b->rt_period = ns_to_ktime(period);
38         rt_b->rt_runtime = runtime;
39
40         raw_spin_lock_init(&rt_b->rt_runtime_lock);
41
42         hrtimer_init(&rt_b->rt_period_timer,
43                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44         rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50                 return;
51
52         if (hrtimer_active(&rt_b->rt_period_timer))
53                 return;
54
55         raw_spin_lock(&rt_b->rt_runtime_lock);
56         start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57         raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62         struct rt_prio_array *array;
63         int i;
64
65         array = &rt_rq->active;
66         for (i = 0; i < MAX_RT_PRIO; i++) {
67                 INIT_LIST_HEAD(array->queue + i);
68                 __clear_bit(i, array->bitmap);
69         }
70         /* delimiter for bitsearch: */
71         __set_bit(MAX_RT_PRIO, array->bitmap);
72
73 #if defined CONFIG_SMP
74         rt_rq->highest_prio.curr = MAX_RT_PRIO;
75         rt_rq->highest_prio.next = MAX_RT_PRIO;
76         rt_rq->rt_nr_migratory = 0;
77         rt_rq->overloaded = 0;
78         plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80
81         rt_rq->rt_time = 0;
82         rt_rq->rt_throttled = 0;
83         rt_rq->rt_runtime = 0;
84         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90         hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100         return container_of(rt_se, struct task_struct, rt);
101 }
102
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105         return rt_rq->rq;
106 }
107
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110         return rt_se->rt_rq;
111 }
112
113 void free_rt_sched_group(struct task_group *tg)
114 {
115         int i;
116
117         if (tg->rt_se)
118                 destroy_rt_bandwidth(&tg->rt_bandwidth);
119
120         for_each_possible_cpu(i) {
121                 if (tg->rt_rq)
122                         kfree(tg->rt_rq[i]);
123                 if (tg->rt_se)
124                         kfree(tg->rt_se[i]);
125         }
126
127         kfree(tg->rt_rq);
128         kfree(tg->rt_se);
129 }
130
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132                 struct sched_rt_entity *rt_se, int cpu,
133                 struct sched_rt_entity *parent)
134 {
135         struct rq *rq = cpu_rq(cpu);
136
137         rt_rq->highest_prio.curr = MAX_RT_PRIO;
138         rt_rq->rt_nr_boosted = 0;
139         rt_rq->rq = rq;
140         rt_rq->tg = tg;
141
142         tg->rt_rq[cpu] = rt_rq;
143         tg->rt_se[cpu] = rt_se;
144
145         if (!rt_se)
146                 return;
147
148         if (!parent)
149                 rt_se->rt_rq = &rq->rt;
150         else
151                 rt_se->rt_rq = parent->my_q;
152
153         rt_se->my_q = rt_rq;
154         rt_se->parent = parent;
155         INIT_LIST_HEAD(&rt_se->run_list);
156 }
157
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160         struct rt_rq *rt_rq;
161         struct sched_rt_entity *rt_se;
162         int i;
163
164         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165         if (!tg->rt_rq)
166                 goto err;
167         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168         if (!tg->rt_se)
169                 goto err;
170
171         init_rt_bandwidth(&tg->rt_bandwidth,
172                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173
174         for_each_possible_cpu(i) {
175                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176                                      GFP_KERNEL, cpu_to_node(i));
177                 if (!rt_rq)
178                         goto err;
179
180                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181                                      GFP_KERNEL, cpu_to_node(i));
182                 if (!rt_se)
183                         goto err_free_rq;
184
185                 init_rt_rq(rt_rq, cpu_rq(i));
186                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188         }
189
190         return 1;
191
192 err_free_rq:
193         kfree(rt_rq);
194 err:
195         return 0;
196 }
197
198 #else /* CONFIG_RT_GROUP_SCHED */
199
200 #define rt_entity_is_task(rt_se) (1)
201
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204         return container_of(rt_se, struct task_struct, rt);
205 }
206
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209         return container_of(rt_rq, struct rq, rt);
210 }
211
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214         struct task_struct *p = rt_task_of(rt_se);
215         struct rq *rq = task_rq(p);
216
217         return &rq->rt;
218 }
219
220 void free_rt_sched_group(struct task_group *tg) { }
221
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224         return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227
228 #ifdef CONFIG_SMP
229
230 static inline int rt_overloaded(struct rq *rq)
231 {
232         return atomic_read(&rq->rd->rto_count);
233 }
234
235 static inline void rt_set_overload(struct rq *rq)
236 {
237         if (!rq->online)
238                 return;
239
240         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241         /*
242          * Make sure the mask is visible before we set
243          * the overload count. That is checked to determine
244          * if we should look at the mask. It would be a shame
245          * if we looked at the mask, but the mask was not
246          * updated yet.
247          */
248         wmb();
249         atomic_inc(&rq->rd->rto_count);
250 }
251
252 static inline void rt_clear_overload(struct rq *rq)
253 {
254         if (!rq->online)
255                 return;
256
257         /* the order here really doesn't matter */
258         atomic_dec(&rq->rd->rto_count);
259         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261
262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265                 if (!rt_rq->overloaded) {
266                         rt_set_overload(rq_of_rt_rq(rt_rq));
267                         rt_rq->overloaded = 1;
268                 }
269         } else if (rt_rq->overloaded) {
270                 rt_clear_overload(rq_of_rt_rq(rt_rq));
271                 rt_rq->overloaded = 0;
272         }
273 }
274
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277         struct task_struct *p;
278
279         if (!rt_entity_is_task(rt_se))
280                 return;
281
282         p = rt_task_of(rt_se);
283         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
284
285         rt_rq->rt_nr_total++;
286         if (p->nr_cpus_allowed > 1)
287                 rt_rq->rt_nr_migratory++;
288
289         update_rt_migration(rt_rq);
290 }
291
292 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
293 {
294         struct task_struct *p;
295
296         if (!rt_entity_is_task(rt_se))
297                 return;
298
299         p = rt_task_of(rt_se);
300         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
301
302         rt_rq->rt_nr_total--;
303         if (p->nr_cpus_allowed > 1)
304                 rt_rq->rt_nr_migratory--;
305
306         update_rt_migration(rt_rq);
307 }
308
309 static inline int has_pushable_tasks(struct rq *rq)
310 {
311         return !plist_head_empty(&rq->rt.pushable_tasks);
312 }
313
314 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
315 {
316         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
317         plist_node_init(&p->pushable_tasks, p->prio);
318         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
319
320         /* Update the highest prio pushable task */
321         if (p->prio < rq->rt.highest_prio.next)
322                 rq->rt.highest_prio.next = p->prio;
323 }
324
325 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
326 {
327         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
328
329         /* Update the new highest prio pushable task */
330         if (has_pushable_tasks(rq)) {
331                 p = plist_first_entry(&rq->rt.pushable_tasks,
332                                       struct task_struct, pushable_tasks);
333                 rq->rt.highest_prio.next = p->prio;
334         } else
335                 rq->rt.highest_prio.next = MAX_RT_PRIO;
336 }
337
338 #else
339
340 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
341 {
342 }
343
344 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
345 {
346 }
347
348 static inline
349 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
350 {
351 }
352
353 static inline
354 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
355 {
356 }
357
358 #endif /* CONFIG_SMP */
359
360 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
361 {
362         return !list_empty(&rt_se->run_list);
363 }
364
365 #ifdef CONFIG_RT_GROUP_SCHED
366
367 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
368 {
369         if (!rt_rq->tg)
370                 return RUNTIME_INF;
371
372         return rt_rq->rt_runtime;
373 }
374
375 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
376 {
377         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
378 }
379
380 typedef struct task_group *rt_rq_iter_t;
381
382 static inline struct task_group *next_task_group(struct task_group *tg)
383 {
384         do {
385                 tg = list_entry_rcu(tg->list.next,
386                         typeof(struct task_group), list);
387         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
388
389         if (&tg->list == &task_groups)
390                 tg = NULL;
391
392         return tg;
393 }
394
395 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
396         for (iter = container_of(&task_groups, typeof(*iter), list);    \
397                 (iter = next_task_group(iter)) &&                       \
398                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
399
400 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402         list_add_rcu(&rt_rq->leaf_rt_rq_list,
403                         &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
404 }
405
406 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
407 {
408         list_del_rcu(&rt_rq->leaf_rt_rq_list);
409 }
410
411 #define for_each_leaf_rt_rq(rt_rq, rq) \
412         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
413
414 #define for_each_sched_rt_entity(rt_se) \
415         for (; rt_se; rt_se = rt_se->parent)
416
417 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
418 {
419         return rt_se->my_q;
420 }
421
422 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
423 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
424
425 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
426 {
427         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
428         struct sched_rt_entity *rt_se;
429
430         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
431
432         rt_se = rt_rq->tg->rt_se[cpu];
433
434         if (rt_rq->rt_nr_running) {
435                 if (rt_se && !on_rt_rq(rt_se))
436                         enqueue_rt_entity(rt_se, false);
437                 if (rt_rq->highest_prio.curr < curr->prio)
438                         resched_task(curr);
439         }
440 }
441
442 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
443 {
444         struct sched_rt_entity *rt_se;
445         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
446
447         rt_se = rt_rq->tg->rt_se[cpu];
448
449         if (rt_se && on_rt_rq(rt_se))
450                 dequeue_rt_entity(rt_se);
451 }
452
453 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
454 {
455         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
456 }
457
458 static int rt_se_boosted(struct sched_rt_entity *rt_se)
459 {
460         struct rt_rq *rt_rq = group_rt_rq(rt_se);
461         struct task_struct *p;
462
463         if (rt_rq)
464                 return !!rt_rq->rt_nr_boosted;
465
466         p = rt_task_of(rt_se);
467         return p->prio != p->normal_prio;
468 }
469
470 #ifdef CONFIG_SMP
471 static inline const struct cpumask *sched_rt_period_mask(void)
472 {
473         return cpu_rq(smp_processor_id())->rd->span;
474 }
475 #else
476 static inline const struct cpumask *sched_rt_period_mask(void)
477 {
478         return cpu_online_mask;
479 }
480 #endif
481
482 static inline
483 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
484 {
485         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
486 }
487
488 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
489 {
490         return &rt_rq->tg->rt_bandwidth;
491 }
492
493 #else /* !CONFIG_RT_GROUP_SCHED */
494
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497         return rt_rq->rt_runtime;
498 }
499
500 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
501 {
502         return ktime_to_ns(def_rt_bandwidth.rt_period);
503 }
504
505 typedef struct rt_rq *rt_rq_iter_t;
506
507 #define for_each_rt_rq(rt_rq, iter, rq) \
508         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
509
510 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
511 {
512 }
513
514 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
515 {
516 }
517
518 #define for_each_leaf_rt_rq(rt_rq, rq) \
519         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
520
521 #define for_each_sched_rt_entity(rt_se) \
522         for (; rt_se; rt_se = NULL)
523
524 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
525 {
526         return NULL;
527 }
528
529 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
530 {
531         if (rt_rq->rt_nr_running)
532                 resched_task(rq_of_rt_rq(rt_rq)->curr);
533 }
534
535 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
536 {
537 }
538
539 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
540 {
541         return rt_rq->rt_throttled;
542 }
543
544 static inline const struct cpumask *sched_rt_period_mask(void)
545 {
546         return cpu_online_mask;
547 }
548
549 static inline
550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
551 {
552         return &cpu_rq(cpu)->rt;
553 }
554
555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
556 {
557         return &def_rt_bandwidth;
558 }
559
560 #endif /* CONFIG_RT_GROUP_SCHED */
561
562 #ifdef CONFIG_SMP
563 /*
564  * We ran out of runtime, see if we can borrow some from our neighbours.
565  */
566 static int do_balance_runtime(struct rt_rq *rt_rq)
567 {
568         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
569         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
570         int i, weight, more = 0;
571         u64 rt_period;
572
573         weight = cpumask_weight(rd->span);
574
575         raw_spin_lock(&rt_b->rt_runtime_lock);
576         rt_period = ktime_to_ns(rt_b->rt_period);
577         for_each_cpu(i, rd->span) {
578                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
579                 s64 diff;
580
581                 if (iter == rt_rq)
582                         continue;
583
584                 raw_spin_lock(&iter->rt_runtime_lock);
585                 /*
586                  * Either all rqs have inf runtime and there's nothing to steal
587                  * or __disable_runtime() below sets a specific rq to inf to
588                  * indicate its been disabled and disalow stealing.
589                  */
590                 if (iter->rt_runtime == RUNTIME_INF)
591                         goto next;
592
593                 /*
594                  * From runqueues with spare time, take 1/n part of their
595                  * spare time, but no more than our period.
596                  */
597                 diff = iter->rt_runtime - iter->rt_time;
598                 if (diff > 0) {
599                         diff = div_u64((u64)diff, weight);
600                         if (rt_rq->rt_runtime + diff > rt_period)
601                                 diff = rt_period - rt_rq->rt_runtime;
602                         iter->rt_runtime -= diff;
603                         rt_rq->rt_runtime += diff;
604                         more = 1;
605                         if (rt_rq->rt_runtime == rt_period) {
606                                 raw_spin_unlock(&iter->rt_runtime_lock);
607                                 break;
608                         }
609                 }
610 next:
611                 raw_spin_unlock(&iter->rt_runtime_lock);
612         }
613         raw_spin_unlock(&rt_b->rt_runtime_lock);
614
615         return more;
616 }
617
618 /*
619  * Ensure this RQ takes back all the runtime it lend to its neighbours.
620  */
621 static void __disable_runtime(struct rq *rq)
622 {
623         struct root_domain *rd = rq->rd;
624         rt_rq_iter_t iter;
625         struct rt_rq *rt_rq;
626
627         if (unlikely(!scheduler_running))
628                 return;
629
630         for_each_rt_rq(rt_rq, iter, rq) {
631                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
632                 s64 want;
633                 int i;
634
635                 raw_spin_lock(&rt_b->rt_runtime_lock);
636                 raw_spin_lock(&rt_rq->rt_runtime_lock);
637                 /*
638                  * Either we're all inf and nobody needs to borrow, or we're
639                  * already disabled and thus have nothing to do, or we have
640                  * exactly the right amount of runtime to take out.
641                  */
642                 if (rt_rq->rt_runtime == RUNTIME_INF ||
643                                 rt_rq->rt_runtime == rt_b->rt_runtime)
644                         goto balanced;
645                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
646
647                 /*
648                  * Calculate the difference between what we started out with
649                  * and what we current have, that's the amount of runtime
650                  * we lend and now have to reclaim.
651                  */
652                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
653
654                 /*
655                  * Greedy reclaim, take back as much as we can.
656                  */
657                 for_each_cpu(i, rd->span) {
658                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659                         s64 diff;
660
661                         /*
662                          * Can't reclaim from ourselves or disabled runqueues.
663                          */
664                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
665                                 continue;
666
667                         raw_spin_lock(&iter->rt_runtime_lock);
668                         if (want > 0) {
669                                 diff = min_t(s64, iter->rt_runtime, want);
670                                 iter->rt_runtime -= diff;
671                                 want -= diff;
672                         } else {
673                                 iter->rt_runtime -= want;
674                                 want -= want;
675                         }
676                         raw_spin_unlock(&iter->rt_runtime_lock);
677
678                         if (!want)
679                                 break;
680                 }
681
682                 raw_spin_lock(&rt_rq->rt_runtime_lock);
683                 /*
684                  * We cannot be left wanting - that would mean some runtime
685                  * leaked out of the system.
686                  */
687                 BUG_ON(want);
688 balanced:
689                 /*
690                  * Disable all the borrow logic by pretending we have inf
691                  * runtime - in which case borrowing doesn't make sense.
692                  */
693                 rt_rq->rt_runtime = RUNTIME_INF;
694                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
695                 raw_spin_unlock(&rt_b->rt_runtime_lock);
696         }
697 }
698
699 static void disable_runtime(struct rq *rq)
700 {
701         unsigned long flags;
702
703         raw_spin_lock_irqsave(&rq->lock, flags);
704         __disable_runtime(rq);
705         raw_spin_unlock_irqrestore(&rq->lock, flags);
706 }
707
708 static void __enable_runtime(struct rq *rq)
709 {
710         rt_rq_iter_t iter;
711         struct rt_rq *rt_rq;
712
713         if (unlikely(!scheduler_running))
714                 return;
715
716         /*
717          * Reset each runqueue's bandwidth settings
718          */
719         for_each_rt_rq(rt_rq, iter, rq) {
720                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
721
722                 raw_spin_lock(&rt_b->rt_runtime_lock);
723                 raw_spin_lock(&rt_rq->rt_runtime_lock);
724                 rt_rq->rt_runtime = rt_b->rt_runtime;
725                 rt_rq->rt_time = 0;
726                 rt_rq->rt_throttled = 0;
727                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
728                 raw_spin_unlock(&rt_b->rt_runtime_lock);
729         }
730 }
731
732 static void enable_runtime(struct rq *rq)
733 {
734         unsigned long flags;
735
736         raw_spin_lock_irqsave(&rq->lock, flags);
737         __enable_runtime(rq);
738         raw_spin_unlock_irqrestore(&rq->lock, flags);
739 }
740
741 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
742 {
743         int cpu = (int)(long)hcpu;
744
745         switch (action) {
746         case CPU_DOWN_PREPARE:
747         case CPU_DOWN_PREPARE_FROZEN:
748                 disable_runtime(cpu_rq(cpu));
749                 return NOTIFY_OK;
750
751         case CPU_DOWN_FAILED:
752         case CPU_DOWN_FAILED_FROZEN:
753         case CPU_ONLINE:
754         case CPU_ONLINE_FROZEN:
755                 enable_runtime(cpu_rq(cpu));
756                 return NOTIFY_OK;
757
758         default:
759                 return NOTIFY_DONE;
760         }
761 }
762
763 static int balance_runtime(struct rt_rq *rt_rq)
764 {
765         int more = 0;
766
767         if (!sched_feat(RT_RUNTIME_SHARE))
768                 return more;
769
770         if (rt_rq->rt_time > rt_rq->rt_runtime) {
771                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
772                 more = do_balance_runtime(rt_rq);
773                 raw_spin_lock(&rt_rq->rt_runtime_lock);
774         }
775
776         return more;
777 }
778 #else /* !CONFIG_SMP */
779 static inline int balance_runtime(struct rt_rq *rt_rq)
780 {
781         return 0;
782 }
783 #endif /* CONFIG_SMP */
784
785 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
786 {
787         int i, idle = 1, throttled = 0;
788         const struct cpumask *span;
789
790         span = sched_rt_period_mask();
791 #ifdef CONFIG_RT_GROUP_SCHED
792         /*
793          * FIXME: isolated CPUs should really leave the root task group,
794          * whether they are isolcpus or were isolated via cpusets, lest
795          * the timer run on a CPU which does not service all runqueues,
796          * potentially leaving other CPUs indefinitely throttled.  If
797          * isolation is really required, the user will turn the throttle
798          * off to kill the perturbations it causes anyway.  Meanwhile,
799          * this maintains functionality for boot and/or troubleshooting.
800          */
801         if (rt_b == &root_task_group.rt_bandwidth)
802                 span = cpu_online_mask;
803 #endif
804         for_each_cpu(i, span) {
805                 int enqueue = 0;
806                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
807                 struct rq *rq = rq_of_rt_rq(rt_rq);
808
809                 raw_spin_lock(&rq->lock);
810                 if (rt_rq->rt_time) {
811                         u64 runtime;
812
813                         raw_spin_lock(&rt_rq->rt_runtime_lock);
814                         if (rt_rq->rt_throttled)
815                                 balance_runtime(rt_rq);
816                         runtime = rt_rq->rt_runtime;
817                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
818                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
819                                 rt_rq->rt_throttled = 0;
820                                 enqueue = 1;
821
822                                 /*
823                                  * Force a clock update if the CPU was idle,
824                                  * lest wakeup -> unthrottle time accumulate.
825                                  */
826                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
827                                         rq->skip_clock_update = -1;
828                         }
829                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
830                                 idle = 0;
831                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
832                 } else if (rt_rq->rt_nr_running) {
833                         idle = 0;
834                         if (!rt_rq_throttled(rt_rq))
835                                 enqueue = 1;
836                 }
837                 if (rt_rq->rt_throttled)
838                         throttled = 1;
839
840                 if (enqueue)
841                         sched_rt_rq_enqueue(rt_rq);
842                 raw_spin_unlock(&rq->lock);
843         }
844
845         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
846                 return 1;
847
848         return idle;
849 }
850
851 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
852 {
853 #ifdef CONFIG_RT_GROUP_SCHED
854         struct rt_rq *rt_rq = group_rt_rq(rt_se);
855
856         if (rt_rq)
857                 return rt_rq->highest_prio.curr;
858 #endif
859
860         return rt_task_of(rt_se)->prio;
861 }
862
863 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
864 {
865         u64 runtime = sched_rt_runtime(rt_rq);
866
867         if (rt_rq->rt_throttled)
868                 return rt_rq_throttled(rt_rq);
869
870         if (runtime >= sched_rt_period(rt_rq))
871                 return 0;
872
873         balance_runtime(rt_rq);
874         runtime = sched_rt_runtime(rt_rq);
875         if (runtime == RUNTIME_INF)
876                 return 0;
877
878         if (rt_rq->rt_time > runtime) {
879                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
880
881                 /*
882                  * Don't actually throttle groups that have no runtime assigned
883                  * but accrue some time due to boosting.
884                  */
885                 if (likely(rt_b->rt_runtime)) {
886                         static bool once = false;
887
888                         rt_rq->rt_throttled = 1;
889
890                         if (!once) {
891                                 once = true;
892                                 printk_sched("sched: RT throttling activated\n");
893                         }
894                 } else {
895                         /*
896                          * In case we did anyway, make it go away,
897                          * replenishment is a joke, since it will replenish us
898                          * with exactly 0 ns.
899                          */
900                         rt_rq->rt_time = 0;
901                 }
902
903                 if (rt_rq_throttled(rt_rq)) {
904                         sched_rt_rq_dequeue(rt_rq);
905                         return 1;
906                 }
907         }
908
909         return 0;
910 }
911
912 /*
913  * Update the current task's runtime statistics. Skip current tasks that
914  * are not in our scheduling class.
915  */
916 static void update_curr_rt(struct rq *rq)
917 {
918         struct task_struct *curr = rq->curr;
919         struct sched_rt_entity *rt_se = &curr->rt;
920         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
921         u64 delta_exec;
922
923         if (curr->sched_class != &rt_sched_class)
924                 return;
925
926         delta_exec = rq->clock_task - curr->se.exec_start;
927         if (unlikely((s64)delta_exec < 0))
928                 delta_exec = 0;
929
930         schedstat_set(curr->se.statistics.exec_max,
931                       max(curr->se.statistics.exec_max, delta_exec));
932
933         curr->se.sum_exec_runtime += delta_exec;
934         account_group_exec_runtime(curr, delta_exec);
935
936         curr->se.exec_start = rq->clock_task;
937         cpuacct_charge(curr, delta_exec);
938
939         sched_rt_avg_update(rq, delta_exec);
940
941         if (!rt_bandwidth_enabled())
942                 return;
943
944         for_each_sched_rt_entity(rt_se) {
945                 rt_rq = rt_rq_of_se(rt_se);
946
947                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
948                         raw_spin_lock(&rt_rq->rt_runtime_lock);
949                         rt_rq->rt_time += delta_exec;
950                         if (sched_rt_runtime_exceeded(rt_rq))
951                                 resched_task(curr);
952                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
953                 }
954         }
955 }
956
957 #if defined CONFIG_SMP
958
959 static void
960 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
961 {
962         struct rq *rq = rq_of_rt_rq(rt_rq);
963
964         if (rq->online && prio < prev_prio)
965                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
966 }
967
968 static void
969 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
970 {
971         struct rq *rq = rq_of_rt_rq(rt_rq);
972
973         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
974                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
975 }
976
977 #else /* CONFIG_SMP */
978
979 static inline
980 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
981 static inline
982 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
983
984 #endif /* CONFIG_SMP */
985
986 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
987 static void
988 inc_rt_prio(struct rt_rq *rt_rq, int prio)
989 {
990         int prev_prio = rt_rq->highest_prio.curr;
991
992         if (prio < prev_prio)
993                 rt_rq->highest_prio.curr = prio;
994
995         inc_rt_prio_smp(rt_rq, prio, prev_prio);
996 }
997
998 static void
999 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1000 {
1001         int prev_prio = rt_rq->highest_prio.curr;
1002
1003         if (rt_rq->rt_nr_running) {
1004
1005                 WARN_ON(prio < prev_prio);
1006
1007                 /*
1008                  * This may have been our highest task, and therefore
1009                  * we may have some recomputation to do
1010                  */
1011                 if (prio == prev_prio) {
1012                         struct rt_prio_array *array = &rt_rq->active;
1013
1014                         rt_rq->highest_prio.curr =
1015                                 sched_find_first_bit(array->bitmap);
1016                 }
1017
1018         } else
1019                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1020
1021         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1022 }
1023
1024 #else
1025
1026 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1027 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1028
1029 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1030
1031 #ifdef CONFIG_RT_GROUP_SCHED
1032
1033 static void
1034 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1035 {
1036         if (rt_se_boosted(rt_se))
1037                 rt_rq->rt_nr_boosted++;
1038
1039         if (rt_rq->tg)
1040                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1041 }
1042
1043 static void
1044 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1045 {
1046         if (rt_se_boosted(rt_se))
1047                 rt_rq->rt_nr_boosted--;
1048
1049         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1050 }
1051
1052 #else /* CONFIG_RT_GROUP_SCHED */
1053
1054 static void
1055 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1056 {
1057         start_rt_bandwidth(&def_rt_bandwidth);
1058 }
1059
1060 static inline
1061 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1062
1063 #endif /* CONFIG_RT_GROUP_SCHED */
1064
1065 static inline
1066 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1067 {
1068         int prio = rt_se_prio(rt_se);
1069
1070         WARN_ON(!rt_prio(prio));
1071         rt_rq->rt_nr_running++;
1072
1073         inc_rt_prio(rt_rq, prio);
1074         inc_rt_migration(rt_se, rt_rq);
1075         inc_rt_group(rt_se, rt_rq);
1076 }
1077
1078 static inline
1079 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1080 {
1081         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1082         WARN_ON(!rt_rq->rt_nr_running);
1083         rt_rq->rt_nr_running--;
1084
1085         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1086         dec_rt_migration(rt_se, rt_rq);
1087         dec_rt_group(rt_se, rt_rq);
1088 }
1089
1090 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1091 {
1092         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1093         struct rt_prio_array *array = &rt_rq->active;
1094         struct rt_rq *group_rq = group_rt_rq(rt_se);
1095         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1096
1097         /*
1098          * Don't enqueue the group if its throttled, or when empty.
1099          * The latter is a consequence of the former when a child group
1100          * get throttled and the current group doesn't have any other
1101          * active members.
1102          */
1103         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1104                 return;
1105
1106         if (!rt_rq->rt_nr_running)
1107                 list_add_leaf_rt_rq(rt_rq);
1108
1109         if (head)
1110                 list_add(&rt_se->run_list, queue);
1111         else
1112                 list_add_tail(&rt_se->run_list, queue);
1113         __set_bit(rt_se_prio(rt_se), array->bitmap);
1114
1115         inc_rt_tasks(rt_se, rt_rq);
1116 }
1117
1118 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1119 {
1120         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1121         struct rt_prio_array *array = &rt_rq->active;
1122
1123         list_del_init(&rt_se->run_list);
1124         if (list_empty(array->queue + rt_se_prio(rt_se)))
1125                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1126
1127         dec_rt_tasks(rt_se, rt_rq);
1128         if (!rt_rq->rt_nr_running)
1129                 list_del_leaf_rt_rq(rt_rq);
1130 }
1131
1132 /*
1133  * Because the prio of an upper entry depends on the lower
1134  * entries, we must remove entries top - down.
1135  */
1136 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1137 {
1138         struct sched_rt_entity *back = NULL;
1139
1140         for_each_sched_rt_entity(rt_se) {
1141                 rt_se->back = back;
1142                 back = rt_se;
1143         }
1144
1145         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1146                 if (on_rt_rq(rt_se))
1147                         __dequeue_rt_entity(rt_se);
1148         }
1149 }
1150
1151 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1152 {
1153         dequeue_rt_stack(rt_se);
1154         for_each_sched_rt_entity(rt_se)
1155                 __enqueue_rt_entity(rt_se, head);
1156 }
1157
1158 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1159 {
1160         dequeue_rt_stack(rt_se);
1161
1162         for_each_sched_rt_entity(rt_se) {
1163                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1164
1165                 if (rt_rq && rt_rq->rt_nr_running)
1166                         __enqueue_rt_entity(rt_se, false);
1167         }
1168 }
1169
1170 /*
1171  * Adding/removing a task to/from a priority array:
1172  */
1173 static void
1174 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1175 {
1176         struct sched_rt_entity *rt_se = &p->rt;
1177
1178         if (flags & ENQUEUE_WAKEUP)
1179                 rt_se->timeout = 0;
1180
1181         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1182
1183         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1184                 enqueue_pushable_task(rq, p);
1185
1186         inc_nr_running(rq);
1187 }
1188
1189 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1190 {
1191         struct sched_rt_entity *rt_se = &p->rt;
1192
1193         update_curr_rt(rq);
1194         dequeue_rt_entity(rt_se);
1195
1196         dequeue_pushable_task(rq, p);
1197
1198         dec_nr_running(rq);
1199 }
1200
1201 /*
1202  * Put task to the head or the end of the run list without the overhead of
1203  * dequeue followed by enqueue.
1204  */
1205 static void
1206 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1207 {
1208         if (on_rt_rq(rt_se)) {
1209                 struct rt_prio_array *array = &rt_rq->active;
1210                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1211
1212                 if (head)
1213                         list_move(&rt_se->run_list, queue);
1214                 else
1215                         list_move_tail(&rt_se->run_list, queue);
1216         }
1217 }
1218
1219 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1220 {
1221         struct sched_rt_entity *rt_se = &p->rt;
1222         struct rt_rq *rt_rq;
1223
1224         for_each_sched_rt_entity(rt_se) {
1225                 rt_rq = rt_rq_of_se(rt_se);
1226                 requeue_rt_entity(rt_rq, rt_se, head);
1227         }
1228 }
1229
1230 static void yield_task_rt(struct rq *rq)
1231 {
1232         requeue_task_rt(rq, rq->curr, 0);
1233 }
1234
1235 #ifdef CONFIG_SMP
1236 static int find_lowest_rq(struct task_struct *task);
1237
1238 static int
1239 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1240 {
1241         struct task_struct *curr;
1242         struct rq *rq;
1243         int cpu;
1244
1245         cpu = task_cpu(p);
1246
1247         if (p->nr_cpus_allowed == 1)
1248                 goto out;
1249
1250         /* For anything but wake ups, just return the task_cpu */
1251         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1252                 goto out;
1253
1254         rq = cpu_rq(cpu);
1255
1256         rcu_read_lock();
1257         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1258
1259         /*
1260          * If the current task on @p's runqueue is an RT task, then
1261          * try to see if we can wake this RT task up on another
1262          * runqueue. Otherwise simply start this RT task
1263          * on its current runqueue.
1264          *
1265          * We want to avoid overloading runqueues. If the woken
1266          * task is a higher priority, then it will stay on this CPU
1267          * and the lower prio task should be moved to another CPU.
1268          * Even though this will probably make the lower prio task
1269          * lose its cache, we do not want to bounce a higher task
1270          * around just because it gave up its CPU, perhaps for a
1271          * lock?
1272          *
1273          * For equal prio tasks, we just let the scheduler sort it out.
1274          *
1275          * Otherwise, just let it ride on the affined RQ and the
1276          * post-schedule router will push the preempted task away
1277          *
1278          * This test is optimistic, if we get it wrong the load-balancer
1279          * will have to sort it out.
1280          */
1281         if (curr && unlikely(rt_task(curr)) &&
1282             (curr->nr_cpus_allowed < 2 ||
1283              curr->prio <= p->prio) &&
1284             (p->nr_cpus_allowed > 1)) {
1285                 int target = find_lowest_rq(p);
1286
1287                 if (target != -1)
1288                         cpu = target;
1289         }
1290         rcu_read_unlock();
1291
1292 out:
1293         return cpu;
1294 }
1295
1296 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1297 {
1298         if (rq->curr->nr_cpus_allowed == 1)
1299                 return;
1300
1301         if (p->nr_cpus_allowed != 1
1302             && cpupri_find(&rq->rd->cpupri, p, NULL))
1303                 return;
1304
1305         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1306                 return;
1307
1308         /*
1309          * There appears to be other cpus that can accept
1310          * current and none to run 'p', so lets reschedule
1311          * to try and push current away:
1312          */
1313         requeue_task_rt(rq, p, 1);
1314         resched_task(rq->curr);
1315 }
1316
1317 #endif /* CONFIG_SMP */
1318
1319 /*
1320  * Preempt the current task with a newly woken task if needed:
1321  */
1322 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324         if (p->prio < rq->curr->prio) {
1325                 resched_task(rq->curr);
1326                 return;
1327         }
1328
1329 #ifdef CONFIG_SMP
1330         /*
1331          * If:
1332          *
1333          * - the newly woken task is of equal priority to the current task
1334          * - the newly woken task is non-migratable while current is migratable
1335          * - current will be preempted on the next reschedule
1336          *
1337          * we should check to see if current can readily move to a different
1338          * cpu.  If so, we will reschedule to allow the push logic to try
1339          * to move current somewhere else, making room for our non-migratable
1340          * task.
1341          */
1342         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1343                 check_preempt_equal_prio(rq, p);
1344 #endif
1345 }
1346
1347 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1348                                                    struct rt_rq *rt_rq)
1349 {
1350         struct rt_prio_array *array = &rt_rq->active;
1351         struct sched_rt_entity *next = NULL;
1352         struct list_head *queue;
1353         int idx;
1354
1355         idx = sched_find_first_bit(array->bitmap);
1356         BUG_ON(idx >= MAX_RT_PRIO);
1357
1358         queue = array->queue + idx;
1359         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1360
1361         return next;
1362 }
1363
1364 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1365 {
1366         struct sched_rt_entity *rt_se;
1367         struct task_struct *p;
1368         struct rt_rq *rt_rq;
1369
1370         rt_rq = &rq->rt;
1371
1372         if (!rt_rq->rt_nr_running)
1373                 return NULL;
1374
1375         if (rt_rq_throttled(rt_rq))
1376                 return NULL;
1377
1378         do {
1379                 rt_se = pick_next_rt_entity(rq, rt_rq);
1380                 BUG_ON(!rt_se);
1381                 rt_rq = group_rt_rq(rt_se);
1382         } while (rt_rq);
1383
1384         p = rt_task_of(rt_se);
1385         p->se.exec_start = rq->clock_task;
1386
1387         return p;
1388 }
1389
1390 static struct task_struct *pick_next_task_rt(struct rq *rq)
1391 {
1392         struct task_struct *p = _pick_next_task_rt(rq);
1393
1394         /* The running task is never eligible for pushing */
1395         if (p)
1396                 dequeue_pushable_task(rq, p);
1397
1398 #ifdef CONFIG_SMP
1399         /*
1400          * We detect this state here so that we can avoid taking the RQ
1401          * lock again later if there is no need to push
1402          */
1403         rq->post_schedule = has_pushable_tasks(rq);
1404 #endif
1405
1406         return p;
1407 }
1408
1409 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1410 {
1411         update_curr_rt(rq);
1412
1413         /*
1414          * The previous task needs to be made eligible for pushing
1415          * if it is still active
1416          */
1417         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1418                 enqueue_pushable_task(rq, p);
1419 }
1420
1421 #ifdef CONFIG_SMP
1422
1423 /* Only try algorithms three times */
1424 #define RT_MAX_TRIES 3
1425
1426 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1427 {
1428         if (!task_running(rq, p) &&
1429             (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1430             (p->nr_cpus_allowed > 1))
1431                 return 1;
1432         return 0;
1433 }
1434
1435 /* Return the second highest RT task, NULL otherwise */
1436 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1437 {
1438         struct task_struct *next = NULL;
1439         struct sched_rt_entity *rt_se;
1440         struct rt_prio_array *array;
1441         struct rt_rq *rt_rq;
1442         int idx;
1443
1444         for_each_leaf_rt_rq(rt_rq, rq) {
1445                 array = &rt_rq->active;
1446                 idx = sched_find_first_bit(array->bitmap);
1447 next_idx:
1448                 if (idx >= MAX_RT_PRIO)
1449                         continue;
1450                 if (next && next->prio <= idx)
1451                         continue;
1452                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1453                         struct task_struct *p;
1454
1455                         if (!rt_entity_is_task(rt_se))
1456                                 continue;
1457
1458                         p = rt_task_of(rt_se);
1459                         if (pick_rt_task(rq, p, cpu)) {
1460                                 next = p;
1461                                 break;
1462                         }
1463                 }
1464                 if (!next) {
1465                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1466                         goto next_idx;
1467                 }
1468         }
1469
1470         return next;
1471 }
1472
1473 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1474
1475 static int find_lowest_rq(struct task_struct *task)
1476 {
1477         struct sched_domain *sd;
1478         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1479         int this_cpu = smp_processor_id();
1480         int cpu      = task_cpu(task);
1481
1482         /* Make sure the mask is initialized first */
1483         if (unlikely(!lowest_mask))
1484                 return -1;
1485
1486         if (task->nr_cpus_allowed == 1)
1487                 return -1; /* No other targets possible */
1488
1489         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1490                 return -1; /* No targets found */
1491
1492         /*
1493          * At this point we have built a mask of cpus representing the
1494          * lowest priority tasks in the system.  Now we want to elect
1495          * the best one based on our affinity and topology.
1496          *
1497          * We prioritize the last cpu that the task executed on since
1498          * it is most likely cache-hot in that location.
1499          */
1500         if (cpumask_test_cpu(cpu, lowest_mask))
1501                 return cpu;
1502
1503         /*
1504          * Otherwise, we consult the sched_domains span maps to figure
1505          * out which cpu is logically closest to our hot cache data.
1506          */
1507         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1508                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1509
1510         rcu_read_lock();
1511         for_each_domain(cpu, sd) {
1512                 if (sd->flags & SD_WAKE_AFFINE) {
1513                         int best_cpu;
1514
1515                         /*
1516                          * "this_cpu" is cheaper to preempt than a
1517                          * remote processor.
1518                          */
1519                         if (this_cpu != -1 &&
1520                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1521                                 rcu_read_unlock();
1522                                 return this_cpu;
1523                         }
1524
1525                         best_cpu = cpumask_first_and(lowest_mask,
1526                                                      sched_domain_span(sd));
1527                         if (best_cpu < nr_cpu_ids) {
1528                                 rcu_read_unlock();
1529                                 return best_cpu;
1530                         }
1531                 }
1532         }
1533         rcu_read_unlock();
1534
1535         /*
1536          * And finally, if there were no matches within the domains
1537          * just give the caller *something* to work with from the compatible
1538          * locations.
1539          */
1540         if (this_cpu != -1)
1541                 return this_cpu;
1542
1543         cpu = cpumask_any(lowest_mask);
1544         if (cpu < nr_cpu_ids)
1545                 return cpu;
1546         return -1;
1547 }
1548
1549 /* Will lock the rq it finds */
1550 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1551 {
1552         struct rq *lowest_rq = NULL;
1553         int tries;
1554         int cpu;
1555
1556         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1557                 cpu = find_lowest_rq(task);
1558
1559                 if ((cpu == -1) || (cpu == rq->cpu))
1560                         break;
1561
1562                 lowest_rq = cpu_rq(cpu);
1563
1564                 /* if the prio of this runqueue changed, try again */
1565                 if (double_lock_balance(rq, lowest_rq)) {
1566                         /*
1567                          * We had to unlock the run queue. In
1568                          * the mean time, task could have
1569                          * migrated already or had its affinity changed.
1570                          * Also make sure that it wasn't scheduled on its rq.
1571                          */
1572                         if (unlikely(task_rq(task) != rq ||
1573                                      !cpumask_test_cpu(lowest_rq->cpu,
1574                                                        tsk_cpus_allowed(task)) ||
1575                                      task_running(rq, task) ||
1576                                      !task->on_rq)) {
1577
1578                                 double_unlock_balance(rq, lowest_rq);
1579                                 lowest_rq = NULL;
1580                                 break;
1581                         }
1582                 }
1583
1584                 /* If this rq is still suitable use it. */
1585                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1586                         break;
1587
1588                 /* try again */
1589                 double_unlock_balance(rq, lowest_rq);
1590                 lowest_rq = NULL;
1591         }
1592
1593         return lowest_rq;
1594 }
1595
1596 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1597 {
1598         struct task_struct *p;
1599
1600         if (!has_pushable_tasks(rq))
1601                 return NULL;
1602
1603         p = plist_first_entry(&rq->rt.pushable_tasks,
1604                               struct task_struct, pushable_tasks);
1605
1606         BUG_ON(rq->cpu != task_cpu(p));
1607         BUG_ON(task_current(rq, p));
1608         BUG_ON(p->nr_cpus_allowed <= 1);
1609
1610         BUG_ON(!p->on_rq);
1611         BUG_ON(!rt_task(p));
1612
1613         return p;
1614 }
1615
1616 /*
1617  * If the current CPU has more than one RT task, see if the non
1618  * running task can migrate over to a CPU that is running a task
1619  * of lesser priority.
1620  */
1621 static int push_rt_task(struct rq *rq)
1622 {
1623         struct task_struct *next_task;
1624         struct rq *lowest_rq;
1625         int ret = 0;
1626
1627         if (!rq->rt.overloaded)
1628                 return 0;
1629
1630         next_task = pick_next_pushable_task(rq);
1631         if (!next_task)
1632                 return 0;
1633
1634 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1635        if (unlikely(task_running(rq, next_task)))
1636                return 0;
1637 #endif
1638
1639 retry:
1640         if (unlikely(next_task == rq->curr)) {
1641                 WARN_ON(1);
1642                 return 0;
1643         }
1644
1645         /*
1646          * It's possible that the next_task slipped in of
1647          * higher priority than current. If that's the case
1648          * just reschedule current.
1649          */
1650         if (unlikely(next_task->prio < rq->curr->prio)) {
1651                 resched_task(rq->curr);
1652                 return 0;
1653         }
1654
1655         /* We might release rq lock */
1656         get_task_struct(next_task);
1657
1658         /* find_lock_lowest_rq locks the rq if found */
1659         lowest_rq = find_lock_lowest_rq(next_task, rq);
1660         if (!lowest_rq) {
1661                 struct task_struct *task;
1662                 /*
1663                  * find_lock_lowest_rq releases rq->lock
1664                  * so it is possible that next_task has migrated.
1665                  *
1666                  * We need to make sure that the task is still on the same
1667                  * run-queue and is also still the next task eligible for
1668                  * pushing.
1669                  */
1670                 task = pick_next_pushable_task(rq);
1671                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1672                         /*
1673                          * The task hasn't migrated, and is still the next
1674                          * eligible task, but we failed to find a run-queue
1675                          * to push it to.  Do not retry in this case, since
1676                          * other cpus will pull from us when ready.
1677                          */
1678                         goto out;
1679                 }
1680
1681                 if (!task)
1682                         /* No more tasks, just exit */
1683                         goto out;
1684
1685                 /*
1686                  * Something has shifted, try again.
1687                  */
1688                 put_task_struct(next_task);
1689                 next_task = task;
1690                 goto retry;
1691         }
1692
1693         deactivate_task(rq, next_task, 0);
1694         set_task_cpu(next_task, lowest_rq->cpu);
1695         activate_task(lowest_rq, next_task, 0);
1696         ret = 1;
1697
1698         resched_task(lowest_rq->curr);
1699
1700         double_unlock_balance(rq, lowest_rq);
1701
1702 out:
1703         put_task_struct(next_task);
1704
1705         return ret;
1706 }
1707
1708 static void push_rt_tasks(struct rq *rq)
1709 {
1710         /* push_rt_task will return true if it moved an RT */
1711         while (push_rt_task(rq))
1712                 ;
1713 }
1714
1715 static int pull_rt_task(struct rq *this_rq)
1716 {
1717         int this_cpu = this_rq->cpu, ret = 0, cpu;
1718         struct task_struct *p;
1719         struct rq *src_rq;
1720
1721         if (likely(!rt_overloaded(this_rq)))
1722                 return 0;
1723
1724         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1725                 if (this_cpu == cpu)
1726                         continue;
1727
1728                 src_rq = cpu_rq(cpu);
1729
1730                 /*
1731                  * Don't bother taking the src_rq->lock if the next highest
1732                  * task is known to be lower-priority than our current task.
1733                  * This may look racy, but if this value is about to go
1734                  * logically higher, the src_rq will push this task away.
1735                  * And if its going logically lower, we do not care
1736                  */
1737                 if (src_rq->rt.highest_prio.next >=
1738                     this_rq->rt.highest_prio.curr)
1739                         continue;
1740
1741                 /*
1742                  * We can potentially drop this_rq's lock in
1743                  * double_lock_balance, and another CPU could
1744                  * alter this_rq
1745                  */
1746                 double_lock_balance(this_rq, src_rq);
1747
1748                 /*
1749                  * Are there still pullable RT tasks?
1750                  */
1751                 if (src_rq->rt.rt_nr_running <= 1)
1752                         goto skip;
1753
1754                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1755
1756                 /*
1757                  * Do we have an RT task that preempts
1758                  * the to-be-scheduled task?
1759                  */
1760                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1761                         WARN_ON(p == src_rq->curr);
1762                         WARN_ON(!p->on_rq);
1763
1764                         /*
1765                          * There's a chance that p is higher in priority
1766                          * than what's currently running on its cpu.
1767                          * This is just that p is wakeing up and hasn't
1768                          * had a chance to schedule. We only pull
1769                          * p if it is lower in priority than the
1770                          * current task on the run queue
1771                          */
1772                         if (p->prio < src_rq->curr->prio)
1773                                 goto skip;
1774
1775                         ret = 1;
1776
1777                         deactivate_task(src_rq, p, 0);
1778                         set_task_cpu(p, this_cpu);
1779                         activate_task(this_rq, p, 0);
1780                         /*
1781                          * We continue with the search, just in
1782                          * case there's an even higher prio task
1783                          * in another runqueue. (low likelihood
1784                          * but possible)
1785                          */
1786                 }
1787 skip:
1788                 double_unlock_balance(this_rq, src_rq);
1789         }
1790
1791         return ret;
1792 }
1793
1794 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1795 {
1796         /* Try to pull RT tasks here if we lower this rq's prio */
1797         if (rq->rt.highest_prio.curr > prev->prio)
1798                 pull_rt_task(rq);
1799 }
1800
1801 static void post_schedule_rt(struct rq *rq)
1802 {
1803         push_rt_tasks(rq);
1804 }
1805
1806 /*
1807  * If we are not running and we are not going to reschedule soon, we should
1808  * try to push tasks away now
1809  */
1810 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1811 {
1812         if (!task_running(rq, p) &&
1813             !test_tsk_need_resched(rq->curr) &&
1814             has_pushable_tasks(rq) &&
1815             p->nr_cpus_allowed > 1 &&
1816             rt_task(rq->curr) &&
1817             (rq->curr->nr_cpus_allowed < 2 ||
1818              rq->curr->prio <= p->prio))
1819                 push_rt_tasks(rq);
1820 }
1821
1822 static void set_cpus_allowed_rt(struct task_struct *p,
1823                                 const struct cpumask *new_mask)
1824 {
1825         struct rq *rq;
1826         int weight;
1827
1828         BUG_ON(!rt_task(p));
1829
1830         if (!p->on_rq)
1831                 return;
1832
1833         weight = cpumask_weight(new_mask);
1834
1835         /*
1836          * Only update if the process changes its state from whether it
1837          * can migrate or not.
1838          */
1839         if ((p->nr_cpus_allowed > 1) == (weight > 1))
1840                 return;
1841
1842         rq = task_rq(p);
1843
1844         /*
1845          * The process used to be able to migrate OR it can now migrate
1846          */
1847         if (weight <= 1) {
1848                 if (!task_current(rq, p))
1849                         dequeue_pushable_task(rq, p);
1850                 BUG_ON(!rq->rt.rt_nr_migratory);
1851                 rq->rt.rt_nr_migratory--;
1852         } else {
1853                 if (!task_current(rq, p))
1854                         enqueue_pushable_task(rq, p);
1855                 rq->rt.rt_nr_migratory++;
1856         }
1857
1858         update_rt_migration(&rq->rt);
1859 }
1860
1861 /* Assumes rq->lock is held */
1862 static void rq_online_rt(struct rq *rq)
1863 {
1864         if (rq->rt.overloaded)
1865                 rt_set_overload(rq);
1866
1867         __enable_runtime(rq);
1868
1869         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1870 }
1871
1872 /* Assumes rq->lock is held */
1873 static void rq_offline_rt(struct rq *rq)
1874 {
1875         if (rq->rt.overloaded)
1876                 rt_clear_overload(rq);
1877
1878         __disable_runtime(rq);
1879
1880         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1881 }
1882
1883 /*
1884  * When switch from the rt queue, we bring ourselves to a position
1885  * that we might want to pull RT tasks from other runqueues.
1886  */
1887 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1888 {
1889         /*
1890          * If there are other RT tasks then we will reschedule
1891          * and the scheduling of the other RT tasks will handle
1892          * the balancing. But if we are the last RT task
1893          * we may need to handle the pulling of RT tasks
1894          * now.
1895          */
1896         if (p->on_rq && !rq->rt.rt_nr_running)
1897                 pull_rt_task(rq);
1898 }
1899
1900 void init_sched_rt_class(void)
1901 {
1902         unsigned int i;
1903
1904         for_each_possible_cpu(i) {
1905                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1906                                         GFP_KERNEL, cpu_to_node(i));
1907         }
1908 }
1909 #endif /* CONFIG_SMP */
1910
1911 /*
1912  * When switching a task to RT, we may overload the runqueue
1913  * with RT tasks. In this case we try to push them off to
1914  * other runqueues.
1915  */
1916 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1917 {
1918         int check_resched = 1;
1919
1920         /*
1921          * If we are already running, then there's nothing
1922          * that needs to be done. But if we are not running
1923          * we may need to preempt the current running task.
1924          * If that current running task is also an RT task
1925          * then see if we can move to another run queue.
1926          */
1927         if (p->on_rq && rq->curr != p) {
1928 #ifdef CONFIG_SMP
1929                 if (rq->rt.overloaded && push_rt_task(rq) &&
1930                     /* Don't resched if we changed runqueues */
1931                     rq != task_rq(p))
1932                         check_resched = 0;
1933 #endif /* CONFIG_SMP */
1934                 if (check_resched && p->prio < rq->curr->prio)
1935                         resched_task(rq->curr);
1936         }
1937 }
1938
1939 /*
1940  * Priority of the task has changed. This may cause
1941  * us to initiate a push or pull.
1942  */
1943 static void
1944 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1945 {
1946         if (!p->on_rq)
1947                 return;
1948
1949         if (rq->curr == p) {
1950 #ifdef CONFIG_SMP
1951                 /*
1952                  * If our priority decreases while running, we
1953                  * may need to pull tasks to this runqueue.
1954                  */
1955                 if (oldprio < p->prio)
1956                         pull_rt_task(rq);
1957                 /*
1958                  * If there's a higher priority task waiting to run
1959                  * then reschedule. Note, the above pull_rt_task
1960                  * can release the rq lock and p could migrate.
1961                  * Only reschedule if p is still on the same runqueue.
1962                  */
1963                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1964                         resched_task(p);
1965 #else
1966                 /* For UP simply resched on drop of prio */
1967                 if (oldprio < p->prio)
1968                         resched_task(p);
1969 #endif /* CONFIG_SMP */
1970         } else {
1971                 /*
1972                  * This task is not running, but if it is
1973                  * greater than the current running task
1974                  * then reschedule.
1975                  */
1976                 if (p->prio < rq->curr->prio)
1977                         resched_task(rq->curr);
1978         }
1979 }
1980
1981 static void watchdog(struct rq *rq, struct task_struct *p)
1982 {
1983         unsigned long soft, hard;
1984
1985         /* max may change after cur was read, this will be fixed next tick */
1986         soft = task_rlimit(p, RLIMIT_RTTIME);
1987         hard = task_rlimit_max(p, RLIMIT_RTTIME);
1988
1989         if (soft != RLIM_INFINITY) {
1990                 unsigned long next;
1991
1992                 p->rt.timeout++;
1993                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1994                 if (p->rt.timeout > next)
1995                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1996         }
1997 }
1998
1999 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2000 {
2001         struct sched_rt_entity *rt_se = &p->rt;
2002
2003         update_curr_rt(rq);
2004
2005         watchdog(rq, p);
2006
2007         /*
2008          * RR tasks need a special form of timeslice management.
2009          * FIFO tasks have no timeslices.
2010          */
2011         if (p->policy != SCHED_RR)
2012                 return;
2013
2014         if (--p->rt.time_slice)
2015                 return;
2016
2017         p->rt.time_slice = RR_TIMESLICE;
2018
2019         /*
2020          * Requeue to the end of queue if we (and all of our ancestors) are the
2021          * only element on the queue
2022          */
2023         for_each_sched_rt_entity(rt_se) {
2024                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2025                         requeue_task_rt(rq, p, 0);
2026                         set_tsk_need_resched(p);
2027                         return;
2028                 }
2029         }
2030 }
2031
2032 static void set_curr_task_rt(struct rq *rq)
2033 {
2034         struct task_struct *p = rq->curr;
2035
2036         p->se.exec_start = rq->clock_task;
2037
2038         /* The running task is never eligible for pushing */
2039         dequeue_pushable_task(rq, p);
2040 }
2041
2042 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2043 {
2044         /*
2045          * Time slice is 0 for SCHED_FIFO tasks
2046          */
2047         if (task->policy == SCHED_RR)
2048                 return RR_TIMESLICE;
2049         else
2050                 return 0;
2051 }
2052
2053 const struct sched_class rt_sched_class = {
2054         .next                   = &fair_sched_class,
2055         .enqueue_task           = enqueue_task_rt,
2056         .dequeue_task           = dequeue_task_rt,
2057         .yield_task             = yield_task_rt,
2058
2059         .check_preempt_curr     = check_preempt_curr_rt,
2060
2061         .pick_next_task         = pick_next_task_rt,
2062         .put_prev_task          = put_prev_task_rt,
2063
2064 #ifdef CONFIG_SMP
2065         .select_task_rq         = select_task_rq_rt,
2066
2067         .set_cpus_allowed       = set_cpus_allowed_rt,
2068         .rq_online              = rq_online_rt,
2069         .rq_offline             = rq_offline_rt,
2070         .pre_schedule           = pre_schedule_rt,
2071         .post_schedule          = post_schedule_rt,
2072         .task_woken             = task_woken_rt,
2073         .switched_from          = switched_from_rt,
2074 #endif
2075
2076         .set_curr_task          = set_curr_task_rt,
2077         .task_tick              = task_tick_rt,
2078
2079         .get_rr_interval        = get_rr_interval_rt,
2080
2081         .prio_changed           = prio_changed_rt,
2082         .switched_to            = switched_to_rt,
2083 };
2084
2085 #ifdef CONFIG_SCHED_DEBUG
2086 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2087
2088 void print_rt_stats(struct seq_file *m, int cpu)
2089 {
2090         rt_rq_iter_t iter;
2091         struct rt_rq *rt_rq;
2092
2093         rcu_read_lock();
2094         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2095                 print_rt_rq(m, cpu, rt_rq);
2096         rcu_read_unlock();
2097 }
2098 #endif /* CONFIG_SCHED_DEBUG */