]> Pileus Git - ~andy/linux/blob - fs/xfs/linux-2.6/xfs_buf.c
xfs: don't block on buffer read errors
[~andy/linux] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Internal xfs_buf_t object manipulation
172  */
173
174 STATIC void
175 _xfs_buf_initialize(
176         xfs_buf_t               *bp,
177         xfs_buftarg_t           *target,
178         xfs_off_t               range_base,
179         size_t                  range_length,
180         xfs_buf_flags_t         flags)
181 {
182         /*
183          * We don't want certain flags to appear in b_flags.
184          */
185         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187         memset(bp, 0, sizeof(xfs_buf_t));
188         atomic_set(&bp->b_hold, 1);
189         init_completion(&bp->b_iowait);
190         INIT_LIST_HEAD(&bp->b_list);
191         INIT_LIST_HEAD(&bp->b_hash_list);
192         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193         XB_SET_OWNER(bp);
194         bp->b_target = target;
195         bp->b_file_offset = range_base;
196         /*
197          * Set buffer_length and count_desired to the same value initially.
198          * I/O routines should use count_desired, which will be the same in
199          * most cases but may be reset (e.g. XFS recovery).
200          */
201         bp->b_buffer_length = bp->b_count_desired = range_length;
202         bp->b_flags = flags;
203         bp->b_bn = XFS_BUF_DADDR_NULL;
204         atomic_set(&bp->b_pin_count, 0);
205         init_waitqueue_head(&bp->b_waiters);
206
207         XFS_STATS_INC(xb_create);
208
209         trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         ASSERT(list_empty(&bp->b_hash_list));
266
267         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268                 uint            i;
269
270                 if (xfs_buf_is_vmapped(bp))
271                         vm_unmap_ram(bp->b_addr - bp->b_offset,
272                                         bp->b_page_count);
273
274                 for (i = 0; i < bp->b_page_count; i++) {
275                         struct page     *page = bp->b_pages[i];
276
277                         if (bp->b_flags & _XBF_PAGE_CACHE)
278                                 ASSERT(!PagePrivate(page));
279                         page_cache_release(page);
280                 }
281         }
282         _xfs_buf_free_pages(bp);
283         xfs_buf_deallocate(bp);
284 }
285
286 /*
287  *      Finds all pages for buffer in question and builds it's page list.
288  */
289 STATIC int
290 _xfs_buf_lookup_pages(
291         xfs_buf_t               *bp,
292         uint                    flags)
293 {
294         struct address_space    *mapping = bp->b_target->bt_mapping;
295         size_t                  blocksize = bp->b_target->bt_bsize;
296         size_t                  size = bp->b_count_desired;
297         size_t                  nbytes, offset;
298         gfp_t                   gfp_mask = xb_to_gfp(flags);
299         unsigned short          page_count, i;
300         pgoff_t                 first;
301         xfs_off_t               end;
302         int                     error;
303
304         end = bp->b_file_offset + bp->b_buffer_length;
305         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307         error = _xfs_buf_get_pages(bp, page_count, flags);
308         if (unlikely(error))
309                 return error;
310         bp->b_flags |= _XBF_PAGE_CACHE;
311
312         offset = bp->b_offset;
313         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315         for (i = 0; i < bp->b_page_count; i++) {
316                 struct page     *page;
317                 uint            retries = 0;
318
319               retry:
320                 page = find_or_create_page(mapping, first + i, gfp_mask);
321                 if (unlikely(page == NULL)) {
322                         if (flags & XBF_READ_AHEAD) {
323                                 bp->b_page_count = i;
324                                 for (i = 0; i < bp->b_page_count; i++)
325                                         unlock_page(bp->b_pages[i]);
326                                 return -ENOMEM;
327                         }
328
329                         /*
330                          * This could deadlock.
331                          *
332                          * But until all the XFS lowlevel code is revamped to
333                          * handle buffer allocation failures we can't do much.
334                          */
335                         if (!(++retries % 100))
336                                 printk(KERN_ERR
337                                         "XFS: possible memory allocation "
338                                         "deadlock in %s (mode:0x%x)\n",
339                                         __func__, gfp_mask);
340
341                         XFS_STATS_INC(xb_page_retries);
342                         xfsbufd_wakeup(NULL, 0, gfp_mask);
343                         congestion_wait(BLK_RW_ASYNC, HZ/50);
344                         goto retry;
345                 }
346
347                 XFS_STATS_INC(xb_page_found);
348
349                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350                 size -= nbytes;
351
352                 ASSERT(!PagePrivate(page));
353                 if (!PageUptodate(page)) {
354                         page_count--;
355                         if (blocksize >= PAGE_CACHE_SIZE) {
356                                 if (flags & XBF_READ)
357                                         bp->b_flags |= _XBF_PAGE_LOCKED;
358                         } else if (!PagePrivate(page)) {
359                                 if (test_page_region(page, offset, nbytes))
360                                         page_count++;
361                         }
362                 }
363
364                 bp->b_pages[i] = page;
365                 offset = 0;
366         }
367
368         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369                 for (i = 0; i < bp->b_page_count; i++)
370                         unlock_page(bp->b_pages[i]);
371         }
372
373         if (page_count == bp->b_page_count)
374                 bp->b_flags |= XBF_DONE;
375
376         return error;
377 }
378
379 /*
380  *      Map buffer into kernel address-space if nessecary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384         xfs_buf_t               *bp,
385         uint                    flags)
386 {
387         /* A single page buffer is always mappable */
388         if (bp->b_page_count == 1) {
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393                                         -1, PAGE_KERNEL);
394                 if (unlikely(bp->b_addr == NULL))
395                         return -ENOMEM;
396                 bp->b_addr += bp->b_offset;
397                 bp->b_flags |= XBF_MAPPED;
398         }
399
400         return 0;
401 }
402
403 /*
404  *      Finding and Reading Buffers
405  */
406
407 /*
408  *      Look up, and creates if absent, a lockable buffer for
409  *      a given range of an inode.  The buffer is returned
410  *      locked.  If other overlapping buffers exist, they are
411  *      released before the new buffer is created and locked,
412  *      which may imply that this call will block until those buffers
413  *      are unlocked.  No I/O is implied by this call.
414  */
415 xfs_buf_t *
416 _xfs_buf_find(
417         xfs_buftarg_t           *btp,   /* block device target          */
418         xfs_off_t               ioff,   /* starting offset of range     */
419         size_t                  isize,  /* length of range              */
420         xfs_buf_flags_t         flags,
421         xfs_buf_t               *new_bp)
422 {
423         xfs_off_t               range_base;
424         size_t                  range_length;
425         xfs_bufhash_t           *hash;
426         xfs_buf_t               *bp, *n;
427
428         range_base = (ioff << BBSHIFT);
429         range_length = (isize << BBSHIFT);
430
431         /* Check for IOs smaller than the sector size / not sector aligned */
432         ASSERT(!(range_length < (1 << btp->bt_sshift)));
433         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437         spin_lock(&hash->bh_lock);
438
439         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440                 ASSERT(btp == bp->b_target);
441                 if (bp->b_file_offset == range_base &&
442                     bp->b_buffer_length == range_length) {
443                         /*
444                          * If we look at something, bring it to the
445                          * front of the list for next time.
446                          */
447                         atomic_inc(&bp->b_hold);
448                         list_move(&bp->b_hash_list, &hash->bh_list);
449                         goto found;
450                 }
451         }
452
453         /* No match found */
454         if (new_bp) {
455                 _xfs_buf_initialize(new_bp, btp, range_base,
456                                 range_length, flags);
457                 new_bp->b_hash = hash;
458                 list_add(&new_bp->b_hash_list, &hash->bh_list);
459         } else {
460                 XFS_STATS_INC(xb_miss_locked);
461         }
462
463         spin_unlock(&hash->bh_lock);
464         return new_bp;
465
466 found:
467         spin_unlock(&hash->bh_lock);
468
469         /* Attempt to get the semaphore without sleeping,
470          * if this does not work then we need to drop the
471          * spinlock and do a hard attempt on the semaphore.
472          */
473         if (down_trylock(&bp->b_sema)) {
474                 if (!(flags & XBF_TRYLOCK)) {
475                         /* wait for buffer ownership */
476                         xfs_buf_lock(bp);
477                         XFS_STATS_INC(xb_get_locked_waited);
478                 } else {
479                         /* We asked for a trylock and failed, no need
480                          * to look at file offset and length here, we
481                          * know that this buffer at least overlaps our
482                          * buffer and is locked, therefore our buffer
483                          * either does not exist, or is this buffer.
484                          */
485                         xfs_buf_rele(bp);
486                         XFS_STATS_INC(xb_busy_locked);
487                         return NULL;
488                 }
489         } else {
490                 /* trylock worked */
491                 XB_SET_OWNER(bp);
492         }
493
494         if (bp->b_flags & XBF_STALE) {
495                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
496                 bp->b_flags &= XBF_MAPPED;
497         }
498
499         trace_xfs_buf_find(bp, flags, _RET_IP_);
500         XFS_STATS_INC(xb_get_locked);
501         return bp;
502 }
503
504 /*
505  *      Assembles a buffer covering the specified range.
506  *      Storage in memory for all portions of the buffer will be allocated,
507  *      although backing storage may not be.
508  */
509 xfs_buf_t *
510 xfs_buf_get(
511         xfs_buftarg_t           *target,/* target for buffer            */
512         xfs_off_t               ioff,   /* starting offset of range     */
513         size_t                  isize,  /* length of range              */
514         xfs_buf_flags_t         flags)
515 {
516         xfs_buf_t               *bp, *new_bp;
517         int                     error = 0, i;
518
519         new_bp = xfs_buf_allocate(flags);
520         if (unlikely(!new_bp))
521                 return NULL;
522
523         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
524         if (bp == new_bp) {
525                 error = _xfs_buf_lookup_pages(bp, flags);
526                 if (error)
527                         goto no_buffer;
528         } else {
529                 xfs_buf_deallocate(new_bp);
530                 if (unlikely(bp == NULL))
531                         return NULL;
532         }
533
534         for (i = 0; i < bp->b_page_count; i++)
535                 mark_page_accessed(bp->b_pages[i]);
536
537         if (!(bp->b_flags & XBF_MAPPED)) {
538                 error = _xfs_buf_map_pages(bp, flags);
539                 if (unlikely(error)) {
540                         printk(KERN_WARNING "%s: failed to map pages\n",
541                                         __func__);
542                         goto no_buffer;
543                 }
544         }
545
546         XFS_STATS_INC(xb_get);
547
548         /*
549          * Always fill in the block number now, the mapped cases can do
550          * their own overlay of this later.
551          */
552         bp->b_bn = ioff;
553         bp->b_count_desired = bp->b_buffer_length;
554
555         trace_xfs_buf_get(bp, flags, _RET_IP_);
556         return bp;
557
558  no_buffer:
559         if (flags & (XBF_LOCK | XBF_TRYLOCK))
560                 xfs_buf_unlock(bp);
561         xfs_buf_rele(bp);
562         return NULL;
563 }
564
565 STATIC int
566 _xfs_buf_read(
567         xfs_buf_t               *bp,
568         xfs_buf_flags_t         flags)
569 {
570         int                     status;
571
572         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
573         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
574
575         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
576                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
577         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
578                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
579
580         status = xfs_buf_iorequest(bp);
581         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
582                 return status;
583         return xfs_buf_iowait(bp);
584 }
585
586 xfs_buf_t *
587 xfs_buf_read(
588         xfs_buftarg_t           *target,
589         xfs_off_t               ioff,
590         size_t                  isize,
591         xfs_buf_flags_t         flags)
592 {
593         xfs_buf_t               *bp;
594
595         flags |= XBF_READ;
596
597         bp = xfs_buf_get(target, ioff, isize, flags);
598         if (bp) {
599                 trace_xfs_buf_read(bp, flags, _RET_IP_);
600
601                 if (!XFS_BUF_ISDONE(bp)) {
602                         XFS_STATS_INC(xb_get_read);
603                         _xfs_buf_read(bp, flags);
604                 } else if (flags & XBF_ASYNC) {
605                         /*
606                          * Read ahead call which is already satisfied,
607                          * drop the buffer
608                          */
609                         goto no_buffer;
610                 } else {
611                         /* We do not want read in the flags */
612                         bp->b_flags &= ~XBF_READ;
613                 }
614         }
615
616         return bp;
617
618  no_buffer:
619         if (flags & (XBF_LOCK | XBF_TRYLOCK))
620                 xfs_buf_unlock(bp);
621         xfs_buf_rele(bp);
622         return NULL;
623 }
624
625 /*
626  *      If we are not low on memory then do the readahead in a deadlock
627  *      safe manner.
628  */
629 void
630 xfs_buf_readahead(
631         xfs_buftarg_t           *target,
632         xfs_off_t               ioff,
633         size_t                  isize,
634         xfs_buf_flags_t         flags)
635 {
636         struct backing_dev_info *bdi;
637
638         bdi = target->bt_mapping->backing_dev_info;
639         if (bdi_read_congested(bdi))
640                 return;
641
642         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
643         xfs_buf_read(target, ioff, isize, flags);
644 }
645
646 xfs_buf_t *
647 xfs_buf_get_empty(
648         size_t                  len,
649         xfs_buftarg_t           *target)
650 {
651         xfs_buf_t               *bp;
652
653         bp = xfs_buf_allocate(0);
654         if (bp)
655                 _xfs_buf_initialize(bp, target, 0, len, 0);
656         return bp;
657 }
658
659 static inline struct page *
660 mem_to_page(
661         void                    *addr)
662 {
663         if ((!is_vmalloc_addr(addr))) {
664                 return virt_to_page(addr);
665         } else {
666                 return vmalloc_to_page(addr);
667         }
668 }
669
670 int
671 xfs_buf_associate_memory(
672         xfs_buf_t               *bp,
673         void                    *mem,
674         size_t                  len)
675 {
676         int                     rval;
677         int                     i = 0;
678         unsigned long           pageaddr;
679         unsigned long           offset;
680         size_t                  buflen;
681         int                     page_count;
682
683         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684         offset = (unsigned long)mem - pageaddr;
685         buflen = PAGE_CACHE_ALIGN(len + offset);
686         page_count = buflen >> PAGE_CACHE_SHIFT;
687
688         /* Free any previous set of page pointers */
689         if (bp->b_pages)
690                 _xfs_buf_free_pages(bp);
691
692         bp->b_pages = NULL;
693         bp->b_addr = mem;
694
695         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
696         if (rval)
697                 return rval;
698
699         bp->b_offset = offset;
700
701         for (i = 0; i < bp->b_page_count; i++) {
702                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703                 pageaddr += PAGE_CACHE_SIZE;
704         }
705
706         bp->b_count_desired = len;
707         bp->b_buffer_length = buflen;
708         bp->b_flags |= XBF_MAPPED;
709         bp->b_flags &= ~_XBF_PAGE_LOCKED;
710
711         return 0;
712 }
713
714 xfs_buf_t *
715 xfs_buf_get_noaddr(
716         size_t                  len,
717         xfs_buftarg_t           *target)
718 {
719         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720         int                     error, i;
721         xfs_buf_t               *bp;
722
723         bp = xfs_buf_allocate(0);
724         if (unlikely(bp == NULL))
725                 goto fail;
726         _xfs_buf_initialize(bp, target, 0, len, 0);
727
728         error = _xfs_buf_get_pages(bp, page_count, 0);
729         if (error)
730                 goto fail_free_buf;
731
732         for (i = 0; i < page_count; i++) {
733                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734                 if (!bp->b_pages[i])
735                         goto fail_free_mem;
736         }
737         bp->b_flags |= _XBF_PAGES;
738
739         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740         if (unlikely(error)) {
741                 printk(KERN_WARNING "%s: failed to map pages\n",
742                                 __func__);
743                 goto fail_free_mem;
744         }
745
746         xfs_buf_unlock(bp);
747
748         trace_xfs_buf_get_noaddr(bp, _RET_IP_);
749         return bp;
750
751  fail_free_mem:
752         while (--i >= 0)
753                 __free_page(bp->b_pages[i]);
754         _xfs_buf_free_pages(bp);
755  fail_free_buf:
756         xfs_buf_deallocate(bp);
757  fail:
758         return NULL;
759 }
760
761 /*
762  *      Increment reference count on buffer, to hold the buffer concurrently
763  *      with another thread which may release (free) the buffer asynchronously.
764  *      Must hold the buffer already to call this function.
765  */
766 void
767 xfs_buf_hold(
768         xfs_buf_t               *bp)
769 {
770         trace_xfs_buf_hold(bp, _RET_IP_);
771         atomic_inc(&bp->b_hold);
772 }
773
774 /*
775  *      Releases a hold on the specified buffer.  If the
776  *      the hold count is 1, calls xfs_buf_free.
777  */
778 void
779 xfs_buf_rele(
780         xfs_buf_t               *bp)
781 {
782         xfs_bufhash_t           *hash = bp->b_hash;
783
784         trace_xfs_buf_rele(bp, _RET_IP_);
785
786         if (unlikely(!hash)) {
787                 ASSERT(!bp->b_relse);
788                 if (atomic_dec_and_test(&bp->b_hold))
789                         xfs_buf_free(bp);
790                 return;
791         }
792
793         ASSERT(atomic_read(&bp->b_hold) > 0);
794         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795                 if (bp->b_relse) {
796                         atomic_inc(&bp->b_hold);
797                         spin_unlock(&hash->bh_lock);
798                         (*(bp->b_relse)) (bp);
799                 } else if (bp->b_flags & XBF_FS_MANAGED) {
800                         spin_unlock(&hash->bh_lock);
801                 } else {
802                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803                         list_del_init(&bp->b_hash_list);
804                         spin_unlock(&hash->bh_lock);
805                         xfs_buf_free(bp);
806                 }
807         }
808 }
809
810
811 /*
812  *      Mutual exclusion on buffers.  Locking model:
813  *
814  *      Buffers associated with inodes for which buffer locking
815  *      is not enabled are not protected by semaphores, and are
816  *      assumed to be exclusively owned by the caller.  There is a
817  *      spinlock in the buffer, used by the caller when concurrent
818  *      access is possible.
819  */
820
821 /*
822  *      Locks a buffer object, if it is not already locked.
823  *      Note that this in no way locks the underlying pages, so it is only
824  *      useful for synchronizing concurrent use of buffer objects, not for
825  *      synchronizing independent access to the underlying pages.
826  */
827 int
828 xfs_buf_cond_lock(
829         xfs_buf_t               *bp)
830 {
831         int                     locked;
832
833         locked = down_trylock(&bp->b_sema) == 0;
834         if (locked)
835                 XB_SET_OWNER(bp);
836
837         trace_xfs_buf_cond_lock(bp, _RET_IP_);
838         return locked ? 0 : -EBUSY;
839 }
840
841 int
842 xfs_buf_lock_value(
843         xfs_buf_t               *bp)
844 {
845         return bp->b_sema.count;
846 }
847
848 /*
849  *      Locks a buffer object.
850  *      Note that this in no way locks the underlying pages, so it is only
851  *      useful for synchronizing concurrent use of buffer objects, not for
852  *      synchronizing independent access to the underlying pages.
853  *
854  *      If we come across a stale, pinned, locked buffer, we know that we
855  *      are being asked to lock a buffer that has been reallocated. Because
856  *      it is pinned, we know that the log has not been pushed to disk and
857  *      hence it will still be locked. Rather than sleeping until someone
858  *      else pushes the log, push it ourselves before trying to get the lock.
859  */
860 void
861 xfs_buf_lock(
862         xfs_buf_t               *bp)
863 {
864         trace_xfs_buf_lock(bp, _RET_IP_);
865
866         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
867                 xfs_log_force(bp->b_mount, 0);
868         if (atomic_read(&bp->b_io_remaining))
869                 blk_run_address_space(bp->b_target->bt_mapping);
870         down(&bp->b_sema);
871         XB_SET_OWNER(bp);
872
873         trace_xfs_buf_lock_done(bp, _RET_IP_);
874 }
875
876 /*
877  *      Releases the lock on the buffer object.
878  *      If the buffer is marked delwri but is not queued, do so before we
879  *      unlock the buffer as we need to set flags correctly.  We also need to
880  *      take a reference for the delwri queue because the unlocker is going to
881  *      drop their's and they don't know we just queued it.
882  */
883 void
884 xfs_buf_unlock(
885         xfs_buf_t               *bp)
886 {
887         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
888                 atomic_inc(&bp->b_hold);
889                 bp->b_flags |= XBF_ASYNC;
890                 xfs_buf_delwri_queue(bp, 0);
891         }
892
893         XB_CLEAR_OWNER(bp);
894         up(&bp->b_sema);
895
896         trace_xfs_buf_unlock(bp, _RET_IP_);
897 }
898
899 STATIC void
900 xfs_buf_wait_unpin(
901         xfs_buf_t               *bp)
902 {
903         DECLARE_WAITQUEUE       (wait, current);
904
905         if (atomic_read(&bp->b_pin_count) == 0)
906                 return;
907
908         add_wait_queue(&bp->b_waiters, &wait);
909         for (;;) {
910                 set_current_state(TASK_UNINTERRUPTIBLE);
911                 if (atomic_read(&bp->b_pin_count) == 0)
912                         break;
913                 if (atomic_read(&bp->b_io_remaining))
914                         blk_run_address_space(bp->b_target->bt_mapping);
915                 schedule();
916         }
917         remove_wait_queue(&bp->b_waiters, &wait);
918         set_current_state(TASK_RUNNING);
919 }
920
921 /*
922  *      Buffer Utility Routines
923  */
924
925 STATIC void
926 xfs_buf_iodone_work(
927         struct work_struct      *work)
928 {
929         xfs_buf_t               *bp =
930                 container_of(work, xfs_buf_t, b_iodone_work);
931
932         /*
933          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
934          * ordered flag and reissue them.  Because we can't tell the higher
935          * layers directly that they should not issue ordered I/O anymore, they
936          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
937          */
938         if ((bp->b_error == EOPNOTSUPP) &&
939             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
940                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
941                 bp->b_flags &= ~XBF_ORDERED;
942                 bp->b_flags |= _XFS_BARRIER_FAILED;
943                 xfs_buf_iorequest(bp);
944         } else if (bp->b_iodone)
945                 (*(bp->b_iodone))(bp);
946         else if (bp->b_flags & XBF_ASYNC)
947                 xfs_buf_relse(bp);
948 }
949
950 void
951 xfs_buf_ioend(
952         xfs_buf_t               *bp,
953         int                     schedule)
954 {
955         trace_xfs_buf_iodone(bp, _RET_IP_);
956
957         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
958         if (bp->b_error == 0)
959                 bp->b_flags |= XBF_DONE;
960
961         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
962                 if (schedule) {
963                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
964                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
965                 } else {
966                         xfs_buf_iodone_work(&bp->b_iodone_work);
967                 }
968         } else {
969                 complete(&bp->b_iowait);
970         }
971 }
972
973 void
974 xfs_buf_ioerror(
975         xfs_buf_t               *bp,
976         int                     error)
977 {
978         ASSERT(error >= 0 && error <= 0xffff);
979         bp->b_error = (unsigned short)error;
980         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
981 }
982
983 int
984 xfs_bwrite(
985         struct xfs_mount        *mp,
986         struct xfs_buf          *bp)
987 {
988         int                     error;
989
990         bp->b_strat = xfs_bdstrat_cb;
991         bp->b_mount = mp;
992         bp->b_flags |= XBF_WRITE;
993         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
994
995         xfs_buf_delwri_dequeue(bp);
996         xfs_buf_iostrategy(bp);
997
998         error = xfs_buf_iowait(bp);
999         if (error)
1000                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1001         xfs_buf_relse(bp);
1002         return error;
1003 }
1004
1005 void
1006 xfs_bdwrite(
1007         void                    *mp,
1008         struct xfs_buf          *bp)
1009 {
1010         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1011
1012         bp->b_strat = xfs_bdstrat_cb;
1013         bp->b_mount = mp;
1014
1015         bp->b_flags &= ~XBF_READ;
1016         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1017
1018         xfs_buf_delwri_queue(bp, 1);
1019 }
1020
1021 /*
1022  * Called when we want to stop a buffer from getting written or read.
1023  * We attach the EIO error, muck with its flags, and call biodone
1024  * so that the proper iodone callbacks get called.
1025  */
1026 STATIC int
1027 xfs_bioerror(
1028         xfs_buf_t *bp)
1029 {
1030 #ifdef XFSERRORDEBUG
1031         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1032 #endif
1033
1034         /*
1035          * No need to wait until the buffer is unpinned, we aren't flushing it.
1036          */
1037         XFS_BUF_ERROR(bp, EIO);
1038
1039         /*
1040          * We're calling biodone, so delete XBF_DONE flag.
1041          */
1042         XFS_BUF_UNREAD(bp);
1043         XFS_BUF_UNDELAYWRITE(bp);
1044         XFS_BUF_UNDONE(bp);
1045         XFS_BUF_STALE(bp);
1046
1047         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1048         xfs_biodone(bp);
1049
1050         return EIO;
1051 }
1052
1053 /*
1054  * Same as xfs_bioerror, except that we are releasing the buffer
1055  * here ourselves, and avoiding the biodone call.
1056  * This is meant for userdata errors; metadata bufs come with
1057  * iodone functions attached, so that we can track down errors.
1058  */
1059 STATIC int
1060 xfs_bioerror_relse(
1061         struct xfs_buf  *bp)
1062 {
1063         int64_t         fl = XFS_BUF_BFLAGS(bp);
1064         /*
1065          * No need to wait until the buffer is unpinned.
1066          * We aren't flushing it.
1067          *
1068          * chunkhold expects B_DONE to be set, whether
1069          * we actually finish the I/O or not. We don't want to
1070          * change that interface.
1071          */
1072         XFS_BUF_UNREAD(bp);
1073         XFS_BUF_UNDELAYWRITE(bp);
1074         XFS_BUF_DONE(bp);
1075         XFS_BUF_STALE(bp);
1076         XFS_BUF_CLR_IODONE_FUNC(bp);
1077         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1078         if (!(fl & XBF_ASYNC)) {
1079                 /*
1080                  * Mark b_error and B_ERROR _both_.
1081                  * Lot's of chunkcache code assumes that.
1082                  * There's no reason to mark error for
1083                  * ASYNC buffers.
1084                  */
1085                 XFS_BUF_ERROR(bp, EIO);
1086                 XFS_BUF_FINISH_IOWAIT(bp);
1087         } else {
1088                 xfs_buf_relse(bp);
1089         }
1090
1091         return EIO;
1092 }
1093
1094
1095 /*
1096  * All xfs metadata buffers except log state machine buffers
1097  * get this attached as their b_bdstrat callback function.
1098  * This is so that we can catch a buffer
1099  * after prematurely unpinning it to forcibly shutdown the filesystem.
1100  */
1101 int
1102 xfs_bdstrat_cb(
1103         struct xfs_buf  *bp)
1104 {
1105         if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1106                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1107                 /*
1108                  * Metadata write that didn't get logged but
1109                  * written delayed anyway. These aren't associated
1110                  * with a transaction, and can be ignored.
1111                  */
1112                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1113                         return xfs_bioerror_relse(bp);
1114                 else
1115                         return xfs_bioerror(bp);
1116         }
1117
1118         xfs_buf_iorequest(bp);
1119         return 0;
1120 }
1121
1122 /*
1123  * Wrapper around bdstrat so that we can stop data from going to disk in case
1124  * we are shutting down the filesystem.  Typically user data goes thru this
1125  * path; one of the exceptions is the superblock.
1126  */
1127 void
1128 xfsbdstrat(
1129         struct xfs_mount        *mp,
1130         struct xfs_buf          *bp)
1131 {
1132         if (XFS_FORCED_SHUTDOWN(mp)) {
1133                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1134                 xfs_bioerror_relse(bp);
1135                 return;
1136         }
1137
1138         xfs_buf_iorequest(bp);
1139 }
1140
1141 STATIC void
1142 _xfs_buf_ioend(
1143         xfs_buf_t               *bp,
1144         int                     schedule)
1145 {
1146         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1147                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1148                 xfs_buf_ioend(bp, schedule);
1149         }
1150 }
1151
1152 STATIC void
1153 xfs_buf_bio_end_io(
1154         struct bio              *bio,
1155         int                     error)
1156 {
1157         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1158         unsigned int            blocksize = bp->b_target->bt_bsize;
1159         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1160
1161         xfs_buf_ioerror(bp, -error);
1162
1163         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1164                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1165
1166         do {
1167                 struct page     *page = bvec->bv_page;
1168
1169                 ASSERT(!PagePrivate(page));
1170                 if (unlikely(bp->b_error)) {
1171                         if (bp->b_flags & XBF_READ)
1172                                 ClearPageUptodate(page);
1173                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1174                         SetPageUptodate(page);
1175                 } else if (!PagePrivate(page) &&
1176                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1177                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1178                 }
1179
1180                 if (--bvec >= bio->bi_io_vec)
1181                         prefetchw(&bvec->bv_page->flags);
1182
1183                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1184                         unlock_page(page);
1185         } while (bvec >= bio->bi_io_vec);
1186
1187         _xfs_buf_ioend(bp, 1);
1188         bio_put(bio);
1189 }
1190
1191 STATIC void
1192 _xfs_buf_ioapply(
1193         xfs_buf_t               *bp)
1194 {
1195         int                     rw, map_i, total_nr_pages, nr_pages;
1196         struct bio              *bio;
1197         int                     offset = bp->b_offset;
1198         int                     size = bp->b_count_desired;
1199         sector_t                sector = bp->b_bn;
1200         unsigned int            blocksize = bp->b_target->bt_bsize;
1201
1202         total_nr_pages = bp->b_page_count;
1203         map_i = 0;
1204
1205         if (bp->b_flags & XBF_ORDERED) {
1206                 ASSERT(!(bp->b_flags & XBF_READ));
1207                 rw = WRITE_BARRIER;
1208         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1209                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1210                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1211                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1212         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1213                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1214                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1215                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1216         } else {
1217                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1218                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1219         }
1220
1221         /* Special code path for reading a sub page size buffer in --
1222          * we populate up the whole page, and hence the other metadata
1223          * in the same page.  This optimization is only valid when the
1224          * filesystem block size is not smaller than the page size.
1225          */
1226         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1227             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1228               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1229             (blocksize >= PAGE_CACHE_SIZE)) {
1230                 bio = bio_alloc(GFP_NOIO, 1);
1231
1232                 bio->bi_bdev = bp->b_target->bt_bdev;
1233                 bio->bi_sector = sector - (offset >> BBSHIFT);
1234                 bio->bi_end_io = xfs_buf_bio_end_io;
1235                 bio->bi_private = bp;
1236
1237                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1238                 size = 0;
1239
1240                 atomic_inc(&bp->b_io_remaining);
1241
1242                 goto submit_io;
1243         }
1244
1245 next_chunk:
1246         atomic_inc(&bp->b_io_remaining);
1247         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1248         if (nr_pages > total_nr_pages)
1249                 nr_pages = total_nr_pages;
1250
1251         bio = bio_alloc(GFP_NOIO, nr_pages);
1252         bio->bi_bdev = bp->b_target->bt_bdev;
1253         bio->bi_sector = sector;
1254         bio->bi_end_io = xfs_buf_bio_end_io;
1255         bio->bi_private = bp;
1256
1257         for (; size && nr_pages; nr_pages--, map_i++) {
1258                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1259
1260                 if (nbytes > size)
1261                         nbytes = size;
1262
1263                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1264                 if (rbytes < nbytes)
1265                         break;
1266
1267                 offset = 0;
1268                 sector += nbytes >> BBSHIFT;
1269                 size -= nbytes;
1270                 total_nr_pages--;
1271         }
1272
1273 submit_io:
1274         if (likely(bio->bi_size)) {
1275                 if (xfs_buf_is_vmapped(bp)) {
1276                         flush_kernel_vmap_range(bp->b_addr,
1277                                                 xfs_buf_vmap_len(bp));
1278                 }
1279                 submit_bio(rw, bio);
1280                 if (size)
1281                         goto next_chunk;
1282         } else {
1283                 /*
1284                  * if we get here, no pages were added to the bio. However,
1285                  * we can't just error out here - if the pages are locked then
1286                  * we have to unlock them otherwise we can hang on a later
1287                  * access to the page.
1288                  */
1289                 xfs_buf_ioerror(bp, EIO);
1290                 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1291                         int i;
1292                         for (i = 0; i < bp->b_page_count; i++)
1293                                 unlock_page(bp->b_pages[i]);
1294                 }
1295                 bio_put(bio);
1296         }
1297 }
1298
1299 int
1300 xfs_buf_iorequest(
1301         xfs_buf_t               *bp)
1302 {
1303         trace_xfs_buf_iorequest(bp, _RET_IP_);
1304
1305         if (bp->b_flags & XBF_DELWRI) {
1306                 xfs_buf_delwri_queue(bp, 1);
1307                 return 0;
1308         }
1309
1310         if (bp->b_flags & XBF_WRITE) {
1311                 xfs_buf_wait_unpin(bp);
1312         }
1313
1314         xfs_buf_hold(bp);
1315
1316         /* Set the count to 1 initially, this will stop an I/O
1317          * completion callout which happens before we have started
1318          * all the I/O from calling xfs_buf_ioend too early.
1319          */
1320         atomic_set(&bp->b_io_remaining, 1);
1321         _xfs_buf_ioapply(bp);
1322         _xfs_buf_ioend(bp, 0);
1323
1324         xfs_buf_rele(bp);
1325         return 0;
1326 }
1327
1328 /*
1329  *      Waits for I/O to complete on the buffer supplied.
1330  *      It returns immediately if no I/O is pending.
1331  *      It returns the I/O error code, if any, or 0 if there was no error.
1332  */
1333 int
1334 xfs_buf_iowait(
1335         xfs_buf_t               *bp)
1336 {
1337         trace_xfs_buf_iowait(bp, _RET_IP_);
1338
1339         if (atomic_read(&bp->b_io_remaining))
1340                 blk_run_address_space(bp->b_target->bt_mapping);
1341         wait_for_completion(&bp->b_iowait);
1342
1343         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1344         return bp->b_error;
1345 }
1346
1347 xfs_caddr_t
1348 xfs_buf_offset(
1349         xfs_buf_t               *bp,
1350         size_t                  offset)
1351 {
1352         struct page             *page;
1353
1354         if (bp->b_flags & XBF_MAPPED)
1355                 return XFS_BUF_PTR(bp) + offset;
1356
1357         offset += bp->b_offset;
1358         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1359         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1360 }
1361
1362 /*
1363  *      Move data into or out of a buffer.
1364  */
1365 void
1366 xfs_buf_iomove(
1367         xfs_buf_t               *bp,    /* buffer to process            */
1368         size_t                  boff,   /* starting buffer offset       */
1369         size_t                  bsize,  /* length to copy               */
1370         void                    *data,  /* data address                 */
1371         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1372 {
1373         size_t                  bend, cpoff, csize;
1374         struct page             *page;
1375
1376         bend = boff + bsize;
1377         while (boff < bend) {
1378                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1379                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1380                 csize = min_t(size_t,
1381                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1382
1383                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1384
1385                 switch (mode) {
1386                 case XBRW_ZERO:
1387                         memset(page_address(page) + cpoff, 0, csize);
1388                         break;
1389                 case XBRW_READ:
1390                         memcpy(data, page_address(page) + cpoff, csize);
1391                         break;
1392                 case XBRW_WRITE:
1393                         memcpy(page_address(page) + cpoff, data, csize);
1394                 }
1395
1396                 boff += csize;
1397                 data += csize;
1398         }
1399 }
1400
1401 /*
1402  *      Handling of buffer targets (buftargs).
1403  */
1404
1405 /*
1406  *      Wait for any bufs with callbacks that have been submitted but
1407  *      have not yet returned... walk the hash list for the target.
1408  */
1409 void
1410 xfs_wait_buftarg(
1411         xfs_buftarg_t   *btp)
1412 {
1413         xfs_buf_t       *bp, *n;
1414         xfs_bufhash_t   *hash;
1415         uint            i;
1416
1417         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1418                 hash = &btp->bt_hash[i];
1419 again:
1420                 spin_lock(&hash->bh_lock);
1421                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1422                         ASSERT(btp == bp->b_target);
1423                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1424                                 spin_unlock(&hash->bh_lock);
1425                                 /*
1426                                  * Catch superblock reference count leaks
1427                                  * immediately
1428                                  */
1429                                 BUG_ON(bp->b_bn == 0);
1430                                 delay(100);
1431                                 goto again;
1432                         }
1433                 }
1434                 spin_unlock(&hash->bh_lock);
1435         }
1436 }
1437
1438 /*
1439  *      Allocate buffer hash table for a given target.
1440  *      For devices containing metadata (i.e. not the log/realtime devices)
1441  *      we need to allocate a much larger hash table.
1442  */
1443 STATIC void
1444 xfs_alloc_bufhash(
1445         xfs_buftarg_t           *btp,
1446         int                     external)
1447 {
1448         unsigned int            i;
1449
1450         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1451         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1452         btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1453                                          sizeof(xfs_bufhash_t));
1454         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1455                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1456                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1457         }
1458 }
1459
1460 STATIC void
1461 xfs_free_bufhash(
1462         xfs_buftarg_t           *btp)
1463 {
1464         kmem_free_large(btp->bt_hash);
1465         btp->bt_hash = NULL;
1466 }
1467
1468 /*
1469  *      buftarg list for delwrite queue processing
1470  */
1471 static LIST_HEAD(xfs_buftarg_list);
1472 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1473
1474 STATIC void
1475 xfs_register_buftarg(
1476         xfs_buftarg_t           *btp)
1477 {
1478         spin_lock(&xfs_buftarg_lock);
1479         list_add(&btp->bt_list, &xfs_buftarg_list);
1480         spin_unlock(&xfs_buftarg_lock);
1481 }
1482
1483 STATIC void
1484 xfs_unregister_buftarg(
1485         xfs_buftarg_t           *btp)
1486 {
1487         spin_lock(&xfs_buftarg_lock);
1488         list_del(&btp->bt_list);
1489         spin_unlock(&xfs_buftarg_lock);
1490 }
1491
1492 void
1493 xfs_free_buftarg(
1494         struct xfs_mount        *mp,
1495         struct xfs_buftarg      *btp)
1496 {
1497         xfs_flush_buftarg(btp, 1);
1498         if (mp->m_flags & XFS_MOUNT_BARRIER)
1499                 xfs_blkdev_issue_flush(btp);
1500         xfs_free_bufhash(btp);
1501         iput(btp->bt_mapping->host);
1502
1503         /* Unregister the buftarg first so that we don't get a
1504          * wakeup finding a non-existent task
1505          */
1506         xfs_unregister_buftarg(btp);
1507         kthread_stop(btp->bt_task);
1508
1509         kmem_free(btp);
1510 }
1511
1512 STATIC int
1513 xfs_setsize_buftarg_flags(
1514         xfs_buftarg_t           *btp,
1515         unsigned int            blocksize,
1516         unsigned int            sectorsize,
1517         int                     verbose)
1518 {
1519         btp->bt_bsize = blocksize;
1520         btp->bt_sshift = ffs(sectorsize) - 1;
1521         btp->bt_smask = sectorsize - 1;
1522
1523         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1524                 printk(KERN_WARNING
1525                         "XFS: Cannot set_blocksize to %u on device %s\n",
1526                         sectorsize, XFS_BUFTARG_NAME(btp));
1527                 return EINVAL;
1528         }
1529
1530         if (verbose &&
1531             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1532                 printk(KERN_WARNING
1533                         "XFS: %u byte sectors in use on device %s.  "
1534                         "This is suboptimal; %u or greater is ideal.\n",
1535                         sectorsize, XFS_BUFTARG_NAME(btp),
1536                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1537         }
1538
1539         return 0;
1540 }
1541
1542 /*
1543  *      When allocating the initial buffer target we have not yet
1544  *      read in the superblock, so don't know what sized sectors
1545  *      are being used is at this early stage.  Play safe.
1546  */
1547 STATIC int
1548 xfs_setsize_buftarg_early(
1549         xfs_buftarg_t           *btp,
1550         struct block_device     *bdev)
1551 {
1552         return xfs_setsize_buftarg_flags(btp,
1553                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1554 }
1555
1556 int
1557 xfs_setsize_buftarg(
1558         xfs_buftarg_t           *btp,
1559         unsigned int            blocksize,
1560         unsigned int            sectorsize)
1561 {
1562         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1563 }
1564
1565 STATIC int
1566 xfs_mapping_buftarg(
1567         xfs_buftarg_t           *btp,
1568         struct block_device     *bdev)
1569 {
1570         struct backing_dev_info *bdi;
1571         struct inode            *inode;
1572         struct address_space    *mapping;
1573         static const struct address_space_operations mapping_aops = {
1574                 .sync_page = block_sync_page,
1575                 .migratepage = fail_migrate_page,
1576         };
1577
1578         inode = new_inode(bdev->bd_inode->i_sb);
1579         if (!inode) {
1580                 printk(KERN_WARNING
1581                         "XFS: Cannot allocate mapping inode for device %s\n",
1582                         XFS_BUFTARG_NAME(btp));
1583                 return ENOMEM;
1584         }
1585         inode->i_mode = S_IFBLK;
1586         inode->i_bdev = bdev;
1587         inode->i_rdev = bdev->bd_dev;
1588         bdi = blk_get_backing_dev_info(bdev);
1589         if (!bdi)
1590                 bdi = &default_backing_dev_info;
1591         mapping = &inode->i_data;
1592         mapping->a_ops = &mapping_aops;
1593         mapping->backing_dev_info = bdi;
1594         mapping_set_gfp_mask(mapping, GFP_NOFS);
1595         btp->bt_mapping = mapping;
1596         return 0;
1597 }
1598
1599 STATIC int
1600 xfs_alloc_delwrite_queue(
1601         xfs_buftarg_t           *btp,
1602         const char              *fsname)
1603 {
1604         int     error = 0;
1605
1606         INIT_LIST_HEAD(&btp->bt_list);
1607         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1608         spin_lock_init(&btp->bt_delwrite_lock);
1609         btp->bt_flags = 0;
1610         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1611         if (IS_ERR(btp->bt_task)) {
1612                 error = PTR_ERR(btp->bt_task);
1613                 goto out_error;
1614         }
1615         xfs_register_buftarg(btp);
1616 out_error:
1617         return error;
1618 }
1619
1620 xfs_buftarg_t *
1621 xfs_alloc_buftarg(
1622         struct block_device     *bdev,
1623         int                     external,
1624         const char              *fsname)
1625 {
1626         xfs_buftarg_t           *btp;
1627
1628         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1629
1630         btp->bt_dev =  bdev->bd_dev;
1631         btp->bt_bdev = bdev;
1632         if (xfs_setsize_buftarg_early(btp, bdev))
1633                 goto error;
1634         if (xfs_mapping_buftarg(btp, bdev))
1635                 goto error;
1636         if (xfs_alloc_delwrite_queue(btp, fsname))
1637                 goto error;
1638         xfs_alloc_bufhash(btp, external);
1639         return btp;
1640
1641 error:
1642         kmem_free(btp);
1643         return NULL;
1644 }
1645
1646
1647 /*
1648  *      Delayed write buffer handling
1649  */
1650 STATIC void
1651 xfs_buf_delwri_queue(
1652         xfs_buf_t               *bp,
1653         int                     unlock)
1654 {
1655         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1656         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1657
1658         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1659
1660         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1661
1662         spin_lock(dwlk);
1663         /* If already in the queue, dequeue and place at tail */
1664         if (!list_empty(&bp->b_list)) {
1665                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1666                 if (unlock)
1667                         atomic_dec(&bp->b_hold);
1668                 list_del(&bp->b_list);
1669         }
1670
1671         if (list_empty(dwq)) {
1672                 /* start xfsbufd as it is about to have something to do */
1673                 wake_up_process(bp->b_target->bt_task);
1674         }
1675
1676         bp->b_flags |= _XBF_DELWRI_Q;
1677         list_add_tail(&bp->b_list, dwq);
1678         bp->b_queuetime = jiffies;
1679         spin_unlock(dwlk);
1680
1681         if (unlock)
1682                 xfs_buf_unlock(bp);
1683 }
1684
1685 void
1686 xfs_buf_delwri_dequeue(
1687         xfs_buf_t               *bp)
1688 {
1689         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1690         int                     dequeued = 0;
1691
1692         spin_lock(dwlk);
1693         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1694                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1695                 list_del_init(&bp->b_list);
1696                 dequeued = 1;
1697         }
1698         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1699         spin_unlock(dwlk);
1700
1701         if (dequeued)
1702                 xfs_buf_rele(bp);
1703
1704         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1705 }
1706
1707 /*
1708  * If a delwri buffer needs to be pushed before it has aged out, then promote
1709  * it to the head of the delwri queue so that it will be flushed on the next
1710  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1711  * than the age currently needed to flush the buffer. Hence the next time the
1712  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1713  */
1714 void
1715 xfs_buf_delwri_promote(
1716         struct xfs_buf  *bp)
1717 {
1718         struct xfs_buftarg *btp = bp->b_target;
1719         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1720
1721         ASSERT(bp->b_flags & XBF_DELWRI);
1722         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1723
1724         /*
1725          * Check the buffer age before locking the delayed write queue as we
1726          * don't need to promote buffers that are already past the flush age.
1727          */
1728         if (bp->b_queuetime < jiffies - age)
1729                 return;
1730         bp->b_queuetime = jiffies - age;
1731         spin_lock(&btp->bt_delwrite_lock);
1732         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1733         spin_unlock(&btp->bt_delwrite_lock);
1734 }
1735
1736 STATIC void
1737 xfs_buf_runall_queues(
1738         struct workqueue_struct *queue)
1739 {
1740         flush_workqueue(queue);
1741 }
1742
1743 STATIC int
1744 xfsbufd_wakeup(
1745         struct shrinker         *shrink,
1746         int                     priority,
1747         gfp_t                   mask)
1748 {
1749         xfs_buftarg_t           *btp;
1750
1751         spin_lock(&xfs_buftarg_lock);
1752         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1753                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1754                         continue;
1755                 if (list_empty(&btp->bt_delwrite_queue))
1756                         continue;
1757                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1758                 wake_up_process(btp->bt_task);
1759         }
1760         spin_unlock(&xfs_buftarg_lock);
1761         return 0;
1762 }
1763
1764 /*
1765  * Move as many buffers as specified to the supplied list
1766  * idicating if we skipped any buffers to prevent deadlocks.
1767  */
1768 STATIC int
1769 xfs_buf_delwri_split(
1770         xfs_buftarg_t   *target,
1771         struct list_head *list,
1772         unsigned long   age)
1773 {
1774         xfs_buf_t       *bp, *n;
1775         struct list_head *dwq = &target->bt_delwrite_queue;
1776         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1777         int             skipped = 0;
1778         int             force;
1779
1780         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1781         INIT_LIST_HEAD(list);
1782         spin_lock(dwlk);
1783         list_for_each_entry_safe(bp, n, dwq, b_list) {
1784                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1785                 ASSERT(bp->b_flags & XBF_DELWRI);
1786
1787                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1788                         if (!force &&
1789                             time_before(jiffies, bp->b_queuetime + age)) {
1790                                 xfs_buf_unlock(bp);
1791                                 break;
1792                         }
1793
1794                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1795                                          _XBF_RUN_QUEUES);
1796                         bp->b_flags |= XBF_WRITE;
1797                         list_move_tail(&bp->b_list, list);
1798                 } else
1799                         skipped++;
1800         }
1801         spin_unlock(dwlk);
1802
1803         return skipped;
1804
1805 }
1806
1807 /*
1808  * Compare function is more complex than it needs to be because
1809  * the return value is only 32 bits and we are doing comparisons
1810  * on 64 bit values
1811  */
1812 static int
1813 xfs_buf_cmp(
1814         void            *priv,
1815         struct list_head *a,
1816         struct list_head *b)
1817 {
1818         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1819         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1820         xfs_daddr_t             diff;
1821
1822         diff = ap->b_bn - bp->b_bn;
1823         if (diff < 0)
1824                 return -1;
1825         if (diff > 0)
1826                 return 1;
1827         return 0;
1828 }
1829
1830 void
1831 xfs_buf_delwri_sort(
1832         xfs_buftarg_t   *target,
1833         struct list_head *list)
1834 {
1835         list_sort(NULL, list, xfs_buf_cmp);
1836 }
1837
1838 STATIC int
1839 xfsbufd(
1840         void            *data)
1841 {
1842         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1843
1844         current->flags |= PF_MEMALLOC;
1845
1846         set_freezable();
1847
1848         do {
1849                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1850                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1851                 int     count = 0;
1852                 struct list_head tmp;
1853
1854                 if (unlikely(freezing(current))) {
1855                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1856                         refrigerator();
1857                 } else {
1858                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1859                 }
1860
1861                 /* sleep for a long time if there is nothing to do. */
1862                 if (list_empty(&target->bt_delwrite_queue))
1863                         tout = MAX_SCHEDULE_TIMEOUT;
1864                 schedule_timeout_interruptible(tout);
1865
1866                 xfs_buf_delwri_split(target, &tmp, age);
1867                 list_sort(NULL, &tmp, xfs_buf_cmp);
1868                 while (!list_empty(&tmp)) {
1869                         struct xfs_buf *bp;
1870                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1871                         list_del_init(&bp->b_list);
1872                         xfs_buf_iostrategy(bp);
1873                         count++;
1874                 }
1875                 if (count)
1876                         blk_run_address_space(target->bt_mapping);
1877
1878         } while (!kthread_should_stop());
1879
1880         return 0;
1881 }
1882
1883 /*
1884  *      Go through all incore buffers, and release buffers if they belong to
1885  *      the given device. This is used in filesystem error handling to
1886  *      preserve the consistency of its metadata.
1887  */
1888 int
1889 xfs_flush_buftarg(
1890         xfs_buftarg_t   *target,
1891         int             wait)
1892 {
1893         xfs_buf_t       *bp;
1894         int             pincount = 0;
1895         LIST_HEAD(tmp_list);
1896         LIST_HEAD(wait_list);
1897
1898         xfs_buf_runall_queues(xfsconvertd_workqueue);
1899         xfs_buf_runall_queues(xfsdatad_workqueue);
1900         xfs_buf_runall_queues(xfslogd_workqueue);
1901
1902         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1903         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1904
1905         /*
1906          * Dropped the delayed write list lock, now walk the temporary list.
1907          * All I/O is issued async and then if we need to wait for completion
1908          * we do that after issuing all the IO.
1909          */
1910         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1911         while (!list_empty(&tmp_list)) {
1912                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1913                 ASSERT(target == bp->b_target);
1914                 list_del_init(&bp->b_list);
1915                 if (wait) {
1916                         bp->b_flags &= ~XBF_ASYNC;
1917                         list_add(&bp->b_list, &wait_list);
1918                 }
1919                 xfs_buf_iostrategy(bp);
1920         }
1921
1922         if (wait) {
1923                 /* Expedite and wait for IO to complete. */
1924                 blk_run_address_space(target->bt_mapping);
1925                 while (!list_empty(&wait_list)) {
1926                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1927
1928                         list_del_init(&bp->b_list);
1929                         xfs_iowait(bp);
1930                         xfs_buf_relse(bp);
1931                 }
1932         }
1933
1934         return pincount;
1935 }
1936
1937 int __init
1938 xfs_buf_init(void)
1939 {
1940         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1941                                                 KM_ZONE_HWALIGN, NULL);
1942         if (!xfs_buf_zone)
1943                 goto out;
1944
1945         xfslogd_workqueue = create_workqueue("xfslogd");
1946         if (!xfslogd_workqueue)
1947                 goto out_free_buf_zone;
1948
1949         xfsdatad_workqueue = create_workqueue("xfsdatad");
1950         if (!xfsdatad_workqueue)
1951                 goto out_destroy_xfslogd_workqueue;
1952
1953         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1954         if (!xfsconvertd_workqueue)
1955                 goto out_destroy_xfsdatad_workqueue;
1956
1957         register_shrinker(&xfs_buf_shake);
1958         return 0;
1959
1960  out_destroy_xfsdatad_workqueue:
1961         destroy_workqueue(xfsdatad_workqueue);
1962  out_destroy_xfslogd_workqueue:
1963         destroy_workqueue(xfslogd_workqueue);
1964  out_free_buf_zone:
1965         kmem_zone_destroy(xfs_buf_zone);
1966  out:
1967         return -ENOMEM;
1968 }
1969
1970 void
1971 xfs_buf_terminate(void)
1972 {
1973         unregister_shrinker(&xfs_buf_shake);
1974         destroy_workqueue(xfsconvertd_workqueue);
1975         destroy_workqueue(xfsdatad_workqueue);
1976         destroy_workqueue(xfslogd_workqueue);
1977         kmem_zone_destroy(xfs_buf_zone);
1978 }
1979
1980 #ifdef CONFIG_KDB_MODULES
1981 struct list_head *
1982 xfs_get_buftarg_list(void)
1983 {
1984         return &xfs_buftarg_list;
1985 }
1986 #endif