]> Pileus Git - ~andy/linux/blob - include/linux/ptrace.h
Merge tag 'trace-fixes-v3.14-rc7-v2' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3
4 #include <linux/compiler.h>             /* For unlikely.  */
5 #include <linux/sched.h>                /* For struct task_struct.  */
6 #include <linux/err.h>                  /* for IS_ERR_VALUE */
7 #include <linux/bug.h>                  /* For BUG_ON.  */
8 #include <uapi/linux/ptrace.h>
9
10 /*
11  * Ptrace flags
12  *
13  * The owner ship rules for task->ptrace which holds the ptrace
14  * flags is simple.  When a task is running it owns it's task->ptrace
15  * flags.  When the a task is stopped the ptracer owns task->ptrace.
16  */
17
18 #define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
19 #define PT_PTRACED      0x00000001
20 #define PT_DTRACE       0x00000002      /* delayed trace (used on m68k, i386) */
21 #define PT_PTRACE_CAP   0x00000004      /* ptracer can follow suid-exec */
22
23 #define PT_OPT_FLAG_SHIFT       3
24 /* PT_TRACE_* event enable flags */
25 #define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
26 #define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
27 #define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
28 #define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
29 #define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
30 #define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
31 #define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
32 #define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
33 #define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
34
35 #define PT_EXITKILL             (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
36
37 /* single stepping state bits (used on ARM and PA-RISC) */
38 #define PT_SINGLESTEP_BIT       31
39 #define PT_SINGLESTEP           (1<<PT_SINGLESTEP_BIT)
40 #define PT_BLOCKSTEP_BIT        30
41 #define PT_BLOCKSTEP            (1<<PT_BLOCKSTEP_BIT)
42
43 extern long arch_ptrace(struct task_struct *child, long request,
44                         unsigned long addr, unsigned long data);
45 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
46 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
47 extern void ptrace_disable(struct task_struct *);
48 extern int ptrace_request(struct task_struct *child, long request,
49                           unsigned long addr, unsigned long data);
50 extern void ptrace_notify(int exit_code);
51 extern void __ptrace_link(struct task_struct *child,
52                           struct task_struct *new_parent);
53 extern void __ptrace_unlink(struct task_struct *child);
54 extern void exit_ptrace(struct task_struct *tracer);
55 #define PTRACE_MODE_READ        0x01
56 #define PTRACE_MODE_ATTACH      0x02
57 #define PTRACE_MODE_NOAUDIT     0x04
58 /* Returns true on success, false on denial. */
59 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
60
61 static inline int ptrace_reparented(struct task_struct *child)
62 {
63         return !same_thread_group(child->real_parent, child->parent);
64 }
65
66 static inline void ptrace_unlink(struct task_struct *child)
67 {
68         if (unlikely(child->ptrace))
69                 __ptrace_unlink(child);
70 }
71
72 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
73                             unsigned long data);
74 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
75                             unsigned long data);
76
77 /**
78  * ptrace_parent - return the task that is tracing the given task
79  * @task: task to consider
80  *
81  * Returns %NULL if no one is tracing @task, or the &struct task_struct
82  * pointer to its tracer.
83  *
84  * Must called under rcu_read_lock().  The pointer returned might be kept
85  * live only by RCU.  During exec, this may be called with task_lock() held
86  * on @task, still held from when check_unsafe_exec() was called.
87  */
88 static inline struct task_struct *ptrace_parent(struct task_struct *task)
89 {
90         if (unlikely(task->ptrace))
91                 return rcu_dereference(task->parent);
92         return NULL;
93 }
94
95 /**
96  * ptrace_event_enabled - test whether a ptrace event is enabled
97  * @task: ptracee of interest
98  * @event: %PTRACE_EVENT_* to test
99  *
100  * Test whether @event is enabled for ptracee @task.
101  *
102  * Returns %true if @event is enabled, %false otherwise.
103  */
104 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
105 {
106         return task->ptrace & PT_EVENT_FLAG(event);
107 }
108
109 /**
110  * ptrace_event - possibly stop for a ptrace event notification
111  * @event:      %PTRACE_EVENT_* value to report
112  * @message:    value for %PTRACE_GETEVENTMSG to return
113  *
114  * Check whether @event is enabled and, if so, report @event and @message
115  * to the ptrace parent.
116  *
117  * Called without locks.
118  */
119 static inline void ptrace_event(int event, unsigned long message)
120 {
121         if (unlikely(ptrace_event_enabled(current, event))) {
122                 current->ptrace_message = message;
123                 ptrace_notify((event << 8) | SIGTRAP);
124         } else if (event == PTRACE_EVENT_EXEC) {
125                 /* legacy EXEC report via SIGTRAP */
126                 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
127                         send_sig(SIGTRAP, current, 0);
128         }
129 }
130
131 /**
132  * ptrace_init_task - initialize ptrace state for a new child
133  * @child:              new child task
134  * @ptrace:             true if child should be ptrace'd by parent's tracer
135  *
136  * This is called immediately after adding @child to its parent's children
137  * list.  @ptrace is false in the normal case, and true to ptrace @child.
138  *
139  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
140  */
141 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
142 {
143         INIT_LIST_HEAD(&child->ptrace_entry);
144         INIT_LIST_HEAD(&child->ptraced);
145         child->jobctl = 0;
146         child->ptrace = 0;
147         child->parent = child->real_parent;
148
149         if (unlikely(ptrace) && current->ptrace) {
150                 child->ptrace = current->ptrace;
151                 __ptrace_link(child, current->parent);
152
153                 if (child->ptrace & PT_SEIZED)
154                         task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
155                 else
156                         sigaddset(&child->pending.signal, SIGSTOP);
157
158                 set_tsk_thread_flag(child, TIF_SIGPENDING);
159         }
160 }
161
162 /**
163  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
164  * @task:       task in %EXIT_DEAD state
165  *
166  * Called with write_lock(&tasklist_lock) held.
167  */
168 static inline void ptrace_release_task(struct task_struct *task)
169 {
170         BUG_ON(!list_empty(&task->ptraced));
171         ptrace_unlink(task);
172         BUG_ON(!list_empty(&task->ptrace_entry));
173 }
174
175 #ifndef force_successful_syscall_return
176 /*
177  * System call handlers that, upon successful completion, need to return a
178  * negative value should call force_successful_syscall_return() right before
179  * returning.  On architectures where the syscall convention provides for a
180  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
181  * others), this macro can be used to ensure that the error flag will not get
182  * set.  On architectures which do not support a separate error flag, the macro
183  * is a no-op and the spurious error condition needs to be filtered out by some
184  * other means (e.g., in user-level, by passing an extra argument to the
185  * syscall handler, or something along those lines).
186  */
187 #define force_successful_syscall_return() do { } while (0)
188 #endif
189
190 #ifndef is_syscall_success
191 /*
192  * On most systems we can tell if a syscall is a success based on if the retval
193  * is an error value.  On some systems like ia64 and powerpc they have different
194  * indicators of success/failure and must define their own.
195  */
196 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
197 #endif
198
199 /*
200  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
201  *
202  * These do-nothing inlines are used when the arch does not
203  * implement single-step.  The kerneldoc comments are here
204  * to document the interface for all arch definitions.
205  */
206
207 #ifndef arch_has_single_step
208 /**
209  * arch_has_single_step - does this CPU support user-mode single-step?
210  *
211  * If this is defined, then there must be function declarations or
212  * inlines for user_enable_single_step() and user_disable_single_step().
213  * arch_has_single_step() should evaluate to nonzero iff the machine
214  * supports instruction single-step for user mode.
215  * It can be a constant or it can test a CPU feature bit.
216  */
217 #define arch_has_single_step()          (0)
218
219 /**
220  * user_enable_single_step - single-step in user-mode task
221  * @task: either current or a task stopped in %TASK_TRACED
222  *
223  * This can only be called when arch_has_single_step() has returned nonzero.
224  * Set @task so that when it returns to user mode, it will trap after the
225  * next single instruction executes.  If arch_has_block_step() is defined,
226  * this must clear the effects of user_enable_block_step() too.
227  */
228 static inline void user_enable_single_step(struct task_struct *task)
229 {
230         BUG();                  /* This can never be called.  */
231 }
232
233 /**
234  * user_disable_single_step - cancel user-mode single-step
235  * @task: either current or a task stopped in %TASK_TRACED
236  *
237  * Clear @task of the effects of user_enable_single_step() and
238  * user_enable_block_step().  This can be called whether or not either
239  * of those was ever called on @task, and even if arch_has_single_step()
240  * returned zero.
241  */
242 static inline void user_disable_single_step(struct task_struct *task)
243 {
244 }
245 #else
246 extern void user_enable_single_step(struct task_struct *);
247 extern void user_disable_single_step(struct task_struct *);
248 #endif  /* arch_has_single_step */
249
250 #ifndef arch_has_block_step
251 /**
252  * arch_has_block_step - does this CPU support user-mode block-step?
253  *
254  * If this is defined, then there must be a function declaration or inline
255  * for user_enable_block_step(), and arch_has_single_step() must be defined
256  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
257  * supports step-until-branch for user mode.  It can be a constant or it
258  * can test a CPU feature bit.
259  */
260 #define arch_has_block_step()           (0)
261
262 /**
263  * user_enable_block_step - step until branch in user-mode task
264  * @task: either current or a task stopped in %TASK_TRACED
265  *
266  * This can only be called when arch_has_block_step() has returned nonzero,
267  * and will never be called when single-instruction stepping is being used.
268  * Set @task so that when it returns to user mode, it will trap after the
269  * next branch or trap taken.
270  */
271 static inline void user_enable_block_step(struct task_struct *task)
272 {
273         BUG();                  /* This can never be called.  */
274 }
275 #else
276 extern void user_enable_block_step(struct task_struct *);
277 #endif  /* arch_has_block_step */
278
279 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
280 extern void user_single_step_siginfo(struct task_struct *tsk,
281                                 struct pt_regs *regs, siginfo_t *info);
282 #else
283 static inline void user_single_step_siginfo(struct task_struct *tsk,
284                                 struct pt_regs *regs, siginfo_t *info)
285 {
286         memset(info, 0, sizeof(*info));
287         info->si_signo = SIGTRAP;
288 }
289 #endif
290
291 #ifndef arch_ptrace_stop_needed
292 /**
293  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
294  * @code:       current->exit_code value ptrace will stop with
295  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
296  *
297  * This is called with the siglock held, to decide whether or not it's
298  * necessary to release the siglock and call arch_ptrace_stop() with the
299  * same @code and @info arguments.  It can be defined to a constant if
300  * arch_ptrace_stop() is never required, or always is.  On machines where
301  * this makes sense, it should be defined to a quick test to optimize out
302  * calling arch_ptrace_stop() when it would be superfluous.  For example,
303  * if the thread has not been back to user mode since the last stop, the
304  * thread state might indicate that nothing needs to be done.
305  */
306 #define arch_ptrace_stop_needed(code, info)     (0)
307 #endif
308
309 #ifndef arch_ptrace_stop
310 /**
311  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
312  * @code:       current->exit_code value ptrace will stop with
313  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
314  *
315  * This is called with no locks held when arch_ptrace_stop_needed() has
316  * just returned nonzero.  It is allowed to block, e.g. for user memory
317  * access.  The arch can have machine-specific work to be done before
318  * ptrace stops.  On ia64, register backing store gets written back to user
319  * memory here.  Since this can be costly (requires dropping the siglock),
320  * we only do it when the arch requires it for this particular stop, as
321  * indicated by arch_ptrace_stop_needed().
322  */
323 #define arch_ptrace_stop(code, info)            do { } while (0)
324 #endif
325
326 #ifndef current_pt_regs
327 #define current_pt_regs() task_pt_regs(current)
328 #endif
329
330 #ifndef ptrace_signal_deliver
331 #define ptrace_signal_deliver() ((void)0)
332 #endif
333
334 /*
335  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
336  * on *all* architectures; the only reason to have a per-arch definition
337  * is optimisation.
338  */
339 #ifndef signal_pt_regs
340 #define signal_pt_regs() task_pt_regs(current)
341 #endif
342
343 #ifndef current_user_stack_pointer
344 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
345 #endif
346
347 extern int task_current_syscall(struct task_struct *target, long *callno,
348                                 unsigned long args[6], unsigned int maxargs,
349                                 unsigned long *sp, unsigned long *pc);
350
351 #endif