]> Pileus Git - ~andy/linux/blob - kernel/power/snapshot.c
[ACPI] ACPICA 20060113
[~andy/linux] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provide system snapshot/restore functionality.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  *
8  * This file is released under the GPLv2, and is based on swsusp.c.
9  *
10  */
11
12
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/suspend.h>
16 #include <linux/smp_lock.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/bootmem.h>
24 #include <linux/syscalls.h>
25 #include <linux/console.h>
26 #include <linux/highmem.h>
27
28 #include <asm/uaccess.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <asm/io.h>
33
34 #include "power.h"
35
36 struct pbe *pagedir_nosave;
37 unsigned int nr_copy_pages;
38
39 #ifdef CONFIG_HIGHMEM
40 unsigned int count_highmem_pages(void)
41 {
42         struct zone *zone;
43         unsigned long zone_pfn;
44         unsigned int n = 0;
45
46         for_each_zone (zone)
47                 if (is_highmem(zone)) {
48                         mark_free_pages(zone);
49                         for (zone_pfn = 0; zone_pfn < zone->spanned_pages; zone_pfn++) {
50                                 struct page *page;
51                                 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
52                                 if (!pfn_valid(pfn))
53                                         continue;
54                                 page = pfn_to_page(pfn);
55                                 if (PageReserved(page))
56                                         continue;
57                                 if (PageNosaveFree(page))
58                                         continue;
59                                 n++;
60                         }
61                 }
62         return n;
63 }
64
65 struct highmem_page {
66         char *data;
67         struct page *page;
68         struct highmem_page *next;
69 };
70
71 static struct highmem_page *highmem_copy;
72
73 static int save_highmem_zone(struct zone *zone)
74 {
75         unsigned long zone_pfn;
76         mark_free_pages(zone);
77         for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
78                 struct page *page;
79                 struct highmem_page *save;
80                 void *kaddr;
81                 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
82
83                 if (!(pfn%1000))
84                         printk(".");
85                 if (!pfn_valid(pfn))
86                         continue;
87                 page = pfn_to_page(pfn);
88                 /*
89                  * This condition results from rvmalloc() sans vmalloc_32()
90                  * and architectural memory reservations. This should be
91                  * corrected eventually when the cases giving rise to this
92                  * are better understood.
93                  */
94                 if (PageReserved(page)) {
95                         printk("highmem reserved page?!\n");
96                         continue;
97                 }
98                 BUG_ON(PageNosave(page));
99                 if (PageNosaveFree(page))
100                         continue;
101                 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
102                 if (!save)
103                         return -ENOMEM;
104                 save->next = highmem_copy;
105                 save->page = page;
106                 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
107                 if (!save->data) {
108                         kfree(save);
109                         return -ENOMEM;
110                 }
111                 kaddr = kmap_atomic(page, KM_USER0);
112                 memcpy(save->data, kaddr, PAGE_SIZE);
113                 kunmap_atomic(kaddr, KM_USER0);
114                 highmem_copy = save;
115         }
116         return 0;
117 }
118
119 int save_highmem(void)
120 {
121         struct zone *zone;
122         int res = 0;
123
124         pr_debug("swsusp: Saving Highmem\n");
125         for_each_zone (zone) {
126                 if (is_highmem(zone))
127                         res = save_highmem_zone(zone);
128                 if (res)
129                         return res;
130         }
131         return 0;
132 }
133
134 int restore_highmem(void)
135 {
136         printk("swsusp: Restoring Highmem\n");
137         while (highmem_copy) {
138                 struct highmem_page *save = highmem_copy;
139                 void *kaddr;
140                 highmem_copy = save->next;
141
142                 kaddr = kmap_atomic(save->page, KM_USER0);
143                 memcpy(kaddr, save->data, PAGE_SIZE);
144                 kunmap_atomic(kaddr, KM_USER0);
145                 free_page((long) save->data);
146                 kfree(save);
147         }
148         return 0;
149 }
150 #endif
151
152 static int pfn_is_nosave(unsigned long pfn)
153 {
154         unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
155         unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
156         return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
157 }
158
159 /**
160  *      saveable - Determine whether a page should be cloned or not.
161  *      @pfn:   The page
162  *
163  *      We save a page if it's Reserved, and not in the range of pages
164  *      statically defined as 'unsaveable', or if it isn't reserved, and
165  *      isn't part of a free chunk of pages.
166  */
167
168 static int saveable(struct zone *zone, unsigned long *zone_pfn)
169 {
170         unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
171         struct page *page;
172
173         if (!pfn_valid(pfn))
174                 return 0;
175
176         page = pfn_to_page(pfn);
177         BUG_ON(PageReserved(page) && PageNosave(page));
178         if (PageNosave(page))
179                 return 0;
180         if (PageReserved(page) && pfn_is_nosave(pfn))
181                 return 0;
182         if (PageNosaveFree(page))
183                 return 0;
184
185         return 1;
186 }
187
188 unsigned int count_data_pages(void)
189 {
190         struct zone *zone;
191         unsigned long zone_pfn;
192         unsigned int n = 0;
193
194         for_each_zone (zone) {
195                 if (is_highmem(zone))
196                         continue;
197                 mark_free_pages(zone);
198                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
199                         n += saveable(zone, &zone_pfn);
200         }
201         return n;
202 }
203
204 static void copy_data_pages(struct pbe *pblist)
205 {
206         struct zone *zone;
207         unsigned long zone_pfn;
208         struct pbe *pbe, *p;
209
210         pbe = pblist;
211         for_each_zone (zone) {
212                 if (is_highmem(zone))
213                         continue;
214                 mark_free_pages(zone);
215                 /* This is necessary for swsusp_free() */
216                 for_each_pb_page (p, pblist)
217                         SetPageNosaveFree(virt_to_page(p));
218                 for_each_pbe (p, pblist)
219                         SetPageNosaveFree(virt_to_page(p->address));
220                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
221                         if (saveable(zone, &zone_pfn)) {
222                                 struct page *page;
223                                 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
224                                 BUG_ON(!pbe);
225                                 pbe->orig_address = (unsigned long)page_address(page);
226                                 /* copy_page is not usable for copying task structs. */
227                                 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
228                                 pbe = pbe->next;
229                         }
230                 }
231         }
232         BUG_ON(pbe);
233 }
234
235
236 /**
237  *      free_pagedir - free pages allocated with alloc_pagedir()
238  */
239
240 void free_pagedir(struct pbe *pblist)
241 {
242         struct pbe *pbe;
243
244         while (pblist) {
245                 pbe = (pblist + PB_PAGE_SKIP)->next;
246                 ClearPageNosave(virt_to_page(pblist));
247                 ClearPageNosaveFree(virt_to_page(pblist));
248                 free_page((unsigned long)pblist);
249                 pblist = pbe;
250         }
251 }
252
253 /**
254  *      fill_pb_page - Create a list of PBEs on a given memory page
255  */
256
257 static inline void fill_pb_page(struct pbe *pbpage)
258 {
259         struct pbe *p;
260
261         p = pbpage;
262         pbpage += PB_PAGE_SKIP;
263         do
264                 p->next = p + 1;
265         while (++p < pbpage);
266 }
267
268 /**
269  *      create_pbe_list - Create a list of PBEs on top of a given chain
270  *      of memory pages allocated with alloc_pagedir()
271  */
272
273 static inline void create_pbe_list(struct pbe *pblist, unsigned int nr_pages)
274 {
275         struct pbe *pbpage, *p;
276         unsigned int num = PBES_PER_PAGE;
277
278         for_each_pb_page (pbpage, pblist) {
279                 if (num >= nr_pages)
280                         break;
281
282                 fill_pb_page(pbpage);
283                 num += PBES_PER_PAGE;
284         }
285         if (pbpage) {
286                 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
287                         p->next = p + 1;
288                 p->next = NULL;
289         }
290 }
291
292 /**
293  *      On resume it is necessary to trace and eventually free the unsafe
294  *      pages that have been allocated, because they are needed for I/O
295  *      (on x86-64 we likely will "eat" these pages once again while
296  *      creating the temporary page translation tables)
297  */
298
299 struct eaten_page {
300         struct eaten_page *next;
301         char padding[PAGE_SIZE - sizeof(void *)];
302 };
303
304 static struct eaten_page *eaten_pages = NULL;
305
306 void release_eaten_pages(void)
307 {
308         struct eaten_page *p, *q;
309
310         p = eaten_pages;
311         while (p) {
312                 q = p->next;
313                 /* We don't want swsusp_free() to free this page again */
314                 ClearPageNosave(virt_to_page(p));
315                 free_page((unsigned long)p);
316                 p = q;
317         }
318         eaten_pages = NULL;
319 }
320
321 /**
322  *      @safe_needed - on resume, for storing the PBE list and the image,
323  *      we can only use memory pages that do not conflict with the pages
324  *      which had been used before suspend.
325  *
326  *      The unsafe pages are marked with the PG_nosave_free flag
327  *
328  *      Allocated but unusable (ie eaten) memory pages should be marked
329  *      so that swsusp_free() can release them
330  */
331
332 static inline void *alloc_image_page(gfp_t gfp_mask, int safe_needed)
333 {
334         void *res;
335
336         if (safe_needed)
337                 do {
338                         res = (void *)get_zeroed_page(gfp_mask);
339                         if (res && PageNosaveFree(virt_to_page(res))) {
340                                 /* This is for swsusp_free() */
341                                 SetPageNosave(virt_to_page(res));
342                                 ((struct eaten_page *)res)->next = eaten_pages;
343                                 eaten_pages = res;
344                         }
345                 } while (res && PageNosaveFree(virt_to_page(res)));
346         else
347                 res = (void *)get_zeroed_page(gfp_mask);
348         if (res) {
349                 SetPageNosave(virt_to_page(res));
350                 SetPageNosaveFree(virt_to_page(res));
351         }
352         return res;
353 }
354
355 unsigned long get_safe_page(gfp_t gfp_mask)
356 {
357         return (unsigned long)alloc_image_page(gfp_mask, 1);
358 }
359
360 /**
361  *      alloc_pagedir - Allocate the page directory.
362  *
363  *      First, determine exactly how many pages we need and
364  *      allocate them.
365  *
366  *      We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
367  *      struct pbe elements (pbes) and the last element in the page points
368  *      to the next page.
369  *
370  *      On each page we set up a list of struct_pbe elements.
371  */
372
373 struct pbe *alloc_pagedir(unsigned int nr_pages, gfp_t gfp_mask, int safe_needed)
374 {
375         unsigned int num;
376         struct pbe *pblist, *pbe;
377
378         if (!nr_pages)
379                 return NULL;
380
381         pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
382         pblist = alloc_image_page(gfp_mask, safe_needed);
383         /* FIXME: rewrite this ugly loop */
384         for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
385                         pbe = pbe->next, num += PBES_PER_PAGE) {
386                 pbe += PB_PAGE_SKIP;
387                 pbe->next = alloc_image_page(gfp_mask, safe_needed);
388         }
389         if (!pbe) { /* get_zeroed_page() failed */
390                 free_pagedir(pblist);
391                 pblist = NULL;
392         } else
393                 create_pbe_list(pblist, nr_pages);
394         return pblist;
395 }
396
397 /**
398  * Free pages we allocated for suspend. Suspend pages are alocated
399  * before atomic copy, so we need to free them after resume.
400  */
401
402 void swsusp_free(void)
403 {
404         struct zone *zone;
405         unsigned long zone_pfn;
406
407         for_each_zone(zone) {
408                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
409                         if (pfn_valid(zone_pfn + zone->zone_start_pfn)) {
410                                 struct page *page;
411                                 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
412                                 if (PageNosave(page) && PageNosaveFree(page)) {
413                                         ClearPageNosave(page);
414                                         ClearPageNosaveFree(page);
415                                         free_page((long) page_address(page));
416                                 }
417                         }
418         }
419 }
420
421
422 /**
423  *      enough_free_mem - Make sure we enough free memory to snapshot.
424  *
425  *      Returns TRUE or FALSE after checking the number of available
426  *      free pages.
427  */
428
429 static int enough_free_mem(unsigned int nr_pages)
430 {
431         struct zone *zone;
432         unsigned int n = 0;
433
434         for_each_zone (zone)
435                 if (!is_highmem(zone))
436                         n += zone->free_pages;
437         pr_debug("swsusp: available memory: %u pages\n", n);
438         return n > (nr_pages + PAGES_FOR_IO +
439                 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
440 }
441
442 int alloc_data_pages(struct pbe *pblist, gfp_t gfp_mask, int safe_needed)
443 {
444         struct pbe *p;
445
446         for_each_pbe (p, pblist) {
447                 p->address = (unsigned long)alloc_image_page(gfp_mask, safe_needed);
448                 if (!p->address)
449                         return -ENOMEM;
450         }
451         return 0;
452 }
453
454 static struct pbe *swsusp_alloc(unsigned int nr_pages)
455 {
456         struct pbe *pblist;
457
458         if (!(pblist = alloc_pagedir(nr_pages, GFP_ATOMIC | __GFP_COLD, 0))) {
459                 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
460                 return NULL;
461         }
462
463         if (alloc_data_pages(pblist, GFP_ATOMIC | __GFP_COLD, 0)) {
464                 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
465                 swsusp_free();
466                 return NULL;
467         }
468
469         return pblist;
470 }
471
472 asmlinkage int swsusp_save(void)
473 {
474         unsigned int nr_pages;
475
476         pr_debug("swsusp: critical section: \n");
477
478         drain_local_pages();
479         nr_pages = count_data_pages();
480         printk("swsusp: Need to copy %u pages\n", nr_pages);
481
482         pr_debug("swsusp: pages needed: %u + %lu + %u, free: %u\n",
483                  nr_pages,
484                  (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE,
485                  PAGES_FOR_IO, nr_free_pages());
486
487         if (!enough_free_mem(nr_pages)) {
488                 printk(KERN_ERR "swsusp: Not enough free memory\n");
489                 return -ENOMEM;
490         }
491
492         pagedir_nosave = swsusp_alloc(nr_pages);
493         if (!pagedir_nosave)
494                 return -ENOMEM;
495
496         /* During allocating of suspend pagedir, new cold pages may appear.
497          * Kill them.
498          */
499         drain_local_pages();
500         copy_data_pages(pagedir_nosave);
501
502         /*
503          * End of critical section. From now on, we can write to memory,
504          * but we should not touch disk. This specially means we must _not_
505          * touch swap space! Except we must write out our image of course.
506          */
507
508         nr_copy_pages = nr_pages;
509
510         printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
511         return 0;
512 }