]> Pileus Git - ~andy/linux/blob - kernel/events/uprobes.c
Merge branch 'x86-reboot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct rb_root uprobes_tree = RB_ROOT;
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46
47 /*
48  * We need separate register/unregister and mmap/munmap lock hashes because
49  * of mmap_sem nesting.
50  *
51  * uprobe_register() needs to install probes on (potentially) all processes
52  * and thus needs to acquire multiple mmap_sems (consequtively, not
53  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54  * for the particular process doing the mmap.
55  *
56  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57  * because of lock order against i_mmap_mutex. This means there's a hole in
58  * the register vma iteration where a mmap() can happen.
59  *
60  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61  * install a probe where one is already installed.
62  */
63
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66
67 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72
73 /*
74  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75  * events active at this time.  Probably a fine grained per inode count is
76  * better?
77  */
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
79
80 struct uprobe {
81         struct rb_node          rb_node;        /* node in the rb tree */
82         atomic_t                ref;
83         struct rw_semaphore     consumer_rwsem;
84         struct list_head        pending_list;
85         struct uprobe_consumer  *consumers;
86         struct inode            *inode;         /* Also hold a ref to inode */
87         loff_t                  offset;
88         int                     flags;
89         struct arch_uprobe      arch;
90 };
91
92 /*
93  * valid_vma: Verify if the specified vma is an executable vma
94  * Relax restrictions while unregistering: vm_flags might have
95  * changed after breakpoint was inserted.
96  *      - is_register: indicates if we are in register context.
97  *      - Return 1 if the specified virtual address is in an
98  *        executable vma.
99  */
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101 {
102         if (!vma->vm_file)
103                 return false;
104
105         if (!is_register)
106                 return true;
107
108         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109                                 == (VM_READ|VM_EXEC))
110                 return true;
111
112         return false;
113 }
114
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116 {
117         loff_t vaddr;
118
119         vaddr = vma->vm_start + offset;
120         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121
122         return vaddr;
123 }
124
125 /**
126  * __replace_page - replace page in vma by new page.
127  * based on replace_page in mm/ksm.c
128  *
129  * @vma:      vma that holds the pte pointing to page
130  * @page:     the cowed page we are replacing by kpage
131  * @kpage:    the modified page we replace page by
132  *
133  * Returns 0 on success, -EFAULT on failure.
134  */
135 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
136 {
137         struct mm_struct *mm = vma->vm_mm;
138         unsigned long addr;
139         spinlock_t *ptl;
140         pte_t *ptep;
141
142         addr = page_address_in_vma(page, vma);
143         if (addr == -EFAULT)
144                 return -EFAULT;
145
146         ptep = page_check_address(page, mm, addr, &ptl, 0);
147         if (!ptep)
148                 return -EAGAIN;
149
150         get_page(kpage);
151         page_add_new_anon_rmap(kpage, vma, addr);
152
153         if (!PageAnon(page)) {
154                 dec_mm_counter(mm, MM_FILEPAGES);
155                 inc_mm_counter(mm, MM_ANONPAGES);
156         }
157
158         flush_cache_page(vma, addr, pte_pfn(*ptep));
159         ptep_clear_flush(vma, addr, ptep);
160         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
161
162         page_remove_rmap(page);
163         if (!page_mapped(page))
164                 try_to_free_swap(page);
165         put_page(page);
166         pte_unmap_unlock(ptep, ptl);
167
168         return 0;
169 }
170
171 /**
172  * is_swbp_insn - check if instruction is breakpoint instruction.
173  * @insn: instruction to be checked.
174  * Default implementation of is_swbp_insn
175  * Returns true if @insn is a breakpoint instruction.
176  */
177 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
178 {
179         return *insn == UPROBE_SWBP_INSN;
180 }
181
182 /*
183  * NOTE:
184  * Expect the breakpoint instruction to be the smallest size instruction for
185  * the architecture. If an arch has variable length instruction and the
186  * breakpoint instruction is not of the smallest length instruction
187  * supported by that architecture then we need to modify read_opcode /
188  * write_opcode accordingly. This would never be a problem for archs that
189  * have fixed length instructions.
190  */
191
192 /*
193  * write_opcode - write the opcode at a given virtual address.
194  * @auprobe: arch breakpointing information.
195  * @mm: the probed process address space.
196  * @vaddr: the virtual address to store the opcode.
197  * @opcode: opcode to be written at @vaddr.
198  *
199  * Called with mm->mmap_sem held (for read and with a reference to
200  * mm).
201  *
202  * For mm @mm, write the opcode at @vaddr.
203  * Return 0 (success) or a negative errno.
204  */
205 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
206                         unsigned long vaddr, uprobe_opcode_t opcode)
207 {
208         struct page *old_page, *new_page;
209         struct address_space *mapping;
210         void *vaddr_old, *vaddr_new;
211         struct vm_area_struct *vma;
212         struct uprobe *uprobe;
213         int ret;
214 retry:
215         /* Read the page with vaddr into memory */
216         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
217         if (ret <= 0)
218                 return ret;
219
220         ret = -EINVAL;
221
222         /*
223          * We are interested in text pages only. Our pages of interest
224          * should be mapped for read and execute only. We desist from
225          * adding probes in write mapped pages since the breakpoints
226          * might end up in the file copy.
227          */
228         if (!valid_vma(vma, is_swbp_insn(&opcode)))
229                 goto put_out;
230
231         uprobe = container_of(auprobe, struct uprobe, arch);
232         mapping = uprobe->inode->i_mapping;
233         if (mapping != vma->vm_file->f_mapping)
234                 goto put_out;
235
236         ret = -ENOMEM;
237         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
238         if (!new_page)
239                 goto put_out;
240
241         __SetPageUptodate(new_page);
242
243         /*
244          * lock page will serialize against do_wp_page()'s
245          * PageAnon() handling
246          */
247         lock_page(old_page);
248         /* copy the page now that we've got it stable */
249         vaddr_old = kmap_atomic(old_page);
250         vaddr_new = kmap_atomic(new_page);
251
252         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
253         memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
254
255         kunmap_atomic(vaddr_new);
256         kunmap_atomic(vaddr_old);
257
258         ret = anon_vma_prepare(vma);
259         if (ret)
260                 goto unlock_out;
261
262         lock_page(new_page);
263         ret = __replace_page(vma, old_page, new_page);
264         unlock_page(new_page);
265
266 unlock_out:
267         unlock_page(old_page);
268         page_cache_release(new_page);
269
270 put_out:
271         put_page(old_page);
272
273         if (unlikely(ret == -EAGAIN))
274                 goto retry;
275         return ret;
276 }
277
278 /**
279  * read_opcode - read the opcode at a given virtual address.
280  * @mm: the probed process address space.
281  * @vaddr: the virtual address to read the opcode.
282  * @opcode: location to store the read opcode.
283  *
284  * Called with mm->mmap_sem held (for read and with a reference to
285  * mm.
286  *
287  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
288  * Return 0 (success) or a negative errno.
289  */
290 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
291 {
292         struct page *page;
293         void *vaddr_new;
294         int ret;
295
296         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
297         if (ret <= 0)
298                 return ret;
299
300         lock_page(page);
301         vaddr_new = kmap_atomic(page);
302         vaddr &= ~PAGE_MASK;
303         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
304         kunmap_atomic(vaddr_new);
305         unlock_page(page);
306
307         put_page(page);
308
309         return 0;
310 }
311
312 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
313 {
314         uprobe_opcode_t opcode;
315         int result;
316
317         if (current->mm == mm) {
318                 pagefault_disable();
319                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
320                                                                 sizeof(opcode));
321                 pagefault_enable();
322
323                 if (likely(result == 0))
324                         goto out;
325         }
326
327         result = read_opcode(mm, vaddr, &opcode);
328         if (result)
329                 return result;
330 out:
331         if (is_swbp_insn(&opcode))
332                 return 1;
333
334         return 0;
335 }
336
337 /**
338  * set_swbp - store breakpoint at a given address.
339  * @auprobe: arch specific probepoint information.
340  * @mm: the probed process address space.
341  * @vaddr: the virtual address to insert the opcode.
342  *
343  * For mm @mm, store the breakpoint instruction at @vaddr.
344  * Return 0 (success) or a negative errno.
345  */
346 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
347 {
348         int result;
349         /*
350          * See the comment near uprobes_hash().
351          */
352         result = is_swbp_at_addr(mm, vaddr);
353         if (result == 1)
354                 return -EEXIST;
355
356         if (result)
357                 return result;
358
359         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
360 }
361
362 /**
363  * set_orig_insn - Restore the original instruction.
364  * @mm: the probed process address space.
365  * @auprobe: arch specific probepoint information.
366  * @vaddr: the virtual address to insert the opcode.
367  * @verify: if true, verify existance of breakpoint instruction.
368  *
369  * For mm @mm, restore the original opcode (opcode) at @vaddr.
370  * Return 0 (success) or a negative errno.
371  */
372 int __weak
373 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
374 {
375         if (verify) {
376                 int result;
377
378                 result = is_swbp_at_addr(mm, vaddr);
379                 if (!result)
380                         return -EINVAL;
381
382                 if (result != 1)
383                         return result;
384         }
385         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
386 }
387
388 static int match_uprobe(struct uprobe *l, struct uprobe *r)
389 {
390         if (l->inode < r->inode)
391                 return -1;
392
393         if (l->inode > r->inode)
394                 return 1;
395
396         if (l->offset < r->offset)
397                 return -1;
398
399         if (l->offset > r->offset)
400                 return 1;
401
402         return 0;
403 }
404
405 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
406 {
407         struct uprobe u = { .inode = inode, .offset = offset };
408         struct rb_node *n = uprobes_tree.rb_node;
409         struct uprobe *uprobe;
410         int match;
411
412         while (n) {
413                 uprobe = rb_entry(n, struct uprobe, rb_node);
414                 match = match_uprobe(&u, uprobe);
415                 if (!match) {
416                         atomic_inc(&uprobe->ref);
417                         return uprobe;
418                 }
419
420                 if (match < 0)
421                         n = n->rb_left;
422                 else
423                         n = n->rb_right;
424         }
425         return NULL;
426 }
427
428 /*
429  * Find a uprobe corresponding to a given inode:offset
430  * Acquires uprobes_treelock
431  */
432 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
433 {
434         struct uprobe *uprobe;
435         unsigned long flags;
436
437         spin_lock_irqsave(&uprobes_treelock, flags);
438         uprobe = __find_uprobe(inode, offset);
439         spin_unlock_irqrestore(&uprobes_treelock, flags);
440
441         return uprobe;
442 }
443
444 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
445 {
446         struct rb_node **p = &uprobes_tree.rb_node;
447         struct rb_node *parent = NULL;
448         struct uprobe *u;
449         int match;
450
451         while (*p) {
452                 parent = *p;
453                 u = rb_entry(parent, struct uprobe, rb_node);
454                 match = match_uprobe(uprobe, u);
455                 if (!match) {
456                         atomic_inc(&u->ref);
457                         return u;
458                 }
459
460                 if (match < 0)
461                         p = &parent->rb_left;
462                 else
463                         p = &parent->rb_right;
464
465         }
466
467         u = NULL;
468         rb_link_node(&uprobe->rb_node, parent, p);
469         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
470         /* get access + creation ref */
471         atomic_set(&uprobe->ref, 2);
472
473         return u;
474 }
475
476 /*
477  * Acquire uprobes_treelock.
478  * Matching uprobe already exists in rbtree;
479  *      increment (access refcount) and return the matching uprobe.
480  *
481  * No matching uprobe; insert the uprobe in rb_tree;
482  *      get a double refcount (access + creation) and return NULL.
483  */
484 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
485 {
486         unsigned long flags;
487         struct uprobe *u;
488
489         spin_lock_irqsave(&uprobes_treelock, flags);
490         u = __insert_uprobe(uprobe);
491         spin_unlock_irqrestore(&uprobes_treelock, flags);
492
493         /* For now assume that the instruction need not be single-stepped */
494         uprobe->flags |= UPROBE_SKIP_SSTEP;
495
496         return u;
497 }
498
499 static void put_uprobe(struct uprobe *uprobe)
500 {
501         if (atomic_dec_and_test(&uprobe->ref))
502                 kfree(uprobe);
503 }
504
505 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
506 {
507         struct uprobe *uprobe, *cur_uprobe;
508
509         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
510         if (!uprobe)
511                 return NULL;
512
513         uprobe->inode = igrab(inode);
514         uprobe->offset = offset;
515         init_rwsem(&uprobe->consumer_rwsem);
516
517         /* add to uprobes_tree, sorted on inode:offset */
518         cur_uprobe = insert_uprobe(uprobe);
519
520         /* a uprobe exists for this inode:offset combination */
521         if (cur_uprobe) {
522                 kfree(uprobe);
523                 uprobe = cur_uprobe;
524                 iput(inode);
525         } else {
526                 atomic_inc(&uprobe_events);
527         }
528
529         return uprobe;
530 }
531
532 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
533 {
534         struct uprobe_consumer *uc;
535
536         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
537                 return;
538
539         down_read(&uprobe->consumer_rwsem);
540         for (uc = uprobe->consumers; uc; uc = uc->next) {
541                 if (!uc->filter || uc->filter(uc, current))
542                         uc->handler(uc, regs);
543         }
544         up_read(&uprobe->consumer_rwsem);
545 }
546
547 /* Returns the previous consumer */
548 static struct uprobe_consumer *
549 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
550 {
551         down_write(&uprobe->consumer_rwsem);
552         uc->next = uprobe->consumers;
553         uprobe->consumers = uc;
554         up_write(&uprobe->consumer_rwsem);
555
556         return uc->next;
557 }
558
559 /*
560  * For uprobe @uprobe, delete the consumer @uc.
561  * Return true if the @uc is deleted successfully
562  * or return false.
563  */
564 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
565 {
566         struct uprobe_consumer **con;
567         bool ret = false;
568
569         down_write(&uprobe->consumer_rwsem);
570         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
571                 if (*con == uc) {
572                         *con = uc->next;
573                         ret = true;
574                         break;
575                 }
576         }
577         up_write(&uprobe->consumer_rwsem);
578
579         return ret;
580 }
581
582 static int
583 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
584                         unsigned long nbytes, loff_t offset)
585 {
586         struct page *page;
587         void *vaddr;
588         unsigned long off;
589         pgoff_t idx;
590
591         if (!filp)
592                 return -EINVAL;
593
594         if (!mapping->a_ops->readpage)
595                 return -EIO;
596
597         idx = offset >> PAGE_CACHE_SHIFT;
598         off = offset & ~PAGE_MASK;
599
600         /*
601          * Ensure that the page that has the original instruction is
602          * populated and in page-cache.
603          */
604         page = read_mapping_page(mapping, idx, filp);
605         if (IS_ERR(page))
606                 return PTR_ERR(page);
607
608         vaddr = kmap_atomic(page);
609         memcpy(insn, vaddr + off, nbytes);
610         kunmap_atomic(vaddr);
611         page_cache_release(page);
612
613         return 0;
614 }
615
616 static int copy_insn(struct uprobe *uprobe, struct file *filp)
617 {
618         struct address_space *mapping;
619         unsigned long nbytes;
620         int bytes;
621
622         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
623         mapping = uprobe->inode->i_mapping;
624
625         /* Instruction at end of binary; copy only available bytes */
626         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
627                 bytes = uprobe->inode->i_size - uprobe->offset;
628         else
629                 bytes = MAX_UINSN_BYTES;
630
631         /* Instruction at the page-boundary; copy bytes in second page */
632         if (nbytes < bytes) {
633                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
634                                 bytes - nbytes, uprobe->offset + nbytes);
635                 if (err)
636                         return err;
637                 bytes = nbytes;
638         }
639         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
640 }
641
642 /*
643  * How mm->uprobes_state.count gets updated
644  * uprobe_mmap() increments the count if
645  *      - it successfully adds a breakpoint.
646  *      - it cannot add a breakpoint, but sees that there is a underlying
647  *        breakpoint (via a is_swbp_at_addr()).
648  *
649  * uprobe_munmap() decrements the count if
650  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
651  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
652  *        unless a uprobe_mmap kicks in, since the old vma would be
653  *        dropped just after uprobe_munmap.)
654  *
655  * uprobe_register increments the count if:
656  *      - it successfully adds a breakpoint.
657  *
658  * uprobe_unregister decrements the count if:
659  *      - it sees a underlying breakpoint and removes successfully.
660  *        (via is_swbp_at_addr)
661  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
662  *        since there is no underlying breakpoint after the
663  *        breakpoint removal.)
664  */
665 static int
666 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
667                         struct vm_area_struct *vma, unsigned long vaddr)
668 {
669         int ret;
670
671         /*
672          * If probe is being deleted, unregister thread could be done with
673          * the vma-rmap-walk through. Adding a probe now can be fatal since
674          * nobody will be able to cleanup. Also we could be from fork or
675          * mremap path, where the probe might have already been inserted.
676          * Hence behave as if probe already existed.
677          */
678         if (!uprobe->consumers)
679                 return -EEXIST;
680
681         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
682                 ret = copy_insn(uprobe, vma->vm_file);
683                 if (ret)
684                         return ret;
685
686                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
687                         return -ENOTSUPP;
688
689                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
690                 if (ret)
691                         return ret;
692
693                 /* write_opcode() assumes we don't cross page boundary */
694                 BUG_ON((uprobe->offset & ~PAGE_MASK) +
695                                 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
696
697                 uprobe->flags |= UPROBE_COPY_INSN;
698         }
699
700         /*
701          * Ideally, should be updating the probe count after the breakpoint
702          * has been successfully inserted. However a thread could hit the
703          * breakpoint we just inserted even before the probe count is
704          * incremented. If this is the first breakpoint placed, breakpoint
705          * notifier might ignore uprobes and pass the trap to the thread.
706          * Hence increment before and decrement on failure.
707          */
708         atomic_inc(&mm->uprobes_state.count);
709         ret = set_swbp(&uprobe->arch, mm, vaddr);
710         if (ret)
711                 atomic_dec(&mm->uprobes_state.count);
712
713         return ret;
714 }
715
716 static void
717 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
718 {
719         if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
720                 atomic_dec(&mm->uprobes_state.count);
721 }
722
723 /*
724  * There could be threads that have already hit the breakpoint. They
725  * will recheck the current insn and restart if find_uprobe() fails.
726  * See find_active_uprobe().
727  */
728 static void delete_uprobe(struct uprobe *uprobe)
729 {
730         unsigned long flags;
731
732         spin_lock_irqsave(&uprobes_treelock, flags);
733         rb_erase(&uprobe->rb_node, &uprobes_tree);
734         spin_unlock_irqrestore(&uprobes_treelock, flags);
735         iput(uprobe->inode);
736         put_uprobe(uprobe);
737         atomic_dec(&uprobe_events);
738 }
739
740 struct map_info {
741         struct map_info *next;
742         struct mm_struct *mm;
743         unsigned long vaddr;
744 };
745
746 static inline struct map_info *free_map_info(struct map_info *info)
747 {
748         struct map_info *next = info->next;
749         kfree(info);
750         return next;
751 }
752
753 static struct map_info *
754 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
755 {
756         unsigned long pgoff = offset >> PAGE_SHIFT;
757         struct prio_tree_iter iter;
758         struct vm_area_struct *vma;
759         struct map_info *curr = NULL;
760         struct map_info *prev = NULL;
761         struct map_info *info;
762         int more = 0;
763
764  again:
765         mutex_lock(&mapping->i_mmap_mutex);
766         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767                 if (!valid_vma(vma, is_register))
768                         continue;
769
770                 if (!prev && !more) {
771                         /*
772                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
773                          * reclaim. This is optimistic, no harm done if it fails.
774                          */
775                         prev = kmalloc(sizeof(struct map_info),
776                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
777                         if (prev)
778                                 prev->next = NULL;
779                 }
780                 if (!prev) {
781                         more++;
782                         continue;
783                 }
784
785                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
786                         continue;
787
788                 info = prev;
789                 prev = prev->next;
790                 info->next = curr;
791                 curr = info;
792
793                 info->mm = vma->vm_mm;
794                 info->vaddr = vma_address(vma, offset);
795         }
796         mutex_unlock(&mapping->i_mmap_mutex);
797
798         if (!more)
799                 goto out;
800
801         prev = curr;
802         while (curr) {
803                 mmput(curr->mm);
804                 curr = curr->next;
805         }
806
807         do {
808                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
809                 if (!info) {
810                         curr = ERR_PTR(-ENOMEM);
811                         goto out;
812                 }
813                 info->next = prev;
814                 prev = info;
815         } while (--more);
816
817         goto again;
818  out:
819         while (prev)
820                 prev = free_map_info(prev);
821         return curr;
822 }
823
824 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
825 {
826         struct map_info *info;
827         int err = 0;
828
829         info = build_map_info(uprobe->inode->i_mapping,
830                                         uprobe->offset, is_register);
831         if (IS_ERR(info))
832                 return PTR_ERR(info);
833
834         while (info) {
835                 struct mm_struct *mm = info->mm;
836                 struct vm_area_struct *vma;
837
838                 if (err)
839                         goto free;
840
841                 down_write(&mm->mmap_sem);
842                 vma = find_vma(mm, (unsigned long)info->vaddr);
843                 if (!vma || !valid_vma(vma, is_register))
844                         goto unlock;
845
846                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
847                     vma_address(vma, uprobe->offset) != info->vaddr)
848                         goto unlock;
849
850                 if (is_register) {
851                         err = install_breakpoint(uprobe, mm, vma, info->vaddr);
852                         /*
853                          * We can race against uprobe_mmap(), see the
854                          * comment near uprobe_hash().
855                          */
856                         if (err == -EEXIST)
857                                 err = 0;
858                 } else {
859                         remove_breakpoint(uprobe, mm, info->vaddr);
860                 }
861  unlock:
862                 up_write(&mm->mmap_sem);
863  free:
864                 mmput(mm);
865                 info = free_map_info(info);
866         }
867
868         return err;
869 }
870
871 static int __uprobe_register(struct uprobe *uprobe)
872 {
873         return register_for_each_vma(uprobe, true);
874 }
875
876 static void __uprobe_unregister(struct uprobe *uprobe)
877 {
878         if (!register_for_each_vma(uprobe, false))
879                 delete_uprobe(uprobe);
880
881         /* TODO : cant unregister? schedule a worker thread */
882 }
883
884 /*
885  * uprobe_register - register a probe
886  * @inode: the file in which the probe has to be placed.
887  * @offset: offset from the start of the file.
888  * @uc: information on howto handle the probe..
889  *
890  * Apart from the access refcount, uprobe_register() takes a creation
891  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
892  * inserted into the rbtree (i.e first consumer for a @inode:@offset
893  * tuple).  Creation refcount stops uprobe_unregister from freeing the
894  * @uprobe even before the register operation is complete. Creation
895  * refcount is released when the last @uc for the @uprobe
896  * unregisters.
897  *
898  * Return errno if it cannot successully install probes
899  * else return 0 (success)
900  */
901 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
902 {
903         struct uprobe *uprobe;
904         int ret;
905
906         if (!inode || !uc || uc->next)
907                 return -EINVAL;
908
909         if (offset > i_size_read(inode))
910                 return -EINVAL;
911
912         ret = 0;
913         mutex_lock(uprobes_hash(inode));
914         uprobe = alloc_uprobe(inode, offset);
915
916         if (uprobe && !consumer_add(uprobe, uc)) {
917                 ret = __uprobe_register(uprobe);
918                 if (ret) {
919                         uprobe->consumers = NULL;
920                         __uprobe_unregister(uprobe);
921                 } else {
922                         uprobe->flags |= UPROBE_RUN_HANDLER;
923                 }
924         }
925
926         mutex_unlock(uprobes_hash(inode));
927         put_uprobe(uprobe);
928
929         return ret;
930 }
931
932 /*
933  * uprobe_unregister - unregister a already registered probe.
934  * @inode: the file in which the probe has to be removed.
935  * @offset: offset from the start of the file.
936  * @uc: identify which probe if multiple probes are colocated.
937  */
938 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
939 {
940         struct uprobe *uprobe;
941
942         if (!inode || !uc)
943                 return;
944
945         uprobe = find_uprobe(inode, offset);
946         if (!uprobe)
947                 return;
948
949         mutex_lock(uprobes_hash(inode));
950
951         if (consumer_del(uprobe, uc)) {
952                 if (!uprobe->consumers) {
953                         __uprobe_unregister(uprobe);
954                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
955                 }
956         }
957
958         mutex_unlock(uprobes_hash(inode));
959         if (uprobe)
960                 put_uprobe(uprobe);
961 }
962
963 /*
964  * Of all the nodes that correspond to the given inode, return the node
965  * with the least offset.
966  */
967 static struct rb_node *find_least_offset_node(struct inode *inode)
968 {
969         struct uprobe u = { .inode = inode, .offset = 0};
970         struct rb_node *n = uprobes_tree.rb_node;
971         struct rb_node *close_node = NULL;
972         struct uprobe *uprobe;
973         int match;
974
975         while (n) {
976                 uprobe = rb_entry(n, struct uprobe, rb_node);
977                 match = match_uprobe(&u, uprobe);
978
979                 if (uprobe->inode == inode)
980                         close_node = n;
981
982                 if (!match)
983                         return close_node;
984
985                 if (match < 0)
986                         n = n->rb_left;
987                 else
988                         n = n->rb_right;
989         }
990
991         return close_node;
992 }
993
994 /*
995  * For a given inode, build a list of probes that need to be inserted.
996  */
997 static void build_probe_list(struct inode *inode, struct list_head *head)
998 {
999         struct uprobe *uprobe;
1000         unsigned long flags;
1001         struct rb_node *n;
1002
1003         spin_lock_irqsave(&uprobes_treelock, flags);
1004
1005         n = find_least_offset_node(inode);
1006
1007         for (; n; n = rb_next(n)) {
1008                 uprobe = rb_entry(n, struct uprobe, rb_node);
1009                 if (uprobe->inode != inode)
1010                         break;
1011
1012                 list_add(&uprobe->pending_list, head);
1013                 atomic_inc(&uprobe->ref);
1014         }
1015
1016         spin_unlock_irqrestore(&uprobes_treelock, flags);
1017 }
1018
1019 /*
1020  * Called from mmap_region.
1021  * called with mm->mmap_sem acquired.
1022  *
1023  * Return -ve no if we fail to insert probes and we cannot
1024  * bail-out.
1025  * Return 0 otherwise. i.e:
1026  *
1027  *      - successful insertion of probes
1028  *      - (or) no possible probes to be inserted.
1029  *      - (or) insertion of probes failed but we can bail-out.
1030  */
1031 int uprobe_mmap(struct vm_area_struct *vma)
1032 {
1033         struct list_head tmp_list;
1034         struct uprobe *uprobe;
1035         struct inode *inode;
1036         int ret, count;
1037
1038         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1039                 return 0;
1040
1041         inode = vma->vm_file->f_mapping->host;
1042         if (!inode)
1043                 return 0;
1044
1045         INIT_LIST_HEAD(&tmp_list);
1046         mutex_lock(uprobes_mmap_hash(inode));
1047         build_probe_list(inode, &tmp_list);
1048
1049         ret = 0;
1050         count = 0;
1051
1052         list_for_each_entry(uprobe, &tmp_list, pending_list) {
1053                 if (!ret) {
1054                         loff_t vaddr = vma_address(vma, uprobe->offset);
1055
1056                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1057                                 put_uprobe(uprobe);
1058                                 continue;
1059                         }
1060
1061                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1062                         /*
1063                          * We can race against uprobe_register(), see the
1064                          * comment near uprobe_hash().
1065                          */
1066                         if (ret == -EEXIST) {
1067                                 ret = 0;
1068
1069                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1070                                         continue;
1071
1072                                 /*
1073                                  * Unable to insert a breakpoint, but
1074                                  * breakpoint lies underneath. Increment the
1075                                  * probe count.
1076                                  */
1077                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1078                         }
1079
1080                         if (!ret)
1081                                 count++;
1082                 }
1083                 put_uprobe(uprobe);
1084         }
1085
1086         mutex_unlock(uprobes_mmap_hash(inode));
1087
1088         if (ret)
1089                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1090
1091         return ret;
1092 }
1093
1094 /*
1095  * Called in context of a munmap of a vma.
1096  */
1097 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1098 {
1099         struct list_head tmp_list;
1100         struct uprobe *uprobe;
1101         struct inode *inode;
1102
1103         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1104                 return;
1105
1106         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1107                 return;
1108
1109         inode = vma->vm_file->f_mapping->host;
1110         if (!inode)
1111                 return;
1112
1113         INIT_LIST_HEAD(&tmp_list);
1114         mutex_lock(uprobes_mmap_hash(inode));
1115         build_probe_list(inode, &tmp_list);
1116
1117         list_for_each_entry(uprobe, &tmp_list, pending_list) {
1118                 loff_t vaddr = vma_address(vma, uprobe->offset);
1119
1120                 if (vaddr >= start && vaddr < end) {
1121                         /*
1122                          * An unregister could have removed the probe before
1123                          * unmap. So check before we decrement the count.
1124                          */
1125                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1126                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1127                 }
1128                 put_uprobe(uprobe);
1129         }
1130         mutex_unlock(uprobes_mmap_hash(inode));
1131 }
1132
1133 /* Slot allocation for XOL */
1134 static int xol_add_vma(struct xol_area *area)
1135 {
1136         struct mm_struct *mm;
1137         int ret;
1138
1139         area->page = alloc_page(GFP_HIGHUSER);
1140         if (!area->page)
1141                 return -ENOMEM;
1142
1143         ret = -EALREADY;
1144         mm = current->mm;
1145
1146         down_write(&mm->mmap_sem);
1147         if (mm->uprobes_state.xol_area)
1148                 goto fail;
1149
1150         ret = -ENOMEM;
1151
1152         /* Try to map as high as possible, this is only a hint. */
1153         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1154         if (area->vaddr & ~PAGE_MASK) {
1155                 ret = area->vaddr;
1156                 goto fail;
1157         }
1158
1159         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1160                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1161         if (ret)
1162                 goto fail;
1163
1164         smp_wmb();      /* pairs with get_xol_area() */
1165         mm->uprobes_state.xol_area = area;
1166         ret = 0;
1167
1168 fail:
1169         up_write(&mm->mmap_sem);
1170         if (ret)
1171                 __free_page(area->page);
1172
1173         return ret;
1174 }
1175
1176 static struct xol_area *get_xol_area(struct mm_struct *mm)
1177 {
1178         struct xol_area *area;
1179
1180         area = mm->uprobes_state.xol_area;
1181         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1182
1183         return area;
1184 }
1185
1186 /*
1187  * xol_alloc_area - Allocate process's xol_area.
1188  * This area will be used for storing instructions for execution out of
1189  * line.
1190  *
1191  * Returns the allocated area or NULL.
1192  */
1193 static struct xol_area *xol_alloc_area(void)
1194 {
1195         struct xol_area *area;
1196
1197         area = kzalloc(sizeof(*area), GFP_KERNEL);
1198         if (unlikely(!area))
1199                 return NULL;
1200
1201         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1202
1203         if (!area->bitmap)
1204                 goto fail;
1205
1206         init_waitqueue_head(&area->wq);
1207         if (!xol_add_vma(area))
1208                 return area;
1209
1210 fail:
1211         kfree(area->bitmap);
1212         kfree(area);
1213
1214         return get_xol_area(current->mm);
1215 }
1216
1217 /*
1218  * uprobe_clear_state - Free the area allocated for slots.
1219  */
1220 void uprobe_clear_state(struct mm_struct *mm)
1221 {
1222         struct xol_area *area = mm->uprobes_state.xol_area;
1223
1224         if (!area)
1225                 return;
1226
1227         put_page(area->page);
1228         kfree(area->bitmap);
1229         kfree(area);
1230 }
1231
1232 /*
1233  * uprobe_reset_state - Free the area allocated for slots.
1234  */
1235 void uprobe_reset_state(struct mm_struct *mm)
1236 {
1237         mm->uprobes_state.xol_area = NULL;
1238         atomic_set(&mm->uprobes_state.count, 0);
1239 }
1240
1241 /*
1242  *  - search for a free slot.
1243  */
1244 static unsigned long xol_take_insn_slot(struct xol_area *area)
1245 {
1246         unsigned long slot_addr;
1247         int slot_nr;
1248
1249         do {
1250                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1251                 if (slot_nr < UINSNS_PER_PAGE) {
1252                         if (!test_and_set_bit(slot_nr, area->bitmap))
1253                                 break;
1254
1255                         slot_nr = UINSNS_PER_PAGE;
1256                         continue;
1257                 }
1258                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1259         } while (slot_nr >= UINSNS_PER_PAGE);
1260
1261         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1262         atomic_inc(&area->slot_count);
1263
1264         return slot_addr;
1265 }
1266
1267 /*
1268  * xol_get_insn_slot - If was not allocated a slot, then
1269  * allocate a slot.
1270  * Returns the allocated slot address or 0.
1271  */
1272 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1273 {
1274         struct xol_area *area;
1275         unsigned long offset;
1276         void *vaddr;
1277
1278         area = get_xol_area(current->mm);
1279         if (!area) {
1280                 area = xol_alloc_area();
1281                 if (!area)
1282                         return 0;
1283         }
1284         current->utask->xol_vaddr = xol_take_insn_slot(area);
1285
1286         /*
1287          * Initialize the slot if xol_vaddr points to valid
1288          * instruction slot.
1289          */
1290         if (unlikely(!current->utask->xol_vaddr))
1291                 return 0;
1292
1293         current->utask->vaddr = slot_addr;
1294         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1295         vaddr = kmap_atomic(area->page);
1296         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1297         kunmap_atomic(vaddr);
1298
1299         return current->utask->xol_vaddr;
1300 }
1301
1302 /*
1303  * xol_free_insn_slot - If slot was earlier allocated by
1304  * @xol_get_insn_slot(), make the slot available for
1305  * subsequent requests.
1306  */
1307 static void xol_free_insn_slot(struct task_struct *tsk)
1308 {
1309         struct xol_area *area;
1310         unsigned long vma_end;
1311         unsigned long slot_addr;
1312
1313         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1314                 return;
1315
1316         slot_addr = tsk->utask->xol_vaddr;
1317
1318         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1319                 return;
1320
1321         area = tsk->mm->uprobes_state.xol_area;
1322         vma_end = area->vaddr + PAGE_SIZE;
1323         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1324                 unsigned long offset;
1325                 int slot_nr;
1326
1327                 offset = slot_addr - area->vaddr;
1328                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1329                 if (slot_nr >= UINSNS_PER_PAGE)
1330                         return;
1331
1332                 clear_bit(slot_nr, area->bitmap);
1333                 atomic_dec(&area->slot_count);
1334                 if (waitqueue_active(&area->wq))
1335                         wake_up(&area->wq);
1336
1337                 tsk->utask->xol_vaddr = 0;
1338         }
1339 }
1340
1341 /**
1342  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1343  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1344  * instruction.
1345  * Return the address of the breakpoint instruction.
1346  */
1347 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1348 {
1349         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1350 }
1351
1352 /*
1353  * Called with no locks held.
1354  * Called in context of a exiting or a exec-ing thread.
1355  */
1356 void uprobe_free_utask(struct task_struct *t)
1357 {
1358         struct uprobe_task *utask = t->utask;
1359
1360         if (!utask)
1361                 return;
1362
1363         if (utask->active_uprobe)
1364                 put_uprobe(utask->active_uprobe);
1365
1366         xol_free_insn_slot(t);
1367         kfree(utask);
1368         t->utask = NULL;
1369 }
1370
1371 /*
1372  * Called in context of a new clone/fork from copy_process.
1373  */
1374 void uprobe_copy_process(struct task_struct *t)
1375 {
1376         t->utask = NULL;
1377 }
1378
1379 /*
1380  * Allocate a uprobe_task object for the task.
1381  * Called when the thread hits a breakpoint for the first time.
1382  *
1383  * Returns:
1384  * - pointer to new uprobe_task on success
1385  * - NULL otherwise
1386  */
1387 static struct uprobe_task *add_utask(void)
1388 {
1389         struct uprobe_task *utask;
1390
1391         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1392         if (unlikely(!utask))
1393                 return NULL;
1394
1395         current->utask = utask;
1396         return utask;
1397 }
1398
1399 /* Prepare to single-step probed instruction out of line. */
1400 static int
1401 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1402 {
1403         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1404                 return 0;
1405
1406         return -EFAULT;
1407 }
1408
1409 /*
1410  * If we are singlestepping, then ensure this thread is not connected to
1411  * non-fatal signals until completion of singlestep.  When xol insn itself
1412  * triggers the signal,  restart the original insn even if the task is
1413  * already SIGKILL'ed (since coredump should report the correct ip).  This
1414  * is even more important if the task has a handler for SIGSEGV/etc, The
1415  * _same_ instruction should be repeated again after return from the signal
1416  * handler, and SSTEP can never finish in this case.
1417  */
1418 bool uprobe_deny_signal(void)
1419 {
1420         struct task_struct *t = current;
1421         struct uprobe_task *utask = t->utask;
1422
1423         if (likely(!utask || !utask->active_uprobe))
1424                 return false;
1425
1426         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1427
1428         if (signal_pending(t)) {
1429                 spin_lock_irq(&t->sighand->siglock);
1430                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1431                 spin_unlock_irq(&t->sighand->siglock);
1432
1433                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1434                         utask->state = UTASK_SSTEP_TRAPPED;
1435                         set_tsk_thread_flag(t, TIF_UPROBE);
1436                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1437                 }
1438         }
1439
1440         return true;
1441 }
1442
1443 /*
1444  * Avoid singlestepping the original instruction if the original instruction
1445  * is a NOP or can be emulated.
1446  */
1447 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1448 {
1449         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1450                 return true;
1451
1452         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1453         return false;
1454 }
1455
1456 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1457 {
1458         struct mm_struct *mm = current->mm;
1459         struct uprobe *uprobe = NULL;
1460         struct vm_area_struct *vma;
1461
1462         down_read(&mm->mmap_sem);
1463         vma = find_vma(mm, bp_vaddr);
1464         if (vma && vma->vm_start <= bp_vaddr) {
1465                 if (valid_vma(vma, false)) {
1466                         struct inode *inode;
1467                         loff_t offset;
1468
1469                         inode = vma->vm_file->f_mapping->host;
1470                         offset = bp_vaddr - vma->vm_start;
1471                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1472                         uprobe = find_uprobe(inode, offset);
1473                 }
1474
1475                 if (!uprobe)
1476                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1477         } else {
1478                 *is_swbp = -EFAULT;
1479         }
1480         up_read(&mm->mmap_sem);
1481
1482         return uprobe;
1483 }
1484
1485 /*
1486  * Run handler and ask thread to singlestep.
1487  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1488  */
1489 static void handle_swbp(struct pt_regs *regs)
1490 {
1491         struct uprobe_task *utask;
1492         struct uprobe *uprobe;
1493         unsigned long bp_vaddr;
1494         int uninitialized_var(is_swbp);
1495
1496         bp_vaddr = uprobe_get_swbp_addr(regs);
1497         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1498
1499         if (!uprobe) {
1500                 if (is_swbp > 0) {
1501                         /* No matching uprobe; signal SIGTRAP. */
1502                         send_sig(SIGTRAP, current, 0);
1503                 } else {
1504                         /*
1505                          * Either we raced with uprobe_unregister() or we can't
1506                          * access this memory. The latter is only possible if
1507                          * another thread plays with our ->mm. In both cases
1508                          * we can simply restart. If this vma was unmapped we
1509                          * can pretend this insn was not executed yet and get
1510                          * the (correct) SIGSEGV after restart.
1511                          */
1512                         instruction_pointer_set(regs, bp_vaddr);
1513                 }
1514                 return;
1515         }
1516
1517         utask = current->utask;
1518         if (!utask) {
1519                 utask = add_utask();
1520                 /* Cannot allocate; re-execute the instruction. */
1521                 if (!utask)
1522                         goto cleanup_ret;
1523         }
1524         utask->active_uprobe = uprobe;
1525         handler_chain(uprobe, regs);
1526         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1527                 goto cleanup_ret;
1528
1529         utask->state = UTASK_SSTEP;
1530         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1531                 user_enable_single_step(current);
1532                 return;
1533         }
1534
1535 cleanup_ret:
1536         if (utask) {
1537                 utask->active_uprobe = NULL;
1538                 utask->state = UTASK_RUNNING;
1539         }
1540         if (uprobe) {
1541                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1542
1543                         /*
1544                          * cannot singlestep; cannot skip instruction;
1545                          * re-execute the instruction.
1546                          */
1547                         instruction_pointer_set(regs, bp_vaddr);
1548
1549                 put_uprobe(uprobe);
1550         }
1551 }
1552
1553 /*
1554  * Perform required fix-ups and disable singlestep.
1555  * Allow pending signals to take effect.
1556  */
1557 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1558 {
1559         struct uprobe *uprobe;
1560
1561         uprobe = utask->active_uprobe;
1562         if (utask->state == UTASK_SSTEP_ACK)
1563                 arch_uprobe_post_xol(&uprobe->arch, regs);
1564         else if (utask->state == UTASK_SSTEP_TRAPPED)
1565                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1566         else
1567                 WARN_ON_ONCE(1);
1568
1569         put_uprobe(uprobe);
1570         utask->active_uprobe = NULL;
1571         utask->state = UTASK_RUNNING;
1572         user_disable_single_step(current);
1573         xol_free_insn_slot(current);
1574
1575         spin_lock_irq(&current->sighand->siglock);
1576         recalc_sigpending(); /* see uprobe_deny_signal() */
1577         spin_unlock_irq(&current->sighand->siglock);
1578 }
1579
1580 /*
1581  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1582  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1583  * allows the thread to return from interrupt.
1584  *
1585  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1586  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1587  * interrupt.
1588  *
1589  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1590  * uprobe_notify_resume().
1591  */
1592 void uprobe_notify_resume(struct pt_regs *regs)
1593 {
1594         struct uprobe_task *utask;
1595
1596         utask = current->utask;
1597         if (!utask || utask->state == UTASK_BP_HIT)
1598                 handle_swbp(regs);
1599         else
1600                 handle_singlestep(utask, regs);
1601 }
1602
1603 /*
1604  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1605  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1606  */
1607 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1608 {
1609         struct uprobe_task *utask;
1610
1611         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1612                 /* task is currently not uprobed */
1613                 return 0;
1614
1615         utask = current->utask;
1616         if (utask)
1617                 utask->state = UTASK_BP_HIT;
1618
1619         set_thread_flag(TIF_UPROBE);
1620
1621         return 1;
1622 }
1623
1624 /*
1625  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1626  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1627  */
1628 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1629 {
1630         struct uprobe_task *utask = current->utask;
1631
1632         if (!current->mm || !utask || !utask->active_uprobe)
1633                 /* task is currently not uprobed */
1634                 return 0;
1635
1636         utask->state = UTASK_SSTEP_ACK;
1637         set_thread_flag(TIF_UPROBE);
1638         return 1;
1639 }
1640
1641 static struct notifier_block uprobe_exception_nb = {
1642         .notifier_call          = arch_uprobe_exception_notify,
1643         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1644 };
1645
1646 static int __init init_uprobes(void)
1647 {
1648         int i;
1649
1650         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1651                 mutex_init(&uprobes_mutex[i]);
1652                 mutex_init(&uprobes_mmap_mutex[i]);
1653         }
1654
1655         return register_die_notifier(&uprobe_exception_nb);
1656 }
1657 module_init(init_uprobes);
1658
1659 static void __exit exit_uprobes(void)
1660 {
1661 }
1662 module_exit(exit_uprobes);