]> Pileus Git - ~andy/linux/blob - include/linux/skbuff.h
net: convert core to skb paged frag APIs
[~andy/linux] / include / linux / skbuff.h
1 /*
2  *      Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *      Authors:
5  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
39
40 #define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
41                                  ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X)    \
43         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
48
49 /* A. Checksumming of received packets by device.
50  *
51  *      NONE: device failed to checksum this packet.
52  *              skb->csum is undefined.
53  *
54  *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
55  *              skb->csum is undefined.
56  *            It is bad option, but, unfortunately, many of vendors do this.
57  *            Apparently with secret goal to sell you new device, when you
58  *            will add new protocol to your host. F.e. IPv6. 8)
59  *
60  *      COMPLETE: the most generic way. Device supplied checksum of _all_
61  *          the packet as seen by netif_rx in skb->csum.
62  *          NOTE: Even if device supports only some protocols, but
63  *          is able to produce some skb->csum, it MUST use COMPLETE,
64  *          not UNNECESSARY.
65  *
66  *      PARTIAL: identical to the case for output below.  This may occur
67  *          on a packet received directly from another Linux OS, e.g.,
68  *          a virtualised Linux kernel on the same host.  The packet can
69  *          be treated in the same way as UNNECESSARY except that on
70  *          output (i.e., forwarding) the checksum must be filled in
71  *          by the OS or the hardware.
72  *
73  * B. Checksumming on output.
74  *
75  *      NONE: skb is checksummed by protocol or csum is not required.
76  *
77  *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
78  *      from skb->csum_start to the end and to record the checksum
79  *      at skb->csum_start + skb->csum_offset.
80  *
81  *      Device must show its capabilities in dev->features, set
82  *      at device setup time.
83  *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
84  *                        everything.
85  *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
86  *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
87  *                        TCP/UDP over IPv4. Sigh. Vendors like this
88  *                        way by an unknown reason. Though, see comment above
89  *                        about CHECKSUM_UNNECESSARY. 8)
90  *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91  *
92  *      Any questions? No questions, good.              --ANK
93  */
94
95 struct net_device;
96 struct scatterlist;
97 struct pipe_inode_info;
98
99 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
100 struct nf_conntrack {
101         atomic_t use;
102 };
103 #endif
104
105 #ifdef CONFIG_BRIDGE_NETFILTER
106 struct nf_bridge_info {
107         atomic_t use;
108         struct net_device *physindev;
109         struct net_device *physoutdev;
110         unsigned int mask;
111         unsigned long data[32 / sizeof(unsigned long)];
112 };
113 #endif
114
115 struct sk_buff_head {
116         /* These two members must be first. */
117         struct sk_buff  *next;
118         struct sk_buff  *prev;
119
120         __u32           qlen;
121         spinlock_t      lock;
122 };
123
124 struct sk_buff;
125
126 /* To allow 64K frame to be packed as single skb without frag_list. Since
127  * GRO uses frags we allocate at least 16 regardless of page size.
128  */
129 #if (65536/PAGE_SIZE + 2) < 16
130 #define MAX_SKB_FRAGS 16UL
131 #else
132 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
133 #endif
134
135 typedef struct skb_frag_struct skb_frag_t;
136
137 struct skb_frag_struct {
138         struct page *page;
139 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
140         __u32 page_offset;
141         __u32 size;
142 #else
143         __u16 page_offset;
144         __u16 size;
145 #endif
146 };
147
148 #define HAVE_HW_TIME_STAMP
149
150 /**
151  * struct skb_shared_hwtstamps - hardware time stamps
152  * @hwtstamp:   hardware time stamp transformed into duration
153  *              since arbitrary point in time
154  * @syststamp:  hwtstamp transformed to system time base
155  *
156  * Software time stamps generated by ktime_get_real() are stored in
157  * skb->tstamp. The relation between the different kinds of time
158  * stamps is as follows:
159  *
160  * syststamp and tstamp can be compared against each other in
161  * arbitrary combinations.  The accuracy of a
162  * syststamp/tstamp/"syststamp from other device" comparison is
163  * limited by the accuracy of the transformation into system time
164  * base. This depends on the device driver and its underlying
165  * hardware.
166  *
167  * hwtstamps can only be compared against other hwtstamps from
168  * the same device.
169  *
170  * This structure is attached to packets as part of the
171  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
172  */
173 struct skb_shared_hwtstamps {
174         ktime_t hwtstamp;
175         ktime_t syststamp;
176 };
177
178 /* Definitions for tx_flags in struct skb_shared_info */
179 enum {
180         /* generate hardware time stamp */
181         SKBTX_HW_TSTAMP = 1 << 0,
182
183         /* generate software time stamp */
184         SKBTX_SW_TSTAMP = 1 << 1,
185
186         /* device driver is going to provide hardware time stamp */
187         SKBTX_IN_PROGRESS = 1 << 2,
188
189         /* ensure the originating sk reference is available on driver level */
190         SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
191
192         /* device driver supports TX zero-copy buffers */
193         SKBTX_DEV_ZEROCOPY = 1 << 4,
194 };
195
196 /*
197  * The callback notifies userspace to release buffers when skb DMA is done in
198  * lower device, the skb last reference should be 0 when calling this.
199  * The desc is used to track userspace buffer index.
200  */
201 struct ubuf_info {
202         void (*callback)(void *);
203         void *arg;
204         unsigned long desc;
205 };
206
207 /* This data is invariant across clones and lives at
208  * the end of the header data, ie. at skb->end.
209  */
210 struct skb_shared_info {
211         unsigned short  nr_frags;
212         unsigned short  gso_size;
213         /* Warning: this field is not always filled in (UFO)! */
214         unsigned short  gso_segs;
215         unsigned short  gso_type;
216         __be32          ip6_frag_id;
217         __u8            tx_flags;
218         struct sk_buff  *frag_list;
219         struct skb_shared_hwtstamps hwtstamps;
220
221         /*
222          * Warning : all fields before dataref are cleared in __alloc_skb()
223          */
224         atomic_t        dataref;
225
226         /* Intermediate layers must ensure that destructor_arg
227          * remains valid until skb destructor */
228         void *          destructor_arg;
229
230         /* must be last field, see pskb_expand_head() */
231         skb_frag_t      frags[MAX_SKB_FRAGS];
232 };
233
234 /* We divide dataref into two halves.  The higher 16 bits hold references
235  * to the payload part of skb->data.  The lower 16 bits hold references to
236  * the entire skb->data.  A clone of a headerless skb holds the length of
237  * the header in skb->hdr_len.
238  *
239  * All users must obey the rule that the skb->data reference count must be
240  * greater than or equal to the payload reference count.
241  *
242  * Holding a reference to the payload part means that the user does not
243  * care about modifications to the header part of skb->data.
244  */
245 #define SKB_DATAREF_SHIFT 16
246 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
247
248
249 enum {
250         SKB_FCLONE_UNAVAILABLE,
251         SKB_FCLONE_ORIG,
252         SKB_FCLONE_CLONE,
253 };
254
255 enum {
256         SKB_GSO_TCPV4 = 1 << 0,
257         SKB_GSO_UDP = 1 << 1,
258
259         /* This indicates the skb is from an untrusted source. */
260         SKB_GSO_DODGY = 1 << 2,
261
262         /* This indicates the tcp segment has CWR set. */
263         SKB_GSO_TCP_ECN = 1 << 3,
264
265         SKB_GSO_TCPV6 = 1 << 4,
266
267         SKB_GSO_FCOE = 1 << 5,
268 };
269
270 #if BITS_PER_LONG > 32
271 #define NET_SKBUFF_DATA_USES_OFFSET 1
272 #endif
273
274 #ifdef NET_SKBUFF_DATA_USES_OFFSET
275 typedef unsigned int sk_buff_data_t;
276 #else
277 typedef unsigned char *sk_buff_data_t;
278 #endif
279
280 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
281     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
282 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
283 #endif
284
285 /** 
286  *      struct sk_buff - socket buffer
287  *      @next: Next buffer in list
288  *      @prev: Previous buffer in list
289  *      @tstamp: Time we arrived
290  *      @sk: Socket we are owned by
291  *      @dev: Device we arrived on/are leaving by
292  *      @cb: Control buffer. Free for use by every layer. Put private vars here
293  *      @_skb_refdst: destination entry (with norefcount bit)
294  *      @sp: the security path, used for xfrm
295  *      @len: Length of actual data
296  *      @data_len: Data length
297  *      @mac_len: Length of link layer header
298  *      @hdr_len: writable header length of cloned skb
299  *      @csum: Checksum (must include start/offset pair)
300  *      @csum_start: Offset from skb->head where checksumming should start
301  *      @csum_offset: Offset from csum_start where checksum should be stored
302  *      @priority: Packet queueing priority
303  *      @local_df: allow local fragmentation
304  *      @cloned: Head may be cloned (check refcnt to be sure)
305  *      @ip_summed: Driver fed us an IP checksum
306  *      @nohdr: Payload reference only, must not modify header
307  *      @nfctinfo: Relationship of this skb to the connection
308  *      @pkt_type: Packet class
309  *      @fclone: skbuff clone status
310  *      @ipvs_property: skbuff is owned by ipvs
311  *      @peeked: this packet has been seen already, so stats have been
312  *              done for it, don't do them again
313  *      @nf_trace: netfilter packet trace flag
314  *      @protocol: Packet protocol from driver
315  *      @destructor: Destruct function
316  *      @nfct: Associated connection, if any
317  *      @nfct_reasm: netfilter conntrack re-assembly pointer
318  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
319  *      @skb_iif: ifindex of device we arrived on
320  *      @tc_index: Traffic control index
321  *      @tc_verd: traffic control verdict
322  *      @rxhash: the packet hash computed on receive
323  *      @queue_mapping: Queue mapping for multiqueue devices
324  *      @ndisc_nodetype: router type (from link layer)
325  *      @ooo_okay: allow the mapping of a socket to a queue to be changed
326  *      @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
327  *              ports.
328  *      @dma_cookie: a cookie to one of several possible DMA operations
329  *              done by skb DMA functions
330  *      @secmark: security marking
331  *      @mark: Generic packet mark
332  *      @dropcount: total number of sk_receive_queue overflows
333  *      @vlan_tci: vlan tag control information
334  *      @transport_header: Transport layer header
335  *      @network_header: Network layer header
336  *      @mac_header: Link layer header
337  *      @tail: Tail pointer
338  *      @end: End pointer
339  *      @head: Head of buffer
340  *      @data: Data head pointer
341  *      @truesize: Buffer size
342  *      @users: User count - see {datagram,tcp}.c
343  */
344
345 struct sk_buff {
346         /* These two members must be first. */
347         struct sk_buff          *next;
348         struct sk_buff          *prev;
349
350         ktime_t                 tstamp;
351
352         struct sock             *sk;
353         struct net_device       *dev;
354
355         /*
356          * This is the control buffer. It is free to use for every
357          * layer. Please put your private variables there. If you
358          * want to keep them across layers you have to do a skb_clone()
359          * first. This is owned by whoever has the skb queued ATM.
360          */
361         char                    cb[48] __aligned(8);
362
363         unsigned long           _skb_refdst;
364 #ifdef CONFIG_XFRM
365         struct  sec_path        *sp;
366 #endif
367         unsigned int            len,
368                                 data_len;
369         __u16                   mac_len,
370                                 hdr_len;
371         union {
372                 __wsum          csum;
373                 struct {
374                         __u16   csum_start;
375                         __u16   csum_offset;
376                 };
377         };
378         __u32                   priority;
379         kmemcheck_bitfield_begin(flags1);
380         __u8                    local_df:1,
381                                 cloned:1,
382                                 ip_summed:2,
383                                 nohdr:1,
384                                 nfctinfo:3;
385         __u8                    pkt_type:3,
386                                 fclone:2,
387                                 ipvs_property:1,
388                                 peeked:1,
389                                 nf_trace:1;
390         kmemcheck_bitfield_end(flags1);
391         __be16                  protocol;
392
393         void                    (*destructor)(struct sk_buff *skb);
394 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
395         struct nf_conntrack     *nfct;
396 #endif
397 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
398         struct sk_buff          *nfct_reasm;
399 #endif
400 #ifdef CONFIG_BRIDGE_NETFILTER
401         struct nf_bridge_info   *nf_bridge;
402 #endif
403
404         int                     skb_iif;
405 #ifdef CONFIG_NET_SCHED
406         __u16                   tc_index;       /* traffic control index */
407 #ifdef CONFIG_NET_CLS_ACT
408         __u16                   tc_verd;        /* traffic control verdict */
409 #endif
410 #endif
411
412         __u32                   rxhash;
413
414         __u16                   queue_mapping;
415         kmemcheck_bitfield_begin(flags2);
416 #ifdef CONFIG_IPV6_NDISC_NODETYPE
417         __u8                    ndisc_nodetype:2;
418 #endif
419         __u8                    ooo_okay:1;
420         __u8                    l4_rxhash:1;
421         kmemcheck_bitfield_end(flags2);
422
423         /* 0/13 bit hole */
424
425 #ifdef CONFIG_NET_DMA
426         dma_cookie_t            dma_cookie;
427 #endif
428 #ifdef CONFIG_NETWORK_SECMARK
429         __u32                   secmark;
430 #endif
431         union {
432                 __u32           mark;
433                 __u32           dropcount;
434         };
435
436         __u16                   vlan_tci;
437
438         sk_buff_data_t          transport_header;
439         sk_buff_data_t          network_header;
440         sk_buff_data_t          mac_header;
441         /* These elements must be at the end, see alloc_skb() for details.  */
442         sk_buff_data_t          tail;
443         sk_buff_data_t          end;
444         unsigned char           *head,
445                                 *data;
446         unsigned int            truesize;
447         atomic_t                users;
448 };
449
450 #ifdef __KERNEL__
451 /*
452  *      Handling routines are only of interest to the kernel
453  */
454 #include <linux/slab.h>
455
456 #include <asm/system.h>
457
458 /*
459  * skb might have a dst pointer attached, refcounted or not.
460  * _skb_refdst low order bit is set if refcount was _not_ taken
461  */
462 #define SKB_DST_NOREF   1UL
463 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
464
465 /**
466  * skb_dst - returns skb dst_entry
467  * @skb: buffer
468  *
469  * Returns skb dst_entry, regardless of reference taken or not.
470  */
471 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
472 {
473         /* If refdst was not refcounted, check we still are in a 
474          * rcu_read_lock section
475          */
476         WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
477                 !rcu_read_lock_held() &&
478                 !rcu_read_lock_bh_held());
479         return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
480 }
481
482 /**
483  * skb_dst_set - sets skb dst
484  * @skb: buffer
485  * @dst: dst entry
486  *
487  * Sets skb dst, assuming a reference was taken on dst and should
488  * be released by skb_dst_drop()
489  */
490 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
491 {
492         skb->_skb_refdst = (unsigned long)dst;
493 }
494
495 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
496
497 /**
498  * skb_dst_is_noref - Test if skb dst isn't refcounted
499  * @skb: buffer
500  */
501 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
502 {
503         return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
504 }
505
506 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
507 {
508         return (struct rtable *)skb_dst(skb);
509 }
510
511 extern void kfree_skb(struct sk_buff *skb);
512 extern void consume_skb(struct sk_buff *skb);
513 extern void            __kfree_skb(struct sk_buff *skb);
514 extern struct sk_buff *__alloc_skb(unsigned int size,
515                                    gfp_t priority, int fclone, int node);
516 static inline struct sk_buff *alloc_skb(unsigned int size,
517                                         gfp_t priority)
518 {
519         return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
520 }
521
522 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
523                                                gfp_t priority)
524 {
525         return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
526 }
527
528 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
529
530 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
531 extern struct sk_buff *skb_clone(struct sk_buff *skb,
532                                  gfp_t priority);
533 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
534                                 gfp_t priority);
535 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
536                                  gfp_t gfp_mask);
537 extern int             pskb_expand_head(struct sk_buff *skb,
538                                         int nhead, int ntail,
539                                         gfp_t gfp_mask);
540 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
541                                             unsigned int headroom);
542 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
543                                        int newheadroom, int newtailroom,
544                                        gfp_t priority);
545 extern int             skb_to_sgvec(struct sk_buff *skb,
546                                     struct scatterlist *sg, int offset,
547                                     int len);
548 extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
549                                     struct sk_buff **trailer);
550 extern int             skb_pad(struct sk_buff *skb, int pad);
551 #define dev_kfree_skb(a)        consume_skb(a)
552
553 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
554                         int getfrag(void *from, char *to, int offset,
555                         int len,int odd, struct sk_buff *skb),
556                         void *from, int length);
557
558 struct skb_seq_state {
559         __u32           lower_offset;
560         __u32           upper_offset;
561         __u32           frag_idx;
562         __u32           stepped_offset;
563         struct sk_buff  *root_skb;
564         struct sk_buff  *cur_skb;
565         __u8            *frag_data;
566 };
567
568 extern void           skb_prepare_seq_read(struct sk_buff *skb,
569                                            unsigned int from, unsigned int to,
570                                            struct skb_seq_state *st);
571 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
572                                    struct skb_seq_state *st);
573 extern void           skb_abort_seq_read(struct skb_seq_state *st);
574
575 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
576                                     unsigned int to, struct ts_config *config,
577                                     struct ts_state *state);
578
579 extern void __skb_get_rxhash(struct sk_buff *skb);
580 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
581 {
582         if (!skb->rxhash)
583                 __skb_get_rxhash(skb);
584
585         return skb->rxhash;
586 }
587
588 #ifdef NET_SKBUFF_DATA_USES_OFFSET
589 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
590 {
591         return skb->head + skb->end;
592 }
593 #else
594 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
595 {
596         return skb->end;
597 }
598 #endif
599
600 /* Internal */
601 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
602
603 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
604 {
605         return &skb_shinfo(skb)->hwtstamps;
606 }
607
608 /**
609  *      skb_queue_empty - check if a queue is empty
610  *      @list: queue head
611  *
612  *      Returns true if the queue is empty, false otherwise.
613  */
614 static inline int skb_queue_empty(const struct sk_buff_head *list)
615 {
616         return list->next == (struct sk_buff *)list;
617 }
618
619 /**
620  *      skb_queue_is_last - check if skb is the last entry in the queue
621  *      @list: queue head
622  *      @skb: buffer
623  *
624  *      Returns true if @skb is the last buffer on the list.
625  */
626 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
627                                      const struct sk_buff *skb)
628 {
629         return skb->next == (struct sk_buff *)list;
630 }
631
632 /**
633  *      skb_queue_is_first - check if skb is the first entry in the queue
634  *      @list: queue head
635  *      @skb: buffer
636  *
637  *      Returns true if @skb is the first buffer on the list.
638  */
639 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
640                                       const struct sk_buff *skb)
641 {
642         return skb->prev == (struct sk_buff *)list;
643 }
644
645 /**
646  *      skb_queue_next - return the next packet in the queue
647  *      @list: queue head
648  *      @skb: current buffer
649  *
650  *      Return the next packet in @list after @skb.  It is only valid to
651  *      call this if skb_queue_is_last() evaluates to false.
652  */
653 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
654                                              const struct sk_buff *skb)
655 {
656         /* This BUG_ON may seem severe, but if we just return then we
657          * are going to dereference garbage.
658          */
659         BUG_ON(skb_queue_is_last(list, skb));
660         return skb->next;
661 }
662
663 /**
664  *      skb_queue_prev - return the prev packet in the queue
665  *      @list: queue head
666  *      @skb: current buffer
667  *
668  *      Return the prev packet in @list before @skb.  It is only valid to
669  *      call this if skb_queue_is_first() evaluates to false.
670  */
671 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
672                                              const struct sk_buff *skb)
673 {
674         /* This BUG_ON may seem severe, but if we just return then we
675          * are going to dereference garbage.
676          */
677         BUG_ON(skb_queue_is_first(list, skb));
678         return skb->prev;
679 }
680
681 /**
682  *      skb_get - reference buffer
683  *      @skb: buffer to reference
684  *
685  *      Makes another reference to a socket buffer and returns a pointer
686  *      to the buffer.
687  */
688 static inline struct sk_buff *skb_get(struct sk_buff *skb)
689 {
690         atomic_inc(&skb->users);
691         return skb;
692 }
693
694 /*
695  * If users == 1, we are the only owner and are can avoid redundant
696  * atomic change.
697  */
698
699 /**
700  *      skb_cloned - is the buffer a clone
701  *      @skb: buffer to check
702  *
703  *      Returns true if the buffer was generated with skb_clone() and is
704  *      one of multiple shared copies of the buffer. Cloned buffers are
705  *      shared data so must not be written to under normal circumstances.
706  */
707 static inline int skb_cloned(const struct sk_buff *skb)
708 {
709         return skb->cloned &&
710                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
711 }
712
713 /**
714  *      skb_header_cloned - is the header a clone
715  *      @skb: buffer to check
716  *
717  *      Returns true if modifying the header part of the buffer requires
718  *      the data to be copied.
719  */
720 static inline int skb_header_cloned(const struct sk_buff *skb)
721 {
722         int dataref;
723
724         if (!skb->cloned)
725                 return 0;
726
727         dataref = atomic_read(&skb_shinfo(skb)->dataref);
728         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
729         return dataref != 1;
730 }
731
732 /**
733  *      skb_header_release - release reference to header
734  *      @skb: buffer to operate on
735  *
736  *      Drop a reference to the header part of the buffer.  This is done
737  *      by acquiring a payload reference.  You must not read from the header
738  *      part of skb->data after this.
739  */
740 static inline void skb_header_release(struct sk_buff *skb)
741 {
742         BUG_ON(skb->nohdr);
743         skb->nohdr = 1;
744         atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
745 }
746
747 /**
748  *      skb_shared - is the buffer shared
749  *      @skb: buffer to check
750  *
751  *      Returns true if more than one person has a reference to this
752  *      buffer.
753  */
754 static inline int skb_shared(const struct sk_buff *skb)
755 {
756         return atomic_read(&skb->users) != 1;
757 }
758
759 /**
760  *      skb_share_check - check if buffer is shared and if so clone it
761  *      @skb: buffer to check
762  *      @pri: priority for memory allocation
763  *
764  *      If the buffer is shared the buffer is cloned and the old copy
765  *      drops a reference. A new clone with a single reference is returned.
766  *      If the buffer is not shared the original buffer is returned. When
767  *      being called from interrupt status or with spinlocks held pri must
768  *      be GFP_ATOMIC.
769  *
770  *      NULL is returned on a memory allocation failure.
771  */
772 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
773                                               gfp_t pri)
774 {
775         might_sleep_if(pri & __GFP_WAIT);
776         if (skb_shared(skb)) {
777                 struct sk_buff *nskb = skb_clone(skb, pri);
778                 kfree_skb(skb);
779                 skb = nskb;
780         }
781         return skb;
782 }
783
784 /*
785  *      Copy shared buffers into a new sk_buff. We effectively do COW on
786  *      packets to handle cases where we have a local reader and forward
787  *      and a couple of other messy ones. The normal one is tcpdumping
788  *      a packet thats being forwarded.
789  */
790
791 /**
792  *      skb_unshare - make a copy of a shared buffer
793  *      @skb: buffer to check
794  *      @pri: priority for memory allocation
795  *
796  *      If the socket buffer is a clone then this function creates a new
797  *      copy of the data, drops a reference count on the old copy and returns
798  *      the new copy with the reference count at 1. If the buffer is not a clone
799  *      the original buffer is returned. When called with a spinlock held or
800  *      from interrupt state @pri must be %GFP_ATOMIC
801  *
802  *      %NULL is returned on a memory allocation failure.
803  */
804 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
805                                           gfp_t pri)
806 {
807         might_sleep_if(pri & __GFP_WAIT);
808         if (skb_cloned(skb)) {
809                 struct sk_buff *nskb = skb_copy(skb, pri);
810                 kfree_skb(skb); /* Free our shared copy */
811                 skb = nskb;
812         }
813         return skb;
814 }
815
816 /**
817  *      skb_peek - peek at the head of an &sk_buff_head
818  *      @list_: list to peek at
819  *
820  *      Peek an &sk_buff. Unlike most other operations you _MUST_
821  *      be careful with this one. A peek leaves the buffer on the
822  *      list and someone else may run off with it. You must hold
823  *      the appropriate locks or have a private queue to do this.
824  *
825  *      Returns %NULL for an empty list or a pointer to the head element.
826  *      The reference count is not incremented and the reference is therefore
827  *      volatile. Use with caution.
828  */
829 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
830 {
831         struct sk_buff *list = ((struct sk_buff *)list_)->next;
832         if (list == (struct sk_buff *)list_)
833                 list = NULL;
834         return list;
835 }
836
837 /**
838  *      skb_peek_tail - peek at the tail of an &sk_buff_head
839  *      @list_: list to peek at
840  *
841  *      Peek an &sk_buff. Unlike most other operations you _MUST_
842  *      be careful with this one. A peek leaves the buffer on the
843  *      list and someone else may run off with it. You must hold
844  *      the appropriate locks or have a private queue to do this.
845  *
846  *      Returns %NULL for an empty list or a pointer to the tail element.
847  *      The reference count is not incremented and the reference is therefore
848  *      volatile. Use with caution.
849  */
850 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
851 {
852         struct sk_buff *list = ((struct sk_buff *)list_)->prev;
853         if (list == (struct sk_buff *)list_)
854                 list = NULL;
855         return list;
856 }
857
858 /**
859  *      skb_queue_len   - get queue length
860  *      @list_: list to measure
861  *
862  *      Return the length of an &sk_buff queue.
863  */
864 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
865 {
866         return list_->qlen;
867 }
868
869 /**
870  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
871  *      @list: queue to initialize
872  *
873  *      This initializes only the list and queue length aspects of
874  *      an sk_buff_head object.  This allows to initialize the list
875  *      aspects of an sk_buff_head without reinitializing things like
876  *      the spinlock.  It can also be used for on-stack sk_buff_head
877  *      objects where the spinlock is known to not be used.
878  */
879 static inline void __skb_queue_head_init(struct sk_buff_head *list)
880 {
881         list->prev = list->next = (struct sk_buff *)list;
882         list->qlen = 0;
883 }
884
885 /*
886  * This function creates a split out lock class for each invocation;
887  * this is needed for now since a whole lot of users of the skb-queue
888  * infrastructure in drivers have different locking usage (in hardirq)
889  * than the networking core (in softirq only). In the long run either the
890  * network layer or drivers should need annotation to consolidate the
891  * main types of usage into 3 classes.
892  */
893 static inline void skb_queue_head_init(struct sk_buff_head *list)
894 {
895         spin_lock_init(&list->lock);
896         __skb_queue_head_init(list);
897 }
898
899 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
900                 struct lock_class_key *class)
901 {
902         skb_queue_head_init(list);
903         lockdep_set_class(&list->lock, class);
904 }
905
906 /*
907  *      Insert an sk_buff on a list.
908  *
909  *      The "__skb_xxxx()" functions are the non-atomic ones that
910  *      can only be called with interrupts disabled.
911  */
912 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
913 static inline void __skb_insert(struct sk_buff *newsk,
914                                 struct sk_buff *prev, struct sk_buff *next,
915                                 struct sk_buff_head *list)
916 {
917         newsk->next = next;
918         newsk->prev = prev;
919         next->prev  = prev->next = newsk;
920         list->qlen++;
921 }
922
923 static inline void __skb_queue_splice(const struct sk_buff_head *list,
924                                       struct sk_buff *prev,
925                                       struct sk_buff *next)
926 {
927         struct sk_buff *first = list->next;
928         struct sk_buff *last = list->prev;
929
930         first->prev = prev;
931         prev->next = first;
932
933         last->next = next;
934         next->prev = last;
935 }
936
937 /**
938  *      skb_queue_splice - join two skb lists, this is designed for stacks
939  *      @list: the new list to add
940  *      @head: the place to add it in the first list
941  */
942 static inline void skb_queue_splice(const struct sk_buff_head *list,
943                                     struct sk_buff_head *head)
944 {
945         if (!skb_queue_empty(list)) {
946                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
947                 head->qlen += list->qlen;
948         }
949 }
950
951 /**
952  *      skb_queue_splice - join two skb lists and reinitialise the emptied list
953  *      @list: the new list to add
954  *      @head: the place to add it in the first list
955  *
956  *      The list at @list is reinitialised
957  */
958 static inline void skb_queue_splice_init(struct sk_buff_head *list,
959                                          struct sk_buff_head *head)
960 {
961         if (!skb_queue_empty(list)) {
962                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
963                 head->qlen += list->qlen;
964                 __skb_queue_head_init(list);
965         }
966 }
967
968 /**
969  *      skb_queue_splice_tail - join two skb lists, each list being a queue
970  *      @list: the new list to add
971  *      @head: the place to add it in the first list
972  */
973 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
974                                          struct sk_buff_head *head)
975 {
976         if (!skb_queue_empty(list)) {
977                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
978                 head->qlen += list->qlen;
979         }
980 }
981
982 /**
983  *      skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
984  *      @list: the new list to add
985  *      @head: the place to add it in the first list
986  *
987  *      Each of the lists is a queue.
988  *      The list at @list is reinitialised
989  */
990 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
991                                               struct sk_buff_head *head)
992 {
993         if (!skb_queue_empty(list)) {
994                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
995                 head->qlen += list->qlen;
996                 __skb_queue_head_init(list);
997         }
998 }
999
1000 /**
1001  *      __skb_queue_after - queue a buffer at the list head
1002  *      @list: list to use
1003  *      @prev: place after this buffer
1004  *      @newsk: buffer to queue
1005  *
1006  *      Queue a buffer int the middle of a list. This function takes no locks
1007  *      and you must therefore hold required locks before calling it.
1008  *
1009  *      A buffer cannot be placed on two lists at the same time.
1010  */
1011 static inline void __skb_queue_after(struct sk_buff_head *list,
1012                                      struct sk_buff *prev,
1013                                      struct sk_buff *newsk)
1014 {
1015         __skb_insert(newsk, prev, prev->next, list);
1016 }
1017
1018 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1019                        struct sk_buff_head *list);
1020
1021 static inline void __skb_queue_before(struct sk_buff_head *list,
1022                                       struct sk_buff *next,
1023                                       struct sk_buff *newsk)
1024 {
1025         __skb_insert(newsk, next->prev, next, list);
1026 }
1027
1028 /**
1029  *      __skb_queue_head - queue a buffer at the list head
1030  *      @list: list to use
1031  *      @newsk: buffer to queue
1032  *
1033  *      Queue a buffer at the start of a list. This function takes no locks
1034  *      and you must therefore hold required locks before calling it.
1035  *
1036  *      A buffer cannot be placed on two lists at the same time.
1037  */
1038 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1039 static inline void __skb_queue_head(struct sk_buff_head *list,
1040                                     struct sk_buff *newsk)
1041 {
1042         __skb_queue_after(list, (struct sk_buff *)list, newsk);
1043 }
1044
1045 /**
1046  *      __skb_queue_tail - queue a buffer at the list tail
1047  *      @list: list to use
1048  *      @newsk: buffer to queue
1049  *
1050  *      Queue a buffer at the end of a list. This function takes no locks
1051  *      and you must therefore hold required locks before calling it.
1052  *
1053  *      A buffer cannot be placed on two lists at the same time.
1054  */
1055 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1056 static inline void __skb_queue_tail(struct sk_buff_head *list,
1057                                    struct sk_buff *newsk)
1058 {
1059         __skb_queue_before(list, (struct sk_buff *)list, newsk);
1060 }
1061
1062 /*
1063  * remove sk_buff from list. _Must_ be called atomically, and with
1064  * the list known..
1065  */
1066 extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1067 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1068 {
1069         struct sk_buff *next, *prev;
1070
1071         list->qlen--;
1072         next       = skb->next;
1073         prev       = skb->prev;
1074         skb->next  = skb->prev = NULL;
1075         next->prev = prev;
1076         prev->next = next;
1077 }
1078
1079 /**
1080  *      __skb_dequeue - remove from the head of the queue
1081  *      @list: list to dequeue from
1082  *
1083  *      Remove the head of the list. This function does not take any locks
1084  *      so must be used with appropriate locks held only. The head item is
1085  *      returned or %NULL if the list is empty.
1086  */
1087 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1088 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1089 {
1090         struct sk_buff *skb = skb_peek(list);
1091         if (skb)
1092                 __skb_unlink(skb, list);
1093         return skb;
1094 }
1095
1096 /**
1097  *      __skb_dequeue_tail - remove from the tail of the queue
1098  *      @list: list to dequeue from
1099  *
1100  *      Remove the tail of the list. This function does not take any locks
1101  *      so must be used with appropriate locks held only. The tail item is
1102  *      returned or %NULL if the list is empty.
1103  */
1104 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1105 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1106 {
1107         struct sk_buff *skb = skb_peek_tail(list);
1108         if (skb)
1109                 __skb_unlink(skb, list);
1110         return skb;
1111 }
1112
1113
1114 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1115 {
1116         return skb->data_len;
1117 }
1118
1119 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1120 {
1121         return skb->len - skb->data_len;
1122 }
1123
1124 static inline int skb_pagelen(const struct sk_buff *skb)
1125 {
1126         int i, len = 0;
1127
1128         for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1129                 len += skb_shinfo(skb)->frags[i].size;
1130         return len + skb_headlen(skb);
1131 }
1132
1133 /**
1134  * __skb_fill_page_desc - initialise a paged fragment in an skb
1135  * @skb: buffer containing fragment to be initialised
1136  * @i: paged fragment index to initialise
1137  * @page: the page to use for this fragment
1138  * @off: the offset to the data with @page
1139  * @size: the length of the data
1140  *
1141  * Initialises the @i'th fragment of @skb to point to &size bytes at
1142  * offset @off within @page.
1143  *
1144  * Does not take any additional reference on the fragment.
1145  */
1146 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1147                                         struct page *page, int off, int size)
1148 {
1149         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1150
1151         frag->page                = page;
1152         frag->page_offset         = off;
1153         frag->size                = size;
1154 }
1155
1156 /**
1157  * skb_fill_page_desc - initialise a paged fragment in an skb
1158  * @skb: buffer containing fragment to be initialised
1159  * @i: paged fragment index to initialise
1160  * @page: the page to use for this fragment
1161  * @off: the offset to the data with @page
1162  * @size: the length of the data
1163  *
1164  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1165  * @skb to point to &size bytes at offset @off within @page. In
1166  * addition updates @skb such that @i is the last fragment.
1167  *
1168  * Does not take any additional reference on the fragment.
1169  */
1170 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1171                                       struct page *page, int off, int size)
1172 {
1173         __skb_fill_page_desc(skb, i, page, off, size);
1174         skb_shinfo(skb)->nr_frags = i + 1;
1175 }
1176
1177 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1178                             int off, int size);
1179
1180 #define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1181 #define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1182 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1183
1184 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1185 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1186 {
1187         return skb->head + skb->tail;
1188 }
1189
1190 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1191 {
1192         skb->tail = skb->data - skb->head;
1193 }
1194
1195 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1196 {
1197         skb_reset_tail_pointer(skb);
1198         skb->tail += offset;
1199 }
1200 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1201 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1202 {
1203         return skb->tail;
1204 }
1205
1206 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1207 {
1208         skb->tail = skb->data;
1209 }
1210
1211 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1212 {
1213         skb->tail = skb->data + offset;
1214 }
1215
1216 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1217
1218 /*
1219  *      Add data to an sk_buff
1220  */
1221 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1222 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1223 {
1224         unsigned char *tmp = skb_tail_pointer(skb);
1225         SKB_LINEAR_ASSERT(skb);
1226         skb->tail += len;
1227         skb->len  += len;
1228         return tmp;
1229 }
1230
1231 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1232 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1233 {
1234         skb->data -= len;
1235         skb->len  += len;
1236         return skb->data;
1237 }
1238
1239 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1240 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1241 {
1242         skb->len -= len;
1243         BUG_ON(skb->len < skb->data_len);
1244         return skb->data += len;
1245 }
1246
1247 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1248 {
1249         return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1250 }
1251
1252 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1253
1254 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1255 {
1256         if (len > skb_headlen(skb) &&
1257             !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1258                 return NULL;
1259         skb->len -= len;
1260         return skb->data += len;
1261 }
1262
1263 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1264 {
1265         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1266 }
1267
1268 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1269 {
1270         if (likely(len <= skb_headlen(skb)))
1271                 return 1;
1272         if (unlikely(len > skb->len))
1273                 return 0;
1274         return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1275 }
1276
1277 /**
1278  *      skb_headroom - bytes at buffer head
1279  *      @skb: buffer to check
1280  *
1281  *      Return the number of bytes of free space at the head of an &sk_buff.
1282  */
1283 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1284 {
1285         return skb->data - skb->head;
1286 }
1287
1288 /**
1289  *      skb_tailroom - bytes at buffer end
1290  *      @skb: buffer to check
1291  *
1292  *      Return the number of bytes of free space at the tail of an sk_buff
1293  */
1294 static inline int skb_tailroom(const struct sk_buff *skb)
1295 {
1296         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1297 }
1298
1299 /**
1300  *      skb_reserve - adjust headroom
1301  *      @skb: buffer to alter
1302  *      @len: bytes to move
1303  *
1304  *      Increase the headroom of an empty &sk_buff by reducing the tail
1305  *      room. This is only allowed for an empty buffer.
1306  */
1307 static inline void skb_reserve(struct sk_buff *skb, int len)
1308 {
1309         skb->data += len;
1310         skb->tail += len;
1311 }
1312
1313 static inline void skb_reset_mac_len(struct sk_buff *skb)
1314 {
1315         skb->mac_len = skb->network_header - skb->mac_header;
1316 }
1317
1318 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1319 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1320 {
1321         return skb->head + skb->transport_header;
1322 }
1323
1324 static inline void skb_reset_transport_header(struct sk_buff *skb)
1325 {
1326         skb->transport_header = skb->data - skb->head;
1327 }
1328
1329 static inline void skb_set_transport_header(struct sk_buff *skb,
1330                                             const int offset)
1331 {
1332         skb_reset_transport_header(skb);
1333         skb->transport_header += offset;
1334 }
1335
1336 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1337 {
1338         return skb->head + skb->network_header;
1339 }
1340
1341 static inline void skb_reset_network_header(struct sk_buff *skb)
1342 {
1343         skb->network_header = skb->data - skb->head;
1344 }
1345
1346 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1347 {
1348         skb_reset_network_header(skb);
1349         skb->network_header += offset;
1350 }
1351
1352 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1353 {
1354         return skb->head + skb->mac_header;
1355 }
1356
1357 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1358 {
1359         return skb->mac_header != ~0U;
1360 }
1361
1362 static inline void skb_reset_mac_header(struct sk_buff *skb)
1363 {
1364         skb->mac_header = skb->data - skb->head;
1365 }
1366
1367 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1368 {
1369         skb_reset_mac_header(skb);
1370         skb->mac_header += offset;
1371 }
1372
1373 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1374
1375 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1376 {
1377         return skb->transport_header;
1378 }
1379
1380 static inline void skb_reset_transport_header(struct sk_buff *skb)
1381 {
1382         skb->transport_header = skb->data;
1383 }
1384
1385 static inline void skb_set_transport_header(struct sk_buff *skb,
1386                                             const int offset)
1387 {
1388         skb->transport_header = skb->data + offset;
1389 }
1390
1391 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1392 {
1393         return skb->network_header;
1394 }
1395
1396 static inline void skb_reset_network_header(struct sk_buff *skb)
1397 {
1398         skb->network_header = skb->data;
1399 }
1400
1401 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1402 {
1403         skb->network_header = skb->data + offset;
1404 }
1405
1406 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1407 {
1408         return skb->mac_header;
1409 }
1410
1411 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1412 {
1413         return skb->mac_header != NULL;
1414 }
1415
1416 static inline void skb_reset_mac_header(struct sk_buff *skb)
1417 {
1418         skb->mac_header = skb->data;
1419 }
1420
1421 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1422 {
1423         skb->mac_header = skb->data + offset;
1424 }
1425 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1426
1427 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1428 {
1429         return skb->csum_start - skb_headroom(skb);
1430 }
1431
1432 static inline int skb_transport_offset(const struct sk_buff *skb)
1433 {
1434         return skb_transport_header(skb) - skb->data;
1435 }
1436
1437 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1438 {
1439         return skb->transport_header - skb->network_header;
1440 }
1441
1442 static inline int skb_network_offset(const struct sk_buff *skb)
1443 {
1444         return skb_network_header(skb) - skb->data;
1445 }
1446
1447 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1448 {
1449         return pskb_may_pull(skb, skb_network_offset(skb) + len);
1450 }
1451
1452 /*
1453  * CPUs often take a performance hit when accessing unaligned memory
1454  * locations. The actual performance hit varies, it can be small if the
1455  * hardware handles it or large if we have to take an exception and fix it
1456  * in software.
1457  *
1458  * Since an ethernet header is 14 bytes network drivers often end up with
1459  * the IP header at an unaligned offset. The IP header can be aligned by
1460  * shifting the start of the packet by 2 bytes. Drivers should do this
1461  * with:
1462  *
1463  * skb_reserve(skb, NET_IP_ALIGN);
1464  *
1465  * The downside to this alignment of the IP header is that the DMA is now
1466  * unaligned. On some architectures the cost of an unaligned DMA is high
1467  * and this cost outweighs the gains made by aligning the IP header.
1468  *
1469  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1470  * to be overridden.
1471  */
1472 #ifndef NET_IP_ALIGN
1473 #define NET_IP_ALIGN    2
1474 #endif
1475
1476 /*
1477  * The networking layer reserves some headroom in skb data (via
1478  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1479  * the header has to grow. In the default case, if the header has to grow
1480  * 32 bytes or less we avoid the reallocation.
1481  *
1482  * Unfortunately this headroom changes the DMA alignment of the resulting
1483  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1484  * on some architectures. An architecture can override this value,
1485  * perhaps setting it to a cacheline in size (since that will maintain
1486  * cacheline alignment of the DMA). It must be a power of 2.
1487  *
1488  * Various parts of the networking layer expect at least 32 bytes of
1489  * headroom, you should not reduce this.
1490  *
1491  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1492  * to reduce average number of cache lines per packet.
1493  * get_rps_cpus() for example only access one 64 bytes aligned block :
1494  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1495  */
1496 #ifndef NET_SKB_PAD
1497 #define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
1498 #endif
1499
1500 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1501
1502 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1503 {
1504         if (unlikely(skb_is_nonlinear(skb))) {
1505                 WARN_ON(1);
1506                 return;
1507         }
1508         skb->len = len;
1509         skb_set_tail_pointer(skb, len);
1510 }
1511
1512 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1513
1514 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1515 {
1516         if (skb->data_len)
1517                 return ___pskb_trim(skb, len);
1518         __skb_trim(skb, len);
1519         return 0;
1520 }
1521
1522 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1523 {
1524         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1525 }
1526
1527 /**
1528  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1529  *      @skb: buffer to alter
1530  *      @len: new length
1531  *
1532  *      This is identical to pskb_trim except that the caller knows that
1533  *      the skb is not cloned so we should never get an error due to out-
1534  *      of-memory.
1535  */
1536 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1537 {
1538         int err = pskb_trim(skb, len);
1539         BUG_ON(err);
1540 }
1541
1542 /**
1543  *      skb_orphan - orphan a buffer
1544  *      @skb: buffer to orphan
1545  *
1546  *      If a buffer currently has an owner then we call the owner's
1547  *      destructor function and make the @skb unowned. The buffer continues
1548  *      to exist but is no longer charged to its former owner.
1549  */
1550 static inline void skb_orphan(struct sk_buff *skb)
1551 {
1552         if (skb->destructor)
1553                 skb->destructor(skb);
1554         skb->destructor = NULL;
1555         skb->sk         = NULL;
1556 }
1557
1558 /**
1559  *      __skb_queue_purge - empty a list
1560  *      @list: list to empty
1561  *
1562  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1563  *      the list and one reference dropped. This function does not take the
1564  *      list lock and the caller must hold the relevant locks to use it.
1565  */
1566 extern void skb_queue_purge(struct sk_buff_head *list);
1567 static inline void __skb_queue_purge(struct sk_buff_head *list)
1568 {
1569         struct sk_buff *skb;
1570         while ((skb = __skb_dequeue(list)) != NULL)
1571                 kfree_skb(skb);
1572 }
1573
1574 /**
1575  *      __dev_alloc_skb - allocate an skbuff for receiving
1576  *      @length: length to allocate
1577  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1578  *
1579  *      Allocate a new &sk_buff and assign it a usage count of one. The
1580  *      buffer has unspecified headroom built in. Users should allocate
1581  *      the headroom they think they need without accounting for the
1582  *      built in space. The built in space is used for optimisations.
1583  *
1584  *      %NULL is returned if there is no free memory.
1585  */
1586 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1587                                               gfp_t gfp_mask)
1588 {
1589         struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1590         if (likely(skb))
1591                 skb_reserve(skb, NET_SKB_PAD);
1592         return skb;
1593 }
1594
1595 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1596
1597 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1598                 unsigned int length, gfp_t gfp_mask);
1599
1600 /**
1601  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1602  *      @dev: network device to receive on
1603  *      @length: length to allocate
1604  *
1605  *      Allocate a new &sk_buff and assign it a usage count of one. The
1606  *      buffer has unspecified headroom built in. Users should allocate
1607  *      the headroom they think they need without accounting for the
1608  *      built in space. The built in space is used for optimisations.
1609  *
1610  *      %NULL is returned if there is no free memory. Although this function
1611  *      allocates memory it can be called from an interrupt.
1612  */
1613 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1614                 unsigned int length)
1615 {
1616         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1617 }
1618
1619 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1620                 unsigned int length, gfp_t gfp)
1621 {
1622         struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1623
1624         if (NET_IP_ALIGN && skb)
1625                 skb_reserve(skb, NET_IP_ALIGN);
1626         return skb;
1627 }
1628
1629 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1630                 unsigned int length)
1631 {
1632         return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1633 }
1634
1635 /**
1636  *      __netdev_alloc_page - allocate a page for ps-rx on a specific device
1637  *      @dev: network device to receive on
1638  *      @gfp_mask: alloc_pages_node mask
1639  *
1640  *      Allocate a new page. dev currently unused.
1641  *
1642  *      %NULL is returned if there is no free memory.
1643  */
1644 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1645 {
1646         return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1647 }
1648
1649 /**
1650  *      netdev_alloc_page - allocate a page for ps-rx on a specific device
1651  *      @dev: network device to receive on
1652  *
1653  *      Allocate a new page. dev currently unused.
1654  *
1655  *      %NULL is returned if there is no free memory.
1656  */
1657 static inline struct page *netdev_alloc_page(struct net_device *dev)
1658 {
1659         return __netdev_alloc_page(dev, GFP_ATOMIC);
1660 }
1661
1662 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1663 {
1664         __free_page(page);
1665 }
1666
1667 /**
1668  * skb_frag_page - retrieve the page refered to by a paged fragment
1669  * @frag: the paged fragment
1670  *
1671  * Returns the &struct page associated with @frag.
1672  */
1673 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1674 {
1675         return frag->page;
1676 }
1677
1678 /**
1679  * __skb_frag_ref - take an addition reference on a paged fragment.
1680  * @frag: the paged fragment
1681  *
1682  * Takes an additional reference on the paged fragment @frag.
1683  */
1684 static inline void __skb_frag_ref(skb_frag_t *frag)
1685 {
1686         get_page(skb_frag_page(frag));
1687 }
1688
1689 /**
1690  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1691  * @skb: the buffer
1692  * @f: the fragment offset.
1693  *
1694  * Takes an additional reference on the @f'th paged fragment of @skb.
1695  */
1696 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1697 {
1698         __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1699 }
1700
1701 /**
1702  * __skb_frag_unref - release a reference on a paged fragment.
1703  * @frag: the paged fragment
1704  *
1705  * Releases a reference on the paged fragment @frag.
1706  */
1707 static inline void __skb_frag_unref(skb_frag_t *frag)
1708 {
1709         put_page(skb_frag_page(frag));
1710 }
1711
1712 /**
1713  * skb_frag_unref - release a reference on a paged fragment of an skb.
1714  * @skb: the buffer
1715  * @f: the fragment offset
1716  *
1717  * Releases a reference on the @f'th paged fragment of @skb.
1718  */
1719 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1720 {
1721         __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1722 }
1723
1724 /**
1725  * skb_frag_address - gets the address of the data contained in a paged fragment
1726  * @frag: the paged fragment buffer
1727  *
1728  * Returns the address of the data within @frag. The page must already
1729  * be mapped.
1730  */
1731 static inline void *skb_frag_address(const skb_frag_t *frag)
1732 {
1733         return page_address(skb_frag_page(frag)) + frag->page_offset;
1734 }
1735
1736 /**
1737  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1738  * @frag: the paged fragment buffer
1739  *
1740  * Returns the address of the data within @frag. Checks that the page
1741  * is mapped and returns %NULL otherwise.
1742  */
1743 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1744 {
1745         void *ptr = page_address(skb_frag_page(frag));
1746         if (unlikely(!ptr))
1747                 return NULL;
1748
1749         return ptr + frag->page_offset;
1750 }
1751
1752 /**
1753  * __skb_frag_set_page - sets the page contained in a paged fragment
1754  * @frag: the paged fragment
1755  * @page: the page to set
1756  *
1757  * Sets the fragment @frag to contain @page.
1758  */
1759 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1760 {
1761         frag->page = page;
1762         __skb_frag_ref(frag);
1763 }
1764
1765 /**
1766  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1767  * @skb: the buffer
1768  * @f: the fragment offset
1769  * @page: the page to set
1770  *
1771  * Sets the @f'th fragment of @skb to contain @page.
1772  */
1773 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1774                                      struct page *page)
1775 {
1776         __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1777 }
1778
1779 /**
1780  * skb_frag_dma_map - maps a paged fragment via the DMA API
1781  * @device: the device to map the fragment to
1782  * @frag: the paged fragment to map
1783  * @offset: the offset within the fragment (starting at the
1784  *          fragment's own offset)
1785  * @size: the number of bytes to map
1786  * @direction: the direction of the mapping (%PCI_DMA_*)
1787  *
1788  * Maps the page associated with @frag to @device.
1789  */
1790 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1791                                           const skb_frag_t *frag,
1792                                           size_t offset, size_t size,
1793                                           enum dma_data_direction dir)
1794 {
1795         return dma_map_page(dev, skb_frag_page(frag),
1796                             frag->page_offset + offset, size, dir);
1797 }
1798
1799 /**
1800  *      skb_clone_writable - is the header of a clone writable
1801  *      @skb: buffer to check
1802  *      @len: length up to which to write
1803  *
1804  *      Returns true if modifying the header part of the cloned buffer
1805  *      does not requires the data to be copied.
1806  */
1807 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1808 {
1809         return !skb_header_cloned(skb) &&
1810                skb_headroom(skb) + len <= skb->hdr_len;
1811 }
1812
1813 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1814                             int cloned)
1815 {
1816         int delta = 0;
1817
1818         if (headroom < NET_SKB_PAD)
1819                 headroom = NET_SKB_PAD;
1820         if (headroom > skb_headroom(skb))
1821                 delta = headroom - skb_headroom(skb);
1822
1823         if (delta || cloned)
1824                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1825                                         GFP_ATOMIC);
1826         return 0;
1827 }
1828
1829 /**
1830  *      skb_cow - copy header of skb when it is required
1831  *      @skb: buffer to cow
1832  *      @headroom: needed headroom
1833  *
1834  *      If the skb passed lacks sufficient headroom or its data part
1835  *      is shared, data is reallocated. If reallocation fails, an error
1836  *      is returned and original skb is not changed.
1837  *
1838  *      The result is skb with writable area skb->head...skb->tail
1839  *      and at least @headroom of space at head.
1840  */
1841 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1842 {
1843         return __skb_cow(skb, headroom, skb_cloned(skb));
1844 }
1845
1846 /**
1847  *      skb_cow_head - skb_cow but only making the head writable
1848  *      @skb: buffer to cow
1849  *      @headroom: needed headroom
1850  *
1851  *      This function is identical to skb_cow except that we replace the
1852  *      skb_cloned check by skb_header_cloned.  It should be used when
1853  *      you only need to push on some header and do not need to modify
1854  *      the data.
1855  */
1856 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1857 {
1858         return __skb_cow(skb, headroom, skb_header_cloned(skb));
1859 }
1860
1861 /**
1862  *      skb_padto       - pad an skbuff up to a minimal size
1863  *      @skb: buffer to pad
1864  *      @len: minimal length
1865  *
1866  *      Pads up a buffer to ensure the trailing bytes exist and are
1867  *      blanked. If the buffer already contains sufficient data it
1868  *      is untouched. Otherwise it is extended. Returns zero on
1869  *      success. The skb is freed on error.
1870  */
1871  
1872 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1873 {
1874         unsigned int size = skb->len;
1875         if (likely(size >= len))
1876                 return 0;
1877         return skb_pad(skb, len - size);
1878 }
1879
1880 static inline int skb_add_data(struct sk_buff *skb,
1881                                char __user *from, int copy)
1882 {
1883         const int off = skb->len;
1884
1885         if (skb->ip_summed == CHECKSUM_NONE) {
1886                 int err = 0;
1887                 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1888                                                             copy, 0, &err);
1889                 if (!err) {
1890                         skb->csum = csum_block_add(skb->csum, csum, off);
1891                         return 0;
1892                 }
1893         } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1894                 return 0;
1895
1896         __skb_trim(skb, off);
1897         return -EFAULT;
1898 }
1899
1900 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1901                                    const struct page *page, int off)
1902 {
1903         if (i) {
1904                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1905
1906                 return page == skb_frag_page(frag) &&
1907                        off == frag->page_offset + frag->size;
1908         }
1909         return 0;
1910 }
1911
1912 static inline int __skb_linearize(struct sk_buff *skb)
1913 {
1914         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1915 }
1916
1917 /**
1918  *      skb_linearize - convert paged skb to linear one
1919  *      @skb: buffer to linarize
1920  *
1921  *      If there is no free memory -ENOMEM is returned, otherwise zero
1922  *      is returned and the old skb data released.
1923  */
1924 static inline int skb_linearize(struct sk_buff *skb)
1925 {
1926         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1927 }
1928
1929 /**
1930  *      skb_linearize_cow - make sure skb is linear and writable
1931  *      @skb: buffer to process
1932  *
1933  *      If there is no free memory -ENOMEM is returned, otherwise zero
1934  *      is returned and the old skb data released.
1935  */
1936 static inline int skb_linearize_cow(struct sk_buff *skb)
1937 {
1938         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1939                __skb_linearize(skb) : 0;
1940 }
1941
1942 /**
1943  *      skb_postpull_rcsum - update checksum for received skb after pull
1944  *      @skb: buffer to update
1945  *      @start: start of data before pull
1946  *      @len: length of data pulled
1947  *
1948  *      After doing a pull on a received packet, you need to call this to
1949  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1950  *      CHECKSUM_NONE so that it can be recomputed from scratch.
1951  */
1952
1953 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1954                                       const void *start, unsigned int len)
1955 {
1956         if (skb->ip_summed == CHECKSUM_COMPLETE)
1957                 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1958 }
1959
1960 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1961
1962 /**
1963  *      pskb_trim_rcsum - trim received skb and update checksum
1964  *      @skb: buffer to trim
1965  *      @len: new length
1966  *
1967  *      This is exactly the same as pskb_trim except that it ensures the
1968  *      checksum of received packets are still valid after the operation.
1969  */
1970
1971 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1972 {
1973         if (likely(len >= skb->len))
1974                 return 0;
1975         if (skb->ip_summed == CHECKSUM_COMPLETE)
1976                 skb->ip_summed = CHECKSUM_NONE;
1977         return __pskb_trim(skb, len);
1978 }
1979
1980 #define skb_queue_walk(queue, skb) \
1981                 for (skb = (queue)->next;                                       \
1982                      skb != (struct sk_buff *)(queue);                          \
1983                      skb = skb->next)
1984
1985 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
1986                 for (skb = (queue)->next, tmp = skb->next;                      \
1987                      skb != (struct sk_buff *)(queue);                          \
1988                      skb = tmp, tmp = skb->next)
1989
1990 #define skb_queue_walk_from(queue, skb)                                         \
1991                 for (; skb != (struct sk_buff *)(queue);                        \
1992                      skb = skb->next)
1993
1994 #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
1995                 for (tmp = skb->next;                                           \
1996                      skb != (struct sk_buff *)(queue);                          \
1997                      skb = tmp, tmp = skb->next)
1998
1999 #define skb_queue_reverse_walk(queue, skb) \
2000                 for (skb = (queue)->prev;                                       \
2001                      skb != (struct sk_buff *)(queue);                          \
2002                      skb = skb->prev)
2003
2004 #define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
2005                 for (skb = (queue)->prev, tmp = skb->prev;                      \
2006                      skb != (struct sk_buff *)(queue);                          \
2007                      skb = tmp, tmp = skb->prev)
2008
2009 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
2010                 for (tmp = skb->prev;                                           \
2011                      skb != (struct sk_buff *)(queue);                          \
2012                      skb = tmp, tmp = skb->prev)
2013
2014 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2015 {
2016         return skb_shinfo(skb)->frag_list != NULL;
2017 }
2018
2019 static inline void skb_frag_list_init(struct sk_buff *skb)
2020 {
2021         skb_shinfo(skb)->frag_list = NULL;
2022 }
2023
2024 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2025 {
2026         frag->next = skb_shinfo(skb)->frag_list;
2027         skb_shinfo(skb)->frag_list = frag;
2028 }
2029
2030 #define skb_walk_frags(skb, iter)       \
2031         for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2032
2033 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2034                                            int *peeked, int *err);
2035 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2036                                          int noblock, int *err);
2037 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2038                                      struct poll_table_struct *wait);
2039 extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
2040                                                int offset, struct iovec *to,
2041                                                int size);
2042 extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2043                                                         int hlen,
2044                                                         struct iovec *iov);
2045 extern int             skb_copy_datagram_from_iovec(struct sk_buff *skb,
2046                                                     int offset,
2047                                                     const struct iovec *from,
2048                                                     int from_offset,
2049                                                     int len);
2050 extern int             skb_copy_datagram_const_iovec(const struct sk_buff *from,
2051                                                      int offset,
2052                                                      const struct iovec *to,
2053                                                      int to_offset,
2054                                                      int size);
2055 extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2056 extern void            skb_free_datagram_locked(struct sock *sk,
2057                                                 struct sk_buff *skb);
2058 extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2059                                          unsigned int flags);
2060 extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
2061                                     int len, __wsum csum);
2062 extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
2063                                      void *to, int len);
2064 extern int             skb_store_bits(struct sk_buff *skb, int offset,
2065                                       const void *from, int len);
2066 extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
2067                                               int offset, u8 *to, int len,
2068                                               __wsum csum);
2069 extern int             skb_splice_bits(struct sk_buff *skb,
2070                                                 unsigned int offset,
2071                                                 struct pipe_inode_info *pipe,
2072                                                 unsigned int len,
2073                                                 unsigned int flags);
2074 extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2075 extern void            skb_split(struct sk_buff *skb,
2076                                  struct sk_buff *skb1, const u32 len);
2077 extern int             skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2078                                  int shiftlen);
2079
2080 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
2081
2082 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2083                                        int len, void *buffer)
2084 {
2085         int hlen = skb_headlen(skb);
2086
2087         if (hlen - offset >= len)
2088                 return skb->data + offset;
2089
2090         if (skb_copy_bits(skb, offset, buffer, len) < 0)
2091                 return NULL;
2092
2093         return buffer;
2094 }
2095
2096 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2097                                              void *to,
2098                                              const unsigned int len)
2099 {
2100         memcpy(to, skb->data, len);
2101 }
2102
2103 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2104                                                     const int offset, void *to,
2105                                                     const unsigned int len)
2106 {
2107         memcpy(to, skb->data + offset, len);
2108 }
2109
2110 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2111                                            const void *from,
2112                                            const unsigned int len)
2113 {
2114         memcpy(skb->data, from, len);
2115 }
2116
2117 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2118                                                   const int offset,
2119                                                   const void *from,
2120                                                   const unsigned int len)
2121 {
2122         memcpy(skb->data + offset, from, len);
2123 }
2124
2125 extern void skb_init(void);
2126
2127 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2128 {
2129         return skb->tstamp;
2130 }
2131
2132 /**
2133  *      skb_get_timestamp - get timestamp from a skb
2134  *      @skb: skb to get stamp from
2135  *      @stamp: pointer to struct timeval to store stamp in
2136  *
2137  *      Timestamps are stored in the skb as offsets to a base timestamp.
2138  *      This function converts the offset back to a struct timeval and stores
2139  *      it in stamp.
2140  */
2141 static inline void skb_get_timestamp(const struct sk_buff *skb,
2142                                      struct timeval *stamp)
2143 {
2144         *stamp = ktime_to_timeval(skb->tstamp);
2145 }
2146
2147 static inline void skb_get_timestampns(const struct sk_buff *skb,
2148                                        struct timespec *stamp)
2149 {
2150         *stamp = ktime_to_timespec(skb->tstamp);
2151 }
2152
2153 static inline void __net_timestamp(struct sk_buff *skb)
2154 {
2155         skb->tstamp = ktime_get_real();
2156 }
2157
2158 static inline ktime_t net_timedelta(ktime_t t)
2159 {
2160         return ktime_sub(ktime_get_real(), t);
2161 }
2162
2163 static inline ktime_t net_invalid_timestamp(void)
2164 {
2165         return ktime_set(0, 0);
2166 }
2167
2168 extern void skb_timestamping_init(void);
2169
2170 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2171
2172 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2173 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2174
2175 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2176
2177 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2178 {
2179 }
2180
2181 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2182 {
2183         return false;
2184 }
2185
2186 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2187
2188 /**
2189  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2190  *
2191  * @skb: clone of the the original outgoing packet
2192  * @hwtstamps: hardware time stamps
2193  *
2194  */
2195 void skb_complete_tx_timestamp(struct sk_buff *skb,
2196                                struct skb_shared_hwtstamps *hwtstamps);
2197
2198 /**
2199  * skb_tstamp_tx - queue clone of skb with send time stamps
2200  * @orig_skb:   the original outgoing packet
2201  * @hwtstamps:  hardware time stamps, may be NULL if not available
2202  *
2203  * If the skb has a socket associated, then this function clones the
2204  * skb (thus sharing the actual data and optional structures), stores
2205  * the optional hardware time stamping information (if non NULL) or
2206  * generates a software time stamp (otherwise), then queues the clone
2207  * to the error queue of the socket.  Errors are silently ignored.
2208  */
2209 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2210                         struct skb_shared_hwtstamps *hwtstamps);
2211
2212 static inline void sw_tx_timestamp(struct sk_buff *skb)
2213 {
2214         if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2215             !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2216                 skb_tstamp_tx(skb, NULL);
2217 }
2218
2219 /**
2220  * skb_tx_timestamp() - Driver hook for transmit timestamping
2221  *
2222  * Ethernet MAC Drivers should call this function in their hard_xmit()
2223  * function immediately before giving the sk_buff to the MAC hardware.
2224  *
2225  * @skb: A socket buffer.
2226  */
2227 static inline void skb_tx_timestamp(struct sk_buff *skb)
2228 {
2229         skb_clone_tx_timestamp(skb);
2230         sw_tx_timestamp(skb);
2231 }
2232
2233 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2234 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2235
2236 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2237 {
2238         return skb->ip_summed & CHECKSUM_UNNECESSARY;
2239 }
2240
2241 /**
2242  *      skb_checksum_complete - Calculate checksum of an entire packet
2243  *      @skb: packet to process
2244  *
2245  *      This function calculates the checksum over the entire packet plus
2246  *      the value of skb->csum.  The latter can be used to supply the
2247  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
2248  *      checksum.
2249  *
2250  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
2251  *      this function can be used to verify that checksum on received
2252  *      packets.  In that case the function should return zero if the
2253  *      checksum is correct.  In particular, this function will return zero
2254  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2255  *      hardware has already verified the correctness of the checksum.
2256  */
2257 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2258 {
2259         return skb_csum_unnecessary(skb) ?
2260                0 : __skb_checksum_complete(skb);
2261 }
2262
2263 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2264 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2265 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2266 {
2267         if (nfct && atomic_dec_and_test(&nfct->use))
2268                 nf_conntrack_destroy(nfct);
2269 }
2270 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2271 {
2272         if (nfct)
2273                 atomic_inc(&nfct->use);
2274 }
2275 #endif
2276 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2277 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2278 {
2279         if (skb)
2280                 atomic_inc(&skb->users);
2281 }
2282 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2283 {
2284         if (skb)
2285                 kfree_skb(skb);
2286 }
2287 #endif
2288 #ifdef CONFIG_BRIDGE_NETFILTER
2289 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2290 {
2291         if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2292                 kfree(nf_bridge);
2293 }
2294 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2295 {
2296         if (nf_bridge)
2297                 atomic_inc(&nf_bridge->use);
2298 }
2299 #endif /* CONFIG_BRIDGE_NETFILTER */
2300 static inline void nf_reset(struct sk_buff *skb)
2301 {
2302 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2303         nf_conntrack_put(skb->nfct);
2304         skb->nfct = NULL;
2305 #endif
2306 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2307         nf_conntrack_put_reasm(skb->nfct_reasm);
2308         skb->nfct_reasm = NULL;
2309 #endif
2310 #ifdef CONFIG_BRIDGE_NETFILTER
2311         nf_bridge_put(skb->nf_bridge);
2312         skb->nf_bridge = NULL;
2313 #endif
2314 }
2315
2316 /* Note: This doesn't put any conntrack and bridge info in dst. */
2317 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2318 {
2319 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2320         dst->nfct = src->nfct;
2321         nf_conntrack_get(src->nfct);
2322         dst->nfctinfo = src->nfctinfo;
2323 #endif
2324 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2325         dst->nfct_reasm = src->nfct_reasm;
2326         nf_conntrack_get_reasm(src->nfct_reasm);
2327 #endif
2328 #ifdef CONFIG_BRIDGE_NETFILTER
2329         dst->nf_bridge  = src->nf_bridge;
2330         nf_bridge_get(src->nf_bridge);
2331 #endif
2332 }
2333
2334 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2335 {
2336 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2337         nf_conntrack_put(dst->nfct);
2338 #endif
2339 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2340         nf_conntrack_put_reasm(dst->nfct_reasm);
2341 #endif
2342 #ifdef CONFIG_BRIDGE_NETFILTER
2343         nf_bridge_put(dst->nf_bridge);
2344 #endif
2345         __nf_copy(dst, src);
2346 }
2347
2348 #ifdef CONFIG_NETWORK_SECMARK
2349 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2350 {
2351         to->secmark = from->secmark;
2352 }
2353
2354 static inline void skb_init_secmark(struct sk_buff *skb)
2355 {
2356         skb->secmark = 0;
2357 }
2358 #else
2359 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2360 { }
2361
2362 static inline void skb_init_secmark(struct sk_buff *skb)
2363 { }
2364 #endif
2365
2366 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2367 {
2368         skb->queue_mapping = queue_mapping;
2369 }
2370
2371 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2372 {
2373         return skb->queue_mapping;
2374 }
2375
2376 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2377 {
2378         to->queue_mapping = from->queue_mapping;
2379 }
2380
2381 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2382 {
2383         skb->queue_mapping = rx_queue + 1;
2384 }
2385
2386 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2387 {
2388         return skb->queue_mapping - 1;
2389 }
2390
2391 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2392 {
2393         return skb->queue_mapping != 0;
2394 }
2395
2396 extern u16 __skb_tx_hash(const struct net_device *dev,
2397                          const struct sk_buff *skb,
2398                          unsigned int num_tx_queues);
2399
2400 #ifdef CONFIG_XFRM
2401 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2402 {
2403         return skb->sp;
2404 }
2405 #else
2406 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2407 {
2408         return NULL;
2409 }
2410 #endif
2411
2412 static inline int skb_is_gso(const struct sk_buff *skb)
2413 {
2414         return skb_shinfo(skb)->gso_size;
2415 }
2416
2417 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2418 {
2419         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2420 }
2421
2422 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2423
2424 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2425 {
2426         /* LRO sets gso_size but not gso_type, whereas if GSO is really
2427          * wanted then gso_type will be set. */
2428         struct skb_shared_info *shinfo = skb_shinfo(skb);
2429         if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2430             unlikely(shinfo->gso_type == 0)) {
2431                 __skb_warn_lro_forwarding(skb);
2432                 return true;
2433         }
2434         return false;
2435 }
2436
2437 static inline void skb_forward_csum(struct sk_buff *skb)
2438 {
2439         /* Unfortunately we don't support this one.  Any brave souls? */
2440         if (skb->ip_summed == CHECKSUM_COMPLETE)
2441                 skb->ip_summed = CHECKSUM_NONE;
2442 }
2443
2444 /**
2445  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2446  * @skb: skb to check
2447  *
2448  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2449  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2450  * use this helper, to document places where we make this assertion.
2451  */
2452 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2453 {
2454 #ifdef DEBUG
2455         BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2456 #endif
2457 }
2458
2459 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2460
2461 #endif  /* __KERNEL__ */
2462 #endif  /* _LINUX_SKBUFF_H */