]> Pileus Git - ~andy/linux/blob - fs/udf/super.c
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 enum { UDF_MAX_LINKS = 0xffff };
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88                             struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90                              struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99         struct logicalVolIntegrityDesc *lvid =
100                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102         __u32 offset = number_of_partitions * 2 *
103                                 sizeof(uint32_t)/sizeof(uint8_t);
104         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109                       int flags, const char *dev_name, void *data)
110 {
111         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113
114 static struct file_system_type udf_fstype = {
115         .owner          = THIS_MODULE,
116         .name           = "udf",
117         .mount          = udf_mount,
118         .kill_sb        = kill_block_super,
119         .fs_flags       = FS_REQUIRES_DEV,
120 };
121
122 static struct kmem_cache *udf_inode_cachep;
123
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126         struct udf_inode_info *ei;
127         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128         if (!ei)
129                 return NULL;
130
131         ei->i_unique = 0;
132         ei->i_lenExtents = 0;
133         ei->i_next_alloc_block = 0;
134         ei->i_next_alloc_goal = 0;
135         ei->i_strat4096 = 0;
136         init_rwsem(&ei->i_data_sem);
137
138         return &ei->vfs_inode;
139 }
140
141 static void udf_i_callback(struct rcu_head *head)
142 {
143         struct inode *inode = container_of(head, struct inode, i_rcu);
144         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146
147 static void udf_destroy_inode(struct inode *inode)
148 {
149         call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151
152 static void init_once(void *foo)
153 {
154         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155
156         ei->i_ext.i_data = NULL;
157         inode_init_once(&ei->vfs_inode);
158 }
159
160 static int init_inodecache(void)
161 {
162         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163                                              sizeof(struct udf_inode_info),
164                                              0, (SLAB_RECLAIM_ACCOUNT |
165                                                  SLAB_MEM_SPREAD),
166                                              init_once);
167         if (!udf_inode_cachep)
168                 return -ENOMEM;
169         return 0;
170 }
171
172 static void destroy_inodecache(void)
173 {
174         kmem_cache_destroy(udf_inode_cachep);
175 }
176
177 /* Superblock operations */
178 static const struct super_operations udf_sb_ops = {
179         .alloc_inode    = udf_alloc_inode,
180         .destroy_inode  = udf_destroy_inode,
181         .write_inode    = udf_write_inode,
182         .evict_inode    = udf_evict_inode,
183         .put_super      = udf_put_super,
184         .sync_fs        = udf_sync_fs,
185         .statfs         = udf_statfs,
186         .remount_fs     = udf_remount_fs,
187         .show_options   = udf_show_options,
188 };
189
190 struct udf_options {
191         unsigned char novrs;
192         unsigned int blocksize;
193         unsigned int session;
194         unsigned int lastblock;
195         unsigned int anchor;
196         unsigned int volume;
197         unsigned short partition;
198         unsigned int fileset;
199         unsigned int rootdir;
200         unsigned int flags;
201         umode_t umask;
202         gid_t gid;
203         uid_t uid;
204         umode_t fmode;
205         umode_t dmode;
206         struct nls_table *nls_map;
207 };
208
209 static int __init init_udf_fs(void)
210 {
211         int err;
212
213         err = init_inodecache();
214         if (err)
215                 goto out1;
216         err = register_filesystem(&udf_fstype);
217         if (err)
218                 goto out;
219
220         return 0;
221
222 out:
223         destroy_inodecache();
224
225 out1:
226         return err;
227 }
228
229 static void __exit exit_udf_fs(void)
230 {
231         unregister_filesystem(&udf_fstype);
232         destroy_inodecache();
233 }
234
235 module_init(init_udf_fs)
236 module_exit(exit_udf_fs)
237
238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239 {
240         struct udf_sb_info *sbi = UDF_SB(sb);
241
242         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243                                   GFP_KERNEL);
244         if (!sbi->s_partmaps) {
245                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
246                         count);
247                 sbi->s_partitions = 0;
248                 return -ENOMEM;
249         }
250
251         sbi->s_partitions = count;
252         return 0;
253 }
254
255 static int udf_show_options(struct seq_file *seq, struct dentry *root)
256 {
257         struct super_block *sb = root->d_sb;
258         struct udf_sb_info *sbi = UDF_SB(sb);
259
260         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
261                 seq_puts(seq, ",nostrict");
262         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
263                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
264         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
265                 seq_puts(seq, ",unhide");
266         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
267                 seq_puts(seq, ",undelete");
268         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
269                 seq_puts(seq, ",noadinicb");
270         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
271                 seq_puts(seq, ",shortad");
272         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
273                 seq_puts(seq, ",uid=forget");
274         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
275                 seq_puts(seq, ",uid=ignore");
276         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
277                 seq_puts(seq, ",gid=forget");
278         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
279                 seq_puts(seq, ",gid=ignore");
280         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
281                 seq_printf(seq, ",uid=%u", sbi->s_uid);
282         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
283                 seq_printf(seq, ",gid=%u", sbi->s_gid);
284         if (sbi->s_umask != 0)
285                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
286         if (sbi->s_fmode != UDF_INVALID_MODE)
287                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
288         if (sbi->s_dmode != UDF_INVALID_MODE)
289                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
290         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
291                 seq_printf(seq, ",session=%u", sbi->s_session);
292         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
293                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
294         if (sbi->s_anchor != 0)
295                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
296         /*
297          * volume, partition, fileset and rootdir seem to be ignored
298          * currently
299          */
300         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
301                 seq_puts(seq, ",utf8");
302         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
303                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
304
305         return 0;
306 }
307
308 /*
309  * udf_parse_options
310  *
311  * PURPOSE
312  *      Parse mount options.
313  *
314  * DESCRIPTION
315  *      The following mount options are supported:
316  *
317  *      gid=            Set the default group.
318  *      umask=          Set the default umask.
319  *      mode=           Set the default file permissions.
320  *      dmode=          Set the default directory permissions.
321  *      uid=            Set the default user.
322  *      bs=             Set the block size.
323  *      unhide          Show otherwise hidden files.
324  *      undelete        Show deleted files in lists.
325  *      adinicb         Embed data in the inode (default)
326  *      noadinicb       Don't embed data in the inode
327  *      shortad         Use short ad's
328  *      longad          Use long ad's (default)
329  *      nostrict        Unset strict conformance
330  *      iocharset=      Set the NLS character set
331  *
332  *      The remaining are for debugging and disaster recovery:
333  *
334  *      novrs           Skip volume sequence recognition
335  *
336  *      The following expect a offset from 0.
337  *
338  *      session=        Set the CDROM session (default= last session)
339  *      anchor=         Override standard anchor location. (default= 256)
340  *      volume=         Override the VolumeDesc location. (unused)
341  *      partition=      Override the PartitionDesc location. (unused)
342  *      lastblock=      Set the last block of the filesystem/
343  *
344  *      The following expect a offset from the partition root.
345  *
346  *      fileset=        Override the fileset block location. (unused)
347  *      rootdir=        Override the root directory location. (unused)
348  *              WARNING: overriding the rootdir to a non-directory may
349  *              yield highly unpredictable results.
350  *
351  * PRE-CONDITIONS
352  *      options         Pointer to mount options string.
353  *      uopts           Pointer to mount options variable.
354  *
355  * POST-CONDITIONS
356  *      <return>        1       Mount options parsed okay.
357  *      <return>        0       Error parsing mount options.
358  *
359  * HISTORY
360  *      July 1, 1997 - Andrew E. Mileski
361  *      Written, tested, and released.
362  */
363
364 enum {
365         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
366         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
367         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
368         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
369         Opt_rootdir, Opt_utf8, Opt_iocharset,
370         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
371         Opt_fmode, Opt_dmode
372 };
373
374 static const match_table_t tokens = {
375         {Opt_novrs,     "novrs"},
376         {Opt_nostrict,  "nostrict"},
377         {Opt_bs,        "bs=%u"},
378         {Opt_unhide,    "unhide"},
379         {Opt_undelete,  "undelete"},
380         {Opt_noadinicb, "noadinicb"},
381         {Opt_adinicb,   "adinicb"},
382         {Opt_shortad,   "shortad"},
383         {Opt_longad,    "longad"},
384         {Opt_uforget,   "uid=forget"},
385         {Opt_uignore,   "uid=ignore"},
386         {Opt_gforget,   "gid=forget"},
387         {Opt_gignore,   "gid=ignore"},
388         {Opt_gid,       "gid=%u"},
389         {Opt_uid,       "uid=%u"},
390         {Opt_umask,     "umask=%o"},
391         {Opt_session,   "session=%u"},
392         {Opt_lastblock, "lastblock=%u"},
393         {Opt_anchor,    "anchor=%u"},
394         {Opt_volume,    "volume=%u"},
395         {Opt_partition, "partition=%u"},
396         {Opt_fileset,   "fileset=%u"},
397         {Opt_rootdir,   "rootdir=%u"},
398         {Opt_utf8,      "utf8"},
399         {Opt_iocharset, "iocharset=%s"},
400         {Opt_fmode,     "mode=%o"},
401         {Opt_dmode,     "dmode=%o"},
402         {Opt_err,       NULL}
403 };
404
405 static int udf_parse_options(char *options, struct udf_options *uopt,
406                              bool remount)
407 {
408         char *p;
409         int option;
410
411         uopt->novrs = 0;
412         uopt->partition = 0xFFFF;
413         uopt->session = 0xFFFFFFFF;
414         uopt->lastblock = 0;
415         uopt->anchor = 0;
416         uopt->volume = 0xFFFFFFFF;
417         uopt->rootdir = 0xFFFFFFFF;
418         uopt->fileset = 0xFFFFFFFF;
419         uopt->nls_map = NULL;
420
421         if (!options)
422                 return 1;
423
424         while ((p = strsep(&options, ",")) != NULL) {
425                 substring_t args[MAX_OPT_ARGS];
426                 int token;
427                 if (!*p)
428                         continue;
429
430                 token = match_token(p, tokens, args);
431                 switch (token) {
432                 case Opt_novrs:
433                         uopt->novrs = 1;
434                         break;
435                 case Opt_bs:
436                         if (match_int(&args[0], &option))
437                                 return 0;
438                         uopt->blocksize = option;
439                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
440                         break;
441                 case Opt_unhide:
442                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
443                         break;
444                 case Opt_undelete:
445                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
446                         break;
447                 case Opt_noadinicb:
448                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
449                         break;
450                 case Opt_adinicb:
451                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
452                         break;
453                 case Opt_shortad:
454                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
455                         break;
456                 case Opt_longad:
457                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
458                         break;
459                 case Opt_gid:
460                         if (match_int(args, &option))
461                                 return 0;
462                         uopt->gid = option;
463                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
464                         break;
465                 case Opt_uid:
466                         if (match_int(args, &option))
467                                 return 0;
468                         uopt->uid = option;
469                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
470                         break;
471                 case Opt_umask:
472                         if (match_octal(args, &option))
473                                 return 0;
474                         uopt->umask = option;
475                         break;
476                 case Opt_nostrict:
477                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
478                         break;
479                 case Opt_session:
480                         if (match_int(args, &option))
481                                 return 0;
482                         uopt->session = option;
483                         if (!remount)
484                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
485                         break;
486                 case Opt_lastblock:
487                         if (match_int(args, &option))
488                                 return 0;
489                         uopt->lastblock = option;
490                         if (!remount)
491                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
492                         break;
493                 case Opt_anchor:
494                         if (match_int(args, &option))
495                                 return 0;
496                         uopt->anchor = option;
497                         break;
498                 case Opt_volume:
499                         if (match_int(args, &option))
500                                 return 0;
501                         uopt->volume = option;
502                         break;
503                 case Opt_partition:
504                         if (match_int(args, &option))
505                                 return 0;
506                         uopt->partition = option;
507                         break;
508                 case Opt_fileset:
509                         if (match_int(args, &option))
510                                 return 0;
511                         uopt->fileset = option;
512                         break;
513                 case Opt_rootdir:
514                         if (match_int(args, &option))
515                                 return 0;
516                         uopt->rootdir = option;
517                         break;
518                 case Opt_utf8:
519                         uopt->flags |= (1 << UDF_FLAG_UTF8);
520                         break;
521 #ifdef CONFIG_UDF_NLS
522                 case Opt_iocharset:
523                         uopt->nls_map = load_nls(args[0].from);
524                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
525                         break;
526 #endif
527                 case Opt_uignore:
528                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
529                         break;
530                 case Opt_uforget:
531                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
532                         break;
533                 case Opt_gignore:
534                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
535                         break;
536                 case Opt_gforget:
537                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
538                         break;
539                 case Opt_fmode:
540                         if (match_octal(args, &option))
541                                 return 0;
542                         uopt->fmode = option & 0777;
543                         break;
544                 case Opt_dmode:
545                         if (match_octal(args, &option))
546                                 return 0;
547                         uopt->dmode = option & 0777;
548                         break;
549                 default:
550                         pr_err("bad mount option \"%s\" or missing value\n", p);
551                         return 0;
552                 }
553         }
554         return 1;
555 }
556
557 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
558 {
559         struct udf_options uopt;
560         struct udf_sb_info *sbi = UDF_SB(sb);
561         int error = 0;
562
563         uopt.flags = sbi->s_flags;
564         uopt.uid   = sbi->s_uid;
565         uopt.gid   = sbi->s_gid;
566         uopt.umask = sbi->s_umask;
567         uopt.fmode = sbi->s_fmode;
568         uopt.dmode = sbi->s_dmode;
569
570         if (!udf_parse_options(options, &uopt, true))
571                 return -EINVAL;
572
573         write_lock(&sbi->s_cred_lock);
574         sbi->s_flags = uopt.flags;
575         sbi->s_uid   = uopt.uid;
576         sbi->s_gid   = uopt.gid;
577         sbi->s_umask = uopt.umask;
578         sbi->s_fmode = uopt.fmode;
579         sbi->s_dmode = uopt.dmode;
580         write_unlock(&sbi->s_cred_lock);
581
582         if (sbi->s_lvid_bh) {
583                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
584                 if (write_rev > UDF_MAX_WRITE_VERSION)
585                         *flags |= MS_RDONLY;
586         }
587
588         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
589                 goto out_unlock;
590
591         if (*flags & MS_RDONLY)
592                 udf_close_lvid(sb);
593         else
594                 udf_open_lvid(sb);
595
596 out_unlock:
597         return error;
598 }
599
600 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
601 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
602 static loff_t udf_check_vsd(struct super_block *sb)
603 {
604         struct volStructDesc *vsd = NULL;
605         loff_t sector = 32768;
606         int sectorsize;
607         struct buffer_head *bh = NULL;
608         int nsr02 = 0;
609         int nsr03 = 0;
610         struct udf_sb_info *sbi;
611
612         sbi = UDF_SB(sb);
613         if (sb->s_blocksize < sizeof(struct volStructDesc))
614                 sectorsize = sizeof(struct volStructDesc);
615         else
616                 sectorsize = sb->s_blocksize;
617
618         sector += (sbi->s_session << sb->s_blocksize_bits);
619
620         udf_debug("Starting at sector %u (%ld byte sectors)\n",
621                   (unsigned int)(sector >> sb->s_blocksize_bits),
622                   sb->s_blocksize);
623         /* Process the sequence (if applicable) */
624         for (; !nsr02 && !nsr03; sector += sectorsize) {
625                 /* Read a block */
626                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
627                 if (!bh)
628                         break;
629
630                 /* Look for ISO  descriptors */
631                 vsd = (struct volStructDesc *)(bh->b_data +
632                                               (sector & (sb->s_blocksize - 1)));
633
634                 if (vsd->stdIdent[0] == 0) {
635                         brelse(bh);
636                         break;
637                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
638                                     VSD_STD_ID_LEN)) {
639                         switch (vsd->structType) {
640                         case 0:
641                                 udf_debug("ISO9660 Boot Record found\n");
642                                 break;
643                         case 1:
644                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
645                                 break;
646                         case 2:
647                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
648                                 break;
649                         case 3:
650                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
651                                 break;
652                         case 255:
653                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
654                                 break;
655                         default:
656                                 udf_debug("ISO9660 VRS (%u) found\n",
657                                           vsd->structType);
658                                 break;
659                         }
660                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
661                                     VSD_STD_ID_LEN))
662                         ; /* nothing */
663                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
664                                     VSD_STD_ID_LEN)) {
665                         brelse(bh);
666                         break;
667                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
668                                     VSD_STD_ID_LEN))
669                         nsr02 = sector;
670                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
671                                     VSD_STD_ID_LEN))
672                         nsr03 = sector;
673                 brelse(bh);
674         }
675
676         if (nsr03)
677                 return nsr03;
678         else if (nsr02)
679                 return nsr02;
680         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
681                 return -1;
682         else
683                 return 0;
684 }
685
686 static int udf_find_fileset(struct super_block *sb,
687                             struct kernel_lb_addr *fileset,
688                             struct kernel_lb_addr *root)
689 {
690         struct buffer_head *bh = NULL;
691         long lastblock;
692         uint16_t ident;
693         struct udf_sb_info *sbi;
694
695         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
696             fileset->partitionReferenceNum != 0xFFFF) {
697                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
698
699                 if (!bh) {
700                         return 1;
701                 } else if (ident != TAG_IDENT_FSD) {
702                         brelse(bh);
703                         return 1;
704                 }
705
706         }
707
708         sbi = UDF_SB(sb);
709         if (!bh) {
710                 /* Search backwards through the partitions */
711                 struct kernel_lb_addr newfileset;
712
713 /* --> cvg: FIXME - is it reasonable? */
714                 return 1;
715
716                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
717                      (newfileset.partitionReferenceNum != 0xFFFF &&
718                       fileset->logicalBlockNum == 0xFFFFFFFF &&
719                       fileset->partitionReferenceNum == 0xFFFF);
720                      newfileset.partitionReferenceNum--) {
721                         lastblock = sbi->s_partmaps
722                                         [newfileset.partitionReferenceNum]
723                                                 .s_partition_len;
724                         newfileset.logicalBlockNum = 0;
725
726                         do {
727                                 bh = udf_read_ptagged(sb, &newfileset, 0,
728                                                       &ident);
729                                 if (!bh) {
730                                         newfileset.logicalBlockNum++;
731                                         continue;
732                                 }
733
734                                 switch (ident) {
735                                 case TAG_IDENT_SBD:
736                                 {
737                                         struct spaceBitmapDesc *sp;
738                                         sp = (struct spaceBitmapDesc *)
739                                                                 bh->b_data;
740                                         newfileset.logicalBlockNum += 1 +
741                                                 ((le32_to_cpu(sp->numOfBytes) +
742                                                   sizeof(struct spaceBitmapDesc)
743                                                   - 1) >> sb->s_blocksize_bits);
744                                         brelse(bh);
745                                         break;
746                                 }
747                                 case TAG_IDENT_FSD:
748                                         *fileset = newfileset;
749                                         break;
750                                 default:
751                                         newfileset.logicalBlockNum++;
752                                         brelse(bh);
753                                         bh = NULL;
754                                         break;
755                                 }
756                         } while (newfileset.logicalBlockNum < lastblock &&
757                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
758                                  fileset->partitionReferenceNum == 0xFFFF);
759                 }
760         }
761
762         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
763              fileset->partitionReferenceNum != 0xFFFF) && bh) {
764                 udf_debug("Fileset at block=%d, partition=%d\n",
765                           fileset->logicalBlockNum,
766                           fileset->partitionReferenceNum);
767
768                 sbi->s_partition = fileset->partitionReferenceNum;
769                 udf_load_fileset(sb, bh, root);
770                 brelse(bh);
771                 return 0;
772         }
773         return 1;
774 }
775
776 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
777 {
778         struct primaryVolDesc *pvoldesc;
779         struct ustr *instr, *outstr;
780         struct buffer_head *bh;
781         uint16_t ident;
782         int ret = 1;
783
784         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
785         if (!instr)
786                 return 1;
787
788         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
789         if (!outstr)
790                 goto out1;
791
792         bh = udf_read_tagged(sb, block, block, &ident);
793         if (!bh)
794                 goto out2;
795
796         BUG_ON(ident != TAG_IDENT_PVD);
797
798         pvoldesc = (struct primaryVolDesc *)bh->b_data;
799
800         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
801                               pvoldesc->recordingDateAndTime)) {
802 #ifdef UDFFS_DEBUG
803                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
804                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
805                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
806                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
807 #endif
808         }
809
810         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
811                 if (udf_CS0toUTF8(outstr, instr)) {
812                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
813                                 outstr->u_len > 31 ? 31 : outstr->u_len);
814                         udf_debug("volIdent[] = '%s'\n",
815                                   UDF_SB(sb)->s_volume_ident);
816                 }
817
818         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
819                 if (udf_CS0toUTF8(outstr, instr))
820                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
821
822         brelse(bh);
823         ret = 0;
824 out2:
825         kfree(outstr);
826 out1:
827         kfree(instr);
828         return ret;
829 }
830
831 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
832                                         u32 meta_file_loc, u32 partition_num)
833 {
834         struct kernel_lb_addr addr;
835         struct inode *metadata_fe;
836
837         addr.logicalBlockNum = meta_file_loc;
838         addr.partitionReferenceNum = partition_num;
839
840         metadata_fe = udf_iget(sb, &addr);
841
842         if (metadata_fe == NULL)
843                 udf_warn(sb, "metadata inode efe not found\n");
844         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
845                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
846                 iput(metadata_fe);
847                 metadata_fe = NULL;
848         }
849
850         return metadata_fe;
851 }
852
853 static int udf_load_metadata_files(struct super_block *sb, int partition)
854 {
855         struct udf_sb_info *sbi = UDF_SB(sb);
856         struct udf_part_map *map;
857         struct udf_meta_data *mdata;
858         struct kernel_lb_addr addr;
859
860         map = &sbi->s_partmaps[partition];
861         mdata = &map->s_type_specific.s_metadata;
862
863         /* metadata address */
864         udf_debug("Metadata file location: block = %d part = %d\n",
865                   mdata->s_meta_file_loc, map->s_partition_num);
866
867         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
868                 mdata->s_meta_file_loc, map->s_partition_num);
869
870         if (mdata->s_metadata_fe == NULL) {
871                 /* mirror file entry */
872                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
873                           mdata->s_mirror_file_loc, map->s_partition_num);
874
875                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
876                         mdata->s_mirror_file_loc, map->s_partition_num);
877
878                 if (mdata->s_mirror_fe == NULL) {
879                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
880                         goto error_exit;
881                 }
882         }
883
884         /*
885          * bitmap file entry
886          * Note:
887          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
888         */
889         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
890                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
891                 addr.partitionReferenceNum = map->s_partition_num;
892
893                 udf_debug("Bitmap file location: block = %d part = %d\n",
894                           addr.logicalBlockNum, addr.partitionReferenceNum);
895
896                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
897
898                 if (mdata->s_bitmap_fe == NULL) {
899                         if (sb->s_flags & MS_RDONLY)
900                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
901                         else {
902                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
903                                 goto error_exit;
904                         }
905                 }
906         }
907
908         udf_debug("udf_load_metadata_files Ok\n");
909
910         return 0;
911
912 error_exit:
913         return 1;
914 }
915
916 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
917                              struct kernel_lb_addr *root)
918 {
919         struct fileSetDesc *fset;
920
921         fset = (struct fileSetDesc *)bh->b_data;
922
923         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
924
925         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
926
927         udf_debug("Rootdir at block=%d, partition=%d\n",
928                   root->logicalBlockNum, root->partitionReferenceNum);
929 }
930
931 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
932 {
933         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
934         return DIV_ROUND_UP(map->s_partition_len +
935                             (sizeof(struct spaceBitmapDesc) << 3),
936                             sb->s_blocksize * 8);
937 }
938
939 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
940 {
941         struct udf_bitmap *bitmap;
942         int nr_groups;
943         int size;
944
945         nr_groups = udf_compute_nr_groups(sb, index);
946         size = sizeof(struct udf_bitmap) +
947                 (sizeof(struct buffer_head *) * nr_groups);
948
949         if (size <= PAGE_SIZE)
950                 bitmap = kzalloc(size, GFP_KERNEL);
951         else
952                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
953
954         if (bitmap == NULL)
955                 return NULL;
956
957         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
958         bitmap->s_nr_groups = nr_groups;
959         return bitmap;
960 }
961
962 static int udf_fill_partdesc_info(struct super_block *sb,
963                 struct partitionDesc *p, int p_index)
964 {
965         struct udf_part_map *map;
966         struct udf_sb_info *sbi = UDF_SB(sb);
967         struct partitionHeaderDesc *phd;
968
969         map = &sbi->s_partmaps[p_index];
970
971         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
972         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
973
974         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
975                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
976         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
977                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
978         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
979                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
980         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
981                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
982
983         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
984                   p_index, map->s_partition_type,
985                   map->s_partition_root, map->s_partition_len);
986
987         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
988             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
989                 return 0;
990
991         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
992         if (phd->unallocSpaceTable.extLength) {
993                 struct kernel_lb_addr loc = {
994                         .logicalBlockNum = le32_to_cpu(
995                                 phd->unallocSpaceTable.extPosition),
996                         .partitionReferenceNum = p_index,
997                 };
998
999                 map->s_uspace.s_table = udf_iget(sb, &loc);
1000                 if (!map->s_uspace.s_table) {
1001                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002                                   p_index);
1003                         return 1;
1004                 }
1005                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007                           p_index, map->s_uspace.s_table->i_ino);
1008         }
1009
1010         if (phd->unallocSpaceBitmap.extLength) {
1011                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012                 if (!bitmap)
1013                         return 1;
1014                 map->s_uspace.s_bitmap = bitmap;
1015                 bitmap->s_extLength = le32_to_cpu(
1016                                 phd->unallocSpaceBitmap.extLength);
1017                 bitmap->s_extPosition = le32_to_cpu(
1018                                 phd->unallocSpaceBitmap.extPosition);
1019                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021                           p_index, bitmap->s_extPosition);
1022         }
1023
1024         if (phd->partitionIntegrityTable.extLength)
1025                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026
1027         if (phd->freedSpaceTable.extLength) {
1028                 struct kernel_lb_addr loc = {
1029                         .logicalBlockNum = le32_to_cpu(
1030                                 phd->freedSpaceTable.extPosition),
1031                         .partitionReferenceNum = p_index,
1032                 };
1033
1034                 map->s_fspace.s_table = udf_iget(sb, &loc);
1035                 if (!map->s_fspace.s_table) {
1036                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1037                                   p_index);
1038                         return 1;
1039                 }
1040
1041                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043                           p_index, map->s_fspace.s_table->i_ino);
1044         }
1045
1046         if (phd->freedSpaceBitmap.extLength) {
1047                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048                 if (!bitmap)
1049                         return 1;
1050                 map->s_fspace.s_bitmap = bitmap;
1051                 bitmap->s_extLength = le32_to_cpu(
1052                                 phd->freedSpaceBitmap.extLength);
1053                 bitmap->s_extPosition = le32_to_cpu(
1054                                 phd->freedSpaceBitmap.extPosition);
1055                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057                           p_index, bitmap->s_extPosition);
1058         }
1059         return 0;
1060 }
1061
1062 static void udf_find_vat_block(struct super_block *sb, int p_index,
1063                                int type1_index, sector_t start_block)
1064 {
1065         struct udf_sb_info *sbi = UDF_SB(sb);
1066         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067         sector_t vat_block;
1068         struct kernel_lb_addr ino;
1069
1070         /*
1071          * VAT file entry is in the last recorded block. Some broken disks have
1072          * it a few blocks before so try a bit harder...
1073          */
1074         ino.partitionReferenceNum = type1_index;
1075         for (vat_block = start_block;
1076              vat_block >= map->s_partition_root &&
1077              vat_block >= start_block - 3 &&
1078              !sbi->s_vat_inode; vat_block--) {
1079                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1080                 sbi->s_vat_inode = udf_iget(sb, &ino);
1081         }
1082 }
1083
1084 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085 {
1086         struct udf_sb_info *sbi = UDF_SB(sb);
1087         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088         struct buffer_head *bh = NULL;
1089         struct udf_inode_info *vati;
1090         uint32_t pos;
1091         struct virtualAllocationTable20 *vat20;
1092         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1093
1094         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095         if (!sbi->s_vat_inode &&
1096             sbi->s_last_block != blocks - 1) {
1097                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098                           (unsigned long)sbi->s_last_block,
1099                           (unsigned long)blocks - 1);
1100                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101         }
1102         if (!sbi->s_vat_inode)
1103                 return 1;
1104
1105         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106                 map->s_type_specific.s_virtual.s_start_offset = 0;
1107                 map->s_type_specific.s_virtual.s_num_entries =
1108                         (sbi->s_vat_inode->i_size - 36) >> 2;
1109         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110                 vati = UDF_I(sbi->s_vat_inode);
1111                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112                         pos = udf_block_map(sbi->s_vat_inode, 0);
1113                         bh = sb_bread(sb, pos);
1114                         if (!bh)
1115                                 return 1;
1116                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117                 } else {
1118                         vat20 = (struct virtualAllocationTable20 *)
1119                                                         vati->i_ext.i_data;
1120                 }
1121
1122                 map->s_type_specific.s_virtual.s_start_offset =
1123                         le16_to_cpu(vat20->lengthHeader);
1124                 map->s_type_specific.s_virtual.s_num_entries =
1125                         (sbi->s_vat_inode->i_size -
1126                                 map->s_type_specific.s_virtual.
1127                                         s_start_offset) >> 2;
1128                 brelse(bh);
1129         }
1130         return 0;
1131 }
1132
1133 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134 {
1135         struct buffer_head *bh;
1136         struct partitionDesc *p;
1137         struct udf_part_map *map;
1138         struct udf_sb_info *sbi = UDF_SB(sb);
1139         int i, type1_idx;
1140         uint16_t partitionNumber;
1141         uint16_t ident;
1142         int ret = 0;
1143
1144         bh = udf_read_tagged(sb, block, block, &ident);
1145         if (!bh)
1146                 return 1;
1147         if (ident != TAG_IDENT_PD)
1148                 goto out_bh;
1149
1150         p = (struct partitionDesc *)bh->b_data;
1151         partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1154         for (i = 0; i < sbi->s_partitions; i++) {
1155                 map = &sbi->s_partmaps[i];
1156                 udf_debug("Searching map: (%d == %d)\n",
1157                           map->s_partition_num, partitionNumber);
1158                 if (map->s_partition_num == partitionNumber &&
1159                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160                      map->s_partition_type == UDF_SPARABLE_MAP15))
1161                         break;
1162         }
1163
1164         if (i >= sbi->s_partitions) {
1165                 udf_debug("Partition (%d) not found in partition map\n",
1166                           partitionNumber);
1167                 goto out_bh;
1168         }
1169
1170         ret = udf_fill_partdesc_info(sb, p, i);
1171
1172         /*
1173          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174          * PHYSICAL partitions are already set up
1175          */
1176         type1_idx = i;
1177         for (i = 0; i < sbi->s_partitions; i++) {
1178                 map = &sbi->s_partmaps[i];
1179
1180                 if (map->s_partition_num == partitionNumber &&
1181                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183                      map->s_partition_type == UDF_METADATA_MAP25))
1184                         break;
1185         }
1186
1187         if (i >= sbi->s_partitions)
1188                 goto out_bh;
1189
1190         ret = udf_fill_partdesc_info(sb, p, i);
1191         if (ret)
1192                 goto out_bh;
1193
1194         if (map->s_partition_type == UDF_METADATA_MAP25) {
1195                 ret = udf_load_metadata_files(sb, i);
1196                 if (ret) {
1197                         udf_err(sb, "error loading MetaData partition map %d\n",
1198                                 i);
1199                         goto out_bh;
1200                 }
1201         } else {
1202                 ret = udf_load_vat(sb, i, type1_idx);
1203                 if (ret)
1204                         goto out_bh;
1205                 /*
1206                  * Mark filesystem read-only if we have a partition with
1207                  * virtual map since we don't handle writing to it (we
1208                  * overwrite blocks instead of relocating them).
1209                  */
1210                 sb->s_flags |= MS_RDONLY;
1211                 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1212         }
1213 out_bh:
1214         /* In case loading failed, we handle cleanup in udf_fill_super */
1215         brelse(bh);
1216         return ret;
1217 }
1218
1219 static int udf_load_sparable_map(struct super_block *sb,
1220                                  struct udf_part_map *map,
1221                                  struct sparablePartitionMap *spm)
1222 {
1223         uint32_t loc;
1224         uint16_t ident;
1225         struct sparingTable *st;
1226         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1227         int i;
1228         struct buffer_head *bh;
1229
1230         map->s_partition_type = UDF_SPARABLE_MAP15;
1231         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1232         if (!is_power_of_2(sdata->s_packet_len)) {
1233                 udf_err(sb, "error loading logical volume descriptor: "
1234                         "Invalid packet length %u\n",
1235                         (unsigned)sdata->s_packet_len);
1236                 return -EIO;
1237         }
1238         if (spm->numSparingTables > 4) {
1239                 udf_err(sb, "error loading logical volume descriptor: "
1240                         "Too many sparing tables (%d)\n",
1241                         (int)spm->numSparingTables);
1242                 return -EIO;
1243         }
1244
1245         for (i = 0; i < spm->numSparingTables; i++) {
1246                 loc = le32_to_cpu(spm->locSparingTable[i]);
1247                 bh = udf_read_tagged(sb, loc, loc, &ident);
1248                 if (!bh)
1249                         continue;
1250
1251                 st = (struct sparingTable *)bh->b_data;
1252                 if (ident != 0 ||
1253                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1254                             strlen(UDF_ID_SPARING)) ||
1255                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1256                                                         sb->s_blocksize) {
1257                         brelse(bh);
1258                         continue;
1259                 }
1260
1261                 sdata->s_spar_map[i] = bh;
1262         }
1263         map->s_partition_func = udf_get_pblock_spar15;
1264         return 0;
1265 }
1266
1267 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1268                                struct kernel_lb_addr *fileset)
1269 {
1270         struct logicalVolDesc *lvd;
1271         int i, offset;
1272         uint8_t type;
1273         struct udf_sb_info *sbi = UDF_SB(sb);
1274         struct genericPartitionMap *gpm;
1275         uint16_t ident;
1276         struct buffer_head *bh;
1277         unsigned int table_len;
1278         int ret = 0;
1279
1280         bh = udf_read_tagged(sb, block, block, &ident);
1281         if (!bh)
1282                 return 1;
1283         BUG_ON(ident != TAG_IDENT_LVD);
1284         lvd = (struct logicalVolDesc *)bh->b_data;
1285         table_len = le32_to_cpu(lvd->mapTableLength);
1286         if (sizeof(*lvd) + table_len > sb->s_blocksize) {
1287                 udf_err(sb, "error loading logical volume descriptor: "
1288                         "Partition table too long (%u > %lu)\n", table_len,
1289                         sb->s_blocksize - sizeof(*lvd));
1290                 goto out_bh;
1291         }
1292
1293         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1294         if (ret)
1295                 goto out_bh;
1296
1297         for (i = 0, offset = 0;
1298              i < sbi->s_partitions && offset < table_len;
1299              i++, offset += gpm->partitionMapLength) {
1300                 struct udf_part_map *map = &sbi->s_partmaps[i];
1301                 gpm = (struct genericPartitionMap *)
1302                                 &(lvd->partitionMaps[offset]);
1303                 type = gpm->partitionMapType;
1304                 if (type == 1) {
1305                         struct genericPartitionMap1 *gpm1 =
1306                                 (struct genericPartitionMap1 *)gpm;
1307                         map->s_partition_type = UDF_TYPE1_MAP15;
1308                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1309                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1310                         map->s_partition_func = NULL;
1311                 } else if (type == 2) {
1312                         struct udfPartitionMap2 *upm2 =
1313                                                 (struct udfPartitionMap2 *)gpm;
1314                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1315                                                 strlen(UDF_ID_VIRTUAL))) {
1316                                 u16 suf =
1317                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1318                                                         identSuffix)[0]);
1319                                 if (suf < 0x0200) {
1320                                         map->s_partition_type =
1321                                                         UDF_VIRTUAL_MAP15;
1322                                         map->s_partition_func =
1323                                                         udf_get_pblock_virt15;
1324                                 } else {
1325                                         map->s_partition_type =
1326                                                         UDF_VIRTUAL_MAP20;
1327                                         map->s_partition_func =
1328                                                         udf_get_pblock_virt20;
1329                                 }
1330                         } else if (!strncmp(upm2->partIdent.ident,
1331                                                 UDF_ID_SPARABLE,
1332                                                 strlen(UDF_ID_SPARABLE))) {
1333                                 if (udf_load_sparable_map(sb, map,
1334                                     (struct sparablePartitionMap *)gpm) < 0)
1335                                         goto out_bh;
1336                         } else if (!strncmp(upm2->partIdent.ident,
1337                                                 UDF_ID_METADATA,
1338                                                 strlen(UDF_ID_METADATA))) {
1339                                 struct udf_meta_data *mdata =
1340                                         &map->s_type_specific.s_metadata;
1341                                 struct metadataPartitionMap *mdm =
1342                                                 (struct metadataPartitionMap *)
1343                                                 &(lvd->partitionMaps[offset]);
1344                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1345                                           i, type, UDF_ID_METADATA);
1346
1347                                 map->s_partition_type = UDF_METADATA_MAP25;
1348                                 map->s_partition_func = udf_get_pblock_meta25;
1349
1350                                 mdata->s_meta_file_loc   =
1351                                         le32_to_cpu(mdm->metadataFileLoc);
1352                                 mdata->s_mirror_file_loc =
1353                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1354                                 mdata->s_bitmap_file_loc =
1355                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1356                                 mdata->s_alloc_unit_size =
1357                                         le32_to_cpu(mdm->allocUnitSize);
1358                                 mdata->s_align_unit_size =
1359                                         le16_to_cpu(mdm->alignUnitSize);
1360                                 if (mdm->flags & 0x01)
1361                                         mdata->s_flags |= MF_DUPLICATE_MD;
1362
1363                                 udf_debug("Metadata Ident suffix=0x%x\n",
1364                                           le16_to_cpu(*(__le16 *)
1365                                                       mdm->partIdent.identSuffix));
1366                                 udf_debug("Metadata part num=%d\n",
1367                                           le16_to_cpu(mdm->partitionNum));
1368                                 udf_debug("Metadata part alloc unit size=%d\n",
1369                                           le32_to_cpu(mdm->allocUnitSize));
1370                                 udf_debug("Metadata file loc=%d\n",
1371                                           le32_to_cpu(mdm->metadataFileLoc));
1372                                 udf_debug("Mirror file loc=%d\n",
1373                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1374                                 udf_debug("Bitmap file loc=%d\n",
1375                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1376                                 udf_debug("Flags: %d %d\n",
1377                                           mdata->s_flags, mdm->flags);
1378                         } else {
1379                                 udf_debug("Unknown ident: %s\n",
1380                                           upm2->partIdent.ident);
1381                                 continue;
1382                         }
1383                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1384                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1385                 }
1386                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1387                           i, map->s_partition_num, type, map->s_volumeseqnum);
1388         }
1389
1390         if (fileset) {
1391                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1392
1393                 *fileset = lelb_to_cpu(la->extLocation);
1394                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1395                           fileset->logicalBlockNum,
1396                           fileset->partitionReferenceNum);
1397         }
1398         if (lvd->integritySeqExt.extLength)
1399                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1400
1401 out_bh:
1402         brelse(bh);
1403         return ret;
1404 }
1405
1406 /*
1407  * udf_load_logicalvolint
1408  *
1409  */
1410 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1411 {
1412         struct buffer_head *bh = NULL;
1413         uint16_t ident;
1414         struct udf_sb_info *sbi = UDF_SB(sb);
1415         struct logicalVolIntegrityDesc *lvid;
1416
1417         while (loc.extLength > 0 &&
1418                (bh = udf_read_tagged(sb, loc.extLocation,
1419                                      loc.extLocation, &ident)) &&
1420                ident == TAG_IDENT_LVID) {
1421                 sbi->s_lvid_bh = bh;
1422                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1423
1424                 if (lvid->nextIntegrityExt.extLength)
1425                         udf_load_logicalvolint(sb,
1426                                 leea_to_cpu(lvid->nextIntegrityExt));
1427
1428                 if (sbi->s_lvid_bh != bh)
1429                         brelse(bh);
1430                 loc.extLength -= sb->s_blocksize;
1431                 loc.extLocation++;
1432         }
1433         if (sbi->s_lvid_bh != bh)
1434                 brelse(bh);
1435 }
1436
1437 /*
1438  * udf_process_sequence
1439  *
1440  * PURPOSE
1441  *      Process a main/reserve volume descriptor sequence.
1442  *
1443  * PRE-CONDITIONS
1444  *      sb                      Pointer to _locked_ superblock.
1445  *      block                   First block of first extent of the sequence.
1446  *      lastblock               Lastblock of first extent of the sequence.
1447  *
1448  * HISTORY
1449  *      July 1, 1997 - Andrew E. Mileski
1450  *      Written, tested, and released.
1451  */
1452 static noinline int udf_process_sequence(struct super_block *sb, long block,
1453                                 long lastblock, struct kernel_lb_addr *fileset)
1454 {
1455         struct buffer_head *bh = NULL;
1456         struct udf_vds_record vds[VDS_POS_LENGTH];
1457         struct udf_vds_record *curr;
1458         struct generic_desc *gd;
1459         struct volDescPtr *vdp;
1460         int done = 0;
1461         uint32_t vdsn;
1462         uint16_t ident;
1463         long next_s = 0, next_e = 0;
1464
1465         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1466
1467         /*
1468          * Read the main descriptor sequence and find which descriptors
1469          * are in it.
1470          */
1471         for (; (!done && block <= lastblock); block++) {
1472
1473                 bh = udf_read_tagged(sb, block, block, &ident);
1474                 if (!bh) {
1475                         udf_err(sb,
1476                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1477                                 (unsigned long long)block);
1478                         return 1;
1479                 }
1480
1481                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1482                 gd = (struct generic_desc *)bh->b_data;
1483                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1484                 switch (ident) {
1485                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1486                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1487                         if (vdsn >= curr->volDescSeqNum) {
1488                                 curr->volDescSeqNum = vdsn;
1489                                 curr->block = block;
1490                         }
1491                         break;
1492                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1493                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1494                         if (vdsn >= curr->volDescSeqNum) {
1495                                 curr->volDescSeqNum = vdsn;
1496                                 curr->block = block;
1497
1498                                 vdp = (struct volDescPtr *)bh->b_data;
1499                                 next_s = le32_to_cpu(
1500                                         vdp->nextVolDescSeqExt.extLocation);
1501                                 next_e = le32_to_cpu(
1502                                         vdp->nextVolDescSeqExt.extLength);
1503                                 next_e = next_e >> sb->s_blocksize_bits;
1504                                 next_e += next_s;
1505                         }
1506                         break;
1507                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1508                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1509                         if (vdsn >= curr->volDescSeqNum) {
1510                                 curr->volDescSeqNum = vdsn;
1511                                 curr->block = block;
1512                         }
1513                         break;
1514                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1515                         curr = &vds[VDS_POS_PARTITION_DESC];
1516                         if (!curr->block)
1517                                 curr->block = block;
1518                         break;
1519                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1520                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1521                         if (vdsn >= curr->volDescSeqNum) {
1522                                 curr->volDescSeqNum = vdsn;
1523                                 curr->block = block;
1524                         }
1525                         break;
1526                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1527                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1528                         if (vdsn >= curr->volDescSeqNum) {
1529                                 curr->volDescSeqNum = vdsn;
1530                                 curr->block = block;
1531                         }
1532                         break;
1533                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1534                         vds[VDS_POS_TERMINATING_DESC].block = block;
1535                         if (next_e) {
1536                                 block = next_s;
1537                                 lastblock = next_e;
1538                                 next_s = next_e = 0;
1539                         } else
1540                                 done = 1;
1541                         break;
1542                 }
1543                 brelse(bh);
1544         }
1545         /*
1546          * Now read interesting descriptors again and process them
1547          * in a suitable order
1548          */
1549         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1550                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1551                 return 1;
1552         }
1553         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1554                 return 1;
1555
1556         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1557             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1558                 return 1;
1559
1560         if (vds[VDS_POS_PARTITION_DESC].block) {
1561                 /*
1562                  * We rescan the whole descriptor sequence to find
1563                  * partition descriptor blocks and process them.
1564                  */
1565                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1566                      block < vds[VDS_POS_TERMINATING_DESC].block;
1567                      block++)
1568                         if (udf_load_partdesc(sb, block))
1569                                 return 1;
1570         }
1571
1572         return 0;
1573 }
1574
1575 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1576                              struct kernel_lb_addr *fileset)
1577 {
1578         struct anchorVolDescPtr *anchor;
1579         long main_s, main_e, reserve_s, reserve_e;
1580
1581         anchor = (struct anchorVolDescPtr *)bh->b_data;
1582
1583         /* Locate the main sequence */
1584         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1585         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1586         main_e = main_e >> sb->s_blocksize_bits;
1587         main_e += main_s;
1588
1589         /* Locate the reserve sequence */
1590         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1591         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1592         reserve_e = reserve_e >> sb->s_blocksize_bits;
1593         reserve_e += reserve_s;
1594
1595         /* Process the main & reserve sequences */
1596         /* responsible for finding the PartitionDesc(s) */
1597         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1598                 return 1;
1599         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1600 }
1601
1602 /*
1603  * Check whether there is an anchor block in the given block and
1604  * load Volume Descriptor Sequence if so.
1605  */
1606 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1607                                   struct kernel_lb_addr *fileset)
1608 {
1609         struct buffer_head *bh;
1610         uint16_t ident;
1611         int ret;
1612
1613         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1614             udf_fixed_to_variable(block) >=
1615             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1616                 return 0;
1617
1618         bh = udf_read_tagged(sb, block, block, &ident);
1619         if (!bh)
1620                 return 0;
1621         if (ident != TAG_IDENT_AVDP) {
1622                 brelse(bh);
1623                 return 0;
1624         }
1625         ret = udf_load_sequence(sb, bh, fileset);
1626         brelse(bh);
1627         return ret;
1628 }
1629
1630 /* Search for an anchor volume descriptor pointer */
1631 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1632                                  struct kernel_lb_addr *fileset)
1633 {
1634         sector_t last[6];
1635         int i;
1636         struct udf_sb_info *sbi = UDF_SB(sb);
1637         int last_count = 0;
1638
1639         /* First try user provided anchor */
1640         if (sbi->s_anchor) {
1641                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1642                         return lastblock;
1643         }
1644         /*
1645          * according to spec, anchor is in either:
1646          *     block 256
1647          *     lastblock-256
1648          *     lastblock
1649          *  however, if the disc isn't closed, it could be 512.
1650          */
1651         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1652                 return lastblock;
1653         /*
1654          * The trouble is which block is the last one. Drives often misreport
1655          * this so we try various possibilities.
1656          */
1657         last[last_count++] = lastblock;
1658         if (lastblock >= 1)
1659                 last[last_count++] = lastblock - 1;
1660         last[last_count++] = lastblock + 1;
1661         if (lastblock >= 2)
1662                 last[last_count++] = lastblock - 2;
1663         if (lastblock >= 150)
1664                 last[last_count++] = lastblock - 150;
1665         if (lastblock >= 152)
1666                 last[last_count++] = lastblock - 152;
1667
1668         for (i = 0; i < last_count; i++) {
1669                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1670                                 sb->s_blocksize_bits)
1671                         continue;
1672                 if (udf_check_anchor_block(sb, last[i], fileset))
1673                         return last[i];
1674                 if (last[i] < 256)
1675                         continue;
1676                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1677                         return last[i];
1678         }
1679
1680         /* Finally try block 512 in case media is open */
1681         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1682                 return last[0];
1683         return 0;
1684 }
1685
1686 /*
1687  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1688  * area specified by it. The function expects sbi->s_lastblock to be the last
1689  * block on the media.
1690  *
1691  * Return 1 if ok, 0 if not found.
1692  *
1693  */
1694 static int udf_find_anchor(struct super_block *sb,
1695                            struct kernel_lb_addr *fileset)
1696 {
1697         sector_t lastblock;
1698         struct udf_sb_info *sbi = UDF_SB(sb);
1699
1700         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1701         if (lastblock)
1702                 goto out;
1703
1704         /* No anchor found? Try VARCONV conversion of block numbers */
1705         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1706         /* Firstly, we try to not convert number of the last block */
1707         lastblock = udf_scan_anchors(sb,
1708                                 udf_variable_to_fixed(sbi->s_last_block),
1709                                 fileset);
1710         if (lastblock)
1711                 goto out;
1712
1713         /* Secondly, we try with converted number of the last block */
1714         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1715         if (!lastblock) {
1716                 /* VARCONV didn't help. Clear it. */
1717                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1718                 return 0;
1719         }
1720 out:
1721         sbi->s_last_block = lastblock;
1722         return 1;
1723 }
1724
1725 /*
1726  * Check Volume Structure Descriptor, find Anchor block and load Volume
1727  * Descriptor Sequence
1728  */
1729 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1730                         int silent, struct kernel_lb_addr *fileset)
1731 {
1732         struct udf_sb_info *sbi = UDF_SB(sb);
1733         loff_t nsr_off;
1734
1735         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1736                 if (!silent)
1737                         udf_warn(sb, "Bad block size\n");
1738                 return 0;
1739         }
1740         sbi->s_last_block = uopt->lastblock;
1741         if (!uopt->novrs) {
1742                 /* Check that it is NSR02 compliant */
1743                 nsr_off = udf_check_vsd(sb);
1744                 if (!nsr_off) {
1745                         if (!silent)
1746                                 udf_warn(sb, "No VRS found\n");
1747                         return 0;
1748                 }
1749                 if (nsr_off == -1)
1750                         udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1751                 if (!sbi->s_last_block)
1752                         sbi->s_last_block = udf_get_last_block(sb);
1753         } else {
1754                 udf_debug("Validity check skipped because of novrs option\n");
1755         }
1756
1757         /* Look for anchor block and load Volume Descriptor Sequence */
1758         sbi->s_anchor = uopt->anchor;
1759         if (!udf_find_anchor(sb, fileset)) {
1760                 if (!silent)
1761                         udf_warn(sb, "No anchor found\n");
1762                 return 0;
1763         }
1764         return 1;
1765 }
1766
1767 static void udf_open_lvid(struct super_block *sb)
1768 {
1769         struct udf_sb_info *sbi = UDF_SB(sb);
1770         struct buffer_head *bh = sbi->s_lvid_bh;
1771         struct logicalVolIntegrityDesc *lvid;
1772         struct logicalVolIntegrityDescImpUse *lvidiu;
1773
1774         if (!bh)
1775                 return;
1776
1777         mutex_lock(&sbi->s_alloc_mutex);
1778         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1779         lvidiu = udf_sb_lvidiu(sbi);
1780
1781         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1782         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1783         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1784                                 CURRENT_TIME);
1785         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1786
1787         lvid->descTag.descCRC = cpu_to_le16(
1788                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1789                         le16_to_cpu(lvid->descTag.descCRCLength)));
1790
1791         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1792         mark_buffer_dirty(bh);
1793         sbi->s_lvid_dirty = 0;
1794         mutex_unlock(&sbi->s_alloc_mutex);
1795 }
1796
1797 static void udf_close_lvid(struct super_block *sb)
1798 {
1799         struct udf_sb_info *sbi = UDF_SB(sb);
1800         struct buffer_head *bh = sbi->s_lvid_bh;
1801         struct logicalVolIntegrityDesc *lvid;
1802         struct logicalVolIntegrityDescImpUse *lvidiu;
1803
1804         if (!bh)
1805                 return;
1806
1807         mutex_lock(&sbi->s_alloc_mutex);
1808         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1809         lvidiu = udf_sb_lvidiu(sbi);
1810         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1813         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1814                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1815         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1816                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1817         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1818                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1819         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1820
1821         lvid->descTag.descCRC = cpu_to_le16(
1822                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1823                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1824
1825         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1826         /*
1827          * We set buffer uptodate unconditionally here to avoid spurious
1828          * warnings from mark_buffer_dirty() when previous EIO has marked
1829          * the buffer as !uptodate
1830          */
1831         set_buffer_uptodate(bh);
1832         mark_buffer_dirty(bh);
1833         sbi->s_lvid_dirty = 0;
1834         mutex_unlock(&sbi->s_alloc_mutex);
1835 }
1836
1837 u64 lvid_get_unique_id(struct super_block *sb)
1838 {
1839         struct buffer_head *bh;
1840         struct udf_sb_info *sbi = UDF_SB(sb);
1841         struct logicalVolIntegrityDesc *lvid;
1842         struct logicalVolHeaderDesc *lvhd;
1843         u64 uniqueID;
1844         u64 ret;
1845
1846         bh = sbi->s_lvid_bh;
1847         if (!bh)
1848                 return 0;
1849
1850         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1851         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1852
1853         mutex_lock(&sbi->s_alloc_mutex);
1854         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1855         if (!(++uniqueID & 0xFFFFFFFF))
1856                 uniqueID += 16;
1857         lvhd->uniqueID = cpu_to_le64(uniqueID);
1858         mutex_unlock(&sbi->s_alloc_mutex);
1859         mark_buffer_dirty(bh);
1860
1861         return ret;
1862 }
1863
1864 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1865 {
1866         int i;
1867         int nr_groups = bitmap->s_nr_groups;
1868         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1869                                                 nr_groups);
1870
1871         for (i = 0; i < nr_groups; i++)
1872                 if (bitmap->s_block_bitmap[i])
1873                         brelse(bitmap->s_block_bitmap[i]);
1874
1875         if (size <= PAGE_SIZE)
1876                 kfree(bitmap);
1877         else
1878                 vfree(bitmap);
1879 }
1880
1881 static void udf_free_partition(struct udf_part_map *map)
1882 {
1883         int i;
1884         struct udf_meta_data *mdata;
1885
1886         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1887                 iput(map->s_uspace.s_table);
1888         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1889                 iput(map->s_fspace.s_table);
1890         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1891                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1892         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1893                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1894         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1895                 for (i = 0; i < 4; i++)
1896                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1897         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1898                 mdata = &map->s_type_specific.s_metadata;
1899                 iput(mdata->s_metadata_fe);
1900                 mdata->s_metadata_fe = NULL;
1901
1902                 iput(mdata->s_mirror_fe);
1903                 mdata->s_mirror_fe = NULL;
1904
1905                 iput(mdata->s_bitmap_fe);
1906                 mdata->s_bitmap_fe = NULL;
1907         }
1908 }
1909
1910 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1911 {
1912         int i;
1913         int ret;
1914         struct inode *inode = NULL;
1915         struct udf_options uopt;
1916         struct kernel_lb_addr rootdir, fileset;
1917         struct udf_sb_info *sbi;
1918
1919         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1920         uopt.uid = -1;
1921         uopt.gid = -1;
1922         uopt.umask = 0;
1923         uopt.fmode = UDF_INVALID_MODE;
1924         uopt.dmode = UDF_INVALID_MODE;
1925
1926         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1927         if (!sbi)
1928                 return -ENOMEM;
1929
1930         sb->s_fs_info = sbi;
1931
1932         mutex_init(&sbi->s_alloc_mutex);
1933
1934         if (!udf_parse_options((char *)options, &uopt, false))
1935                 goto error_out;
1936
1937         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1938             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1939                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1940                 goto error_out;
1941         }
1942 #ifdef CONFIG_UDF_NLS
1943         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1944                 uopt.nls_map = load_nls_default();
1945                 if (!uopt.nls_map)
1946                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1947                 else
1948                         udf_debug("Using default NLS map\n");
1949         }
1950 #endif
1951         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1952                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1953
1954         fileset.logicalBlockNum = 0xFFFFFFFF;
1955         fileset.partitionReferenceNum = 0xFFFF;
1956
1957         sbi->s_flags = uopt.flags;
1958         sbi->s_uid = uopt.uid;
1959         sbi->s_gid = uopt.gid;
1960         sbi->s_umask = uopt.umask;
1961         sbi->s_fmode = uopt.fmode;
1962         sbi->s_dmode = uopt.dmode;
1963         sbi->s_nls_map = uopt.nls_map;
1964         rwlock_init(&sbi->s_cred_lock);
1965
1966         if (uopt.session == 0xFFFFFFFF)
1967                 sbi->s_session = udf_get_last_session(sb);
1968         else
1969                 sbi->s_session = uopt.session;
1970
1971         udf_debug("Multi-session=%d\n", sbi->s_session);
1972
1973         /* Fill in the rest of the superblock */
1974         sb->s_op = &udf_sb_ops;
1975         sb->s_export_op = &udf_export_ops;
1976
1977         sb->s_dirt = 0;
1978         sb->s_magic = UDF_SUPER_MAGIC;
1979         sb->s_time_gran = 1000;
1980
1981         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1982                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1983         } else {
1984                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1985                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1986                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1987                         if (!silent)
1988                                 pr_notice("Rescanning with blocksize %d\n",
1989                                           UDF_DEFAULT_BLOCKSIZE);
1990                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1991                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1992                 }
1993         }
1994         if (!ret) {
1995                 udf_warn(sb, "No partition found (1)\n");
1996                 goto error_out;
1997         }
1998
1999         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2000
2001         if (sbi->s_lvid_bh) {
2002                 struct logicalVolIntegrityDescImpUse *lvidiu =
2003                                                         udf_sb_lvidiu(sbi);
2004                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2005                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2006                 /* uint16_t maxUDFWriteRev =
2007                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2008
2009                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2010                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2011                                 le16_to_cpu(lvidiu->minUDFReadRev),
2012                                 UDF_MAX_READ_VERSION);
2013                         goto error_out;
2014                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2015                         sb->s_flags |= MS_RDONLY;
2016
2017                 sbi->s_udfrev = minUDFWriteRev;
2018
2019                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2020                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2021                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2022                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2023         }
2024
2025         if (!sbi->s_partitions) {
2026                 udf_warn(sb, "No partition found (2)\n");
2027                 goto error_out;
2028         }
2029
2030         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2031                         UDF_PART_FLAG_READ_ONLY) {
2032                 pr_notice("Partition marked readonly; forcing readonly mount\n");
2033                 sb->s_flags |= MS_RDONLY;
2034         }
2035
2036         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2037                 udf_warn(sb, "No fileset found\n");
2038                 goto error_out;
2039         }
2040
2041         if (!silent) {
2042                 struct timestamp ts;
2043                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2044                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2045                          sbi->s_volume_ident,
2046                          le16_to_cpu(ts.year), ts.month, ts.day,
2047                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2048         }
2049         if (!(sb->s_flags & MS_RDONLY))
2050                 udf_open_lvid(sb);
2051
2052         /* Assign the root inode */
2053         /* assign inodes by physical block number */
2054         /* perhaps it's not extensible enough, but for now ... */
2055         inode = udf_iget(sb, &rootdir);
2056         if (!inode) {
2057                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2058                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2059                 goto error_out;
2060         }
2061
2062         /* Allocate a dentry for the root inode */
2063         sb->s_root = d_make_root(inode);
2064         if (!sb->s_root) {
2065                 udf_err(sb, "Couldn't allocate root dentry\n");
2066                 goto error_out;
2067         }
2068         sb->s_maxbytes = MAX_LFS_FILESIZE;
2069         sb->s_max_links = UDF_MAX_LINKS;
2070         return 0;
2071
2072 error_out:
2073         if (sbi->s_vat_inode)
2074                 iput(sbi->s_vat_inode);
2075         if (sbi->s_partitions)
2076                 for (i = 0; i < sbi->s_partitions; i++)
2077                         udf_free_partition(&sbi->s_partmaps[i]);
2078 #ifdef CONFIG_UDF_NLS
2079         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2080                 unload_nls(sbi->s_nls_map);
2081 #endif
2082         if (!(sb->s_flags & MS_RDONLY))
2083                 udf_close_lvid(sb);
2084         brelse(sbi->s_lvid_bh);
2085
2086         kfree(sbi->s_partmaps);
2087         kfree(sbi);
2088         sb->s_fs_info = NULL;
2089
2090         return -EINVAL;
2091 }
2092
2093 void _udf_err(struct super_block *sb, const char *function,
2094               const char *fmt, ...)
2095 {
2096         struct va_format vaf;
2097         va_list args;
2098
2099         /* mark sb error */
2100         if (!(sb->s_flags & MS_RDONLY))
2101                 sb->s_dirt = 1;
2102
2103         va_start(args, fmt);
2104
2105         vaf.fmt = fmt;
2106         vaf.va = &args;
2107
2108         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2109
2110         va_end(args);
2111 }
2112
2113 void _udf_warn(struct super_block *sb, const char *function,
2114                const char *fmt, ...)
2115 {
2116         struct va_format vaf;
2117         va_list args;
2118
2119         va_start(args, fmt);
2120
2121         vaf.fmt = fmt;
2122         vaf.va = &args;
2123
2124         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2125
2126         va_end(args);
2127 }
2128
2129 static void udf_put_super(struct super_block *sb)
2130 {
2131         int i;
2132         struct udf_sb_info *sbi;
2133
2134         sbi = UDF_SB(sb);
2135
2136         if (sbi->s_vat_inode)
2137                 iput(sbi->s_vat_inode);
2138         if (sbi->s_partitions)
2139                 for (i = 0; i < sbi->s_partitions; i++)
2140                         udf_free_partition(&sbi->s_partmaps[i]);
2141 #ifdef CONFIG_UDF_NLS
2142         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2143                 unload_nls(sbi->s_nls_map);
2144 #endif
2145         if (!(sb->s_flags & MS_RDONLY))
2146                 udf_close_lvid(sb);
2147         brelse(sbi->s_lvid_bh);
2148         kfree(sbi->s_partmaps);
2149         kfree(sb->s_fs_info);
2150         sb->s_fs_info = NULL;
2151 }
2152
2153 static int udf_sync_fs(struct super_block *sb, int wait)
2154 {
2155         struct udf_sb_info *sbi = UDF_SB(sb);
2156
2157         mutex_lock(&sbi->s_alloc_mutex);
2158         if (sbi->s_lvid_dirty) {
2159                 /*
2160                  * Blockdevice will be synced later so we don't have to submit
2161                  * the buffer for IO
2162                  */
2163                 mark_buffer_dirty(sbi->s_lvid_bh);
2164                 sb->s_dirt = 0;
2165                 sbi->s_lvid_dirty = 0;
2166         }
2167         mutex_unlock(&sbi->s_alloc_mutex);
2168
2169         return 0;
2170 }
2171
2172 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2173 {
2174         struct super_block *sb = dentry->d_sb;
2175         struct udf_sb_info *sbi = UDF_SB(sb);
2176         struct logicalVolIntegrityDescImpUse *lvidiu;
2177         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2178
2179         if (sbi->s_lvid_bh != NULL)
2180                 lvidiu = udf_sb_lvidiu(sbi);
2181         else
2182                 lvidiu = NULL;
2183
2184         buf->f_type = UDF_SUPER_MAGIC;
2185         buf->f_bsize = sb->s_blocksize;
2186         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2187         buf->f_bfree = udf_count_free(sb);
2188         buf->f_bavail = buf->f_bfree;
2189         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2190                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2191                         + buf->f_bfree;
2192         buf->f_ffree = buf->f_bfree;
2193         buf->f_namelen = UDF_NAME_LEN - 2;
2194         buf->f_fsid.val[0] = (u32)id;
2195         buf->f_fsid.val[1] = (u32)(id >> 32);
2196
2197         return 0;
2198 }
2199
2200 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2201                                           struct udf_bitmap *bitmap)
2202 {
2203         struct buffer_head *bh = NULL;
2204         unsigned int accum = 0;
2205         int index;
2206         int block = 0, newblock;
2207         struct kernel_lb_addr loc;
2208         uint32_t bytes;
2209         uint8_t *ptr;
2210         uint16_t ident;
2211         struct spaceBitmapDesc *bm;
2212
2213         loc.logicalBlockNum = bitmap->s_extPosition;
2214         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2215         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2216
2217         if (!bh) {
2218                 udf_err(sb, "udf_count_free failed\n");
2219                 goto out;
2220         } else if (ident != TAG_IDENT_SBD) {
2221                 brelse(bh);
2222                 udf_err(sb, "udf_count_free failed\n");
2223                 goto out;
2224         }
2225
2226         bm = (struct spaceBitmapDesc *)bh->b_data;
2227         bytes = le32_to_cpu(bm->numOfBytes);
2228         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2229         ptr = (uint8_t *)bh->b_data;
2230
2231         while (bytes > 0) {
2232                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2233                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2234                                         cur_bytes * 8);
2235                 bytes -= cur_bytes;
2236                 if (bytes) {
2237                         brelse(bh);
2238                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2239                         bh = udf_tread(sb, newblock);
2240                         if (!bh) {
2241                                 udf_debug("read failed\n");
2242                                 goto out;
2243                         }
2244                         index = 0;
2245                         ptr = (uint8_t *)bh->b_data;
2246                 }
2247         }
2248         brelse(bh);
2249 out:
2250         return accum;
2251 }
2252
2253 static unsigned int udf_count_free_table(struct super_block *sb,
2254                                          struct inode *table)
2255 {
2256         unsigned int accum = 0;
2257         uint32_t elen;
2258         struct kernel_lb_addr eloc;
2259         int8_t etype;
2260         struct extent_position epos;
2261
2262         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2263         epos.block = UDF_I(table)->i_location;
2264         epos.offset = sizeof(struct unallocSpaceEntry);
2265         epos.bh = NULL;
2266
2267         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2268                 accum += (elen >> table->i_sb->s_blocksize_bits);
2269
2270         brelse(epos.bh);
2271         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2272
2273         return accum;
2274 }
2275
2276 static unsigned int udf_count_free(struct super_block *sb)
2277 {
2278         unsigned int accum = 0;
2279         struct udf_sb_info *sbi;
2280         struct udf_part_map *map;
2281
2282         sbi = UDF_SB(sb);
2283         if (sbi->s_lvid_bh) {
2284                 struct logicalVolIntegrityDesc *lvid =
2285                         (struct logicalVolIntegrityDesc *)
2286                         sbi->s_lvid_bh->b_data;
2287                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2288                         accum = le32_to_cpu(
2289                                         lvid->freeSpaceTable[sbi->s_partition]);
2290                         if (accum == 0xFFFFFFFF)
2291                                 accum = 0;
2292                 }
2293         }
2294
2295         if (accum)
2296                 return accum;
2297
2298         map = &sbi->s_partmaps[sbi->s_partition];
2299         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2300                 accum += udf_count_free_bitmap(sb,
2301                                                map->s_uspace.s_bitmap);
2302         }
2303         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2304                 accum += udf_count_free_bitmap(sb,
2305                                                map->s_fspace.s_bitmap);
2306         }
2307         if (accum)
2308                 return accum;
2309
2310         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2311                 accum += udf_count_free_table(sb,
2312                                               map->s_uspace.s_table);
2313         }
2314         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2315                 accum += udf_count_free_table(sb,
2316                                               map->s_fspace.s_table);
2317         }
2318
2319         return accum;
2320 }