]> Pileus Git - ~andy/linux/blob - kernel/fork.c
net: use a per task frag allocator
[~andy/linux] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;      /* Handle normal Linux uptimes. */
90 int nr_threads;                 /* The idle threads do not count.. */
91
92 int max_threads;                /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101         return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108         int cpu;
109         int total = 0;
110
111         for_each_possible_cpu(cpu)
112                 total += per_cpu(process_counts, cpu);
113
114         return total;
115 }
116
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131         kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140
141 /*
142  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143  * kmemcache based allocator.
144  */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147                                                   int node)
148 {
149         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150                                              THREAD_SIZE_ORDER);
151
152         return page ? page_address(page) : NULL;
153 }
154
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163                                                   int node)
164 {
165         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167
168 static void free_thread_info(struct thread_info *ti)
169 {
170         kmem_cache_free(thread_info_cache, ti);
171 }
172
173 void thread_info_cache_init(void)
174 {
175         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176                                               THREAD_SIZE, 0, NULL);
177         BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202         struct zone *zone = page_zone(virt_to_page(ti));
203
204         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206
207 void free_task(struct task_struct *tsk)
208 {
209         account_kernel_stack(tsk->stack, -1);
210         arch_release_thread_info(tsk->stack);
211         free_thread_info(tsk->stack);
212         rt_mutex_debug_task_free(tsk);
213         ftrace_graph_exit_task(tsk);
214         put_seccomp_filter(tsk);
215         arch_release_task_struct(tsk);
216         free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222         taskstats_tgid_free(sig);
223         sched_autogroup_exit(sig);
224         kmem_cache_free(signal_cachep, sig);
225 }
226
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229         if (atomic_dec_and_test(&sig->sigcnt))
230                 free_signal_struct(sig);
231 }
232
233 void __put_task_struct(struct task_struct *tsk)
234 {
235         WARN_ON(!tsk->exit_state);
236         WARN_ON(atomic_read(&tsk->usage));
237         WARN_ON(tsk == current);
238
239         security_task_free(tsk);
240         exit_creds(tsk);
241         delayacct_tsk_free(tsk);
242         put_signal_struct(tsk->signal);
243
244         if (!profile_handoff_task(tsk))
245                 free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248
249 void __init __weak arch_task_cache_init(void) { }
250
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
256 #endif
257         /* create a slab on which task_structs can be allocated */
258         task_struct_cachep =
259                 kmem_cache_create("task_struct", sizeof(struct task_struct),
260                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262
263         /* do the arch specific task caches init */
264         arch_task_cache_init();
265
266         /*
267          * The default maximum number of threads is set to a safe
268          * value: the thread structures can take up at most half
269          * of memory.
270          */
271         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272
273         /*
274          * we need to allow at least 20 threads to boot a system
275          */
276         if (max_threads < 20)
277                 max_threads = 20;
278
279         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281         init_task.signal->rlim[RLIMIT_SIGPENDING] =
282                 init_task.signal->rlim[RLIMIT_NPROC];
283 }
284
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286                                                struct task_struct *src)
287 {
288         *dst = *src;
289         return 0;
290 }
291
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294         struct task_struct *tsk;
295         struct thread_info *ti;
296         unsigned long *stackend;
297         int node = tsk_fork_get_node(orig);
298         int err;
299
300         tsk = alloc_task_struct_node(node);
301         if (!tsk)
302                 return NULL;
303
304         ti = alloc_thread_info_node(tsk, node);
305         if (!ti)
306                 goto free_tsk;
307
308         err = arch_dup_task_struct(tsk, orig);
309         if (err)
310                 goto free_ti;
311
312         tsk->stack = ti;
313
314         setup_thread_stack(tsk, orig);
315         clear_user_return_notifier(tsk);
316         clear_tsk_need_resched(tsk);
317         stackend = end_of_stack(tsk);
318         *stackend = STACK_END_MAGIC;    /* for overflow detection */
319
320 #ifdef CONFIG_CC_STACKPROTECTOR
321         tsk->stack_canary = get_random_int();
322 #endif
323
324         /*
325          * One for us, one for whoever does the "release_task()" (usually
326          * parent)
327          */
328         atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330         tsk->btrace_seq = 0;
331 #endif
332         tsk->splice_pipe = NULL;
333         tsk->task_frag.page = NULL;
334
335         account_kernel_stack(ti, 1);
336
337         return tsk;
338
339 free_ti:
340         free_thread_info(ti);
341 free_tsk:
342         free_task_struct(tsk);
343         return NULL;
344 }
345
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350         struct rb_node **rb_link, *rb_parent;
351         int retval;
352         unsigned long charge;
353         struct mempolicy *pol;
354
355         down_write(&oldmm->mmap_sem);
356         flush_cache_dup_mm(oldmm);
357         /*
358          * Not linked in yet - no deadlock potential:
359          */
360         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
361
362         mm->locked_vm = 0;
363         mm->mmap = NULL;
364         mm->mmap_cache = NULL;
365         mm->free_area_cache = oldmm->mmap_base;
366         mm->cached_hole_size = ~0UL;
367         mm->map_count = 0;
368         cpumask_clear(mm_cpumask(mm));
369         mm->mm_rb = RB_ROOT;
370         rb_link = &mm->mm_rb.rb_node;
371         rb_parent = NULL;
372         pprev = &mm->mmap;
373         retval = ksm_fork(mm, oldmm);
374         if (retval)
375                 goto out;
376         retval = khugepaged_fork(mm, oldmm);
377         if (retval)
378                 goto out;
379
380         prev = NULL;
381         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382                 struct file *file;
383
384                 if (mpnt->vm_flags & VM_DONTCOPY) {
385                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386                                                         -vma_pages(mpnt));
387                         continue;
388                 }
389                 charge = 0;
390                 if (mpnt->vm_flags & VM_ACCOUNT) {
391                         unsigned long len = vma_pages(mpnt);
392
393                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394                                 goto fail_nomem;
395                         charge = len;
396                 }
397                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398                 if (!tmp)
399                         goto fail_nomem;
400                 *tmp = *mpnt;
401                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402                 pol = mpol_dup(vma_policy(mpnt));
403                 retval = PTR_ERR(pol);
404                 if (IS_ERR(pol))
405                         goto fail_nomem_policy;
406                 vma_set_policy(tmp, pol);
407                 tmp->vm_mm = mm;
408                 if (anon_vma_fork(tmp, mpnt))
409                         goto fail_nomem_anon_vma_fork;
410                 tmp->vm_flags &= ~VM_LOCKED;
411                 tmp->vm_next = tmp->vm_prev = NULL;
412                 file = tmp->vm_file;
413                 if (file) {
414                         struct inode *inode = file->f_path.dentry->d_inode;
415                         struct address_space *mapping = file->f_mapping;
416
417                         get_file(file);
418                         if (tmp->vm_flags & VM_DENYWRITE)
419                                 atomic_dec(&inode->i_writecount);
420                         mutex_lock(&mapping->i_mmap_mutex);
421                         if (tmp->vm_flags & VM_SHARED)
422                                 mapping->i_mmap_writable++;
423                         flush_dcache_mmap_lock(mapping);
424                         /* insert tmp into the share list, just after mpnt */
425                         vma_prio_tree_add(tmp, mpnt);
426                         flush_dcache_mmap_unlock(mapping);
427                         mutex_unlock(&mapping->i_mmap_mutex);
428                 }
429
430                 /*
431                  * Clear hugetlb-related page reserves for children. This only
432                  * affects MAP_PRIVATE mappings. Faults generated by the child
433                  * are not guaranteed to succeed, even if read-only
434                  */
435                 if (is_vm_hugetlb_page(tmp))
436                         reset_vma_resv_huge_pages(tmp);
437
438                 /*
439                  * Link in the new vma and copy the page table entries.
440                  */
441                 *pprev = tmp;
442                 pprev = &tmp->vm_next;
443                 tmp->vm_prev = prev;
444                 prev = tmp;
445
446                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
447                 rb_link = &tmp->vm_rb.rb_right;
448                 rb_parent = &tmp->vm_rb;
449
450                 mm->map_count++;
451                 retval = copy_page_range(mm, oldmm, mpnt);
452
453                 if (tmp->vm_ops && tmp->vm_ops->open)
454                         tmp->vm_ops->open(tmp);
455
456                 if (retval)
457                         goto out;
458
459                 if (file)
460                         uprobe_mmap(tmp);
461         }
462         /* a new mm has just been created */
463         arch_dup_mmap(oldmm, mm);
464         retval = 0;
465 out:
466         up_write(&mm->mmap_sem);
467         flush_tlb_mm(oldmm);
468         up_write(&oldmm->mmap_sem);
469         return retval;
470 fail_nomem_anon_vma_fork:
471         mpol_put(pol);
472 fail_nomem_policy:
473         kmem_cache_free(vm_area_cachep, tmp);
474 fail_nomem:
475         retval = -ENOMEM;
476         vm_unacct_memory(charge);
477         goto out;
478 }
479
480 static inline int mm_alloc_pgd(struct mm_struct *mm)
481 {
482         mm->pgd = pgd_alloc(mm);
483         if (unlikely(!mm->pgd))
484                 return -ENOMEM;
485         return 0;
486 }
487
488 static inline void mm_free_pgd(struct mm_struct *mm)
489 {
490         pgd_free(mm, mm->pgd);
491 }
492 #else
493 #define dup_mmap(mm, oldmm)     (0)
494 #define mm_alloc_pgd(mm)        (0)
495 #define mm_free_pgd(mm)
496 #endif /* CONFIG_MMU */
497
498 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
499
500 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
501 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
502
503 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
504
505 static int __init coredump_filter_setup(char *s)
506 {
507         default_dump_filter =
508                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
509                 MMF_DUMP_FILTER_MASK;
510         return 1;
511 }
512
513 __setup("coredump_filter=", coredump_filter_setup);
514
515 #include <linux/init_task.h>
516
517 static void mm_init_aio(struct mm_struct *mm)
518 {
519 #ifdef CONFIG_AIO
520         spin_lock_init(&mm->ioctx_lock);
521         INIT_HLIST_HEAD(&mm->ioctx_list);
522 #endif
523 }
524
525 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
526 {
527         atomic_set(&mm->mm_users, 1);
528         atomic_set(&mm->mm_count, 1);
529         init_rwsem(&mm->mmap_sem);
530         INIT_LIST_HEAD(&mm->mmlist);
531         mm->flags = (current->mm) ?
532                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
533         mm->core_state = NULL;
534         mm->nr_ptes = 0;
535         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
536         spin_lock_init(&mm->page_table_lock);
537         mm->free_area_cache = TASK_UNMAPPED_BASE;
538         mm->cached_hole_size = ~0UL;
539         mm_init_aio(mm);
540         mm_init_owner(mm, p);
541
542         if (likely(!mm_alloc_pgd(mm))) {
543                 mm->def_flags = 0;
544                 mmu_notifier_mm_init(mm);
545                 return mm;
546         }
547
548         free_mm(mm);
549         return NULL;
550 }
551
552 static void check_mm(struct mm_struct *mm)
553 {
554         int i;
555
556         for (i = 0; i < NR_MM_COUNTERS; i++) {
557                 long x = atomic_long_read(&mm->rss_stat.count[i]);
558
559                 if (unlikely(x))
560                         printk(KERN_ALERT "BUG: Bad rss-counter state "
561                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
562         }
563
564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
565         VM_BUG_ON(mm->pmd_huge_pte);
566 #endif
567 }
568
569 /*
570  * Allocate and initialize an mm_struct.
571  */
572 struct mm_struct *mm_alloc(void)
573 {
574         struct mm_struct *mm;
575
576         mm = allocate_mm();
577         if (!mm)
578                 return NULL;
579
580         memset(mm, 0, sizeof(*mm));
581         mm_init_cpumask(mm);
582         return mm_init(mm, current);
583 }
584
585 /*
586  * Called when the last reference to the mm
587  * is dropped: either by a lazy thread or by
588  * mmput. Free the page directory and the mm.
589  */
590 void __mmdrop(struct mm_struct *mm)
591 {
592         BUG_ON(mm == &init_mm);
593         mm_free_pgd(mm);
594         destroy_context(mm);
595         mmu_notifier_mm_destroy(mm);
596         check_mm(mm);
597         free_mm(mm);
598 }
599 EXPORT_SYMBOL_GPL(__mmdrop);
600
601 /*
602  * Decrement the use count and release all resources for an mm.
603  */
604 void mmput(struct mm_struct *mm)
605 {
606         might_sleep();
607
608         if (atomic_dec_and_test(&mm->mm_users)) {
609                 uprobe_clear_state(mm);
610                 exit_aio(mm);
611                 ksm_exit(mm);
612                 khugepaged_exit(mm); /* must run before exit_mmap */
613                 exit_mmap(mm);
614                 set_mm_exe_file(mm, NULL);
615                 if (!list_empty(&mm->mmlist)) {
616                         spin_lock(&mmlist_lock);
617                         list_del(&mm->mmlist);
618                         spin_unlock(&mmlist_lock);
619                 }
620                 if (mm->binfmt)
621                         module_put(mm->binfmt->module);
622                 mmdrop(mm);
623         }
624 }
625 EXPORT_SYMBOL_GPL(mmput);
626
627 /*
628  * We added or removed a vma mapping the executable. The vmas are only mapped
629  * during exec and are not mapped with the mmap system call.
630  * Callers must hold down_write() on the mm's mmap_sem for these
631  */
632 void added_exe_file_vma(struct mm_struct *mm)
633 {
634         mm->num_exe_file_vmas++;
635 }
636
637 void removed_exe_file_vma(struct mm_struct *mm)
638 {
639         mm->num_exe_file_vmas--;
640         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
641                 fput(mm->exe_file);
642                 mm->exe_file = NULL;
643         }
644
645 }
646
647 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
648 {
649         if (new_exe_file)
650                 get_file(new_exe_file);
651         if (mm->exe_file)
652                 fput(mm->exe_file);
653         mm->exe_file = new_exe_file;
654         mm->num_exe_file_vmas = 0;
655 }
656
657 struct file *get_mm_exe_file(struct mm_struct *mm)
658 {
659         struct file *exe_file;
660
661         /* We need mmap_sem to protect against races with removal of
662          * VM_EXECUTABLE vmas */
663         down_read(&mm->mmap_sem);
664         exe_file = mm->exe_file;
665         if (exe_file)
666                 get_file(exe_file);
667         up_read(&mm->mmap_sem);
668         return exe_file;
669 }
670
671 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
672 {
673         /* It's safe to write the exe_file pointer without exe_file_lock because
674          * this is called during fork when the task is not yet in /proc */
675         newmm->exe_file = get_mm_exe_file(oldmm);
676 }
677
678 /**
679  * get_task_mm - acquire a reference to the task's mm
680  *
681  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
682  * this kernel workthread has transiently adopted a user mm with use_mm,
683  * to do its AIO) is not set and if so returns a reference to it, after
684  * bumping up the use count.  User must release the mm via mmput()
685  * after use.  Typically used by /proc and ptrace.
686  */
687 struct mm_struct *get_task_mm(struct task_struct *task)
688 {
689         struct mm_struct *mm;
690
691         task_lock(task);
692         mm = task->mm;
693         if (mm) {
694                 if (task->flags & PF_KTHREAD)
695                         mm = NULL;
696                 else
697                         atomic_inc(&mm->mm_users);
698         }
699         task_unlock(task);
700         return mm;
701 }
702 EXPORT_SYMBOL_GPL(get_task_mm);
703
704 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
705 {
706         struct mm_struct *mm;
707         int err;
708
709         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
710         if (err)
711                 return ERR_PTR(err);
712
713         mm = get_task_mm(task);
714         if (mm && mm != current->mm &&
715                         !ptrace_may_access(task, mode)) {
716                 mmput(mm);
717                 mm = ERR_PTR(-EACCES);
718         }
719         mutex_unlock(&task->signal->cred_guard_mutex);
720
721         return mm;
722 }
723
724 static void complete_vfork_done(struct task_struct *tsk)
725 {
726         struct completion *vfork;
727
728         task_lock(tsk);
729         vfork = tsk->vfork_done;
730         if (likely(vfork)) {
731                 tsk->vfork_done = NULL;
732                 complete(vfork);
733         }
734         task_unlock(tsk);
735 }
736
737 static int wait_for_vfork_done(struct task_struct *child,
738                                 struct completion *vfork)
739 {
740         int killed;
741
742         freezer_do_not_count();
743         killed = wait_for_completion_killable(vfork);
744         freezer_count();
745
746         if (killed) {
747                 task_lock(child);
748                 child->vfork_done = NULL;
749                 task_unlock(child);
750         }
751
752         put_task_struct(child);
753         return killed;
754 }
755
756 /* Please note the differences between mmput and mm_release.
757  * mmput is called whenever we stop holding onto a mm_struct,
758  * error success whatever.
759  *
760  * mm_release is called after a mm_struct has been removed
761  * from the current process.
762  *
763  * This difference is important for error handling, when we
764  * only half set up a mm_struct for a new process and need to restore
765  * the old one.  Because we mmput the new mm_struct before
766  * restoring the old one. . .
767  * Eric Biederman 10 January 1998
768  */
769 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
770 {
771         /* Get rid of any futexes when releasing the mm */
772 #ifdef CONFIG_FUTEX
773         if (unlikely(tsk->robust_list)) {
774                 exit_robust_list(tsk);
775                 tsk->robust_list = NULL;
776         }
777 #ifdef CONFIG_COMPAT
778         if (unlikely(tsk->compat_robust_list)) {
779                 compat_exit_robust_list(tsk);
780                 tsk->compat_robust_list = NULL;
781         }
782 #endif
783         if (unlikely(!list_empty(&tsk->pi_state_list)))
784                 exit_pi_state_list(tsk);
785 #endif
786
787         uprobe_free_utask(tsk);
788
789         /* Get rid of any cached register state */
790         deactivate_mm(tsk, mm);
791
792         /*
793          * If we're exiting normally, clear a user-space tid field if
794          * requested.  We leave this alone when dying by signal, to leave
795          * the value intact in a core dump, and to save the unnecessary
796          * trouble, say, a killed vfork parent shouldn't touch this mm.
797          * Userland only wants this done for a sys_exit.
798          */
799         if (tsk->clear_child_tid) {
800                 if (!(tsk->flags & PF_SIGNALED) &&
801                     atomic_read(&mm->mm_users) > 1) {
802                         /*
803                          * We don't check the error code - if userspace has
804                          * not set up a proper pointer then tough luck.
805                          */
806                         put_user(0, tsk->clear_child_tid);
807                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
808                                         1, NULL, NULL, 0);
809                 }
810                 tsk->clear_child_tid = NULL;
811         }
812
813         /*
814          * All done, finally we can wake up parent and return this mm to him.
815          * Also kthread_stop() uses this completion for synchronization.
816          */
817         if (tsk->vfork_done)
818                 complete_vfork_done(tsk);
819 }
820
821 /*
822  * Allocate a new mm structure and copy contents from the
823  * mm structure of the passed in task structure.
824  */
825 struct mm_struct *dup_mm(struct task_struct *tsk)
826 {
827         struct mm_struct *mm, *oldmm = current->mm;
828         int err;
829
830         if (!oldmm)
831                 return NULL;
832
833         mm = allocate_mm();
834         if (!mm)
835                 goto fail_nomem;
836
837         memcpy(mm, oldmm, sizeof(*mm));
838         mm_init_cpumask(mm);
839
840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
841         mm->pmd_huge_pte = NULL;
842 #endif
843         uprobe_reset_state(mm);
844
845         if (!mm_init(mm, tsk))
846                 goto fail_nomem;
847
848         if (init_new_context(tsk, mm))
849                 goto fail_nocontext;
850
851         dup_mm_exe_file(oldmm, mm);
852
853         err = dup_mmap(mm, oldmm);
854         if (err)
855                 goto free_pt;
856
857         mm->hiwater_rss = get_mm_rss(mm);
858         mm->hiwater_vm = mm->total_vm;
859
860         if (mm->binfmt && !try_module_get(mm->binfmt->module))
861                 goto free_pt;
862
863         return mm;
864
865 free_pt:
866         /* don't put binfmt in mmput, we haven't got module yet */
867         mm->binfmt = NULL;
868         mmput(mm);
869
870 fail_nomem:
871         return NULL;
872
873 fail_nocontext:
874         /*
875          * If init_new_context() failed, we cannot use mmput() to free the mm
876          * because it calls destroy_context()
877          */
878         mm_free_pgd(mm);
879         free_mm(mm);
880         return NULL;
881 }
882
883 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
884 {
885         struct mm_struct *mm, *oldmm;
886         int retval;
887
888         tsk->min_flt = tsk->maj_flt = 0;
889         tsk->nvcsw = tsk->nivcsw = 0;
890 #ifdef CONFIG_DETECT_HUNG_TASK
891         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
892 #endif
893
894         tsk->mm = NULL;
895         tsk->active_mm = NULL;
896
897         /*
898          * Are we cloning a kernel thread?
899          *
900          * We need to steal a active VM for that..
901          */
902         oldmm = current->mm;
903         if (!oldmm)
904                 return 0;
905
906         if (clone_flags & CLONE_VM) {
907                 atomic_inc(&oldmm->mm_users);
908                 mm = oldmm;
909                 goto good_mm;
910         }
911
912         retval = -ENOMEM;
913         mm = dup_mm(tsk);
914         if (!mm)
915                 goto fail_nomem;
916
917 good_mm:
918         tsk->mm = mm;
919         tsk->active_mm = mm;
920         return 0;
921
922 fail_nomem:
923         return retval;
924 }
925
926 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
927 {
928         struct fs_struct *fs = current->fs;
929         if (clone_flags & CLONE_FS) {
930                 /* tsk->fs is already what we want */
931                 spin_lock(&fs->lock);
932                 if (fs->in_exec) {
933                         spin_unlock(&fs->lock);
934                         return -EAGAIN;
935                 }
936                 fs->users++;
937                 spin_unlock(&fs->lock);
938                 return 0;
939         }
940         tsk->fs = copy_fs_struct(fs);
941         if (!tsk->fs)
942                 return -ENOMEM;
943         return 0;
944 }
945
946 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
947 {
948         struct files_struct *oldf, *newf;
949         int error = 0;
950
951         /*
952          * A background process may not have any files ...
953          */
954         oldf = current->files;
955         if (!oldf)
956                 goto out;
957
958         if (clone_flags & CLONE_FILES) {
959                 atomic_inc(&oldf->count);
960                 goto out;
961         }
962
963         newf = dup_fd(oldf, &error);
964         if (!newf)
965                 goto out;
966
967         tsk->files = newf;
968         error = 0;
969 out:
970         return error;
971 }
972
973 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
974 {
975 #ifdef CONFIG_BLOCK
976         struct io_context *ioc = current->io_context;
977         struct io_context *new_ioc;
978
979         if (!ioc)
980                 return 0;
981         /*
982          * Share io context with parent, if CLONE_IO is set
983          */
984         if (clone_flags & CLONE_IO) {
985                 ioc_task_link(ioc);
986                 tsk->io_context = ioc;
987         } else if (ioprio_valid(ioc->ioprio)) {
988                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
989                 if (unlikely(!new_ioc))
990                         return -ENOMEM;
991
992                 new_ioc->ioprio = ioc->ioprio;
993                 put_io_context(new_ioc);
994         }
995 #endif
996         return 0;
997 }
998
999 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1000 {
1001         struct sighand_struct *sig;
1002
1003         if (clone_flags & CLONE_SIGHAND) {
1004                 atomic_inc(&current->sighand->count);
1005                 return 0;
1006         }
1007         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1008         rcu_assign_pointer(tsk->sighand, sig);
1009         if (!sig)
1010                 return -ENOMEM;
1011         atomic_set(&sig->count, 1);
1012         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1013         return 0;
1014 }
1015
1016 void __cleanup_sighand(struct sighand_struct *sighand)
1017 {
1018         if (atomic_dec_and_test(&sighand->count)) {
1019                 signalfd_cleanup(sighand);
1020                 kmem_cache_free(sighand_cachep, sighand);
1021         }
1022 }
1023
1024
1025 /*
1026  * Initialize POSIX timer handling for a thread group.
1027  */
1028 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1029 {
1030         unsigned long cpu_limit;
1031
1032         /* Thread group counters. */
1033         thread_group_cputime_init(sig);
1034
1035         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1036         if (cpu_limit != RLIM_INFINITY) {
1037                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1038                 sig->cputimer.running = 1;
1039         }
1040
1041         /* The timer lists. */
1042         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1043         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1044         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1045 }
1046
1047 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1048 {
1049         struct signal_struct *sig;
1050
1051         if (clone_flags & CLONE_THREAD)
1052                 return 0;
1053
1054         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1055         tsk->signal = sig;
1056         if (!sig)
1057                 return -ENOMEM;
1058
1059         sig->nr_threads = 1;
1060         atomic_set(&sig->live, 1);
1061         atomic_set(&sig->sigcnt, 1);
1062         init_waitqueue_head(&sig->wait_chldexit);
1063         if (clone_flags & CLONE_NEWPID)
1064                 sig->flags |= SIGNAL_UNKILLABLE;
1065         sig->curr_target = tsk;
1066         init_sigpending(&sig->shared_pending);
1067         INIT_LIST_HEAD(&sig->posix_timers);
1068
1069         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1070         sig->real_timer.function = it_real_fn;
1071
1072         task_lock(current->group_leader);
1073         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1074         task_unlock(current->group_leader);
1075
1076         posix_cpu_timers_init_group(sig);
1077
1078         tty_audit_fork(sig);
1079         sched_autogroup_fork(sig);
1080
1081 #ifdef CONFIG_CGROUPS
1082         init_rwsem(&sig->group_rwsem);
1083 #endif
1084
1085         sig->oom_adj = current->signal->oom_adj;
1086         sig->oom_score_adj = current->signal->oom_score_adj;
1087         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1088
1089         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1090                                    current->signal->is_child_subreaper;
1091
1092         mutex_init(&sig->cred_guard_mutex);
1093
1094         return 0;
1095 }
1096
1097 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1098 {
1099         unsigned long new_flags = p->flags;
1100
1101         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1102         new_flags |= PF_FORKNOEXEC;
1103         p->flags = new_flags;
1104 }
1105
1106 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1107 {
1108         current->clear_child_tid = tidptr;
1109
1110         return task_pid_vnr(current);
1111 }
1112
1113 static void rt_mutex_init_task(struct task_struct *p)
1114 {
1115         raw_spin_lock_init(&p->pi_lock);
1116 #ifdef CONFIG_RT_MUTEXES
1117         plist_head_init(&p->pi_waiters);
1118         p->pi_blocked_on = NULL;
1119 #endif
1120 }
1121
1122 #ifdef CONFIG_MM_OWNER
1123 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1124 {
1125         mm->owner = p;
1126 }
1127 #endif /* CONFIG_MM_OWNER */
1128
1129 /*
1130  * Initialize POSIX timer handling for a single task.
1131  */
1132 static void posix_cpu_timers_init(struct task_struct *tsk)
1133 {
1134         tsk->cputime_expires.prof_exp = 0;
1135         tsk->cputime_expires.virt_exp = 0;
1136         tsk->cputime_expires.sched_exp = 0;
1137         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1138         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1139         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1140 }
1141
1142 /*
1143  * This creates a new process as a copy of the old one,
1144  * but does not actually start it yet.
1145  *
1146  * It copies the registers, and all the appropriate
1147  * parts of the process environment (as per the clone
1148  * flags). The actual kick-off is left to the caller.
1149  */
1150 static struct task_struct *copy_process(unsigned long clone_flags,
1151                                         unsigned long stack_start,
1152                                         struct pt_regs *regs,
1153                                         unsigned long stack_size,
1154                                         int __user *child_tidptr,
1155                                         struct pid *pid,
1156                                         int trace)
1157 {
1158         int retval;
1159         struct task_struct *p;
1160         int cgroup_callbacks_done = 0;
1161
1162         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1163                 return ERR_PTR(-EINVAL);
1164
1165         /*
1166          * Thread groups must share signals as well, and detached threads
1167          * can only be started up within the thread group.
1168          */
1169         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1170                 return ERR_PTR(-EINVAL);
1171
1172         /*
1173          * Shared signal handlers imply shared VM. By way of the above,
1174          * thread groups also imply shared VM. Blocking this case allows
1175          * for various simplifications in other code.
1176          */
1177         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1178                 return ERR_PTR(-EINVAL);
1179
1180         /*
1181          * Siblings of global init remain as zombies on exit since they are
1182          * not reaped by their parent (swapper). To solve this and to avoid
1183          * multi-rooted process trees, prevent global and container-inits
1184          * from creating siblings.
1185          */
1186         if ((clone_flags & CLONE_PARENT) &&
1187                                 current->signal->flags & SIGNAL_UNKILLABLE)
1188                 return ERR_PTR(-EINVAL);
1189
1190         retval = security_task_create(clone_flags);
1191         if (retval)
1192                 goto fork_out;
1193
1194         retval = -ENOMEM;
1195         p = dup_task_struct(current);
1196         if (!p)
1197                 goto fork_out;
1198
1199         ftrace_graph_init_task(p);
1200         get_seccomp_filter(p);
1201
1202         rt_mutex_init_task(p);
1203
1204 #ifdef CONFIG_PROVE_LOCKING
1205         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1206         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1207 #endif
1208         retval = -EAGAIN;
1209         if (atomic_read(&p->real_cred->user->processes) >=
1210                         task_rlimit(p, RLIMIT_NPROC)) {
1211                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1212                     p->real_cred->user != INIT_USER)
1213                         goto bad_fork_free;
1214         }
1215         current->flags &= ~PF_NPROC_EXCEEDED;
1216
1217         retval = copy_creds(p, clone_flags);
1218         if (retval < 0)
1219                 goto bad_fork_free;
1220
1221         /*
1222          * If multiple threads are within copy_process(), then this check
1223          * triggers too late. This doesn't hurt, the check is only there
1224          * to stop root fork bombs.
1225          */
1226         retval = -EAGAIN;
1227         if (nr_threads >= max_threads)
1228                 goto bad_fork_cleanup_count;
1229
1230         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1231                 goto bad_fork_cleanup_count;
1232
1233         p->did_exec = 0;
1234         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1235         copy_flags(clone_flags, p);
1236         INIT_LIST_HEAD(&p->children);
1237         INIT_LIST_HEAD(&p->sibling);
1238         rcu_copy_process(p);
1239         p->vfork_done = NULL;
1240         spin_lock_init(&p->alloc_lock);
1241
1242         init_sigpending(&p->pending);
1243
1244         p->utime = p->stime = p->gtime = 0;
1245         p->utimescaled = p->stimescaled = 0;
1246 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1247         p->prev_utime = p->prev_stime = 0;
1248 #endif
1249 #if defined(SPLIT_RSS_COUNTING)
1250         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1251 #endif
1252
1253         p->default_timer_slack_ns = current->timer_slack_ns;
1254
1255         task_io_accounting_init(&p->ioac);
1256         acct_clear_integrals(p);
1257
1258         posix_cpu_timers_init(p);
1259
1260         do_posix_clock_monotonic_gettime(&p->start_time);
1261         p->real_start_time = p->start_time;
1262         monotonic_to_bootbased(&p->real_start_time);
1263         p->io_context = NULL;
1264         p->audit_context = NULL;
1265         if (clone_flags & CLONE_THREAD)
1266                 threadgroup_change_begin(current);
1267         cgroup_fork(p);
1268 #ifdef CONFIG_NUMA
1269         p->mempolicy = mpol_dup(p->mempolicy);
1270         if (IS_ERR(p->mempolicy)) {
1271                 retval = PTR_ERR(p->mempolicy);
1272                 p->mempolicy = NULL;
1273                 goto bad_fork_cleanup_cgroup;
1274         }
1275         mpol_fix_fork_child_flag(p);
1276 #endif
1277 #ifdef CONFIG_CPUSETS
1278         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1279         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1280         seqcount_init(&p->mems_allowed_seq);
1281 #endif
1282 #ifdef CONFIG_TRACE_IRQFLAGS
1283         p->irq_events = 0;
1284 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1285         p->hardirqs_enabled = 1;
1286 #else
1287         p->hardirqs_enabled = 0;
1288 #endif
1289         p->hardirq_enable_ip = 0;
1290         p->hardirq_enable_event = 0;
1291         p->hardirq_disable_ip = _THIS_IP_;
1292         p->hardirq_disable_event = 0;
1293         p->softirqs_enabled = 1;
1294         p->softirq_enable_ip = _THIS_IP_;
1295         p->softirq_enable_event = 0;
1296         p->softirq_disable_ip = 0;
1297         p->softirq_disable_event = 0;
1298         p->hardirq_context = 0;
1299         p->softirq_context = 0;
1300 #endif
1301 #ifdef CONFIG_LOCKDEP
1302         p->lockdep_depth = 0; /* no locks held yet */
1303         p->curr_chain_key = 0;
1304         p->lockdep_recursion = 0;
1305 #endif
1306
1307 #ifdef CONFIG_DEBUG_MUTEXES
1308         p->blocked_on = NULL; /* not blocked yet */
1309 #endif
1310 #ifdef CONFIG_MEMCG
1311         p->memcg_batch.do_batch = 0;
1312         p->memcg_batch.memcg = NULL;
1313 #endif
1314
1315         /* Perform scheduler related setup. Assign this task to a CPU. */
1316         sched_fork(p);
1317
1318         retval = perf_event_init_task(p);
1319         if (retval)
1320                 goto bad_fork_cleanup_policy;
1321         retval = audit_alloc(p);
1322         if (retval)
1323                 goto bad_fork_cleanup_policy;
1324         /* copy all the process information */
1325         retval = copy_semundo(clone_flags, p);
1326         if (retval)
1327                 goto bad_fork_cleanup_audit;
1328         retval = copy_files(clone_flags, p);
1329         if (retval)
1330                 goto bad_fork_cleanup_semundo;
1331         retval = copy_fs(clone_flags, p);
1332         if (retval)
1333                 goto bad_fork_cleanup_files;
1334         retval = copy_sighand(clone_flags, p);
1335         if (retval)
1336                 goto bad_fork_cleanup_fs;
1337         retval = copy_signal(clone_flags, p);
1338         if (retval)
1339                 goto bad_fork_cleanup_sighand;
1340         retval = copy_mm(clone_flags, p);
1341         if (retval)
1342                 goto bad_fork_cleanup_signal;
1343         retval = copy_namespaces(clone_flags, p);
1344         if (retval)
1345                 goto bad_fork_cleanup_mm;
1346         retval = copy_io(clone_flags, p);
1347         if (retval)
1348                 goto bad_fork_cleanup_namespaces;
1349         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1350         if (retval)
1351                 goto bad_fork_cleanup_io;
1352
1353         if (pid != &init_struct_pid) {
1354                 retval = -ENOMEM;
1355                 pid = alloc_pid(p->nsproxy->pid_ns);
1356                 if (!pid)
1357                         goto bad_fork_cleanup_io;
1358         }
1359
1360         p->pid = pid_nr(pid);
1361         p->tgid = p->pid;
1362         if (clone_flags & CLONE_THREAD)
1363                 p->tgid = current->tgid;
1364
1365         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1366         /*
1367          * Clear TID on mm_release()?
1368          */
1369         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1370 #ifdef CONFIG_BLOCK
1371         p->plug = NULL;
1372 #endif
1373 #ifdef CONFIG_FUTEX
1374         p->robust_list = NULL;
1375 #ifdef CONFIG_COMPAT
1376         p->compat_robust_list = NULL;
1377 #endif
1378         INIT_LIST_HEAD(&p->pi_state_list);
1379         p->pi_state_cache = NULL;
1380 #endif
1381         uprobe_copy_process(p);
1382         /*
1383          * sigaltstack should be cleared when sharing the same VM
1384          */
1385         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1386                 p->sas_ss_sp = p->sas_ss_size = 0;
1387
1388         /*
1389          * Syscall tracing and stepping should be turned off in the
1390          * child regardless of CLONE_PTRACE.
1391          */
1392         user_disable_single_step(p);
1393         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1394 #ifdef TIF_SYSCALL_EMU
1395         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1396 #endif
1397         clear_all_latency_tracing(p);
1398
1399         /* ok, now we should be set up.. */
1400         if (clone_flags & CLONE_THREAD)
1401                 p->exit_signal = -1;
1402         else if (clone_flags & CLONE_PARENT)
1403                 p->exit_signal = current->group_leader->exit_signal;
1404         else
1405                 p->exit_signal = (clone_flags & CSIGNAL);
1406
1407         p->pdeath_signal = 0;
1408         p->exit_state = 0;
1409
1410         p->nr_dirtied = 0;
1411         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1412         p->dirty_paused_when = 0;
1413
1414         /*
1415          * Ok, make it visible to the rest of the system.
1416          * We dont wake it up yet.
1417          */
1418         p->group_leader = p;
1419         INIT_LIST_HEAD(&p->thread_group);
1420         p->task_works = NULL;
1421
1422         /* Now that the task is set up, run cgroup callbacks if
1423          * necessary. We need to run them before the task is visible
1424          * on the tasklist. */
1425         cgroup_fork_callbacks(p);
1426         cgroup_callbacks_done = 1;
1427
1428         /* Need tasklist lock for parent etc handling! */
1429         write_lock_irq(&tasklist_lock);
1430
1431         /* CLONE_PARENT re-uses the old parent */
1432         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1433                 p->real_parent = current->real_parent;
1434                 p->parent_exec_id = current->parent_exec_id;
1435         } else {
1436                 p->real_parent = current;
1437                 p->parent_exec_id = current->self_exec_id;
1438         }
1439
1440         spin_lock(&current->sighand->siglock);
1441
1442         /*
1443          * Process group and session signals need to be delivered to just the
1444          * parent before the fork or both the parent and the child after the
1445          * fork. Restart if a signal comes in before we add the new process to
1446          * it's process group.
1447          * A fatal signal pending means that current will exit, so the new
1448          * thread can't slip out of an OOM kill (or normal SIGKILL).
1449         */
1450         recalc_sigpending();
1451         if (signal_pending(current)) {
1452                 spin_unlock(&current->sighand->siglock);
1453                 write_unlock_irq(&tasklist_lock);
1454                 retval = -ERESTARTNOINTR;
1455                 goto bad_fork_free_pid;
1456         }
1457
1458         if (clone_flags & CLONE_THREAD) {
1459                 current->signal->nr_threads++;
1460                 atomic_inc(&current->signal->live);
1461                 atomic_inc(&current->signal->sigcnt);
1462                 p->group_leader = current->group_leader;
1463                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1464         }
1465
1466         if (likely(p->pid)) {
1467                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1468
1469                 if (thread_group_leader(p)) {
1470                         if (is_child_reaper(pid))
1471                                 p->nsproxy->pid_ns->child_reaper = p;
1472
1473                         p->signal->leader_pid = pid;
1474                         p->signal->tty = tty_kref_get(current->signal->tty);
1475                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1476                         attach_pid(p, PIDTYPE_SID, task_session(current));
1477                         list_add_tail(&p->sibling, &p->real_parent->children);
1478                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1479                         __this_cpu_inc(process_counts);
1480                 }
1481                 attach_pid(p, PIDTYPE_PID, pid);
1482                 nr_threads++;
1483         }
1484
1485         total_forks++;
1486         spin_unlock(&current->sighand->siglock);
1487         write_unlock_irq(&tasklist_lock);
1488         proc_fork_connector(p);
1489         cgroup_post_fork(p);
1490         if (clone_flags & CLONE_THREAD)
1491                 threadgroup_change_end(current);
1492         perf_event_fork(p);
1493
1494         trace_task_newtask(p, clone_flags);
1495
1496         return p;
1497
1498 bad_fork_free_pid:
1499         if (pid != &init_struct_pid)
1500                 free_pid(pid);
1501 bad_fork_cleanup_io:
1502         if (p->io_context)
1503                 exit_io_context(p);
1504 bad_fork_cleanup_namespaces:
1505         if (unlikely(clone_flags & CLONE_NEWPID))
1506                 pid_ns_release_proc(p->nsproxy->pid_ns);
1507         exit_task_namespaces(p);
1508 bad_fork_cleanup_mm:
1509         if (p->mm)
1510                 mmput(p->mm);
1511 bad_fork_cleanup_signal:
1512         if (!(clone_flags & CLONE_THREAD))
1513                 free_signal_struct(p->signal);
1514 bad_fork_cleanup_sighand:
1515         __cleanup_sighand(p->sighand);
1516 bad_fork_cleanup_fs:
1517         exit_fs(p); /* blocking */
1518 bad_fork_cleanup_files:
1519         exit_files(p); /* blocking */
1520 bad_fork_cleanup_semundo:
1521         exit_sem(p);
1522 bad_fork_cleanup_audit:
1523         audit_free(p);
1524 bad_fork_cleanup_policy:
1525         perf_event_free_task(p);
1526 #ifdef CONFIG_NUMA
1527         mpol_put(p->mempolicy);
1528 bad_fork_cleanup_cgroup:
1529 #endif
1530         if (clone_flags & CLONE_THREAD)
1531                 threadgroup_change_end(current);
1532         cgroup_exit(p, cgroup_callbacks_done);
1533         delayacct_tsk_free(p);
1534         module_put(task_thread_info(p)->exec_domain->module);
1535 bad_fork_cleanup_count:
1536         atomic_dec(&p->cred->user->processes);
1537         exit_creds(p);
1538 bad_fork_free:
1539         free_task(p);
1540 fork_out:
1541         return ERR_PTR(retval);
1542 }
1543
1544 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1545 {
1546         memset(regs, 0, sizeof(struct pt_regs));
1547         return regs;
1548 }
1549
1550 static inline void init_idle_pids(struct pid_link *links)
1551 {
1552         enum pid_type type;
1553
1554         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1555                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1556                 links[type].pid = &init_struct_pid;
1557         }
1558 }
1559
1560 struct task_struct * __cpuinit fork_idle(int cpu)
1561 {
1562         struct task_struct *task;
1563         struct pt_regs regs;
1564
1565         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1566                             &init_struct_pid, 0);
1567         if (!IS_ERR(task)) {
1568                 init_idle_pids(task->pids);
1569                 init_idle(task, cpu);
1570         }
1571
1572         return task;
1573 }
1574
1575 /*
1576  *  Ok, this is the main fork-routine.
1577  *
1578  * It copies the process, and if successful kick-starts
1579  * it and waits for it to finish using the VM if required.
1580  */
1581 long do_fork(unsigned long clone_flags,
1582               unsigned long stack_start,
1583               struct pt_regs *regs,
1584               unsigned long stack_size,
1585               int __user *parent_tidptr,
1586               int __user *child_tidptr)
1587 {
1588         struct task_struct *p;
1589         int trace = 0;
1590         long nr;
1591
1592         /*
1593          * Do some preliminary argument and permissions checking before we
1594          * actually start allocating stuff
1595          */
1596         if (clone_flags & CLONE_NEWUSER) {
1597                 if (clone_flags & CLONE_THREAD)
1598                         return -EINVAL;
1599                 /* hopefully this check will go away when userns support is
1600                  * complete
1601                  */
1602                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1603                                 !capable(CAP_SETGID))
1604                         return -EPERM;
1605         }
1606
1607         /*
1608          * Determine whether and which event to report to ptracer.  When
1609          * called from kernel_thread or CLONE_UNTRACED is explicitly
1610          * requested, no event is reported; otherwise, report if the event
1611          * for the type of forking is enabled.
1612          */
1613         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1614                 if (clone_flags & CLONE_VFORK)
1615                         trace = PTRACE_EVENT_VFORK;
1616                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1617                         trace = PTRACE_EVENT_CLONE;
1618                 else
1619                         trace = PTRACE_EVENT_FORK;
1620
1621                 if (likely(!ptrace_event_enabled(current, trace)))
1622                         trace = 0;
1623         }
1624
1625         p = copy_process(clone_flags, stack_start, regs, stack_size,
1626                          child_tidptr, NULL, trace);
1627         /*
1628          * Do this prior waking up the new thread - the thread pointer
1629          * might get invalid after that point, if the thread exits quickly.
1630          */
1631         if (!IS_ERR(p)) {
1632                 struct completion vfork;
1633
1634                 trace_sched_process_fork(current, p);
1635
1636                 nr = task_pid_vnr(p);
1637
1638                 if (clone_flags & CLONE_PARENT_SETTID)
1639                         put_user(nr, parent_tidptr);
1640
1641                 if (clone_flags & CLONE_VFORK) {
1642                         p->vfork_done = &vfork;
1643                         init_completion(&vfork);
1644                         get_task_struct(p);
1645                 }
1646
1647                 wake_up_new_task(p);
1648
1649                 /* forking complete and child started to run, tell ptracer */
1650                 if (unlikely(trace))
1651                         ptrace_event(trace, nr);
1652
1653                 if (clone_flags & CLONE_VFORK) {
1654                         if (!wait_for_vfork_done(p, &vfork))
1655                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1656                 }
1657         } else {
1658                 nr = PTR_ERR(p);
1659         }
1660         return nr;
1661 }
1662
1663 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1664 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1665 #endif
1666
1667 static void sighand_ctor(void *data)
1668 {
1669         struct sighand_struct *sighand = data;
1670
1671         spin_lock_init(&sighand->siglock);
1672         init_waitqueue_head(&sighand->signalfd_wqh);
1673 }
1674
1675 void __init proc_caches_init(void)
1676 {
1677         sighand_cachep = kmem_cache_create("sighand_cache",
1678                         sizeof(struct sighand_struct), 0,
1679                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1680                         SLAB_NOTRACK, sighand_ctor);
1681         signal_cachep = kmem_cache_create("signal_cache",
1682                         sizeof(struct signal_struct), 0,
1683                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1684         files_cachep = kmem_cache_create("files_cache",
1685                         sizeof(struct files_struct), 0,
1686                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1687         fs_cachep = kmem_cache_create("fs_cache",
1688                         sizeof(struct fs_struct), 0,
1689                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1690         /*
1691          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1692          * whole struct cpumask for the OFFSTACK case. We could change
1693          * this to *only* allocate as much of it as required by the
1694          * maximum number of CPU's we can ever have.  The cpumask_allocation
1695          * is at the end of the structure, exactly for that reason.
1696          */
1697         mm_cachep = kmem_cache_create("mm_struct",
1698                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1699                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1700         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1701         mmap_init();
1702         nsproxy_cache_init();
1703 }
1704
1705 /*
1706  * Check constraints on flags passed to the unshare system call.
1707  */
1708 static int check_unshare_flags(unsigned long unshare_flags)
1709 {
1710         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1711                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1712                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1713                 return -EINVAL;
1714         /*
1715          * Not implemented, but pretend it works if there is nothing to
1716          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1717          * needs to unshare vm.
1718          */
1719         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1720                 /* FIXME: get_task_mm() increments ->mm_users */
1721                 if (atomic_read(&current->mm->mm_users) > 1)
1722                         return -EINVAL;
1723         }
1724
1725         return 0;
1726 }
1727
1728 /*
1729  * Unshare the filesystem structure if it is being shared
1730  */
1731 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1732 {
1733         struct fs_struct *fs = current->fs;
1734
1735         if (!(unshare_flags & CLONE_FS) || !fs)
1736                 return 0;
1737
1738         /* don't need lock here; in the worst case we'll do useless copy */
1739         if (fs->users == 1)
1740                 return 0;
1741
1742         *new_fsp = copy_fs_struct(fs);
1743         if (!*new_fsp)
1744                 return -ENOMEM;
1745
1746         return 0;
1747 }
1748
1749 /*
1750  * Unshare file descriptor table if it is being shared
1751  */
1752 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1753 {
1754         struct files_struct *fd = current->files;
1755         int error = 0;
1756
1757         if ((unshare_flags & CLONE_FILES) &&
1758             (fd && atomic_read(&fd->count) > 1)) {
1759                 *new_fdp = dup_fd(fd, &error);
1760                 if (!*new_fdp)
1761                         return error;
1762         }
1763
1764         return 0;
1765 }
1766
1767 /*
1768  * unshare allows a process to 'unshare' part of the process
1769  * context which was originally shared using clone.  copy_*
1770  * functions used by do_fork() cannot be used here directly
1771  * because they modify an inactive task_struct that is being
1772  * constructed. Here we are modifying the current, active,
1773  * task_struct.
1774  */
1775 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1776 {
1777         struct fs_struct *fs, *new_fs = NULL;
1778         struct files_struct *fd, *new_fd = NULL;
1779         struct nsproxy *new_nsproxy = NULL;
1780         int do_sysvsem = 0;
1781         int err;
1782
1783         err = check_unshare_flags(unshare_flags);
1784         if (err)
1785                 goto bad_unshare_out;
1786
1787         /*
1788          * If unsharing namespace, must also unshare filesystem information.
1789          */
1790         if (unshare_flags & CLONE_NEWNS)
1791                 unshare_flags |= CLONE_FS;
1792         /*
1793          * CLONE_NEWIPC must also detach from the undolist: after switching
1794          * to a new ipc namespace, the semaphore arrays from the old
1795          * namespace are unreachable.
1796          */
1797         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1798                 do_sysvsem = 1;
1799         err = unshare_fs(unshare_flags, &new_fs);
1800         if (err)
1801                 goto bad_unshare_out;
1802         err = unshare_fd(unshare_flags, &new_fd);
1803         if (err)
1804                 goto bad_unshare_cleanup_fs;
1805         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1806         if (err)
1807                 goto bad_unshare_cleanup_fd;
1808
1809         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1810                 if (do_sysvsem) {
1811                         /*
1812                          * CLONE_SYSVSEM is equivalent to sys_exit().
1813                          */
1814                         exit_sem(current);
1815                 }
1816
1817                 if (new_nsproxy) {
1818                         switch_task_namespaces(current, new_nsproxy);
1819                         new_nsproxy = NULL;
1820                 }
1821
1822                 task_lock(current);
1823
1824                 if (new_fs) {
1825                         fs = current->fs;
1826                         spin_lock(&fs->lock);
1827                         current->fs = new_fs;
1828                         if (--fs->users)
1829                                 new_fs = NULL;
1830                         else
1831                                 new_fs = fs;
1832                         spin_unlock(&fs->lock);
1833                 }
1834
1835                 if (new_fd) {
1836                         fd = current->files;
1837                         current->files = new_fd;
1838                         new_fd = fd;
1839                 }
1840
1841                 task_unlock(current);
1842         }
1843
1844         if (new_nsproxy)
1845                 put_nsproxy(new_nsproxy);
1846
1847 bad_unshare_cleanup_fd:
1848         if (new_fd)
1849                 put_files_struct(new_fd);
1850
1851 bad_unshare_cleanup_fs:
1852         if (new_fs)
1853                 free_fs_struct(new_fs);
1854
1855 bad_unshare_out:
1856         return err;
1857 }
1858
1859 /*
1860  *      Helper to unshare the files of the current task.
1861  *      We don't want to expose copy_files internals to
1862  *      the exec layer of the kernel.
1863  */
1864
1865 int unshare_files(struct files_struct **displaced)
1866 {
1867         struct task_struct *task = current;
1868         struct files_struct *copy = NULL;
1869         int error;
1870
1871         error = unshare_fd(CLONE_FILES, &copy);
1872         if (error || !copy) {
1873                 *displaced = NULL;
1874                 return error;
1875         }
1876         *displaced = task->files;
1877         task_lock(task);
1878         task->files = copy;
1879         task_unlock(task);
1880         return 0;
1881 }