]> Pileus Git - ~andy/linux/blob - fs/namei.c
make d_splice_alias(ERR_PTR(err), dentry) = ERR_PTR(err)
[~andy/linux] / fs / namei.c
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * Some corrections by tytso.
9  */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now 
49  * replaced with a single function lookup_dentry() that can handle all 
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existent name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *      inside the path - always follow.
92  *      in the last component in creation/removal/renaming - never follow.
93  *      if LOOKUP_FOLLOW passed - follow.
94  *      if the pathname has trailing slashes - follow.
95  *      otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119         int retval;
120         unsigned long len = PATH_MAX;
121
122         if (!segment_eq(get_fs(), KERNEL_DS)) {
123                 if ((unsigned long) filename >= TASK_SIZE)
124                         return -EFAULT;
125                 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126                         len = TASK_SIZE - (unsigned long) filename;
127         }
128
129         retval = strncpy_from_user(page, filename, len);
130         if (retval > 0) {
131                 if (retval < len)
132                         return 0;
133                 return -ENAMETOOLONG;
134         } else if (!retval)
135                 retval = -ENOENT;
136         return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141         char *tmp, *result;
142
143         result = ERR_PTR(-ENOMEM);
144         tmp = __getname();
145         if (tmp)  {
146                 int retval = do_getname(filename, tmp);
147
148                 result = tmp;
149                 if (retval < 0) {
150                         if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151                                 __putname(tmp);
152                                 result = ERR_PTR(retval);
153                         }
154                 }
155         }
156         audit_getname(result);
157         return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162         return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168         if (unlikely(!audit_dummy_context()))
169                 audit_putname(name);
170         else
171                 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177  * This does basic POSIX ACL permission checking
178  */
179 static int acl_permission_check(struct inode *inode, int mask)
180 {
181         int (*check_acl)(struct inode *inode, int mask);
182         unsigned int mode = inode->i_mode;
183
184         mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
185
186         if (current_user_ns() != inode_userns(inode))
187                 goto other_perms;
188
189         if (current_fsuid() == inode->i_uid)
190                 mode >>= 6;
191         else {
192                 check_acl = inode->i_op->check_acl;
193                 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
194                         int error = check_acl(inode, mask);
195                         if (error != -EAGAIN)
196                                 return error;
197                 }
198
199                 if (in_group_p(inode->i_gid))
200                         mode >>= 3;
201         }
202
203 other_perms:
204         /*
205          * If the DACs are ok we don't need any capability check.
206          */
207         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
208                 return 0;
209         return -EACCES;
210 }
211
212 /**
213  * generic_permission -  check for access rights on a Posix-like filesystem
214  * @inode:      inode to check access rights for
215  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
216  * @flags:      IPERM_FLAG_ flags.
217  *
218  * Used to check for read/write/execute permissions on a file.
219  * We use "fsuid" for this, letting us set arbitrary permissions
220  * for filesystem access without changing the "normal" uids which
221  * are used for other things.
222  *
223  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224  * request cannot be satisfied (eg. requires blocking or too much complexity).
225  * It would then be called again in ref-walk mode.
226  */
227 int generic_permission(struct inode *inode, int mask)
228 {
229         int ret;
230
231         /*
232          * Do the basic POSIX ACL permission checks.
233          */
234         ret = acl_permission_check(inode, mask);
235         if (ret != -EACCES)
236                 return ret;
237
238         if (S_ISDIR(inode->i_mode)) {
239                 /* DACs are overridable for directories */
240                 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
241                         return 0;
242                 if (!(mask & MAY_WRITE))
243                         if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
244                                 return 0;
245                 return -EACCES;
246         }
247         /*
248          * Read/write DACs are always overridable.
249          * Executable DACs are overridable when there is
250          * at least one exec bit set.
251          */
252         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
253                 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
254                         return 0;
255
256         /*
257          * Searching includes executable on directories, else just read.
258          */
259         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
260         if (mask == MAY_READ)
261                 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
262                         return 0;
263
264         return -EACCES;
265 }
266
267 /**
268  * inode_permission  -  check for access rights to a given inode
269  * @inode:      inode to check permission on
270  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
271  *
272  * Used to check for read/write/execute permissions on an inode.
273  * We use "fsuid" for this, letting us set arbitrary permissions
274  * for filesystem access without changing the "normal" uids which
275  * are used for other things.
276  */
277 int inode_permission(struct inode *inode, int mask)
278 {
279         int retval;
280
281         if (mask & MAY_WRITE) {
282                 umode_t mode = inode->i_mode;
283
284                 /*
285                  * Nobody gets write access to a read-only fs.
286                  */
287                 if (IS_RDONLY(inode) &&
288                     (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
289                         return -EROFS;
290
291                 /*
292                  * Nobody gets write access to an immutable file.
293                  */
294                 if (IS_IMMUTABLE(inode))
295                         return -EACCES;
296         }
297
298         if (inode->i_op->permission)
299                 retval = inode->i_op->permission(inode, mask);
300         else
301                 retval = generic_permission(inode, mask);
302
303         if (retval)
304                 return retval;
305
306         retval = devcgroup_inode_permission(inode, mask);
307         if (retval)
308                 return retval;
309
310         return security_inode_permission(inode, mask);
311 }
312
313 /**
314  * path_get - get a reference to a path
315  * @path: path to get the reference to
316  *
317  * Given a path increment the reference count to the dentry and the vfsmount.
318  */
319 void path_get(struct path *path)
320 {
321         mntget(path->mnt);
322         dget(path->dentry);
323 }
324 EXPORT_SYMBOL(path_get);
325
326 /**
327  * path_put - put a reference to a path
328  * @path: path to put the reference to
329  *
330  * Given a path decrement the reference count to the dentry and the vfsmount.
331  */
332 void path_put(struct path *path)
333 {
334         dput(path->dentry);
335         mntput(path->mnt);
336 }
337 EXPORT_SYMBOL(path_put);
338
339 /*
340  * Path walking has 2 modes, rcu-walk and ref-walk (see
341  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
342  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
343  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
344  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
345  * got stuck, so ref-walk may continue from there. If this is not successful
346  * (eg. a seqcount has changed), then failure is returned and it's up to caller
347  * to restart the path walk from the beginning in ref-walk mode.
348  */
349
350 /**
351  * unlazy_walk - try to switch to ref-walk mode.
352  * @nd: nameidata pathwalk data
353  * @dentry: child of nd->path.dentry or NULL
354  * Returns: 0 on success, -ECHILD on failure
355  *
356  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
357  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
358  * @nd or NULL.  Must be called from rcu-walk context.
359  */
360 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
361 {
362         struct fs_struct *fs = current->fs;
363         struct dentry *parent = nd->path.dentry;
364         int want_root = 0;
365
366         BUG_ON(!(nd->flags & LOOKUP_RCU));
367         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
368                 want_root = 1;
369                 spin_lock(&fs->lock);
370                 if (nd->root.mnt != fs->root.mnt ||
371                                 nd->root.dentry != fs->root.dentry)
372                         goto err_root;
373         }
374         spin_lock(&parent->d_lock);
375         if (!dentry) {
376                 if (!__d_rcu_to_refcount(parent, nd->seq))
377                         goto err_parent;
378                 BUG_ON(nd->inode != parent->d_inode);
379         } else {
380                 if (dentry->d_parent != parent)
381                         goto err_parent;
382                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
383                 if (!__d_rcu_to_refcount(dentry, nd->seq))
384                         goto err_child;
385                 /*
386                  * If the sequence check on the child dentry passed, then
387                  * the child has not been removed from its parent. This
388                  * means the parent dentry must be valid and able to take
389                  * a reference at this point.
390                  */
391                 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
392                 BUG_ON(!parent->d_count);
393                 parent->d_count++;
394                 spin_unlock(&dentry->d_lock);
395         }
396         spin_unlock(&parent->d_lock);
397         if (want_root) {
398                 path_get(&nd->root);
399                 spin_unlock(&fs->lock);
400         }
401         mntget(nd->path.mnt);
402
403         rcu_read_unlock();
404         br_read_unlock(vfsmount_lock);
405         nd->flags &= ~LOOKUP_RCU;
406         return 0;
407
408 err_child:
409         spin_unlock(&dentry->d_lock);
410 err_parent:
411         spin_unlock(&parent->d_lock);
412 err_root:
413         if (want_root)
414                 spin_unlock(&fs->lock);
415         return -ECHILD;
416 }
417
418 /**
419  * release_open_intent - free up open intent resources
420  * @nd: pointer to nameidata
421  */
422 void release_open_intent(struct nameidata *nd)
423 {
424         struct file *file = nd->intent.open.file;
425
426         if (file && !IS_ERR(file)) {
427                 if (file->f_path.dentry == NULL)
428                         put_filp(file);
429                 else
430                         fput(file);
431         }
432 }
433
434 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
435 {
436         return dentry->d_op->d_revalidate(dentry, nd);
437 }
438
439 /**
440  * complete_walk - successful completion of path walk
441  * @nd:  pointer nameidata
442  *
443  * If we had been in RCU mode, drop out of it and legitimize nd->path.
444  * Revalidate the final result, unless we'd already done that during
445  * the path walk or the filesystem doesn't ask for it.  Return 0 on
446  * success, -error on failure.  In case of failure caller does not
447  * need to drop nd->path.
448  */
449 static int complete_walk(struct nameidata *nd)
450 {
451         struct dentry *dentry = nd->path.dentry;
452         int status;
453
454         if (nd->flags & LOOKUP_RCU) {
455                 nd->flags &= ~LOOKUP_RCU;
456                 if (!(nd->flags & LOOKUP_ROOT))
457                         nd->root.mnt = NULL;
458                 spin_lock(&dentry->d_lock);
459                 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
460                         spin_unlock(&dentry->d_lock);
461                         rcu_read_unlock();
462                         br_read_unlock(vfsmount_lock);
463                         return -ECHILD;
464                 }
465                 BUG_ON(nd->inode != dentry->d_inode);
466                 spin_unlock(&dentry->d_lock);
467                 mntget(nd->path.mnt);
468                 rcu_read_unlock();
469                 br_read_unlock(vfsmount_lock);
470         }
471
472         if (likely(!(nd->flags & LOOKUP_JUMPED)))
473                 return 0;
474
475         if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
476                 return 0;
477
478         if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
479                 return 0;
480
481         /* Note: we do not d_invalidate() */
482         status = d_revalidate(dentry, nd);
483         if (status > 0)
484                 return 0;
485
486         if (!status)
487                 status = -ESTALE;
488
489         path_put(&nd->path);
490         return status;
491 }
492
493 static __always_inline void set_root(struct nameidata *nd)
494 {
495         if (!nd->root.mnt)
496                 get_fs_root(current->fs, &nd->root);
497 }
498
499 static int link_path_walk(const char *, struct nameidata *);
500
501 static __always_inline void set_root_rcu(struct nameidata *nd)
502 {
503         if (!nd->root.mnt) {
504                 struct fs_struct *fs = current->fs;
505                 unsigned seq;
506
507                 do {
508                         seq = read_seqcount_begin(&fs->seq);
509                         nd->root = fs->root;
510                         nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
511                 } while (read_seqcount_retry(&fs->seq, seq));
512         }
513 }
514
515 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
516 {
517         int ret;
518
519         if (IS_ERR(link))
520                 goto fail;
521
522         if (*link == '/') {
523                 set_root(nd);
524                 path_put(&nd->path);
525                 nd->path = nd->root;
526                 path_get(&nd->root);
527                 nd->flags |= LOOKUP_JUMPED;
528         }
529         nd->inode = nd->path.dentry->d_inode;
530
531         ret = link_path_walk(link, nd);
532         return ret;
533 fail:
534         path_put(&nd->path);
535         return PTR_ERR(link);
536 }
537
538 static void path_put_conditional(struct path *path, struct nameidata *nd)
539 {
540         dput(path->dentry);
541         if (path->mnt != nd->path.mnt)
542                 mntput(path->mnt);
543 }
544
545 static inline void path_to_nameidata(const struct path *path,
546                                         struct nameidata *nd)
547 {
548         if (!(nd->flags & LOOKUP_RCU)) {
549                 dput(nd->path.dentry);
550                 if (nd->path.mnt != path->mnt)
551                         mntput(nd->path.mnt);
552         }
553         nd->path.mnt = path->mnt;
554         nd->path.dentry = path->dentry;
555 }
556
557 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
558 {
559         struct inode *inode = link->dentry->d_inode;
560         if (!IS_ERR(cookie) && inode->i_op->put_link)
561                 inode->i_op->put_link(link->dentry, nd, cookie);
562         path_put(link);
563 }
564
565 static __always_inline int
566 follow_link(struct path *link, struct nameidata *nd, void **p)
567 {
568         int error;
569         struct dentry *dentry = link->dentry;
570
571         BUG_ON(nd->flags & LOOKUP_RCU);
572
573         if (link->mnt == nd->path.mnt)
574                 mntget(link->mnt);
575
576         if (unlikely(current->total_link_count >= 40)) {
577                 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
578                 path_put(&nd->path);
579                 return -ELOOP;
580         }
581         cond_resched();
582         current->total_link_count++;
583
584         touch_atime(link->mnt, dentry);
585         nd_set_link(nd, NULL);
586
587         error = security_inode_follow_link(link->dentry, nd);
588         if (error) {
589                 *p = ERR_PTR(error); /* no ->put_link(), please */
590                 path_put(&nd->path);
591                 return error;
592         }
593
594         nd->last_type = LAST_BIND;
595         *p = dentry->d_inode->i_op->follow_link(dentry, nd);
596         error = PTR_ERR(*p);
597         if (!IS_ERR(*p)) {
598                 char *s = nd_get_link(nd);
599                 error = 0;
600                 if (s)
601                         error = __vfs_follow_link(nd, s);
602                 else if (nd->last_type == LAST_BIND) {
603                         nd->flags |= LOOKUP_JUMPED;
604                         nd->inode = nd->path.dentry->d_inode;
605                         if (nd->inode->i_op->follow_link) {
606                                 /* stepped on a _really_ weird one */
607                                 path_put(&nd->path);
608                                 error = -ELOOP;
609                         }
610                 }
611         }
612         return error;
613 }
614
615 static int follow_up_rcu(struct path *path)
616 {
617         struct vfsmount *parent;
618         struct dentry *mountpoint;
619
620         parent = path->mnt->mnt_parent;
621         if (parent == path->mnt)
622                 return 0;
623         mountpoint = path->mnt->mnt_mountpoint;
624         path->dentry = mountpoint;
625         path->mnt = parent;
626         return 1;
627 }
628
629 int follow_up(struct path *path)
630 {
631         struct vfsmount *parent;
632         struct dentry *mountpoint;
633
634         br_read_lock(vfsmount_lock);
635         parent = path->mnt->mnt_parent;
636         if (parent == path->mnt) {
637                 br_read_unlock(vfsmount_lock);
638                 return 0;
639         }
640         mntget(parent);
641         mountpoint = dget(path->mnt->mnt_mountpoint);
642         br_read_unlock(vfsmount_lock);
643         dput(path->dentry);
644         path->dentry = mountpoint;
645         mntput(path->mnt);
646         path->mnt = parent;
647         return 1;
648 }
649
650 /*
651  * Perform an automount
652  * - return -EISDIR to tell follow_managed() to stop and return the path we
653  *   were called with.
654  */
655 static int follow_automount(struct path *path, unsigned flags,
656                             bool *need_mntput)
657 {
658         struct vfsmount *mnt;
659         int err;
660
661         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
662                 return -EREMOTE;
663
664         /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
665          * and this is the terminal part of the path.
666          */
667         if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_PARENT))
668                 return -EISDIR; /* we actually want to stop here */
669
670         /* We want to mount if someone is trying to open/create a file of any
671          * type under the mountpoint, wants to traverse through the mountpoint
672          * or wants to open the mounted directory.
673          *
674          * We don't want to mount if someone's just doing a stat and they've
675          * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
676          * appended a '/' to the name.
677          */
678         if (!(flags & LOOKUP_FOLLOW) &&
679             !(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
680                        LOOKUP_OPEN | LOOKUP_CREATE)))
681                 return -EISDIR;
682
683         current->total_link_count++;
684         if (current->total_link_count >= 40)
685                 return -ELOOP;
686
687         mnt = path->dentry->d_op->d_automount(path);
688         if (IS_ERR(mnt)) {
689                 /*
690                  * The filesystem is allowed to return -EISDIR here to indicate
691                  * it doesn't want to automount.  For instance, autofs would do
692                  * this so that its userspace daemon can mount on this dentry.
693                  *
694                  * However, we can only permit this if it's a terminal point in
695                  * the path being looked up; if it wasn't then the remainder of
696                  * the path is inaccessible and we should say so.
697                  */
698                 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
699                         return -EREMOTE;
700                 return PTR_ERR(mnt);
701         }
702
703         if (!mnt) /* mount collision */
704                 return 0;
705
706         if (!*need_mntput) {
707                 /* lock_mount() may release path->mnt on error */
708                 mntget(path->mnt);
709                 *need_mntput = true;
710         }
711         err = finish_automount(mnt, path);
712
713         switch (err) {
714         case -EBUSY:
715                 /* Someone else made a mount here whilst we were busy */
716                 return 0;
717         case 0:
718                 path_put(path);
719                 path->mnt = mnt;
720                 path->dentry = dget(mnt->mnt_root);
721                 return 0;
722         default:
723                 return err;
724         }
725
726 }
727
728 /*
729  * Handle a dentry that is managed in some way.
730  * - Flagged for transit management (autofs)
731  * - Flagged as mountpoint
732  * - Flagged as automount point
733  *
734  * This may only be called in refwalk mode.
735  *
736  * Serialization is taken care of in namespace.c
737  */
738 static int follow_managed(struct path *path, unsigned flags)
739 {
740         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
741         unsigned managed;
742         bool need_mntput = false;
743         int ret = 0;
744
745         /* Given that we're not holding a lock here, we retain the value in a
746          * local variable for each dentry as we look at it so that we don't see
747          * the components of that value change under us */
748         while (managed = ACCESS_ONCE(path->dentry->d_flags),
749                managed &= DCACHE_MANAGED_DENTRY,
750                unlikely(managed != 0)) {
751                 /* Allow the filesystem to manage the transit without i_mutex
752                  * being held. */
753                 if (managed & DCACHE_MANAGE_TRANSIT) {
754                         BUG_ON(!path->dentry->d_op);
755                         BUG_ON(!path->dentry->d_op->d_manage);
756                         ret = path->dentry->d_op->d_manage(path->dentry, false);
757                         if (ret < 0)
758                                 break;
759                 }
760
761                 /* Transit to a mounted filesystem. */
762                 if (managed & DCACHE_MOUNTED) {
763                         struct vfsmount *mounted = lookup_mnt(path);
764                         if (mounted) {
765                                 dput(path->dentry);
766                                 if (need_mntput)
767                                         mntput(path->mnt);
768                                 path->mnt = mounted;
769                                 path->dentry = dget(mounted->mnt_root);
770                                 need_mntput = true;
771                                 continue;
772                         }
773
774                         /* Something is mounted on this dentry in another
775                          * namespace and/or whatever was mounted there in this
776                          * namespace got unmounted before we managed to get the
777                          * vfsmount_lock */
778                 }
779
780                 /* Handle an automount point */
781                 if (managed & DCACHE_NEED_AUTOMOUNT) {
782                         ret = follow_automount(path, flags, &need_mntput);
783                         if (ret < 0)
784                                 break;
785                         continue;
786                 }
787
788                 /* We didn't change the current path point */
789                 break;
790         }
791
792         if (need_mntput && path->mnt == mnt)
793                 mntput(path->mnt);
794         if (ret == -EISDIR)
795                 ret = 0;
796         return ret;
797 }
798
799 int follow_down_one(struct path *path)
800 {
801         struct vfsmount *mounted;
802
803         mounted = lookup_mnt(path);
804         if (mounted) {
805                 dput(path->dentry);
806                 mntput(path->mnt);
807                 path->mnt = mounted;
808                 path->dentry = dget(mounted->mnt_root);
809                 return 1;
810         }
811         return 0;
812 }
813
814 static inline bool managed_dentry_might_block(struct dentry *dentry)
815 {
816         return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
817                 dentry->d_op->d_manage(dentry, true) < 0);
818 }
819
820 /*
821  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
822  * we meet a managed dentry that would need blocking.
823  */
824 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
825                                struct inode **inode)
826 {
827         for (;;) {
828                 struct vfsmount *mounted;
829                 /*
830                  * Don't forget we might have a non-mountpoint managed dentry
831                  * that wants to block transit.
832                  */
833                 if (unlikely(managed_dentry_might_block(path->dentry)))
834                         return false;
835
836                 if (!d_mountpoint(path->dentry))
837                         break;
838
839                 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
840                 if (!mounted)
841                         break;
842                 path->mnt = mounted;
843                 path->dentry = mounted->mnt_root;
844                 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
845                 /*
846                  * Update the inode too. We don't need to re-check the
847                  * dentry sequence number here after this d_inode read,
848                  * because a mount-point is always pinned.
849                  */
850                 *inode = path->dentry->d_inode;
851         }
852         return true;
853 }
854
855 static void follow_mount_rcu(struct nameidata *nd)
856 {
857         while (d_mountpoint(nd->path.dentry)) {
858                 struct vfsmount *mounted;
859                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
860                 if (!mounted)
861                         break;
862                 nd->path.mnt = mounted;
863                 nd->path.dentry = mounted->mnt_root;
864                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
865         }
866 }
867
868 static int follow_dotdot_rcu(struct nameidata *nd)
869 {
870         set_root_rcu(nd);
871
872         while (1) {
873                 if (nd->path.dentry == nd->root.dentry &&
874                     nd->path.mnt == nd->root.mnt) {
875                         break;
876                 }
877                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
878                         struct dentry *old = nd->path.dentry;
879                         struct dentry *parent = old->d_parent;
880                         unsigned seq;
881
882                         seq = read_seqcount_begin(&parent->d_seq);
883                         if (read_seqcount_retry(&old->d_seq, nd->seq))
884                                 goto failed;
885                         nd->path.dentry = parent;
886                         nd->seq = seq;
887                         break;
888                 }
889                 if (!follow_up_rcu(&nd->path))
890                         break;
891                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
892         }
893         follow_mount_rcu(nd);
894         nd->inode = nd->path.dentry->d_inode;
895         return 0;
896
897 failed:
898         nd->flags &= ~LOOKUP_RCU;
899         if (!(nd->flags & LOOKUP_ROOT))
900                 nd->root.mnt = NULL;
901         rcu_read_unlock();
902         br_read_unlock(vfsmount_lock);
903         return -ECHILD;
904 }
905
906 /*
907  * Follow down to the covering mount currently visible to userspace.  At each
908  * point, the filesystem owning that dentry may be queried as to whether the
909  * caller is permitted to proceed or not.
910  */
911 int follow_down(struct path *path)
912 {
913         unsigned managed;
914         int ret;
915
916         while (managed = ACCESS_ONCE(path->dentry->d_flags),
917                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
918                 /* Allow the filesystem to manage the transit without i_mutex
919                  * being held.
920                  *
921                  * We indicate to the filesystem if someone is trying to mount
922                  * something here.  This gives autofs the chance to deny anyone
923                  * other than its daemon the right to mount on its
924                  * superstructure.
925                  *
926                  * The filesystem may sleep at this point.
927                  */
928                 if (managed & DCACHE_MANAGE_TRANSIT) {
929                         BUG_ON(!path->dentry->d_op);
930                         BUG_ON(!path->dentry->d_op->d_manage);
931                         ret = path->dentry->d_op->d_manage(
932                                 path->dentry, false);
933                         if (ret < 0)
934                                 return ret == -EISDIR ? 0 : ret;
935                 }
936
937                 /* Transit to a mounted filesystem. */
938                 if (managed & DCACHE_MOUNTED) {
939                         struct vfsmount *mounted = lookup_mnt(path);
940                         if (!mounted)
941                                 break;
942                         dput(path->dentry);
943                         mntput(path->mnt);
944                         path->mnt = mounted;
945                         path->dentry = dget(mounted->mnt_root);
946                         continue;
947                 }
948
949                 /* Don't handle automount points here */
950                 break;
951         }
952         return 0;
953 }
954
955 /*
956  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
957  */
958 static void follow_mount(struct path *path)
959 {
960         while (d_mountpoint(path->dentry)) {
961                 struct vfsmount *mounted = lookup_mnt(path);
962                 if (!mounted)
963                         break;
964                 dput(path->dentry);
965                 mntput(path->mnt);
966                 path->mnt = mounted;
967                 path->dentry = dget(mounted->mnt_root);
968         }
969 }
970
971 static void follow_dotdot(struct nameidata *nd)
972 {
973         set_root(nd);
974
975         while(1) {
976                 struct dentry *old = nd->path.dentry;
977
978                 if (nd->path.dentry == nd->root.dentry &&
979                     nd->path.mnt == nd->root.mnt) {
980                         break;
981                 }
982                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
983                         /* rare case of legitimate dget_parent()... */
984                         nd->path.dentry = dget_parent(nd->path.dentry);
985                         dput(old);
986                         break;
987                 }
988                 if (!follow_up(&nd->path))
989                         break;
990         }
991         follow_mount(&nd->path);
992         nd->inode = nd->path.dentry->d_inode;
993 }
994
995 /*
996  * Allocate a dentry with name and parent, and perform a parent
997  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
998  * on error. parent->d_inode->i_mutex must be held. d_lookup must
999  * have verified that no child exists while under i_mutex.
1000  */
1001 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1002                                 struct qstr *name, struct nameidata *nd)
1003 {
1004         struct inode *inode = parent->d_inode;
1005         struct dentry *dentry;
1006         struct dentry *old;
1007
1008         /* Don't create child dentry for a dead directory. */
1009         if (unlikely(IS_DEADDIR(inode)))
1010                 return ERR_PTR(-ENOENT);
1011
1012         dentry = d_alloc(parent, name);
1013         if (unlikely(!dentry))
1014                 return ERR_PTR(-ENOMEM);
1015
1016         old = inode->i_op->lookup(inode, dentry, nd);
1017         if (unlikely(old)) {
1018                 dput(dentry);
1019                 dentry = old;
1020         }
1021         return dentry;
1022 }
1023
1024 /*
1025  * We already have a dentry, but require a lookup to be performed on the parent
1026  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1027  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1028  * child exists while under i_mutex.
1029  */
1030 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1031                                      struct nameidata *nd)
1032 {
1033         struct inode *inode = parent->d_inode;
1034         struct dentry *old;
1035
1036         /* Don't create child dentry for a dead directory. */
1037         if (unlikely(IS_DEADDIR(inode)))
1038                 return ERR_PTR(-ENOENT);
1039
1040         old = inode->i_op->lookup(inode, dentry, nd);
1041         if (unlikely(old)) {
1042                 dput(dentry);
1043                 dentry = old;
1044         }
1045         return dentry;
1046 }
1047
1048 /*
1049  *  It's more convoluted than I'd like it to be, but... it's still fairly
1050  *  small and for now I'd prefer to have fast path as straight as possible.
1051  *  It _is_ time-critical.
1052  */
1053 static int do_lookup(struct nameidata *nd, struct qstr *name,
1054                         struct path *path, struct inode **inode)
1055 {
1056         struct vfsmount *mnt = nd->path.mnt;
1057         struct dentry *dentry, *parent = nd->path.dentry;
1058         int need_reval = 1;
1059         int status = 1;
1060         int err;
1061
1062         /*
1063          * Rename seqlock is not required here because in the off chance
1064          * of a false negative due to a concurrent rename, we're going to
1065          * do the non-racy lookup, below.
1066          */
1067         if (nd->flags & LOOKUP_RCU) {
1068                 unsigned seq;
1069                 *inode = nd->inode;
1070                 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1071                 if (!dentry)
1072                         goto unlazy;
1073
1074                 /* Memory barrier in read_seqcount_begin of child is enough */
1075                 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1076                         return -ECHILD;
1077                 nd->seq = seq;
1078
1079                 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1080                         status = d_revalidate(dentry, nd);
1081                         if (unlikely(status <= 0)) {
1082                                 if (status != -ECHILD)
1083                                         need_reval = 0;
1084                                 goto unlazy;
1085                         }
1086                 }
1087                 if (unlikely(d_need_lookup(dentry)))
1088                         goto unlazy;
1089                 path->mnt = mnt;
1090                 path->dentry = dentry;
1091                 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1092                         goto unlazy;
1093                 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1094                         goto unlazy;
1095                 return 0;
1096 unlazy:
1097                 if (unlazy_walk(nd, dentry))
1098                         return -ECHILD;
1099         } else {
1100                 dentry = __d_lookup(parent, name);
1101         }
1102
1103         if (dentry && unlikely(d_need_lookup(dentry))) {
1104                 dput(dentry);
1105                 dentry = NULL;
1106         }
1107 retry:
1108         if (unlikely(!dentry)) {
1109                 struct inode *dir = parent->d_inode;
1110                 BUG_ON(nd->inode != dir);
1111
1112                 mutex_lock(&dir->i_mutex);
1113                 dentry = d_lookup(parent, name);
1114                 if (likely(!dentry)) {
1115                         dentry = d_alloc_and_lookup(parent, name, nd);
1116                         if (IS_ERR(dentry)) {
1117                                 mutex_unlock(&dir->i_mutex);
1118                                 return PTR_ERR(dentry);
1119                         }
1120                         /* known good */
1121                         need_reval = 0;
1122                         status = 1;
1123                 } else if (unlikely(d_need_lookup(dentry))) {
1124                         dentry = d_inode_lookup(parent, dentry, nd);
1125                         if (IS_ERR(dentry)) {
1126                                 mutex_unlock(&dir->i_mutex);
1127                                 return PTR_ERR(dentry);
1128                         }
1129                         /* known good */
1130                         need_reval = 0;
1131                         status = 1;
1132                 }
1133                 mutex_unlock(&dir->i_mutex);
1134         }
1135         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1136                 status = d_revalidate(dentry, nd);
1137         if (unlikely(status <= 0)) {
1138                 if (status < 0) {
1139                         dput(dentry);
1140                         return status;
1141                 }
1142                 if (!d_invalidate(dentry)) {
1143                         dput(dentry);
1144                         dentry = NULL;
1145                         need_reval = 1;
1146                         goto retry;
1147                 }
1148         }
1149
1150         path->mnt = mnt;
1151         path->dentry = dentry;
1152         err = follow_managed(path, nd->flags);
1153         if (unlikely(err < 0)) {
1154                 path_put_conditional(path, nd);
1155                 return err;
1156         }
1157         *inode = path->dentry->d_inode;
1158         return 0;
1159 }
1160
1161 static inline int may_lookup(struct nameidata *nd)
1162 {
1163         if (nd->flags & LOOKUP_RCU) {
1164                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1165                 if (err != -ECHILD)
1166                         return err;
1167                 if (unlazy_walk(nd, NULL))
1168                         return -ECHILD;
1169         }
1170         return inode_permission(nd->inode, MAY_EXEC);
1171 }
1172
1173 static inline int handle_dots(struct nameidata *nd, int type)
1174 {
1175         if (type == LAST_DOTDOT) {
1176                 if (nd->flags & LOOKUP_RCU) {
1177                         if (follow_dotdot_rcu(nd))
1178                                 return -ECHILD;
1179                 } else
1180                         follow_dotdot(nd);
1181         }
1182         return 0;
1183 }
1184
1185 static void terminate_walk(struct nameidata *nd)
1186 {
1187         if (!(nd->flags & LOOKUP_RCU)) {
1188                 path_put(&nd->path);
1189         } else {
1190                 nd->flags &= ~LOOKUP_RCU;
1191                 if (!(nd->flags & LOOKUP_ROOT))
1192                         nd->root.mnt = NULL;
1193                 rcu_read_unlock();
1194                 br_read_unlock(vfsmount_lock);
1195         }
1196 }
1197
1198 static inline int walk_component(struct nameidata *nd, struct path *path,
1199                 struct qstr *name, int type, int follow)
1200 {
1201         struct inode *inode;
1202         int err;
1203         /*
1204          * "." and ".." are special - ".." especially so because it has
1205          * to be able to know about the current root directory and
1206          * parent relationships.
1207          */
1208         if (unlikely(type != LAST_NORM))
1209                 return handle_dots(nd, type);
1210         err = do_lookup(nd, name, path, &inode);
1211         if (unlikely(err)) {
1212                 terminate_walk(nd);
1213                 return err;
1214         }
1215         if (!inode) {
1216                 path_to_nameidata(path, nd);
1217                 terminate_walk(nd);
1218                 return -ENOENT;
1219         }
1220         if (unlikely(inode->i_op->follow_link) && follow) {
1221                 if (nd->flags & LOOKUP_RCU) {
1222                         if (unlikely(unlazy_walk(nd, path->dentry))) {
1223                                 terminate_walk(nd);
1224                                 return -ECHILD;
1225                         }
1226                 }
1227                 BUG_ON(inode != path->dentry->d_inode);
1228                 return 1;
1229         }
1230         path_to_nameidata(path, nd);
1231         nd->inode = inode;
1232         return 0;
1233 }
1234
1235 /*
1236  * This limits recursive symlink follows to 8, while
1237  * limiting consecutive symlinks to 40.
1238  *
1239  * Without that kind of total limit, nasty chains of consecutive
1240  * symlinks can cause almost arbitrarily long lookups.
1241  */
1242 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1243 {
1244         int res;
1245
1246         if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1247                 path_put_conditional(path, nd);
1248                 path_put(&nd->path);
1249                 return -ELOOP;
1250         }
1251         BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1252
1253         nd->depth++;
1254         current->link_count++;
1255
1256         do {
1257                 struct path link = *path;
1258                 void *cookie;
1259
1260                 res = follow_link(&link, nd, &cookie);
1261                 if (!res)
1262                         res = walk_component(nd, path, &nd->last,
1263                                              nd->last_type, LOOKUP_FOLLOW);
1264                 put_link(nd, &link, cookie);
1265         } while (res > 0);
1266
1267         current->link_count--;
1268         nd->depth--;
1269         return res;
1270 }
1271
1272 /*
1273  * Name resolution.
1274  * This is the basic name resolution function, turning a pathname into
1275  * the final dentry. We expect 'base' to be positive and a directory.
1276  *
1277  * Returns 0 and nd will have valid dentry and mnt on success.
1278  * Returns error and drops reference to input namei data on failure.
1279  */
1280 static int link_path_walk(const char *name, struct nameidata *nd)
1281 {
1282         struct path next;
1283         int err;
1284         
1285         while (*name=='/')
1286                 name++;
1287         if (!*name)
1288                 return 0;
1289
1290         /* At this point we know we have a real path component. */
1291         for(;;) {
1292                 unsigned long hash;
1293                 struct qstr this;
1294                 unsigned int c;
1295                 int type;
1296
1297                 err = may_lookup(nd);
1298                 if (err)
1299                         break;
1300
1301                 this.name = name;
1302                 c = *(const unsigned char *)name;
1303
1304                 hash = init_name_hash();
1305                 do {
1306                         name++;
1307                         hash = partial_name_hash(c, hash);
1308                         c = *(const unsigned char *)name;
1309                 } while (c && (c != '/'));
1310                 this.len = name - (const char *) this.name;
1311                 this.hash = end_name_hash(hash);
1312
1313                 type = LAST_NORM;
1314                 if (this.name[0] == '.') switch (this.len) {
1315                         case 2:
1316                                 if (this.name[1] == '.') {
1317                                         type = LAST_DOTDOT;
1318                                         nd->flags |= LOOKUP_JUMPED;
1319                                 }
1320                                 break;
1321                         case 1:
1322                                 type = LAST_DOT;
1323                 }
1324                 if (likely(type == LAST_NORM)) {
1325                         struct dentry *parent = nd->path.dentry;
1326                         nd->flags &= ~LOOKUP_JUMPED;
1327                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1328                                 err = parent->d_op->d_hash(parent, nd->inode,
1329                                                            &this);
1330                                 if (err < 0)
1331                                         break;
1332                         }
1333                 }
1334
1335                 /* remove trailing slashes? */
1336                 if (!c)
1337                         goto last_component;
1338                 while (*++name == '/');
1339                 if (!*name)
1340                         goto last_component;
1341
1342                 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1343                 if (err < 0)
1344                         return err;
1345
1346                 if (err) {
1347                         err = nested_symlink(&next, nd);
1348                         if (err)
1349                                 return err;
1350                 }
1351                 err = -ENOTDIR; 
1352                 if (!nd->inode->i_op->lookup)
1353                         break;
1354                 continue;
1355                 /* here ends the main loop */
1356
1357 last_component:
1358                 nd->last = this;
1359                 nd->last_type = type;
1360                 return 0;
1361         }
1362         terminate_walk(nd);
1363         return err;
1364 }
1365
1366 static int path_init(int dfd, const char *name, unsigned int flags,
1367                      struct nameidata *nd, struct file **fp)
1368 {
1369         int retval = 0;
1370         int fput_needed;
1371         struct file *file;
1372
1373         nd->last_type = LAST_ROOT; /* if there are only slashes... */
1374         nd->flags = flags | LOOKUP_JUMPED;
1375         nd->depth = 0;
1376         if (flags & LOOKUP_ROOT) {
1377                 struct inode *inode = nd->root.dentry->d_inode;
1378                 if (*name) {
1379                         if (!inode->i_op->lookup)
1380                                 return -ENOTDIR;
1381                         retval = inode_permission(inode, MAY_EXEC);
1382                         if (retval)
1383                                 return retval;
1384                 }
1385                 nd->path = nd->root;
1386                 nd->inode = inode;
1387                 if (flags & LOOKUP_RCU) {
1388                         br_read_lock(vfsmount_lock);
1389                         rcu_read_lock();
1390                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1391                 } else {
1392                         path_get(&nd->path);
1393                 }
1394                 return 0;
1395         }
1396
1397         nd->root.mnt = NULL;
1398
1399         if (*name=='/') {
1400                 if (flags & LOOKUP_RCU) {
1401                         br_read_lock(vfsmount_lock);
1402                         rcu_read_lock();
1403                         set_root_rcu(nd);
1404                 } else {
1405                         set_root(nd);
1406                         path_get(&nd->root);
1407                 }
1408                 nd->path = nd->root;
1409         } else if (dfd == AT_FDCWD) {
1410                 if (flags & LOOKUP_RCU) {
1411                         struct fs_struct *fs = current->fs;
1412                         unsigned seq;
1413
1414                         br_read_lock(vfsmount_lock);
1415                         rcu_read_lock();
1416
1417                         do {
1418                                 seq = read_seqcount_begin(&fs->seq);
1419                                 nd->path = fs->pwd;
1420                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1421                         } while (read_seqcount_retry(&fs->seq, seq));
1422                 } else {
1423                         get_fs_pwd(current->fs, &nd->path);
1424                 }
1425         } else {
1426                 struct dentry *dentry;
1427
1428                 file = fget_raw_light(dfd, &fput_needed);
1429                 retval = -EBADF;
1430                 if (!file)
1431                         goto out_fail;
1432
1433                 dentry = file->f_path.dentry;
1434
1435                 if (*name) {
1436                         retval = -ENOTDIR;
1437                         if (!S_ISDIR(dentry->d_inode->i_mode))
1438                                 goto fput_fail;
1439
1440                         retval = inode_permission(dentry->d_inode, MAY_EXEC);
1441                         if (retval)
1442                                 goto fput_fail;
1443                 }
1444
1445                 nd->path = file->f_path;
1446                 if (flags & LOOKUP_RCU) {
1447                         if (fput_needed)
1448                                 *fp = file;
1449                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1450                         br_read_lock(vfsmount_lock);
1451                         rcu_read_lock();
1452                 } else {
1453                         path_get(&file->f_path);
1454                         fput_light(file, fput_needed);
1455                 }
1456         }
1457
1458         nd->inode = nd->path.dentry->d_inode;
1459         return 0;
1460
1461 fput_fail:
1462         fput_light(file, fput_needed);
1463 out_fail:
1464         return retval;
1465 }
1466
1467 static inline int lookup_last(struct nameidata *nd, struct path *path)
1468 {
1469         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1470                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1471
1472         nd->flags &= ~LOOKUP_PARENT;
1473         return walk_component(nd, path, &nd->last, nd->last_type,
1474                                         nd->flags & LOOKUP_FOLLOW);
1475 }
1476
1477 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1478 static int path_lookupat(int dfd, const char *name,
1479                                 unsigned int flags, struct nameidata *nd)
1480 {
1481         struct file *base = NULL;
1482         struct path path;
1483         int err;
1484
1485         /*
1486          * Path walking is largely split up into 2 different synchronisation
1487          * schemes, rcu-walk and ref-walk (explained in
1488          * Documentation/filesystems/path-lookup.txt). These share much of the
1489          * path walk code, but some things particularly setup, cleanup, and
1490          * following mounts are sufficiently divergent that functions are
1491          * duplicated. Typically there is a function foo(), and its RCU
1492          * analogue, foo_rcu().
1493          *
1494          * -ECHILD is the error number of choice (just to avoid clashes) that
1495          * is returned if some aspect of an rcu-walk fails. Such an error must
1496          * be handled by restarting a traditional ref-walk (which will always
1497          * be able to complete).
1498          */
1499         err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1500
1501         if (unlikely(err))
1502                 return err;
1503
1504         current->total_link_count = 0;
1505         err = link_path_walk(name, nd);
1506
1507         if (!err && !(flags & LOOKUP_PARENT)) {
1508                 err = lookup_last(nd, &path);
1509                 while (err > 0) {
1510                         void *cookie;
1511                         struct path link = path;
1512                         nd->flags |= LOOKUP_PARENT;
1513                         err = follow_link(&link, nd, &cookie);
1514                         if (!err)
1515                                 err = lookup_last(nd, &path);
1516                         put_link(nd, &link, cookie);
1517                 }
1518         }
1519
1520         if (!err)
1521                 err = complete_walk(nd);
1522
1523         if (!err && nd->flags & LOOKUP_DIRECTORY) {
1524                 if (!nd->inode->i_op->lookup) {
1525                         path_put(&nd->path);
1526                         err = -ENOTDIR;
1527                 }
1528         }
1529
1530         if (base)
1531                 fput(base);
1532
1533         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1534                 path_put(&nd->root);
1535                 nd->root.mnt = NULL;
1536         }
1537         return err;
1538 }
1539
1540 static int do_path_lookup(int dfd, const char *name,
1541                                 unsigned int flags, struct nameidata *nd)
1542 {
1543         int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1544         if (unlikely(retval == -ECHILD))
1545                 retval = path_lookupat(dfd, name, flags, nd);
1546         if (unlikely(retval == -ESTALE))
1547                 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1548
1549         if (likely(!retval)) {
1550                 if (unlikely(!audit_dummy_context())) {
1551                         if (nd->path.dentry && nd->inode)
1552                                 audit_inode(name, nd->path.dentry);
1553                 }
1554         }
1555         return retval;
1556 }
1557
1558 int kern_path_parent(const char *name, struct nameidata *nd)
1559 {
1560         return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1561 }
1562
1563 int kern_path(const char *name, unsigned int flags, struct path *path)
1564 {
1565         struct nameidata nd;
1566         int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1567         if (!res)
1568                 *path = nd.path;
1569         return res;
1570 }
1571
1572 /**
1573  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1574  * @dentry:  pointer to dentry of the base directory
1575  * @mnt: pointer to vfs mount of the base directory
1576  * @name: pointer to file name
1577  * @flags: lookup flags
1578  * @path: pointer to struct path to fill
1579  */
1580 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1581                     const char *name, unsigned int flags,
1582                     struct path *path)
1583 {
1584         struct nameidata nd;
1585         int err;
1586         nd.root.dentry = dentry;
1587         nd.root.mnt = mnt;
1588         BUG_ON(flags & LOOKUP_PARENT);
1589         /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1590         err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1591         if (!err)
1592                 *path = nd.path;
1593         return err;
1594 }
1595
1596 static struct dentry *__lookup_hash(struct qstr *name,
1597                 struct dentry *base, struct nameidata *nd)
1598 {
1599         struct inode *inode = base->d_inode;
1600         struct dentry *dentry;
1601         int err;
1602
1603         err = inode_permission(inode, MAY_EXEC);
1604         if (err)
1605                 return ERR_PTR(err);
1606
1607         /*
1608          * Don't bother with __d_lookup: callers are for creat as
1609          * well as unlink, so a lot of the time it would cost
1610          * a double lookup.
1611          */
1612         dentry = d_lookup(base, name);
1613
1614         if (dentry && d_need_lookup(dentry)) {
1615                 /*
1616                  * __lookup_hash is called with the parent dir's i_mutex already
1617                  * held, so we are good to go here.
1618                  */
1619                 dentry = d_inode_lookup(base, dentry, nd);
1620                 if (IS_ERR(dentry))
1621                         return dentry;
1622         }
1623
1624         if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1625                 int status = d_revalidate(dentry, nd);
1626                 if (unlikely(status <= 0)) {
1627                         /*
1628                          * The dentry failed validation.
1629                          * If d_revalidate returned 0 attempt to invalidate
1630                          * the dentry otherwise d_revalidate is asking us
1631                          * to return a fail status.
1632                          */
1633                         if (status < 0) {
1634                                 dput(dentry);
1635                                 return ERR_PTR(status);
1636                         } else if (!d_invalidate(dentry)) {
1637                                 dput(dentry);
1638                                 dentry = NULL;
1639                         }
1640                 }
1641         }
1642
1643         if (!dentry)
1644                 dentry = d_alloc_and_lookup(base, name, nd);
1645
1646         return dentry;
1647 }
1648
1649 /*
1650  * Restricted form of lookup. Doesn't follow links, single-component only,
1651  * needs parent already locked. Doesn't follow mounts.
1652  * SMP-safe.
1653  */
1654 static struct dentry *lookup_hash(struct nameidata *nd)
1655 {
1656         return __lookup_hash(&nd->last, nd->path.dentry, nd);
1657 }
1658
1659 /**
1660  * lookup_one_len - filesystem helper to lookup single pathname component
1661  * @name:       pathname component to lookup
1662  * @base:       base directory to lookup from
1663  * @len:        maximum length @len should be interpreted to
1664  *
1665  * Note that this routine is purely a helper for filesystem usage and should
1666  * not be called by generic code.  Also note that by using this function the
1667  * nameidata argument is passed to the filesystem methods and a filesystem
1668  * using this helper needs to be prepared for that.
1669  */
1670 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1671 {
1672         struct qstr this;
1673         unsigned long hash;
1674         unsigned int c;
1675
1676         WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1677
1678         this.name = name;
1679         this.len = len;
1680         if (!len)
1681                 return ERR_PTR(-EACCES);
1682
1683         hash = init_name_hash();
1684         while (len--) {
1685                 c = *(const unsigned char *)name++;
1686                 if (c == '/' || c == '\0')
1687                         return ERR_PTR(-EACCES);
1688                 hash = partial_name_hash(c, hash);
1689         }
1690         this.hash = end_name_hash(hash);
1691         /*
1692          * See if the low-level filesystem might want
1693          * to use its own hash..
1694          */
1695         if (base->d_flags & DCACHE_OP_HASH) {
1696                 int err = base->d_op->d_hash(base, base->d_inode, &this);
1697                 if (err < 0)
1698                         return ERR_PTR(err);
1699         }
1700
1701         return __lookup_hash(&this, base, NULL);
1702 }
1703
1704 int user_path_at(int dfd, const char __user *name, unsigned flags,
1705                  struct path *path)
1706 {
1707         struct nameidata nd;
1708         char *tmp = getname_flags(name, flags);
1709         int err = PTR_ERR(tmp);
1710         if (!IS_ERR(tmp)) {
1711
1712                 BUG_ON(flags & LOOKUP_PARENT);
1713
1714                 err = do_path_lookup(dfd, tmp, flags, &nd);
1715                 putname(tmp);
1716                 if (!err)
1717                         *path = nd.path;
1718         }
1719         return err;
1720 }
1721
1722 static int user_path_parent(int dfd, const char __user *path,
1723                         struct nameidata *nd, char **name)
1724 {
1725         char *s = getname(path);
1726         int error;
1727
1728         if (IS_ERR(s))
1729                 return PTR_ERR(s);
1730
1731         error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1732         if (error)
1733                 putname(s);
1734         else
1735                 *name = s;
1736
1737         return error;
1738 }
1739
1740 /*
1741  * It's inline, so penalty for filesystems that don't use sticky bit is
1742  * minimal.
1743  */
1744 static inline int check_sticky(struct inode *dir, struct inode *inode)
1745 {
1746         uid_t fsuid = current_fsuid();
1747
1748         if (!(dir->i_mode & S_ISVTX))
1749                 return 0;
1750         if (current_user_ns() != inode_userns(inode))
1751                 goto other_userns;
1752         if (inode->i_uid == fsuid)
1753                 return 0;
1754         if (dir->i_uid == fsuid)
1755                 return 0;
1756
1757 other_userns:
1758         return !ns_capable(inode_userns(inode), CAP_FOWNER);
1759 }
1760
1761 /*
1762  *      Check whether we can remove a link victim from directory dir, check
1763  *  whether the type of victim is right.
1764  *  1. We can't do it if dir is read-only (done in permission())
1765  *  2. We should have write and exec permissions on dir
1766  *  3. We can't remove anything from append-only dir
1767  *  4. We can't do anything with immutable dir (done in permission())
1768  *  5. If the sticky bit on dir is set we should either
1769  *      a. be owner of dir, or
1770  *      b. be owner of victim, or
1771  *      c. have CAP_FOWNER capability
1772  *  6. If the victim is append-only or immutable we can't do antyhing with
1773  *     links pointing to it.
1774  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1775  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1776  *  9. We can't remove a root or mountpoint.
1777  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1778  *     nfs_async_unlink().
1779  */
1780 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1781 {
1782         int error;
1783
1784         if (!victim->d_inode)
1785                 return -ENOENT;
1786
1787         BUG_ON(victim->d_parent->d_inode != dir);
1788         audit_inode_child(victim, dir);
1789
1790         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1791         if (error)
1792                 return error;
1793         if (IS_APPEND(dir))
1794                 return -EPERM;
1795         if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1796             IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1797                 return -EPERM;
1798         if (isdir) {
1799                 if (!S_ISDIR(victim->d_inode->i_mode))
1800                         return -ENOTDIR;
1801                 if (IS_ROOT(victim))
1802                         return -EBUSY;
1803         } else if (S_ISDIR(victim->d_inode->i_mode))
1804                 return -EISDIR;
1805         if (IS_DEADDIR(dir))
1806                 return -ENOENT;
1807         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1808                 return -EBUSY;
1809         return 0;
1810 }
1811
1812 /*      Check whether we can create an object with dentry child in directory
1813  *  dir.
1814  *  1. We can't do it if child already exists (open has special treatment for
1815  *     this case, but since we are inlined it's OK)
1816  *  2. We can't do it if dir is read-only (done in permission())
1817  *  3. We should have write and exec permissions on dir
1818  *  4. We can't do it if dir is immutable (done in permission())
1819  */
1820 static inline int may_create(struct inode *dir, struct dentry *child)
1821 {
1822         if (child->d_inode)
1823                 return -EEXIST;
1824         if (IS_DEADDIR(dir))
1825                 return -ENOENT;
1826         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1827 }
1828
1829 /*
1830  * p1 and p2 should be directories on the same fs.
1831  */
1832 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1833 {
1834         struct dentry *p;
1835
1836         if (p1 == p2) {
1837                 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1838                 return NULL;
1839         }
1840
1841         mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1842
1843         p = d_ancestor(p2, p1);
1844         if (p) {
1845                 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1846                 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1847                 return p;
1848         }
1849
1850         p = d_ancestor(p1, p2);
1851         if (p) {
1852                 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1853                 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1854                 return p;
1855         }
1856
1857         mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1858         mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1859         return NULL;
1860 }
1861
1862 void unlock_rename(struct dentry *p1, struct dentry *p2)
1863 {
1864         mutex_unlock(&p1->d_inode->i_mutex);
1865         if (p1 != p2) {
1866                 mutex_unlock(&p2->d_inode->i_mutex);
1867                 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1868         }
1869 }
1870
1871 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1872                 struct nameidata *nd)
1873 {
1874         int error = may_create(dir, dentry);
1875
1876         if (error)
1877                 return error;
1878
1879         if (!dir->i_op->create)
1880                 return -EACCES; /* shouldn't it be ENOSYS? */
1881         mode &= S_IALLUGO;
1882         mode |= S_IFREG;
1883         error = security_inode_create(dir, dentry, mode);
1884         if (error)
1885                 return error;
1886         error = dir->i_op->create(dir, dentry, mode, nd);
1887         if (!error)
1888                 fsnotify_create(dir, dentry);
1889         return error;
1890 }
1891
1892 static int may_open(struct path *path, int acc_mode, int flag)
1893 {
1894         struct dentry *dentry = path->dentry;
1895         struct inode *inode = dentry->d_inode;
1896         int error;
1897
1898         /* O_PATH? */
1899         if (!acc_mode)
1900                 return 0;
1901
1902         if (!inode)
1903                 return -ENOENT;
1904
1905         switch (inode->i_mode & S_IFMT) {
1906         case S_IFLNK:
1907                 return -ELOOP;
1908         case S_IFDIR:
1909                 if (acc_mode & MAY_WRITE)
1910                         return -EISDIR;
1911                 break;
1912         case S_IFBLK:
1913         case S_IFCHR:
1914                 if (path->mnt->mnt_flags & MNT_NODEV)
1915                         return -EACCES;
1916                 /*FALLTHRU*/
1917         case S_IFIFO:
1918         case S_IFSOCK:
1919                 flag &= ~O_TRUNC;
1920                 break;
1921         }
1922
1923         error = inode_permission(inode, acc_mode);
1924         if (error)
1925                 return error;
1926
1927         /*
1928          * An append-only file must be opened in append mode for writing.
1929          */
1930         if (IS_APPEND(inode)) {
1931                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1932                         return -EPERM;
1933                 if (flag & O_TRUNC)
1934                         return -EPERM;
1935         }
1936
1937         /* O_NOATIME can only be set by the owner or superuser */
1938         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1939                 return -EPERM;
1940
1941         /*
1942          * Ensure there are no outstanding leases on the file.
1943          */
1944         return break_lease(inode, flag);
1945 }
1946
1947 static int handle_truncate(struct file *filp)
1948 {
1949         struct path *path = &filp->f_path;
1950         struct inode *inode = path->dentry->d_inode;
1951         int error = get_write_access(inode);
1952         if (error)
1953                 return error;
1954         /*
1955          * Refuse to truncate files with mandatory locks held on them.
1956          */
1957         error = locks_verify_locked(inode);
1958         if (!error)
1959                 error = security_path_truncate(path);
1960         if (!error) {
1961                 error = do_truncate(path->dentry, 0,
1962                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1963                                     filp);
1964         }
1965         put_write_access(inode);
1966         return error;
1967 }
1968
1969 static inline int open_to_namei_flags(int flag)
1970 {
1971         if ((flag & O_ACCMODE) == 3)
1972                 flag--;
1973         return flag;
1974 }
1975
1976 /*
1977  * Handle the last step of open()
1978  */
1979 static struct file *do_last(struct nameidata *nd, struct path *path,
1980                             const struct open_flags *op, const char *pathname)
1981 {
1982         struct dentry *dir = nd->path.dentry;
1983         struct dentry *dentry;
1984         int open_flag = op->open_flag;
1985         int will_truncate = open_flag & O_TRUNC;
1986         int want_write = 0;
1987         int acc_mode = op->acc_mode;
1988         struct file *filp;
1989         int error;
1990
1991         nd->flags &= ~LOOKUP_PARENT;
1992         nd->flags |= op->intent;
1993
1994         switch (nd->last_type) {
1995         case LAST_DOTDOT:
1996         case LAST_DOT:
1997                 error = handle_dots(nd, nd->last_type);
1998                 if (error)
1999                         return ERR_PTR(error);
2000                 /* fallthrough */
2001         case LAST_ROOT:
2002                 error = complete_walk(nd);
2003                 if (error)
2004                         return ERR_PTR(error);
2005                 audit_inode(pathname, nd->path.dentry);
2006                 if (open_flag & O_CREAT) {
2007                         error = -EISDIR;
2008                         goto exit;
2009                 }
2010                 goto ok;
2011         case LAST_BIND:
2012                 error = complete_walk(nd);
2013                 if (error)
2014                         return ERR_PTR(error);
2015                 audit_inode(pathname, dir);
2016                 goto ok;
2017         }
2018
2019         if (!(open_flag & O_CREAT)) {
2020                 int symlink_ok = 0;
2021                 if (nd->last.name[nd->last.len])
2022                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2023                 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2024                         symlink_ok = 1;
2025                 /* we _can_ be in RCU mode here */
2026                 error = walk_component(nd, path, &nd->last, LAST_NORM,
2027                                         !symlink_ok);
2028                 if (error < 0)
2029                         return ERR_PTR(error);
2030                 if (error) /* symlink */
2031                         return NULL;
2032                 /* sayonara */
2033                 error = complete_walk(nd);
2034                 if (error)
2035                         return ERR_PTR(-ECHILD);
2036
2037                 error = -ENOTDIR;
2038                 if (nd->flags & LOOKUP_DIRECTORY) {
2039                         if (!nd->inode->i_op->lookup)
2040                                 goto exit;
2041                 }
2042                 audit_inode(pathname, nd->path.dentry);
2043                 goto ok;
2044         }
2045
2046         /* create side of things */
2047         error = complete_walk(nd);
2048         if (error)
2049                 return ERR_PTR(error);
2050
2051         audit_inode(pathname, dir);
2052         error = -EISDIR;
2053         /* trailing slashes? */
2054         if (nd->last.name[nd->last.len])
2055                 goto exit;
2056
2057         mutex_lock(&dir->d_inode->i_mutex);
2058
2059         dentry = lookup_hash(nd);
2060         error = PTR_ERR(dentry);
2061         if (IS_ERR(dentry)) {
2062                 mutex_unlock(&dir->d_inode->i_mutex);
2063                 goto exit;
2064         }
2065
2066         path->dentry = dentry;
2067         path->mnt = nd->path.mnt;
2068
2069         /* Negative dentry, just create the file */
2070         if (!dentry->d_inode) {
2071                 int mode = op->mode;
2072                 if (!IS_POSIXACL(dir->d_inode))
2073                         mode &= ~current_umask();
2074                 /*
2075                  * This write is needed to ensure that a
2076                  * rw->ro transition does not occur between
2077                  * the time when the file is created and when
2078                  * a permanent write count is taken through
2079                  * the 'struct file' in nameidata_to_filp().
2080                  */
2081                 error = mnt_want_write(nd->path.mnt);
2082                 if (error)
2083                         goto exit_mutex_unlock;
2084                 want_write = 1;
2085                 /* Don't check for write permission, don't truncate */
2086                 open_flag &= ~O_TRUNC;
2087                 will_truncate = 0;
2088                 acc_mode = MAY_OPEN;
2089                 error = security_path_mknod(&nd->path, dentry, mode, 0);
2090                 if (error)
2091                         goto exit_mutex_unlock;
2092                 error = vfs_create(dir->d_inode, dentry, mode, nd);
2093                 if (error)
2094                         goto exit_mutex_unlock;
2095                 mutex_unlock(&dir->d_inode->i_mutex);
2096                 dput(nd->path.dentry);
2097                 nd->path.dentry = dentry;
2098                 goto common;
2099         }
2100
2101         /*
2102          * It already exists.
2103          */
2104         mutex_unlock(&dir->d_inode->i_mutex);
2105         audit_inode(pathname, path->dentry);
2106
2107         error = -EEXIST;
2108         if (open_flag & O_EXCL)
2109                 goto exit_dput;
2110
2111         error = follow_managed(path, nd->flags);
2112         if (error < 0)
2113                 goto exit_dput;
2114
2115         error = -ENOENT;
2116         if (!path->dentry->d_inode)
2117                 goto exit_dput;
2118
2119         if (path->dentry->d_inode->i_op->follow_link)
2120                 return NULL;
2121
2122         path_to_nameidata(path, nd);
2123         nd->inode = path->dentry->d_inode;
2124         error = -EISDIR;
2125         if (S_ISDIR(nd->inode->i_mode))
2126                 goto exit;
2127 ok:
2128         if (!S_ISREG(nd->inode->i_mode))
2129                 will_truncate = 0;
2130
2131         if (will_truncate) {
2132                 error = mnt_want_write(nd->path.mnt);
2133                 if (error)
2134                         goto exit;
2135                 want_write = 1;
2136         }
2137 common:
2138         error = may_open(&nd->path, acc_mode, open_flag);
2139         if (error)
2140                 goto exit;
2141         filp = nameidata_to_filp(nd);
2142         if (!IS_ERR(filp)) {
2143                 error = ima_file_check(filp, op->acc_mode);
2144                 if (error) {
2145                         fput(filp);
2146                         filp = ERR_PTR(error);
2147                 }
2148         }
2149         if (!IS_ERR(filp)) {
2150                 if (will_truncate) {
2151                         error = handle_truncate(filp);
2152                         if (error) {
2153                                 fput(filp);
2154                                 filp = ERR_PTR(error);
2155                         }
2156                 }
2157         }
2158 out:
2159         if (want_write)
2160                 mnt_drop_write(nd->path.mnt);
2161         path_put(&nd->path);
2162         return filp;
2163
2164 exit_mutex_unlock:
2165         mutex_unlock(&dir->d_inode->i_mutex);
2166 exit_dput:
2167         path_put_conditional(path, nd);
2168 exit:
2169         filp = ERR_PTR(error);
2170         goto out;
2171 }
2172
2173 static struct file *path_openat(int dfd, const char *pathname,
2174                 struct nameidata *nd, const struct open_flags *op, int flags)
2175 {
2176         struct file *base = NULL;
2177         struct file *filp;
2178         struct path path;
2179         int error;
2180
2181         filp = get_empty_filp();
2182         if (!filp)
2183                 return ERR_PTR(-ENFILE);
2184
2185         filp->f_flags = op->open_flag;
2186         nd->intent.open.file = filp;
2187         nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2188         nd->intent.open.create_mode = op->mode;
2189
2190         error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2191         if (unlikely(error))
2192                 goto out_filp;
2193
2194         current->total_link_count = 0;
2195         error = link_path_walk(pathname, nd);
2196         if (unlikely(error))
2197                 goto out_filp;
2198
2199         filp = do_last(nd, &path, op, pathname);
2200         while (unlikely(!filp)) { /* trailing symlink */
2201                 struct path link = path;
2202                 void *cookie;
2203                 if (!(nd->flags & LOOKUP_FOLLOW)) {
2204                         path_put_conditional(&path, nd);
2205                         path_put(&nd->path);
2206                         filp = ERR_PTR(-ELOOP);
2207                         break;
2208                 }
2209                 nd->flags |= LOOKUP_PARENT;
2210                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2211                 error = follow_link(&link, nd, &cookie);
2212                 if (unlikely(error))
2213                         filp = ERR_PTR(error);
2214                 else
2215                         filp = do_last(nd, &path, op, pathname);
2216                 put_link(nd, &link, cookie);
2217         }
2218 out:
2219         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2220                 path_put(&nd->root);
2221         if (base)
2222                 fput(base);
2223         release_open_intent(nd);
2224         return filp;
2225
2226 out_filp:
2227         filp = ERR_PTR(error);
2228         goto out;
2229 }
2230
2231 struct file *do_filp_open(int dfd, const char *pathname,
2232                 const struct open_flags *op, int flags)
2233 {
2234         struct nameidata nd;
2235         struct file *filp;
2236
2237         filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2238         if (unlikely(filp == ERR_PTR(-ECHILD)))
2239                 filp = path_openat(dfd, pathname, &nd, op, flags);
2240         if (unlikely(filp == ERR_PTR(-ESTALE)))
2241                 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2242         return filp;
2243 }
2244
2245 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2246                 const char *name, const struct open_flags *op, int flags)
2247 {
2248         struct nameidata nd;
2249         struct file *file;
2250
2251         nd.root.mnt = mnt;
2252         nd.root.dentry = dentry;
2253
2254         flags |= LOOKUP_ROOT;
2255
2256         if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2257                 return ERR_PTR(-ELOOP);
2258
2259         file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2260         if (unlikely(file == ERR_PTR(-ECHILD)))
2261                 file = path_openat(-1, name, &nd, op, flags);
2262         if (unlikely(file == ERR_PTR(-ESTALE)))
2263                 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2264         return file;
2265 }
2266
2267 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2268 {
2269         struct dentry *dentry = ERR_PTR(-EEXIST);
2270         struct nameidata nd;
2271         int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2272         if (error)
2273                 return ERR_PTR(error);
2274
2275         /*
2276          * Yucky last component or no last component at all?
2277          * (foo/., foo/.., /////)
2278          */
2279         if (nd.last_type != LAST_NORM)
2280                 goto out;
2281         nd.flags &= ~LOOKUP_PARENT;
2282         nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2283         nd.intent.open.flags = O_EXCL;
2284
2285         /*
2286          * Do the final lookup.
2287          */
2288         mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2289         dentry = lookup_hash(&nd);
2290         if (IS_ERR(dentry))
2291                 goto fail;
2292
2293         if (dentry->d_inode)
2294                 goto eexist;
2295         /*
2296          * Special case - lookup gave negative, but... we had foo/bar/
2297          * From the vfs_mknod() POV we just have a negative dentry -
2298          * all is fine. Let's be bastards - you had / on the end, you've
2299          * been asking for (non-existent) directory. -ENOENT for you.
2300          */
2301         if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2302                 dput(dentry);
2303                 dentry = ERR_PTR(-ENOENT);
2304                 goto fail;
2305         }
2306         *path = nd.path;
2307         return dentry;
2308 eexist:
2309         dput(dentry);
2310         dentry = ERR_PTR(-EEXIST);
2311 fail:
2312         mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2313 out:
2314         path_put(&nd.path);
2315         return dentry;
2316 }
2317 EXPORT_SYMBOL(kern_path_create);
2318
2319 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2320 {
2321         char *tmp = getname(pathname);
2322         struct dentry *res;
2323         if (IS_ERR(tmp))
2324                 return ERR_CAST(tmp);
2325         res = kern_path_create(dfd, tmp, path, is_dir);
2326         putname(tmp);
2327         return res;
2328 }
2329 EXPORT_SYMBOL(user_path_create);
2330
2331 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2332 {
2333         int error = may_create(dir, dentry);
2334
2335         if (error)
2336                 return error;
2337
2338         if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2339             !ns_capable(inode_userns(dir), CAP_MKNOD))
2340                 return -EPERM;
2341
2342         if (!dir->i_op->mknod)
2343                 return -EPERM;
2344
2345         error = devcgroup_inode_mknod(mode, dev);
2346         if (error)
2347                 return error;
2348
2349         error = security_inode_mknod(dir, dentry, mode, dev);
2350         if (error)
2351                 return error;
2352
2353         error = dir->i_op->mknod(dir, dentry, mode, dev);
2354         if (!error)
2355                 fsnotify_create(dir, dentry);
2356         return error;
2357 }
2358
2359 static int may_mknod(mode_t mode)
2360 {
2361         switch (mode & S_IFMT) {
2362         case S_IFREG:
2363         case S_IFCHR:
2364         case S_IFBLK:
2365         case S_IFIFO:
2366         case S_IFSOCK:
2367         case 0: /* zero mode translates to S_IFREG */
2368                 return 0;
2369         case S_IFDIR:
2370                 return -EPERM;
2371         default:
2372                 return -EINVAL;
2373         }
2374 }
2375
2376 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2377                 unsigned, dev)
2378 {
2379         struct dentry *dentry;
2380         struct path path;
2381         int error;
2382
2383         if (S_ISDIR(mode))
2384                 return -EPERM;
2385
2386         dentry = user_path_create(dfd, filename, &path, 0);
2387         if (IS_ERR(dentry))
2388                 return PTR_ERR(dentry);
2389
2390         if (!IS_POSIXACL(path.dentry->d_inode))
2391                 mode &= ~current_umask();
2392         error = may_mknod(mode);
2393         if (error)
2394                 goto out_dput;
2395         error = mnt_want_write(path.mnt);
2396         if (error)
2397                 goto out_dput;
2398         error = security_path_mknod(&path, dentry, mode, dev);
2399         if (error)
2400                 goto out_drop_write;
2401         switch (mode & S_IFMT) {
2402                 case 0: case S_IFREG:
2403                         error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2404                         break;
2405                 case S_IFCHR: case S_IFBLK:
2406                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2407                                         new_decode_dev(dev));
2408                         break;
2409                 case S_IFIFO: case S_IFSOCK:
2410                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2411                         break;
2412         }
2413 out_drop_write:
2414         mnt_drop_write(path.mnt);
2415 out_dput:
2416         dput(dentry);
2417         mutex_unlock(&path.dentry->d_inode->i_mutex);
2418         path_put(&path);
2419
2420         return error;
2421 }
2422
2423 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2424 {
2425         return sys_mknodat(AT_FDCWD, filename, mode, dev);
2426 }
2427
2428 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2429 {
2430         int error = may_create(dir, dentry);
2431
2432         if (error)
2433                 return error;
2434
2435         if (!dir->i_op->mkdir)
2436                 return -EPERM;
2437
2438         mode &= (S_IRWXUGO|S_ISVTX);
2439         error = security_inode_mkdir(dir, dentry, mode);
2440         if (error)
2441                 return error;
2442
2443         error = dir->i_op->mkdir(dir, dentry, mode);
2444         if (!error)
2445                 fsnotify_mkdir(dir, dentry);
2446         return error;
2447 }
2448
2449 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2450 {
2451         struct dentry *dentry;
2452         struct path path;
2453         int error;
2454
2455         dentry = user_path_create(dfd, pathname, &path, 1);
2456         if (IS_ERR(dentry))
2457                 return PTR_ERR(dentry);
2458
2459         if (!IS_POSIXACL(path.dentry->d_inode))
2460                 mode &= ~current_umask();
2461         error = mnt_want_write(path.mnt);
2462         if (error)
2463                 goto out_dput;
2464         error = security_path_mkdir(&path, dentry, mode);
2465         if (error)
2466                 goto out_drop_write;
2467         error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2468 out_drop_write:
2469         mnt_drop_write(path.mnt);
2470 out_dput:
2471         dput(dentry);
2472         mutex_unlock(&path.dentry->d_inode->i_mutex);
2473         path_put(&path);
2474         return error;
2475 }
2476
2477 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2478 {
2479         return sys_mkdirat(AT_FDCWD, pathname, mode);
2480 }
2481
2482 /*
2483  * The dentry_unhash() helper will try to drop the dentry early: we
2484  * should have a usage count of 2 if we're the only user of this
2485  * dentry, and if that is true (possibly after pruning the dcache),
2486  * then we drop the dentry now.
2487  *
2488  * A low-level filesystem can, if it choses, legally
2489  * do a
2490  *
2491  *      if (!d_unhashed(dentry))
2492  *              return -EBUSY;
2493  *
2494  * if it cannot handle the case of removing a directory
2495  * that is still in use by something else..
2496  */
2497 void dentry_unhash(struct dentry *dentry)
2498 {
2499         shrink_dcache_parent(dentry);
2500         spin_lock(&dentry->d_lock);
2501         if (dentry->d_count == 1)
2502                 __d_drop(dentry);
2503         spin_unlock(&dentry->d_lock);
2504 }
2505
2506 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2507 {
2508         int error = may_delete(dir, dentry, 1);
2509
2510         if (error)
2511                 return error;
2512
2513         if (!dir->i_op->rmdir)
2514                 return -EPERM;
2515
2516         mutex_lock(&dentry->d_inode->i_mutex);
2517
2518         error = -EBUSY;
2519         if (d_mountpoint(dentry))
2520                 goto out;
2521
2522         error = security_inode_rmdir(dir, dentry);
2523         if (error)
2524                 goto out;
2525
2526         shrink_dcache_parent(dentry);
2527         error = dir->i_op->rmdir(dir, dentry);
2528         if (error)
2529                 goto out;
2530
2531         dentry->d_inode->i_flags |= S_DEAD;
2532         dont_mount(dentry);
2533
2534 out:
2535         mutex_unlock(&dentry->d_inode->i_mutex);
2536         if (!error)
2537                 d_delete(dentry);
2538         return error;
2539 }
2540
2541 static long do_rmdir(int dfd, const char __user *pathname)
2542 {
2543         int error = 0;
2544         char * name;
2545         struct dentry *dentry;
2546         struct nameidata nd;
2547
2548         error = user_path_parent(dfd, pathname, &nd, &name);
2549         if (error)
2550                 return error;
2551
2552         switch(nd.last_type) {
2553         case LAST_DOTDOT:
2554                 error = -ENOTEMPTY;
2555                 goto exit1;
2556         case LAST_DOT:
2557                 error = -EINVAL;
2558                 goto exit1;
2559         case LAST_ROOT:
2560                 error = -EBUSY;
2561                 goto exit1;
2562         }
2563
2564         nd.flags &= ~LOOKUP_PARENT;
2565
2566         mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2567         dentry = lookup_hash(&nd);
2568         error = PTR_ERR(dentry);
2569         if (IS_ERR(dentry))
2570                 goto exit2;
2571         if (!dentry->d_inode) {
2572                 error = -ENOENT;
2573                 goto exit3;
2574         }
2575         error = mnt_want_write(nd.path.mnt);
2576         if (error)
2577                 goto exit3;
2578         error = security_path_rmdir(&nd.path, dentry);
2579         if (error)
2580                 goto exit4;
2581         error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2582 exit4:
2583         mnt_drop_write(nd.path.mnt);
2584 exit3:
2585         dput(dentry);
2586 exit2:
2587         mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2588 exit1:
2589         path_put(&nd.path);
2590         putname(name);
2591         return error;
2592 }
2593
2594 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2595 {
2596         return do_rmdir(AT_FDCWD, pathname);
2597 }
2598
2599 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2600 {
2601         int error = may_delete(dir, dentry, 0);
2602
2603         if (error)
2604                 return error;
2605
2606         if (!dir->i_op->unlink)
2607                 return -EPERM;
2608
2609         mutex_lock(&dentry->d_inode->i_mutex);
2610         if (d_mountpoint(dentry))
2611                 error = -EBUSY;
2612         else {
2613                 error = security_inode_unlink(dir, dentry);
2614                 if (!error) {
2615                         error = dir->i_op->unlink(dir, dentry);
2616                         if (!error)
2617                                 dont_mount(dentry);
2618                 }
2619         }
2620         mutex_unlock(&dentry->d_inode->i_mutex);
2621
2622         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2623         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2624                 fsnotify_link_count(dentry->d_inode);
2625                 d_delete(dentry);
2626         }
2627
2628         return error;
2629 }
2630
2631 /*
2632  * Make sure that the actual truncation of the file will occur outside its
2633  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2634  * writeout happening, and we don't want to prevent access to the directory
2635  * while waiting on the I/O.
2636  */
2637 static long do_unlinkat(int dfd, const char __user *pathname)
2638 {
2639         int error;
2640         char *name;
2641         struct dentry *dentry;
2642         struct nameidata nd;
2643         struct inode *inode = NULL;
2644
2645         error = user_path_parent(dfd, pathname, &nd, &name);
2646         if (error)
2647                 return error;
2648
2649         error = -EISDIR;
2650         if (nd.last_type != LAST_NORM)
2651                 goto exit1;
2652
2653         nd.flags &= ~LOOKUP_PARENT;
2654
2655         mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2656         dentry = lookup_hash(&nd);
2657         error = PTR_ERR(dentry);
2658         if (!IS_ERR(dentry)) {
2659                 /* Why not before? Because we want correct error value */
2660                 if (nd.last.name[nd.last.len])
2661                         goto slashes;
2662                 inode = dentry->d_inode;
2663                 if (!inode)
2664                         goto slashes;
2665                 ihold(inode);
2666                 error = mnt_want_write(nd.path.mnt);
2667                 if (error)
2668                         goto exit2;
2669                 error = security_path_unlink(&nd.path, dentry);
2670                 if (error)
2671                         goto exit3;
2672                 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2673 exit3:
2674                 mnt_drop_write(nd.path.mnt);
2675         exit2:
2676                 dput(dentry);
2677         }
2678         mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2679         if (inode)
2680                 iput(inode);    /* truncate the inode here */
2681 exit1:
2682         path_put(&nd.path);
2683         putname(name);
2684         return error;
2685
2686 slashes:
2687         error = !dentry->d_inode ? -ENOENT :
2688                 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2689         goto exit2;
2690 }
2691
2692 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2693 {
2694         if ((flag & ~AT_REMOVEDIR) != 0)
2695                 return -EINVAL;
2696
2697         if (flag & AT_REMOVEDIR)
2698                 return do_rmdir(dfd, pathname);
2699
2700         return do_unlinkat(dfd, pathname);
2701 }
2702
2703 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2704 {
2705         return do_unlinkat(AT_FDCWD, pathname);
2706 }
2707
2708 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2709 {
2710         int error = may_create(dir, dentry);
2711
2712         if (error)
2713                 return error;
2714
2715         if (!dir->i_op->symlink)
2716                 return -EPERM;
2717
2718         error = security_inode_symlink(dir, dentry, oldname);
2719         if (error)
2720                 return error;
2721
2722         error = dir->i_op->symlink(dir, dentry, oldname);
2723         if (!error)
2724                 fsnotify_create(dir, dentry);
2725         return error;
2726 }
2727
2728 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2729                 int, newdfd, const char __user *, newname)
2730 {
2731         int error;
2732         char *from;
2733         struct dentry *dentry;
2734         struct path path;
2735
2736         from = getname(oldname);
2737         if (IS_ERR(from))
2738                 return PTR_ERR(from);
2739
2740         dentry = user_path_create(newdfd, newname, &path, 0);
2741         error = PTR_ERR(dentry);
2742         if (IS_ERR(dentry))
2743                 goto out_putname;
2744
2745         error = mnt_want_write(path.mnt);
2746         if (error)
2747                 goto out_dput;
2748         error = security_path_symlink(&path, dentry, from);
2749         if (error)
2750                 goto out_drop_write;
2751         error = vfs_symlink(path.dentry->d_inode, dentry, from);
2752 out_drop_write:
2753         mnt_drop_write(path.mnt);
2754 out_dput:
2755         dput(dentry);
2756         mutex_unlock(&path.dentry->d_inode->i_mutex);
2757         path_put(&path);
2758 out_putname:
2759         putname(from);
2760         return error;
2761 }
2762
2763 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2764 {
2765         return sys_symlinkat(oldname, AT_FDCWD, newname);
2766 }
2767
2768 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2769 {
2770         struct inode *inode = old_dentry->d_inode;
2771         int error;
2772
2773         if (!inode)
2774                 return -ENOENT;
2775
2776         error = may_create(dir, new_dentry);
2777         if (error)
2778                 return error;
2779
2780         if (dir->i_sb != inode->i_sb)
2781                 return -EXDEV;
2782
2783         /*
2784          * A link to an append-only or immutable file cannot be created.
2785          */
2786         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2787                 return -EPERM;
2788         if (!dir->i_op->link)
2789                 return -EPERM;
2790         if (S_ISDIR(inode->i_mode))
2791                 return -EPERM;
2792
2793         error = security_inode_link(old_dentry, dir, new_dentry);
2794         if (error)
2795                 return error;
2796
2797         mutex_lock(&inode->i_mutex);
2798         /* Make sure we don't allow creating hardlink to an unlinked file */
2799         if (inode->i_nlink == 0)
2800                 error =  -ENOENT;
2801         else
2802                 error = dir->i_op->link(old_dentry, dir, new_dentry);
2803         mutex_unlock(&inode->i_mutex);
2804         if (!error)
2805                 fsnotify_link(dir, inode, new_dentry);
2806         return error;
2807 }
2808
2809 /*
2810  * Hardlinks are often used in delicate situations.  We avoid
2811  * security-related surprises by not following symlinks on the
2812  * newname.  --KAB
2813  *
2814  * We don't follow them on the oldname either to be compatible
2815  * with linux 2.0, and to avoid hard-linking to directories
2816  * and other special files.  --ADM
2817  */
2818 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2819                 int, newdfd, const char __user *, newname, int, flags)
2820 {
2821         struct dentry *new_dentry;
2822         struct path old_path, new_path;
2823         int how = 0;
2824         int error;
2825
2826         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2827                 return -EINVAL;
2828         /*
2829          * To use null names we require CAP_DAC_READ_SEARCH
2830          * This ensures that not everyone will be able to create
2831          * handlink using the passed filedescriptor.
2832          */
2833         if (flags & AT_EMPTY_PATH) {
2834                 if (!capable(CAP_DAC_READ_SEARCH))
2835                         return -ENOENT;
2836                 how = LOOKUP_EMPTY;
2837         }
2838
2839         if (flags & AT_SYMLINK_FOLLOW)
2840                 how |= LOOKUP_FOLLOW;
2841
2842         error = user_path_at(olddfd, oldname, how, &old_path);
2843         if (error)
2844                 return error;
2845
2846         new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2847         error = PTR_ERR(new_dentry);
2848         if (IS_ERR(new_dentry))
2849                 goto out;
2850
2851         error = -EXDEV;
2852         if (old_path.mnt != new_path.mnt)
2853                 goto out_dput;
2854         error = mnt_want_write(new_path.mnt);
2855         if (error)
2856                 goto out_dput;
2857         error = security_path_link(old_path.dentry, &new_path, new_dentry);
2858         if (error)
2859                 goto out_drop_write;
2860         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2861 out_drop_write:
2862         mnt_drop_write(new_path.mnt);
2863 out_dput:
2864         dput(new_dentry);
2865         mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2866         path_put(&new_path);
2867 out:
2868         path_put(&old_path);
2869
2870         return error;
2871 }
2872
2873 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2874 {
2875         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2876 }
2877
2878 /*
2879  * The worst of all namespace operations - renaming directory. "Perverted"
2880  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2881  * Problems:
2882  *      a) we can get into loop creation. Check is done in is_subdir().
2883  *      b) race potential - two innocent renames can create a loop together.
2884  *         That's where 4.4 screws up. Current fix: serialization on
2885  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2886  *         story.
2887  *      c) we have to lock _three_ objects - parents and victim (if it exists).
2888  *         And that - after we got ->i_mutex on parents (until then we don't know
2889  *         whether the target exists).  Solution: try to be smart with locking
2890  *         order for inodes.  We rely on the fact that tree topology may change
2891  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
2892  *         move will be locked.  Thus we can rank directories by the tree
2893  *         (ancestors first) and rank all non-directories after them.
2894  *         That works since everybody except rename does "lock parent, lookup,
2895  *         lock child" and rename is under ->s_vfs_rename_mutex.
2896  *         HOWEVER, it relies on the assumption that any object with ->lookup()
2897  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
2898  *         we'd better make sure that there's no link(2) for them.
2899  *      d) conversion from fhandle to dentry may come in the wrong moment - when
2900  *         we are removing the target. Solution: we will have to grab ->i_mutex
2901  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2902  *         ->i_mutex on parents, which works but leads to some truly excessive
2903  *         locking].
2904  */
2905 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2906                           struct inode *new_dir, struct dentry *new_dentry)
2907 {
2908         int error = 0;
2909         struct inode *target = new_dentry->d_inode;
2910
2911         /*
2912          * If we are going to change the parent - check write permissions,
2913          * we'll need to flip '..'.
2914          */
2915         if (new_dir != old_dir) {
2916                 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2917                 if (error)
2918                         return error;
2919         }
2920
2921         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2922         if (error)
2923                 return error;
2924
2925         if (target)
2926                 mutex_lock(&target->i_mutex);
2927
2928         error = -EBUSY;
2929         if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
2930                 goto out;
2931
2932         if (target)
2933                 shrink_dcache_parent(new_dentry);
2934         error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2935         if (error)
2936                 goto out;
2937
2938         if (target) {
2939                 target->i_flags |= S_DEAD;
2940                 dont_mount(new_dentry);
2941         }
2942 out:
2943         if (target)
2944                 mutex_unlock(&target->i_mutex);
2945         if (!error)
2946                 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2947                         d_move(old_dentry,new_dentry);
2948         return error;
2949 }
2950
2951 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2952                             struct inode *new_dir, struct dentry *new_dentry)
2953 {
2954         struct inode *target = new_dentry->d_inode;
2955         int error;
2956
2957         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2958         if (error)
2959                 return error;
2960
2961         dget(new_dentry);
2962         if (target)
2963                 mutex_lock(&target->i_mutex);
2964
2965         error = -EBUSY;
2966         if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2967                 goto out;
2968
2969         error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2970         if (error)
2971                 goto out;
2972
2973         if (target)
2974                 dont_mount(new_dentry);
2975         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2976                 d_move(old_dentry, new_dentry);
2977 out:
2978         if (target)
2979                 mutex_unlock(&target->i_mutex);
2980         dput(new_dentry);
2981         return error;
2982 }
2983
2984 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2985                struct inode *new_dir, struct dentry *new_dentry)
2986 {
2987         int error;
2988         int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2989         const unsigned char *old_name;
2990
2991         if (old_dentry->d_inode == new_dentry->d_inode)
2992                 return 0;
2993  
2994         error = may_delete(old_dir, old_dentry, is_dir);
2995         if (error)
2996                 return error;
2997
2998         if (!new_dentry->d_inode)
2999                 error = may_create(new_dir, new_dentry);
3000         else
3001                 error = may_delete(new_dir, new_dentry, is_dir);
3002         if (error)
3003                 return error;
3004
3005         if (!old_dir->i_op->rename)
3006                 return -EPERM;
3007
3008         old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3009
3010         if (is_dir)
3011                 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3012         else
3013                 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3014         if (!error)
3015                 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3016                               new_dentry->d_inode, old_dentry);
3017         fsnotify_oldname_free(old_name);
3018
3019         return error;
3020 }
3021
3022 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3023                 int, newdfd, const char __user *, newname)
3024 {
3025         struct dentry *old_dir, *new_dir;
3026         struct dentry *old_dentry, *new_dentry;
3027         struct dentry *trap;
3028         struct nameidata oldnd, newnd;
3029         char *from;
3030         char *to;
3031         int error;
3032
3033         error = user_path_parent(olddfd, oldname, &oldnd, &from);
3034         if (error)
3035                 goto exit;
3036
3037         error = user_path_parent(newdfd, newname, &newnd, &to);
3038         if (error)
3039                 goto exit1;
3040
3041         error = -EXDEV;
3042         if (oldnd.path.mnt != newnd.path.mnt)
3043                 goto exit2;
3044
3045         old_dir = oldnd.path.dentry;
3046         error = -EBUSY;
3047         if (oldnd.last_type != LAST_NORM)
3048                 goto exit2;
3049
3050         new_dir = newnd.path.dentry;
3051         if (newnd.last_type != LAST_NORM)
3052                 goto exit2;
3053
3054         oldnd.flags &= ~LOOKUP_PARENT;
3055         newnd.flags &= ~LOOKUP_PARENT;
3056         newnd.flags |= LOOKUP_RENAME_TARGET;
3057
3058         trap = lock_rename(new_dir, old_dir);
3059
3060         old_dentry = lookup_hash(&oldnd);
3061         error = PTR_ERR(old_dentry);
3062         if (IS_ERR(old_dentry))
3063                 goto exit3;
3064         /* source must exist */
3065         error = -ENOENT;
3066         if (!old_dentry->d_inode)
3067                 goto exit4;
3068         /* unless the source is a directory trailing slashes give -ENOTDIR */
3069         if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3070                 error = -ENOTDIR;
3071                 if (oldnd.last.name[oldnd.last.len])
3072                         goto exit4;
3073                 if (newnd.last.name[newnd.last.len])
3074                         goto exit4;
3075         }
3076         /* source should not be ancestor of target */
3077         error = -EINVAL;
3078         if (old_dentry == trap)
3079                 goto exit4;
3080         new_dentry = lookup_hash(&newnd);
3081         error = PTR_ERR(new_dentry);
3082         if (IS_ERR(new_dentry))
3083                 goto exit4;
3084         /* target should not be an ancestor of source */
3085         error = -ENOTEMPTY;
3086         if (new_dentry == trap)
3087                 goto exit5;
3088
3089         error = mnt_want_write(oldnd.path.mnt);
3090         if (error)
3091                 goto exit5;
3092         error = security_path_rename(&oldnd.path, old_dentry,
3093                                      &newnd.path, new_dentry);
3094         if (error)
3095                 goto exit6;
3096         error = vfs_rename(old_dir->d_inode, old_dentry,
3097                                    new_dir->d_inode, new_dentry);
3098 exit6:
3099         mnt_drop_write(oldnd.path.mnt);
3100 exit5:
3101         dput(new_dentry);
3102 exit4:
3103         dput(old_dentry);
3104 exit3:
3105         unlock_rename(new_dir, old_dir);
3106 exit2:
3107         path_put(&newnd.path);
3108         putname(to);
3109 exit1:
3110         path_put(&oldnd.path);
3111         putname(from);
3112 exit:
3113         return error;
3114 }
3115
3116 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3117 {
3118         return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3119 }
3120
3121 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3122 {
3123         int len;
3124
3125         len = PTR_ERR(link);
3126         if (IS_ERR(link))
3127                 goto out;
3128
3129         len = strlen(link);
3130         if (len > (unsigned) buflen)
3131                 len = buflen;
3132         if (copy_to_user(buffer, link, len))
3133                 len = -EFAULT;
3134 out:
3135         return len;
3136 }
3137
3138 /*
3139  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3140  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3141  * using) it for any given inode is up to filesystem.
3142  */
3143 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3144 {
3145         struct nameidata nd;
3146         void *cookie;
3147         int res;
3148
3149         nd.depth = 0;
3150         cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3151         if (IS_ERR(cookie))
3152                 return PTR_ERR(cookie);
3153
3154         res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3155         if (dentry->d_inode->i_op->put_link)
3156                 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3157         return res;
3158 }
3159
3160 int vfs_follow_link(struct nameidata *nd, const char *link)
3161 {
3162         return __vfs_follow_link(nd, link);
3163 }
3164
3165 /* get the link contents into pagecache */
3166 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3167 {
3168         char *kaddr;
3169         struct page *page;
3170         struct address_space *mapping = dentry->d_inode->i_mapping;
3171         page = read_mapping_page(mapping, 0, NULL);
3172         if (IS_ERR(page))
3173                 return (char*)page;
3174         *ppage = page;
3175         kaddr = kmap(page);
3176         nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3177         return kaddr;
3178 }
3179
3180 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3181 {
3182         struct page *page = NULL;
3183         char *s = page_getlink(dentry, &page);
3184         int res = vfs_readlink(dentry,buffer,buflen,s);
3185         if (page) {
3186                 kunmap(page);
3187                 page_cache_release(page);
3188         }
3189         return res;
3190 }
3191
3192 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3193 {
3194         struct page *page = NULL;
3195         nd_set_link(nd, page_getlink(dentry, &page));
3196         return page;
3197 }
3198
3199 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3200 {
3201         struct page *page = cookie;
3202
3203         if (page) {
3204                 kunmap(page);
3205                 page_cache_release(page);
3206         }
3207 }
3208
3209 /*
3210  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3211  */
3212 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3213 {
3214         struct address_space *mapping = inode->i_mapping;
3215         struct page *page;
3216         void *fsdata;
3217         int err;
3218         char *kaddr;
3219         unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3220         if (nofs)
3221                 flags |= AOP_FLAG_NOFS;
3222
3223 retry:
3224         err = pagecache_write_begin(NULL, mapping, 0, len-1,
3225                                 flags, &page, &fsdata);
3226         if (err)
3227                 goto fail;
3228
3229         kaddr = kmap_atomic(page, KM_USER0);
3230         memcpy(kaddr, symname, len-1);
3231         kunmap_atomic(kaddr, KM_USER0);
3232
3233         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3234                                                         page, fsdata);
3235         if (err < 0)
3236                 goto fail;
3237         if (err < len-1)
3238                 goto retry;
3239
3240         mark_inode_dirty(inode);
3241         return 0;
3242 fail:
3243         return err;
3244 }
3245
3246 int page_symlink(struct inode *inode, const char *symname, int len)
3247 {
3248         return __page_symlink(inode, symname, len,
3249                         !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3250 }
3251
3252 const struct inode_operations page_symlink_inode_operations = {
3253         .readlink       = generic_readlink,
3254         .follow_link    = page_follow_link_light,
3255         .put_link       = page_put_link,
3256 };
3257
3258 EXPORT_SYMBOL(user_path_at);
3259 EXPORT_SYMBOL(follow_down_one);
3260 EXPORT_SYMBOL(follow_down);
3261 EXPORT_SYMBOL(follow_up);
3262 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3263 EXPORT_SYMBOL(getname);
3264 EXPORT_SYMBOL(lock_rename);
3265 EXPORT_SYMBOL(lookup_one_len);
3266 EXPORT_SYMBOL(page_follow_link_light);
3267 EXPORT_SYMBOL(page_put_link);
3268 EXPORT_SYMBOL(page_readlink);
3269 EXPORT_SYMBOL(__page_symlink);
3270 EXPORT_SYMBOL(page_symlink);
3271 EXPORT_SYMBOL(page_symlink_inode_operations);
3272 EXPORT_SYMBOL(kern_path);
3273 EXPORT_SYMBOL(vfs_path_lookup);
3274 EXPORT_SYMBOL(inode_permission);
3275 EXPORT_SYMBOL(unlock_rename);
3276 EXPORT_SYMBOL(vfs_create);
3277 EXPORT_SYMBOL(vfs_follow_link);
3278 EXPORT_SYMBOL(vfs_link);
3279 EXPORT_SYMBOL(vfs_mkdir);
3280 EXPORT_SYMBOL(vfs_mknod);
3281 EXPORT_SYMBOL(generic_permission);
3282 EXPORT_SYMBOL(vfs_readlink);
3283 EXPORT_SYMBOL(vfs_rename);
3284 EXPORT_SYMBOL(vfs_rmdir);
3285 EXPORT_SYMBOL(vfs_symlink);
3286 EXPORT_SYMBOL(vfs_unlink);
3287 EXPORT_SYMBOL(dentry_unhash);
3288 EXPORT_SYMBOL(generic_readlink);