]> Pileus Git - ~andy/linux/blob - fs/pstore/ram_core.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[~andy/linux] / fs / pstore / ram_core.c
1 /*
2  * Copyright (C) 2012 Google, Inc.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/list.h>
22 #include <linux/memblock.h>
23 #include <linux/rslib.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/pstore_ram.h>
27 #include <asm/page.h>
28
29 struct persistent_ram_buffer {
30         uint32_t    sig;
31         atomic_t    start;
32         atomic_t    size;
33         uint8_t     data[0];
34 };
35
36 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
37
38 static inline size_t buffer_size(struct persistent_ram_zone *prz)
39 {
40         return atomic_read(&prz->buffer->size);
41 }
42
43 static inline size_t buffer_start(struct persistent_ram_zone *prz)
44 {
45         return atomic_read(&prz->buffer->start);
46 }
47
48 /* increase and wrap the start pointer, returning the old value */
49 static size_t buffer_start_add_atomic(struct persistent_ram_zone *prz, size_t a)
50 {
51         int old;
52         int new;
53
54         do {
55                 old = atomic_read(&prz->buffer->start);
56                 new = old + a;
57                 while (unlikely(new > prz->buffer_size))
58                         new -= prz->buffer_size;
59         } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
60
61         return old;
62 }
63
64 /* increase the size counter until it hits the max size */
65 static void buffer_size_add_atomic(struct persistent_ram_zone *prz, size_t a)
66 {
67         size_t old;
68         size_t new;
69
70         if (atomic_read(&prz->buffer->size) == prz->buffer_size)
71                 return;
72
73         do {
74                 old = atomic_read(&prz->buffer->size);
75                 new = old + a;
76                 if (new > prz->buffer_size)
77                         new = prz->buffer_size;
78         } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
79 }
80
81 static DEFINE_RAW_SPINLOCK(buffer_lock);
82
83 /* increase and wrap the start pointer, returning the old value */
84 static size_t buffer_start_add_locked(struct persistent_ram_zone *prz, size_t a)
85 {
86         int old;
87         int new;
88         unsigned long flags;
89
90         raw_spin_lock_irqsave(&buffer_lock, flags);
91
92         old = atomic_read(&prz->buffer->start);
93         new = old + a;
94         while (unlikely(new > prz->buffer_size))
95                 new -= prz->buffer_size;
96         atomic_set(&prz->buffer->start, new);
97
98         raw_spin_unlock_irqrestore(&buffer_lock, flags);
99
100         return old;
101 }
102
103 /* increase the size counter until it hits the max size */
104 static void buffer_size_add_locked(struct persistent_ram_zone *prz, size_t a)
105 {
106         size_t old;
107         size_t new;
108         unsigned long flags;
109
110         raw_spin_lock_irqsave(&buffer_lock, flags);
111
112         old = atomic_read(&prz->buffer->size);
113         if (old == prz->buffer_size)
114                 goto exit;
115
116         new = old + a;
117         if (new > prz->buffer_size)
118                 new = prz->buffer_size;
119         atomic_set(&prz->buffer->size, new);
120
121 exit:
122         raw_spin_unlock_irqrestore(&buffer_lock, flags);
123 }
124
125 static size_t (*buffer_start_add)(struct persistent_ram_zone *, size_t) = buffer_start_add_atomic;
126 static void (*buffer_size_add)(struct persistent_ram_zone *, size_t) = buffer_size_add_atomic;
127
128 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
129         uint8_t *data, size_t len, uint8_t *ecc)
130 {
131         int i;
132         uint16_t par[prz->ecc_info.ecc_size];
133
134         /* Initialize the parity buffer */
135         memset(par, 0, sizeof(par));
136         encode_rs8(prz->rs_decoder, data, len, par, 0);
137         for (i = 0; i < prz->ecc_info.ecc_size; i++)
138                 ecc[i] = par[i];
139 }
140
141 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
142         void *data, size_t len, uint8_t *ecc)
143 {
144         int i;
145         uint16_t par[prz->ecc_info.ecc_size];
146
147         for (i = 0; i < prz->ecc_info.ecc_size; i++)
148                 par[i] = ecc[i];
149         return decode_rs8(prz->rs_decoder, data, par, len,
150                                 NULL, 0, NULL, 0, NULL);
151 }
152
153 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
154         unsigned int start, unsigned int count)
155 {
156         struct persistent_ram_buffer *buffer = prz->buffer;
157         uint8_t *buffer_end = buffer->data + prz->buffer_size;
158         uint8_t *block;
159         uint8_t *par;
160         int ecc_block_size = prz->ecc_info.block_size;
161         int ecc_size = prz->ecc_info.ecc_size;
162         int size = ecc_block_size;
163
164         if (!ecc_size)
165                 return;
166
167         block = buffer->data + (start & ~(ecc_block_size - 1));
168         par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
169
170         do {
171                 if (block + ecc_block_size > buffer_end)
172                         size = buffer_end - block;
173                 persistent_ram_encode_rs8(prz, block, size, par);
174                 block += ecc_block_size;
175                 par += ecc_size;
176         } while (block < buffer->data + start + count);
177 }
178
179 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
180 {
181         struct persistent_ram_buffer *buffer = prz->buffer;
182
183         if (!prz->ecc_info.ecc_size)
184                 return;
185
186         persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
187                                   prz->par_header);
188 }
189
190 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
191 {
192         struct persistent_ram_buffer *buffer = prz->buffer;
193         uint8_t *block;
194         uint8_t *par;
195
196         if (!prz->ecc_info.ecc_size)
197                 return;
198
199         block = buffer->data;
200         par = prz->par_buffer;
201         while (block < buffer->data + buffer_size(prz)) {
202                 int numerr;
203                 int size = prz->ecc_info.block_size;
204                 if (block + size > buffer->data + prz->buffer_size)
205                         size = buffer->data + prz->buffer_size - block;
206                 numerr = persistent_ram_decode_rs8(prz, block, size, par);
207                 if (numerr > 0) {
208                         pr_devel("persistent_ram: error in block %p, %d\n",
209                                block, numerr);
210                         prz->corrected_bytes += numerr;
211                 } else if (numerr < 0) {
212                         pr_devel("persistent_ram: uncorrectable error in block %p\n",
213                                 block);
214                         prz->bad_blocks++;
215                 }
216                 block += prz->ecc_info.block_size;
217                 par += prz->ecc_info.ecc_size;
218         }
219 }
220
221 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
222                                    struct persistent_ram_ecc_info *ecc_info)
223 {
224         int numerr;
225         struct persistent_ram_buffer *buffer = prz->buffer;
226         int ecc_blocks;
227         size_t ecc_total;
228
229         if (!ecc_info || !ecc_info->ecc_size)
230                 return 0;
231
232         prz->ecc_info.block_size = ecc_info->block_size ?: 128;
233         prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
234         prz->ecc_info.symsize = ecc_info->symsize ?: 8;
235         prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
236
237         ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
238                                   prz->ecc_info.block_size +
239                                   prz->ecc_info.ecc_size);
240         ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
241         if (ecc_total >= prz->buffer_size) {
242                 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
243                        __func__, prz->ecc_info.ecc_size,
244                        ecc_total, prz->buffer_size);
245                 return -EINVAL;
246         }
247
248         prz->buffer_size -= ecc_total;
249         prz->par_buffer = buffer->data + prz->buffer_size;
250         prz->par_header = prz->par_buffer +
251                           ecc_blocks * prz->ecc_info.ecc_size;
252
253         /*
254          * first consecutive root is 0
255          * primitive element to generate roots = 1
256          */
257         prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
258                                   0, 1, prz->ecc_info.ecc_size);
259         if (prz->rs_decoder == NULL) {
260                 pr_info("persistent_ram: init_rs failed\n");
261                 return -EINVAL;
262         }
263
264         prz->corrected_bytes = 0;
265         prz->bad_blocks = 0;
266
267         numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
268                                            prz->par_header);
269         if (numerr > 0) {
270                 pr_info("persistent_ram: error in header, %d\n", numerr);
271                 prz->corrected_bytes += numerr;
272         } else if (numerr < 0) {
273                 pr_info("persistent_ram: uncorrectable error in header\n");
274                 prz->bad_blocks++;
275         }
276
277         return 0;
278 }
279
280 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
281         char *str, size_t len)
282 {
283         ssize_t ret;
284
285         if (!prz->ecc_info.ecc_size)
286                 return 0;
287
288         if (prz->corrected_bytes || prz->bad_blocks)
289                 ret = snprintf(str, len, ""
290                         "\n%d Corrected bytes, %d unrecoverable blocks\n",
291                         prz->corrected_bytes, prz->bad_blocks);
292         else
293                 ret = snprintf(str, len, "\nNo errors detected\n");
294
295         return ret;
296 }
297
298 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
299         const void *s, unsigned int start, unsigned int count)
300 {
301         struct persistent_ram_buffer *buffer = prz->buffer;
302         memcpy(buffer->data + start, s, count);
303         persistent_ram_update_ecc(prz, start, count);
304 }
305
306 void persistent_ram_save_old(struct persistent_ram_zone *prz)
307 {
308         struct persistent_ram_buffer *buffer = prz->buffer;
309         size_t size = buffer_size(prz);
310         size_t start = buffer_start(prz);
311
312         if (!size)
313                 return;
314
315         if (!prz->old_log) {
316                 persistent_ram_ecc_old(prz);
317                 prz->old_log = kmalloc(size, GFP_KERNEL);
318         }
319         if (!prz->old_log) {
320                 pr_err("persistent_ram: failed to allocate buffer\n");
321                 return;
322         }
323
324         prz->old_log_size = size;
325         memcpy(prz->old_log, &buffer->data[start], size - start);
326         memcpy(prz->old_log + size - start, &buffer->data[0], start);
327 }
328
329 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
330         const void *s, unsigned int count)
331 {
332         int rem;
333         int c = count;
334         size_t start;
335
336         if (unlikely(c > prz->buffer_size)) {
337                 s += c - prz->buffer_size;
338                 c = prz->buffer_size;
339         }
340
341         buffer_size_add(prz, c);
342
343         start = buffer_start_add(prz, c);
344
345         rem = prz->buffer_size - start;
346         if (unlikely(rem < c)) {
347                 persistent_ram_update(prz, s, start, rem);
348                 s += rem;
349                 c -= rem;
350                 start = 0;
351         }
352         persistent_ram_update(prz, s, start, c);
353
354         persistent_ram_update_header_ecc(prz);
355
356         return count;
357 }
358
359 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
360 {
361         return prz->old_log_size;
362 }
363
364 void *persistent_ram_old(struct persistent_ram_zone *prz)
365 {
366         return prz->old_log;
367 }
368
369 void persistent_ram_free_old(struct persistent_ram_zone *prz)
370 {
371         kfree(prz->old_log);
372         prz->old_log = NULL;
373         prz->old_log_size = 0;
374 }
375
376 void persistent_ram_zap(struct persistent_ram_zone *prz)
377 {
378         atomic_set(&prz->buffer->start, 0);
379         atomic_set(&prz->buffer->size, 0);
380         persistent_ram_update_header_ecc(prz);
381 }
382
383 static void *persistent_ram_vmap(phys_addr_t start, size_t size)
384 {
385         struct page **pages;
386         phys_addr_t page_start;
387         unsigned int page_count;
388         pgprot_t prot;
389         unsigned int i;
390         void *vaddr;
391
392         page_start = start - offset_in_page(start);
393         page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
394
395         prot = pgprot_noncached(PAGE_KERNEL);
396
397         pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
398         if (!pages) {
399                 pr_err("%s: Failed to allocate array for %u pages\n", __func__,
400                         page_count);
401                 return NULL;
402         }
403
404         for (i = 0; i < page_count; i++) {
405                 phys_addr_t addr = page_start + i * PAGE_SIZE;
406                 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
407         }
408         vaddr = vmap(pages, page_count, VM_MAP, prot);
409         kfree(pages);
410
411         return vaddr;
412 }
413
414 static void *persistent_ram_iomap(phys_addr_t start, size_t size)
415 {
416         if (!request_mem_region(start, size, "persistent_ram")) {
417                 pr_err("request mem region (0x%llx@0x%llx) failed\n",
418                         (unsigned long long)size, (unsigned long long)start);
419                 return NULL;
420         }
421
422         buffer_start_add = buffer_start_add_locked;
423         buffer_size_add = buffer_size_add_locked;
424
425         return ioremap(start, size);
426 }
427
428 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
429                 struct persistent_ram_zone *prz)
430 {
431         prz->paddr = start;
432         prz->size = size;
433
434         if (pfn_valid(start >> PAGE_SHIFT))
435                 prz->vaddr = persistent_ram_vmap(start, size);
436         else
437                 prz->vaddr = persistent_ram_iomap(start, size);
438
439         if (!prz->vaddr) {
440                 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
441                         (unsigned long long)size, (unsigned long long)start);
442                 return -ENOMEM;
443         }
444
445         prz->buffer = prz->vaddr + offset_in_page(start);
446         prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
447
448         return 0;
449 }
450
451 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
452                                     struct persistent_ram_ecc_info *ecc_info)
453 {
454         int ret;
455
456         ret = persistent_ram_init_ecc(prz, ecc_info);
457         if (ret)
458                 return ret;
459
460         sig ^= PERSISTENT_RAM_SIG;
461
462         if (prz->buffer->sig == sig) {
463                 if (buffer_size(prz) > prz->buffer_size ||
464                     buffer_start(prz) > buffer_size(prz))
465                         pr_info("persistent_ram: found existing invalid buffer,"
466                                 " size %zu, start %zu\n",
467                                buffer_size(prz), buffer_start(prz));
468                 else {
469                         pr_debug("persistent_ram: found existing buffer,"
470                                 " size %zu, start %zu\n",
471                                buffer_size(prz), buffer_start(prz));
472                         persistent_ram_save_old(prz);
473                         return 0;
474                 }
475         } else {
476                 pr_debug("persistent_ram: no valid data in buffer"
477                         " (sig = 0x%08x)\n", prz->buffer->sig);
478         }
479
480         prz->buffer->sig = sig;
481         persistent_ram_zap(prz);
482
483         return 0;
484 }
485
486 void persistent_ram_free(struct persistent_ram_zone *prz)
487 {
488         if (!prz)
489                 return;
490
491         if (prz->vaddr) {
492                 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
493                         vunmap(prz->vaddr);
494                 } else {
495                         iounmap(prz->vaddr);
496                         release_mem_region(prz->paddr, prz->size);
497                 }
498                 prz->vaddr = NULL;
499         }
500         persistent_ram_free_old(prz);
501         kfree(prz);
502 }
503
504 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
505                         u32 sig, struct persistent_ram_ecc_info *ecc_info)
506 {
507         struct persistent_ram_zone *prz;
508         int ret = -ENOMEM;
509
510         prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
511         if (!prz) {
512                 pr_err("persistent_ram: failed to allocate persistent ram zone\n");
513                 goto err;
514         }
515
516         ret = persistent_ram_buffer_map(start, size, prz);
517         if (ret)
518                 goto err;
519
520         ret = persistent_ram_post_init(prz, sig, ecc_info);
521         if (ret)
522                 goto err;
523
524         return prz;
525 err:
526         persistent_ram_free(prz);
527         return ERR_PTR(ret);
528 }