]> Pileus Git - ~andy/linux/blob - kernel/locking/rtmutex.c
Merge tag 'stable/for-linus-3.14-rc8-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[~andy/linux] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner        bit0
29  * NULL         0       lock is free (fast acquire possible)
30  * NULL         1       lock is free and has waiters and the top waiter
31  *                              is going to take the lock*
32  * taskpointer  0       lock is held (fast release possible)
33  * taskpointer  1       lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52         unsigned long val = (unsigned long)owner;
53
54         if (rt_mutex_has_waiters(lock))
55                 val |= RT_MUTEX_HAS_WAITERS;
56
57         lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62         lock->owner = (struct task_struct *)
63                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68         if (!rt_mutex_has_waiters(lock))
69                 clear_rt_mutex_waiters(lock);
70 }
71
72 /*
73  * We can speed up the acquire/release, if the architecture
74  * supports cmpxchg and if there's no debugging state to be set up
75  */
76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77 # define rt_mutex_cmpxchg(l,c,n)        (cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80         unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82         do {
83                 owner = *p;
84         } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86 #else
87 # define rt_mutex_cmpxchg(l,c,n)        (0)
88 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
89 {
90         lock->owner = (struct task_struct *)
91                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
92 }
93 #endif
94
95 static inline int
96 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
97                      struct rt_mutex_waiter *right)
98 {
99         if (left->prio < right->prio)
100                 return 1;
101
102         /*
103          * If both waiters have dl_prio(), we check the deadlines of the
104          * associated tasks.
105          * If left waiter has a dl_prio(), and we didn't return 1 above,
106          * then right waiter has a dl_prio() too.
107          */
108         if (dl_prio(left->prio))
109                 return (left->task->dl.deadline < right->task->dl.deadline);
110
111         return 0;
112 }
113
114 static void
115 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
116 {
117         struct rb_node **link = &lock->waiters.rb_node;
118         struct rb_node *parent = NULL;
119         struct rt_mutex_waiter *entry;
120         int leftmost = 1;
121
122         while (*link) {
123                 parent = *link;
124                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
125                 if (rt_mutex_waiter_less(waiter, entry)) {
126                         link = &parent->rb_left;
127                 } else {
128                         link = &parent->rb_right;
129                         leftmost = 0;
130                 }
131         }
132
133         if (leftmost)
134                 lock->waiters_leftmost = &waiter->tree_entry;
135
136         rb_link_node(&waiter->tree_entry, parent, link);
137         rb_insert_color(&waiter->tree_entry, &lock->waiters);
138 }
139
140 static void
141 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
142 {
143         if (RB_EMPTY_NODE(&waiter->tree_entry))
144                 return;
145
146         if (lock->waiters_leftmost == &waiter->tree_entry)
147                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
148
149         rb_erase(&waiter->tree_entry, &lock->waiters);
150         RB_CLEAR_NODE(&waiter->tree_entry);
151 }
152
153 static void
154 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
155 {
156         struct rb_node **link = &task->pi_waiters.rb_node;
157         struct rb_node *parent = NULL;
158         struct rt_mutex_waiter *entry;
159         int leftmost = 1;
160
161         while (*link) {
162                 parent = *link;
163                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
164                 if (rt_mutex_waiter_less(waiter, entry)) {
165                         link = &parent->rb_left;
166                 } else {
167                         link = &parent->rb_right;
168                         leftmost = 0;
169                 }
170         }
171
172         if (leftmost)
173                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
174
175         rb_link_node(&waiter->pi_tree_entry, parent, link);
176         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
177 }
178
179 static void
180 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
181 {
182         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
183                 return;
184
185         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
186                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
187
188         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
189         RB_CLEAR_NODE(&waiter->pi_tree_entry);
190 }
191
192 /*
193  * Calculate task priority from the waiter tree priority
194  *
195  * Return task->normal_prio when the waiter tree is empty or when
196  * the waiter is not allowed to do priority boosting
197  */
198 int rt_mutex_getprio(struct task_struct *task)
199 {
200         if (likely(!task_has_pi_waiters(task)))
201                 return task->normal_prio;
202
203         return min(task_top_pi_waiter(task)->prio,
204                    task->normal_prio);
205 }
206
207 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
208 {
209         if (likely(!task_has_pi_waiters(task)))
210                 return NULL;
211
212         return task_top_pi_waiter(task)->task;
213 }
214
215 /*
216  * Adjust the priority of a task, after its pi_waiters got modified.
217  *
218  * This can be both boosting and unboosting. task->pi_lock must be held.
219  */
220 static void __rt_mutex_adjust_prio(struct task_struct *task)
221 {
222         int prio = rt_mutex_getprio(task);
223
224         if (task->prio != prio || dl_prio(prio))
225                 rt_mutex_setprio(task, prio);
226 }
227
228 /*
229  * Adjust task priority (undo boosting). Called from the exit path of
230  * rt_mutex_slowunlock() and rt_mutex_slowlock().
231  *
232  * (Note: We do this outside of the protection of lock->wait_lock to
233  * allow the lock to be taken while or before we readjust the priority
234  * of task. We do not use the spin_xx_mutex() variants here as we are
235  * outside of the debug path.)
236  */
237 static void rt_mutex_adjust_prio(struct task_struct *task)
238 {
239         unsigned long flags;
240
241         raw_spin_lock_irqsave(&task->pi_lock, flags);
242         __rt_mutex_adjust_prio(task);
243         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
244 }
245
246 /*
247  * Max number of times we'll walk the boosting chain:
248  */
249 int max_lock_depth = 1024;
250
251 /*
252  * Adjust the priority chain. Also used for deadlock detection.
253  * Decreases task's usage by one - may thus free the task.
254  *
255  * @task: the task owning the mutex (owner) for which a chain walk is probably
256  *        needed
257  * @deadlock_detect: do we have to carry out deadlock detection?
258  * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
259  *             things for a task that has just got its priority adjusted, and
260  *             is waiting on a mutex)
261  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
262  *               its priority to the mutex owner (can be NULL in the case
263  *               depicted above or if the top waiter is gone away and we are
264  *               actually deboosting the owner)
265  * @top_task: the current top waiter
266  *
267  * Returns 0 or -EDEADLK.
268  */
269 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
270                                       int deadlock_detect,
271                                       struct rt_mutex *orig_lock,
272                                       struct rt_mutex_waiter *orig_waiter,
273                                       struct task_struct *top_task)
274 {
275         struct rt_mutex *lock;
276         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
277         int detect_deadlock, ret = 0, depth = 0;
278         unsigned long flags;
279
280         detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
281                                                          deadlock_detect);
282
283         /*
284          * The (de)boosting is a step by step approach with a lot of
285          * pitfalls. We want this to be preemptible and we want hold a
286          * maximum of two locks per step. So we have to check
287          * carefully whether things change under us.
288          */
289  again:
290         if (++depth > max_lock_depth) {
291                 static int prev_max;
292
293                 /*
294                  * Print this only once. If the admin changes the limit,
295                  * print a new message when reaching the limit again.
296                  */
297                 if (prev_max != max_lock_depth) {
298                         prev_max = max_lock_depth;
299                         printk(KERN_WARNING "Maximum lock depth %d reached "
300                                "task: %s (%d)\n", max_lock_depth,
301                                top_task->comm, task_pid_nr(top_task));
302                 }
303                 put_task_struct(task);
304
305                 return deadlock_detect ? -EDEADLK : 0;
306         }
307  retry:
308         /*
309          * Task can not go away as we did a get_task() before !
310          */
311         raw_spin_lock_irqsave(&task->pi_lock, flags);
312
313         waiter = task->pi_blocked_on;
314         /*
315          * Check whether the end of the boosting chain has been
316          * reached or the state of the chain has changed while we
317          * dropped the locks.
318          */
319         if (!waiter)
320                 goto out_unlock_pi;
321
322         /*
323          * Check the orig_waiter state. After we dropped the locks,
324          * the previous owner of the lock might have released the lock.
325          */
326         if (orig_waiter && !rt_mutex_owner(orig_lock))
327                 goto out_unlock_pi;
328
329         /*
330          * Drop out, when the task has no waiters. Note,
331          * top_waiter can be NULL, when we are in the deboosting
332          * mode!
333          */
334         if (top_waiter && (!task_has_pi_waiters(task) ||
335                            top_waiter != task_top_pi_waiter(task)))
336                 goto out_unlock_pi;
337
338         /*
339          * When deadlock detection is off then we check, if further
340          * priority adjustment is necessary.
341          */
342         if (!detect_deadlock && waiter->prio == task->prio)
343                 goto out_unlock_pi;
344
345         lock = waiter->lock;
346         if (!raw_spin_trylock(&lock->wait_lock)) {
347                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
348                 cpu_relax();
349                 goto retry;
350         }
351
352         /* Deadlock detection */
353         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
354                 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
355                 raw_spin_unlock(&lock->wait_lock);
356                 ret = deadlock_detect ? -EDEADLK : 0;
357                 goto out_unlock_pi;
358         }
359
360         top_waiter = rt_mutex_top_waiter(lock);
361
362         /* Requeue the waiter */
363         rt_mutex_dequeue(lock, waiter);
364         waiter->prio = task->prio;
365         rt_mutex_enqueue(lock, waiter);
366
367         /* Release the task */
368         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
369         if (!rt_mutex_owner(lock)) {
370                 /*
371                  * If the requeue above changed the top waiter, then we need
372                  * to wake the new top waiter up to try to get the lock.
373                  */
374
375                 if (top_waiter != rt_mutex_top_waiter(lock))
376                         wake_up_process(rt_mutex_top_waiter(lock)->task);
377                 raw_spin_unlock(&lock->wait_lock);
378                 goto out_put_task;
379         }
380         put_task_struct(task);
381
382         /* Grab the next task */
383         task = rt_mutex_owner(lock);
384         get_task_struct(task);
385         raw_spin_lock_irqsave(&task->pi_lock, flags);
386
387         if (waiter == rt_mutex_top_waiter(lock)) {
388                 /* Boost the owner */
389                 rt_mutex_dequeue_pi(task, top_waiter);
390                 rt_mutex_enqueue_pi(task, waiter);
391                 __rt_mutex_adjust_prio(task);
392
393         } else if (top_waiter == waiter) {
394                 /* Deboost the owner */
395                 rt_mutex_dequeue_pi(task, waiter);
396                 waiter = rt_mutex_top_waiter(lock);
397                 rt_mutex_enqueue_pi(task, waiter);
398                 __rt_mutex_adjust_prio(task);
399         }
400
401         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
402
403         top_waiter = rt_mutex_top_waiter(lock);
404         raw_spin_unlock(&lock->wait_lock);
405
406         if (!detect_deadlock && waiter != top_waiter)
407                 goto out_put_task;
408
409         goto again;
410
411  out_unlock_pi:
412         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
413  out_put_task:
414         put_task_struct(task);
415
416         return ret;
417 }
418
419 /*
420  * Try to take an rt-mutex
421  *
422  * Must be called with lock->wait_lock held.
423  *
424  * @lock:   the lock to be acquired.
425  * @task:   the task which wants to acquire the lock
426  * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
427  */
428 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
429                 struct rt_mutex_waiter *waiter)
430 {
431         /*
432          * We have to be careful here if the atomic speedups are
433          * enabled, such that, when
434          *  - no other waiter is on the lock
435          *  - the lock has been released since we did the cmpxchg
436          * the lock can be released or taken while we are doing the
437          * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
438          *
439          * The atomic acquire/release aware variant of
440          * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
441          * the WAITERS bit, the atomic release / acquire can not
442          * happen anymore and lock->wait_lock protects us from the
443          * non-atomic case.
444          *
445          * Note, that this might set lock->owner =
446          * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
447          * any more. This is fixed up when we take the ownership.
448          * This is the transitional state explained at the top of this file.
449          */
450         mark_rt_mutex_waiters(lock);
451
452         if (rt_mutex_owner(lock))
453                 return 0;
454
455         /*
456          * It will get the lock because of one of these conditions:
457          * 1) there is no waiter
458          * 2) higher priority than waiters
459          * 3) it is top waiter
460          */
461         if (rt_mutex_has_waiters(lock)) {
462                 if (task->prio >= rt_mutex_top_waiter(lock)->prio) {
463                         if (!waiter || waiter != rt_mutex_top_waiter(lock))
464                                 return 0;
465                 }
466         }
467
468         if (waiter || rt_mutex_has_waiters(lock)) {
469                 unsigned long flags;
470                 struct rt_mutex_waiter *top;
471
472                 raw_spin_lock_irqsave(&task->pi_lock, flags);
473
474                 /* remove the queued waiter. */
475                 if (waiter) {
476                         rt_mutex_dequeue(lock, waiter);
477                         task->pi_blocked_on = NULL;
478                 }
479
480                 /*
481                  * We have to enqueue the top waiter(if it exists) into
482                  * task->pi_waiters list.
483                  */
484                 if (rt_mutex_has_waiters(lock)) {
485                         top = rt_mutex_top_waiter(lock);
486                         rt_mutex_enqueue_pi(task, top);
487                 }
488                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
489         }
490
491         /* We got the lock. */
492         debug_rt_mutex_lock(lock);
493
494         rt_mutex_set_owner(lock, task);
495
496         rt_mutex_deadlock_account_lock(lock, task);
497
498         return 1;
499 }
500
501 /*
502  * Task blocks on lock.
503  *
504  * Prepare waiter and propagate pi chain
505  *
506  * This must be called with lock->wait_lock held.
507  */
508 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
509                                    struct rt_mutex_waiter *waiter,
510                                    struct task_struct *task,
511                                    int detect_deadlock)
512 {
513         struct task_struct *owner = rt_mutex_owner(lock);
514         struct rt_mutex_waiter *top_waiter = waiter;
515         unsigned long flags;
516         int chain_walk = 0, res;
517
518         raw_spin_lock_irqsave(&task->pi_lock, flags);
519         __rt_mutex_adjust_prio(task);
520         waiter->task = task;
521         waiter->lock = lock;
522         waiter->prio = task->prio;
523
524         /* Get the top priority waiter on the lock */
525         if (rt_mutex_has_waiters(lock))
526                 top_waiter = rt_mutex_top_waiter(lock);
527         rt_mutex_enqueue(lock, waiter);
528
529         task->pi_blocked_on = waiter;
530
531         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
532
533         if (!owner)
534                 return 0;
535
536         if (waiter == rt_mutex_top_waiter(lock)) {
537                 raw_spin_lock_irqsave(&owner->pi_lock, flags);
538                 rt_mutex_dequeue_pi(owner, top_waiter);
539                 rt_mutex_enqueue_pi(owner, waiter);
540
541                 __rt_mutex_adjust_prio(owner);
542                 if (owner->pi_blocked_on)
543                         chain_walk = 1;
544                 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
545         }
546         else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
547                 chain_walk = 1;
548
549         if (!chain_walk)
550                 return 0;
551
552         /*
553          * The owner can't disappear while holding a lock,
554          * so the owner struct is protected by wait_lock.
555          * Gets dropped in rt_mutex_adjust_prio_chain()!
556          */
557         get_task_struct(owner);
558
559         raw_spin_unlock(&lock->wait_lock);
560
561         res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
562                                          task);
563
564         raw_spin_lock(&lock->wait_lock);
565
566         return res;
567 }
568
569 /*
570  * Wake up the next waiter on the lock.
571  *
572  * Remove the top waiter from the current tasks waiter list and wake it up.
573  *
574  * Called with lock->wait_lock held.
575  */
576 static void wakeup_next_waiter(struct rt_mutex *lock)
577 {
578         struct rt_mutex_waiter *waiter;
579         unsigned long flags;
580
581         raw_spin_lock_irqsave(&current->pi_lock, flags);
582
583         waiter = rt_mutex_top_waiter(lock);
584
585         /*
586          * Remove it from current->pi_waiters. We do not adjust a
587          * possible priority boost right now. We execute wakeup in the
588          * boosted mode and go back to normal after releasing
589          * lock->wait_lock.
590          */
591         rt_mutex_dequeue_pi(current, waiter);
592
593         rt_mutex_set_owner(lock, NULL);
594
595         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
596
597         wake_up_process(waiter->task);
598 }
599
600 /*
601  * Remove a waiter from a lock and give up
602  *
603  * Must be called with lock->wait_lock held and
604  * have just failed to try_to_take_rt_mutex().
605  */
606 static void remove_waiter(struct rt_mutex *lock,
607                           struct rt_mutex_waiter *waiter)
608 {
609         int first = (waiter == rt_mutex_top_waiter(lock));
610         struct task_struct *owner = rt_mutex_owner(lock);
611         unsigned long flags;
612         int chain_walk = 0;
613
614         raw_spin_lock_irqsave(&current->pi_lock, flags);
615         rt_mutex_dequeue(lock, waiter);
616         current->pi_blocked_on = NULL;
617         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
618
619         if (!owner)
620                 return;
621
622         if (first) {
623
624                 raw_spin_lock_irqsave(&owner->pi_lock, flags);
625
626                 rt_mutex_dequeue_pi(owner, waiter);
627
628                 if (rt_mutex_has_waiters(lock)) {
629                         struct rt_mutex_waiter *next;
630
631                         next = rt_mutex_top_waiter(lock);
632                         rt_mutex_enqueue_pi(owner, next);
633                 }
634                 __rt_mutex_adjust_prio(owner);
635
636                 if (owner->pi_blocked_on)
637                         chain_walk = 1;
638
639                 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
640         }
641
642         if (!chain_walk)
643                 return;
644
645         /* gets dropped in rt_mutex_adjust_prio_chain()! */
646         get_task_struct(owner);
647
648         raw_spin_unlock(&lock->wait_lock);
649
650         rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
651
652         raw_spin_lock(&lock->wait_lock);
653 }
654
655 /*
656  * Recheck the pi chain, in case we got a priority setting
657  *
658  * Called from sched_setscheduler
659  */
660 void rt_mutex_adjust_pi(struct task_struct *task)
661 {
662         struct rt_mutex_waiter *waiter;
663         unsigned long flags;
664
665         raw_spin_lock_irqsave(&task->pi_lock, flags);
666
667         waiter = task->pi_blocked_on;
668         if (!waiter || (waiter->prio == task->prio &&
669                         !dl_prio(task->prio))) {
670                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
671                 return;
672         }
673
674         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
675
676         /* gets dropped in rt_mutex_adjust_prio_chain()! */
677         get_task_struct(task);
678         rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
679 }
680
681 /**
682  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
683  * @lock:                the rt_mutex to take
684  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
685  *                       or TASK_UNINTERRUPTIBLE)
686  * @timeout:             the pre-initialized and started timer, or NULL for none
687  * @waiter:              the pre-initialized rt_mutex_waiter
688  *
689  * lock->wait_lock must be held by the caller.
690  */
691 static int __sched
692 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
693                     struct hrtimer_sleeper *timeout,
694                     struct rt_mutex_waiter *waiter)
695 {
696         int ret = 0;
697
698         for (;;) {
699                 /* Try to acquire the lock: */
700                 if (try_to_take_rt_mutex(lock, current, waiter))
701                         break;
702
703                 /*
704                  * TASK_INTERRUPTIBLE checks for signals and
705                  * timeout. Ignored otherwise.
706                  */
707                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
708                         /* Signal pending? */
709                         if (signal_pending(current))
710                                 ret = -EINTR;
711                         if (timeout && !timeout->task)
712                                 ret = -ETIMEDOUT;
713                         if (ret)
714                                 break;
715                 }
716
717                 raw_spin_unlock(&lock->wait_lock);
718
719                 debug_rt_mutex_print_deadlock(waiter);
720
721                 schedule_rt_mutex(lock);
722
723                 raw_spin_lock(&lock->wait_lock);
724                 set_current_state(state);
725         }
726
727         return ret;
728 }
729
730 /*
731  * Slow path lock function:
732  */
733 static int __sched
734 rt_mutex_slowlock(struct rt_mutex *lock, int state,
735                   struct hrtimer_sleeper *timeout,
736                   int detect_deadlock)
737 {
738         struct rt_mutex_waiter waiter;
739         int ret = 0;
740
741         debug_rt_mutex_init_waiter(&waiter);
742         RB_CLEAR_NODE(&waiter.pi_tree_entry);
743         RB_CLEAR_NODE(&waiter.tree_entry);
744
745         raw_spin_lock(&lock->wait_lock);
746
747         /* Try to acquire the lock again: */
748         if (try_to_take_rt_mutex(lock, current, NULL)) {
749                 raw_spin_unlock(&lock->wait_lock);
750                 return 0;
751         }
752
753         set_current_state(state);
754
755         /* Setup the timer, when timeout != NULL */
756         if (unlikely(timeout)) {
757                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
758                 if (!hrtimer_active(&timeout->timer))
759                         timeout->task = NULL;
760         }
761
762         ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
763
764         if (likely(!ret))
765                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
766
767         set_current_state(TASK_RUNNING);
768
769         if (unlikely(ret))
770                 remove_waiter(lock, &waiter);
771
772         /*
773          * try_to_take_rt_mutex() sets the waiter bit
774          * unconditionally. We might have to fix that up.
775          */
776         fixup_rt_mutex_waiters(lock);
777
778         raw_spin_unlock(&lock->wait_lock);
779
780         /* Remove pending timer: */
781         if (unlikely(timeout))
782                 hrtimer_cancel(&timeout->timer);
783
784         debug_rt_mutex_free_waiter(&waiter);
785
786         return ret;
787 }
788
789 /*
790  * Slow path try-lock function:
791  */
792 static inline int
793 rt_mutex_slowtrylock(struct rt_mutex *lock)
794 {
795         int ret = 0;
796
797         raw_spin_lock(&lock->wait_lock);
798
799         if (likely(rt_mutex_owner(lock) != current)) {
800
801                 ret = try_to_take_rt_mutex(lock, current, NULL);
802                 /*
803                  * try_to_take_rt_mutex() sets the lock waiters
804                  * bit unconditionally. Clean this up.
805                  */
806                 fixup_rt_mutex_waiters(lock);
807         }
808
809         raw_spin_unlock(&lock->wait_lock);
810
811         return ret;
812 }
813
814 /*
815  * Slow path to release a rt-mutex:
816  */
817 static void __sched
818 rt_mutex_slowunlock(struct rt_mutex *lock)
819 {
820         raw_spin_lock(&lock->wait_lock);
821
822         debug_rt_mutex_unlock(lock);
823
824         rt_mutex_deadlock_account_unlock(current);
825
826         if (!rt_mutex_has_waiters(lock)) {
827                 lock->owner = NULL;
828                 raw_spin_unlock(&lock->wait_lock);
829                 return;
830         }
831
832         wakeup_next_waiter(lock);
833
834         raw_spin_unlock(&lock->wait_lock);
835
836         /* Undo pi boosting if necessary: */
837         rt_mutex_adjust_prio(current);
838 }
839
840 /*
841  * debug aware fast / slowpath lock,trylock,unlock
842  *
843  * The atomic acquire/release ops are compiled away, when either the
844  * architecture does not support cmpxchg or when debugging is enabled.
845  */
846 static inline int
847 rt_mutex_fastlock(struct rt_mutex *lock, int state,
848                   int detect_deadlock,
849                   int (*slowfn)(struct rt_mutex *lock, int state,
850                                 struct hrtimer_sleeper *timeout,
851                                 int detect_deadlock))
852 {
853         if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
854                 rt_mutex_deadlock_account_lock(lock, current);
855                 return 0;
856         } else
857                 return slowfn(lock, state, NULL, detect_deadlock);
858 }
859
860 static inline int
861 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
862                         struct hrtimer_sleeper *timeout, int detect_deadlock,
863                         int (*slowfn)(struct rt_mutex *lock, int state,
864                                       struct hrtimer_sleeper *timeout,
865                                       int detect_deadlock))
866 {
867         if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
868                 rt_mutex_deadlock_account_lock(lock, current);
869                 return 0;
870         } else
871                 return slowfn(lock, state, timeout, detect_deadlock);
872 }
873
874 static inline int
875 rt_mutex_fasttrylock(struct rt_mutex *lock,
876                      int (*slowfn)(struct rt_mutex *lock))
877 {
878         if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
879                 rt_mutex_deadlock_account_lock(lock, current);
880                 return 1;
881         }
882         return slowfn(lock);
883 }
884
885 static inline void
886 rt_mutex_fastunlock(struct rt_mutex *lock,
887                     void (*slowfn)(struct rt_mutex *lock))
888 {
889         if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
890                 rt_mutex_deadlock_account_unlock(current);
891         else
892                 slowfn(lock);
893 }
894
895 /**
896  * rt_mutex_lock - lock a rt_mutex
897  *
898  * @lock: the rt_mutex to be locked
899  */
900 void __sched rt_mutex_lock(struct rt_mutex *lock)
901 {
902         might_sleep();
903
904         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
905 }
906 EXPORT_SYMBOL_GPL(rt_mutex_lock);
907
908 /**
909  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
910  *
911  * @lock:               the rt_mutex to be locked
912  * @detect_deadlock:    deadlock detection on/off
913  *
914  * Returns:
915  *  0           on success
916  * -EINTR       when interrupted by a signal
917  * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
918  */
919 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
920                                                  int detect_deadlock)
921 {
922         might_sleep();
923
924         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
925                                  detect_deadlock, rt_mutex_slowlock);
926 }
927 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
928
929 /**
930  * rt_mutex_timed_lock - lock a rt_mutex interruptible
931  *                      the timeout structure is provided
932  *                      by the caller
933  *
934  * @lock:               the rt_mutex to be locked
935  * @timeout:            timeout structure or NULL (no timeout)
936  * @detect_deadlock:    deadlock detection on/off
937  *
938  * Returns:
939  *  0           on success
940  * -EINTR       when interrupted by a signal
941  * -ETIMEDOUT   when the timeout expired
942  * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
943  */
944 int
945 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
946                     int detect_deadlock)
947 {
948         might_sleep();
949
950         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
951                                        detect_deadlock, rt_mutex_slowlock);
952 }
953 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
954
955 /**
956  * rt_mutex_trylock - try to lock a rt_mutex
957  *
958  * @lock:       the rt_mutex to be locked
959  *
960  * Returns 1 on success and 0 on contention
961  */
962 int __sched rt_mutex_trylock(struct rt_mutex *lock)
963 {
964         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
965 }
966 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
967
968 /**
969  * rt_mutex_unlock - unlock a rt_mutex
970  *
971  * @lock: the rt_mutex to be unlocked
972  */
973 void __sched rt_mutex_unlock(struct rt_mutex *lock)
974 {
975         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
976 }
977 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
978
979 /**
980  * rt_mutex_destroy - mark a mutex unusable
981  * @lock: the mutex to be destroyed
982  *
983  * This function marks the mutex uninitialized, and any subsequent
984  * use of the mutex is forbidden. The mutex must not be locked when
985  * this function is called.
986  */
987 void rt_mutex_destroy(struct rt_mutex *lock)
988 {
989         WARN_ON(rt_mutex_is_locked(lock));
990 #ifdef CONFIG_DEBUG_RT_MUTEXES
991         lock->magic = NULL;
992 #endif
993 }
994
995 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
996
997 /**
998  * __rt_mutex_init - initialize the rt lock
999  *
1000  * @lock: the rt lock to be initialized
1001  *
1002  * Initialize the rt lock to unlocked state.
1003  *
1004  * Initializing of a locked rt lock is not allowed
1005  */
1006 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1007 {
1008         lock->owner = NULL;
1009         raw_spin_lock_init(&lock->wait_lock);
1010         lock->waiters = RB_ROOT;
1011         lock->waiters_leftmost = NULL;
1012
1013         debug_rt_mutex_init(lock, name);
1014 }
1015 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1016
1017 /**
1018  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1019  *                              proxy owner
1020  *
1021  * @lock:       the rt_mutex to be locked
1022  * @proxy_owner:the task to set as owner
1023  *
1024  * No locking. Caller has to do serializing itself
1025  * Special API call for PI-futex support
1026  */
1027 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1028                                 struct task_struct *proxy_owner)
1029 {
1030         __rt_mutex_init(lock, NULL);
1031         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1032         rt_mutex_set_owner(lock, proxy_owner);
1033         rt_mutex_deadlock_account_lock(lock, proxy_owner);
1034 }
1035
1036 /**
1037  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1038  *
1039  * @lock:       the rt_mutex to be locked
1040  *
1041  * No locking. Caller has to do serializing itself
1042  * Special API call for PI-futex support
1043  */
1044 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1045                            struct task_struct *proxy_owner)
1046 {
1047         debug_rt_mutex_proxy_unlock(lock);
1048         rt_mutex_set_owner(lock, NULL);
1049         rt_mutex_deadlock_account_unlock(proxy_owner);
1050 }
1051
1052 /**
1053  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1054  * @lock:               the rt_mutex to take
1055  * @waiter:             the pre-initialized rt_mutex_waiter
1056  * @task:               the task to prepare
1057  * @detect_deadlock:    perform deadlock detection (1) or not (0)
1058  *
1059  * Returns:
1060  *  0 - task blocked on lock
1061  *  1 - acquired the lock for task, caller should wake it up
1062  * <0 - error
1063  *
1064  * Special API call for FUTEX_REQUEUE_PI support.
1065  */
1066 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1067                               struct rt_mutex_waiter *waiter,
1068                               struct task_struct *task, int detect_deadlock)
1069 {
1070         int ret;
1071
1072         raw_spin_lock(&lock->wait_lock);
1073
1074         if (try_to_take_rt_mutex(lock, task, NULL)) {
1075                 raw_spin_unlock(&lock->wait_lock);
1076                 return 1;
1077         }
1078
1079         ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1080
1081         if (ret && !rt_mutex_owner(lock)) {
1082                 /*
1083                  * Reset the return value. We might have
1084                  * returned with -EDEADLK and the owner
1085                  * released the lock while we were walking the
1086                  * pi chain.  Let the waiter sort it out.
1087                  */
1088                 ret = 0;
1089         }
1090
1091         if (unlikely(ret))
1092                 remove_waiter(lock, waiter);
1093
1094         raw_spin_unlock(&lock->wait_lock);
1095
1096         debug_rt_mutex_print_deadlock(waiter);
1097
1098         return ret;
1099 }
1100
1101 /**
1102  * rt_mutex_next_owner - return the next owner of the lock
1103  *
1104  * @lock: the rt lock query
1105  *
1106  * Returns the next owner of the lock or NULL
1107  *
1108  * Caller has to serialize against other accessors to the lock
1109  * itself.
1110  *
1111  * Special API call for PI-futex support
1112  */
1113 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1114 {
1115         if (!rt_mutex_has_waiters(lock))
1116                 return NULL;
1117
1118         return rt_mutex_top_waiter(lock)->task;
1119 }
1120
1121 /**
1122  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1123  * @lock:               the rt_mutex we were woken on
1124  * @to:                 the timeout, null if none. hrtimer should already have
1125  *                      been started.
1126  * @waiter:             the pre-initialized rt_mutex_waiter
1127  * @detect_deadlock:    perform deadlock detection (1) or not (0)
1128  *
1129  * Complete the lock acquisition started our behalf by another thread.
1130  *
1131  * Returns:
1132  *  0 - success
1133  * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1134  *
1135  * Special API call for PI-futex requeue support
1136  */
1137 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1138                                struct hrtimer_sleeper *to,
1139                                struct rt_mutex_waiter *waiter,
1140                                int detect_deadlock)
1141 {
1142         int ret;
1143
1144         raw_spin_lock(&lock->wait_lock);
1145
1146         set_current_state(TASK_INTERRUPTIBLE);
1147
1148         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1149
1150         set_current_state(TASK_RUNNING);
1151
1152         if (unlikely(ret))
1153                 remove_waiter(lock, waiter);
1154
1155         /*
1156          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1157          * have to fix that up.
1158          */
1159         fixup_rt_mutex_waiters(lock);
1160
1161         raw_spin_unlock(&lock->wait_lock);
1162
1163         return ret;
1164 }