]> Pileus Git - ~andy/linux/blob - fs/jbd2/transaction.c
jbd2: fix race in t_outstanding_credits update in jbd2_journal_extend()
[~andy/linux] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits, 0);
93         atomic_set(&transaction->t_handle_count, 0);
94         INIT_LIST_HEAD(&transaction->t_inode_list);
95         INIT_LIST_HEAD(&transaction->t_private_list);
96
97         /* Set up the commit timer for the new transaction. */
98         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99         add_timer(&journal->j_commit_timer);
100
101         J_ASSERT(journal->j_running_transaction == NULL);
102         journal->j_running_transaction = transaction;
103         transaction->t_max_wait = 0;
104         transaction->t_start = jiffies;
105         transaction->t_requested = 0;
106
107         return transaction;
108 }
109
110 /*
111  * Handle management.
112  *
113  * A handle_t is an object which represents a single atomic update to a
114  * filesystem, and which tracks all of the modifications which form part
115  * of that one update.
116  */
117
118 /*
119  * Update transaction's maximum wait time, if debugging is enabled.
120  *
121  * In order for t_max_wait to be reliable, it must be protected by a
122  * lock.  But doing so will mean that start_this_handle() can not be
123  * run in parallel on SMP systems, which limits our scalability.  So
124  * unless debugging is enabled, we no longer update t_max_wait, which
125  * means that maximum wait time reported by the jbd2_run_stats
126  * tracepoint will always be zero.
127  */
128 static inline void update_t_max_wait(transaction_t *transaction,
129                                      unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132         if (jbd2_journal_enable_debug &&
133             time_after(transaction->t_start, ts)) {
134                 ts = jbd2_time_diff(ts, transaction->t_start);
135                 spin_lock(&transaction->t_handle_lock);
136                 if (ts > transaction->t_max_wait)
137                         transaction->t_max_wait = ts;
138                 spin_unlock(&transaction->t_handle_lock);
139         }
140 #endif
141 }
142
143 /*
144  * start_this_handle: Given a handle, deal with any locking or stalling
145  * needed to make sure that there is enough journal space for the handle
146  * to begin.  Attach the handle to a transaction and set up the
147  * transaction's buffer credits.
148  */
149
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151                              gfp_t gfp_mask)
152 {
153         transaction_t   *transaction, *new_transaction = NULL;
154         tid_t           tid;
155         int             needed, need_to_start;
156         int             nblocks = handle->h_buffer_credits;
157         unsigned long ts = jiffies;
158
159         if (nblocks > journal->j_max_transaction_buffers) {
160                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161                        current->comm, nblocks,
162                        journal->j_max_transaction_buffers);
163                 return -ENOSPC;
164         }
165
166 alloc_transaction:
167         if (!journal->j_running_transaction) {
168                 new_transaction = kmem_cache_zalloc(transaction_cache,
169                                                     gfp_mask);
170                 if (!new_transaction) {
171                         /*
172                          * If __GFP_FS is not present, then we may be
173                          * being called from inside the fs writeback
174                          * layer, so we MUST NOT fail.  Since
175                          * __GFP_NOFAIL is going away, we will arrange
176                          * to retry the allocation ourselves.
177                          */
178                         if ((gfp_mask & __GFP_FS) == 0) {
179                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
180                                 goto alloc_transaction;
181                         }
182                         return -ENOMEM;
183                 }
184         }
185
186         jbd_debug(3, "New handle %p going live.\n", handle);
187
188         /*
189          * We need to hold j_state_lock until t_updates has been incremented,
190          * for proper journal barrier handling
191          */
192 repeat:
193         read_lock(&journal->j_state_lock);
194         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195         if (is_journal_aborted(journal) ||
196             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197                 read_unlock(&journal->j_state_lock);
198                 jbd2_journal_free_transaction(new_transaction);
199                 return -EROFS;
200         }
201
202         /* Wait on the journal's transaction barrier if necessary */
203         if (journal->j_barrier_count) {
204                 read_unlock(&journal->j_state_lock);
205                 wait_event(journal->j_wait_transaction_locked,
206                                 journal->j_barrier_count == 0);
207                 goto repeat;
208         }
209
210         if (!journal->j_running_transaction) {
211                 read_unlock(&journal->j_state_lock);
212                 if (!new_transaction)
213                         goto alloc_transaction;
214                 write_lock(&journal->j_state_lock);
215                 if (!journal->j_running_transaction &&
216                     !journal->j_barrier_count) {
217                         jbd2_get_transaction(journal, new_transaction);
218                         new_transaction = NULL;
219                 }
220                 write_unlock(&journal->j_state_lock);
221                 goto repeat;
222         }
223
224         transaction = journal->j_running_transaction;
225
226         /*
227          * If the current transaction is locked down for commit, wait for the
228          * lock to be released.
229          */
230         if (transaction->t_state == T_LOCKED) {
231                 DEFINE_WAIT(wait);
232
233                 prepare_to_wait(&journal->j_wait_transaction_locked,
234                                         &wait, TASK_UNINTERRUPTIBLE);
235                 read_unlock(&journal->j_state_lock);
236                 schedule();
237                 finish_wait(&journal->j_wait_transaction_locked, &wait);
238                 goto repeat;
239         }
240
241         /*
242          * If there is not enough space left in the log to write all potential
243          * buffers requested by this operation, we need to stall pending a log
244          * checkpoint to free some more log space.
245          */
246         needed = atomic_add_return(nblocks,
247                                    &transaction->t_outstanding_credits);
248
249         if (needed > journal->j_max_transaction_buffers) {
250                 /*
251                  * If the current transaction is already too large, then start
252                  * to commit it: we can then go back and attach this handle to
253                  * a new transaction.
254                  */
255                 DEFINE_WAIT(wait);
256
257                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
258                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
259                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260                                 TASK_UNINTERRUPTIBLE);
261                 tid = transaction->t_tid;
262                 need_to_start = !tid_geq(journal->j_commit_request, tid);
263                 read_unlock(&journal->j_state_lock);
264                 if (need_to_start)
265                         jbd2_log_start_commit(journal, tid);
266                 schedule();
267                 finish_wait(&journal->j_wait_transaction_locked, &wait);
268                 goto repeat;
269         }
270
271         /*
272          * The commit code assumes that it can get enough log space
273          * without forcing a checkpoint.  This is *critical* for
274          * correctness: a checkpoint of a buffer which is also
275          * associated with a committing transaction creates a deadlock,
276          * so commit simply cannot force through checkpoints.
277          *
278          * We must therefore ensure the necessary space in the journal
279          * *before* starting to dirty potentially checkpointed buffers
280          * in the new transaction.
281          *
282          * The worst part is, any transaction currently committing can
283          * reduce the free space arbitrarily.  Be careful to account for
284          * those buffers when checkpointing.
285          */
286         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
287                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
288                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
289                 read_unlock(&journal->j_state_lock);
290                 write_lock(&journal->j_state_lock);
291                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
292                         __jbd2_log_wait_for_space(journal);
293                 write_unlock(&journal->j_state_lock);
294                 goto repeat;
295         }
296
297         /* OK, account for the buffers that this operation expects to
298          * use and add the handle to the running transaction. 
299          */
300         update_t_max_wait(transaction, ts);
301         handle->h_transaction = transaction;
302         handle->h_requested_credits = nblocks;
303         handle->h_start_jiffies = jiffies;
304         atomic_inc(&transaction->t_updates);
305         atomic_inc(&transaction->t_handle_count);
306         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
307                   handle, nblocks,
308                   atomic_read(&transaction->t_outstanding_credits),
309                   jbd2_log_space_left(journal));
310         read_unlock(&journal->j_state_lock);
311
312         lock_map_acquire(&handle->h_lockdep_map);
313         jbd2_journal_free_transaction(new_transaction);
314         return 0;
315 }
316
317 static struct lock_class_key jbd2_handle_key;
318
319 /* Allocate a new handle.  This should probably be in a slab... */
320 static handle_t *new_handle(int nblocks)
321 {
322         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
323         if (!handle)
324                 return NULL;
325         handle->h_buffer_credits = nblocks;
326         handle->h_ref = 1;
327
328         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
329                                                 &jbd2_handle_key, 0);
330
331         return handle;
332 }
333
334 /**
335  * handle_t *jbd2_journal_start() - Obtain a new handle.
336  * @journal: Journal to start transaction on.
337  * @nblocks: number of block buffer we might modify
338  *
339  * We make sure that the transaction can guarantee at least nblocks of
340  * modified buffers in the log.  We block until the log can guarantee
341  * that much space.
342  *
343  * This function is visible to journal users (like ext3fs), so is not
344  * called with the journal already locked.
345  *
346  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
347  * on failure.
348  */
349 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
350                               unsigned int type, unsigned int line_no)
351 {
352         handle_t *handle = journal_current_handle();
353         int err;
354
355         if (!journal)
356                 return ERR_PTR(-EROFS);
357
358         if (handle) {
359                 J_ASSERT(handle->h_transaction->t_journal == journal);
360                 handle->h_ref++;
361                 return handle;
362         }
363
364         handle = new_handle(nblocks);
365         if (!handle)
366                 return ERR_PTR(-ENOMEM);
367
368         current->journal_info = handle;
369
370         err = start_this_handle(journal, handle, gfp_mask);
371         if (err < 0) {
372                 jbd2_free_handle(handle);
373                 current->journal_info = NULL;
374                 return ERR_PTR(err);
375         }
376         handle->h_type = type;
377         handle->h_line_no = line_no;
378         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
379                                 handle->h_transaction->t_tid, type,
380                                 line_no, nblocks);
381         return handle;
382 }
383 EXPORT_SYMBOL(jbd2__journal_start);
384
385
386 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
387 {
388         return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
389 }
390 EXPORT_SYMBOL(jbd2_journal_start);
391
392
393 /**
394  * int jbd2_journal_extend() - extend buffer credits.
395  * @handle:  handle to 'extend'
396  * @nblocks: nr blocks to try to extend by.
397  *
398  * Some transactions, such as large extends and truncates, can be done
399  * atomically all at once or in several stages.  The operation requests
400  * a credit for a number of buffer modications in advance, but can
401  * extend its credit if it needs more.
402  *
403  * jbd2_journal_extend tries to give the running handle more buffer credits.
404  * It does not guarantee that allocation - this is a best-effort only.
405  * The calling process MUST be able to deal cleanly with a failure to
406  * extend here.
407  *
408  * Return 0 on success, non-zero on failure.
409  *
410  * return code < 0 implies an error
411  * return code > 0 implies normal transaction-full status.
412  */
413 int jbd2_journal_extend(handle_t *handle, int nblocks)
414 {
415         transaction_t *transaction = handle->h_transaction;
416         journal_t *journal = transaction->t_journal;
417         int result;
418         int wanted;
419
420         result = -EIO;
421         if (is_handle_aborted(handle))
422                 goto out;
423
424         result = 1;
425
426         read_lock(&journal->j_state_lock);
427
428         /* Don't extend a locked-down transaction! */
429         if (handle->h_transaction->t_state != T_RUNNING) {
430                 jbd_debug(3, "denied handle %p %d blocks: "
431                           "transaction not running\n", handle, nblocks);
432                 goto error_out;
433         }
434
435         spin_lock(&transaction->t_handle_lock);
436         wanted = atomic_add_return(nblocks,
437                                    &transaction->t_outstanding_credits);
438
439         if (wanted > journal->j_max_transaction_buffers) {
440                 jbd_debug(3, "denied handle %p %d blocks: "
441                           "transaction too large\n", handle, nblocks);
442                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
443                 goto unlock;
444         }
445
446         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
447             jbd2_log_space_left(journal)) {
448                 jbd_debug(3, "denied handle %p %d blocks: "
449                           "insufficient log space\n", handle, nblocks);
450                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
451                 goto unlock;
452         }
453
454         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
455                                  handle->h_transaction->t_tid,
456                                  handle->h_type, handle->h_line_no,
457                                  handle->h_buffer_credits,
458                                  nblocks);
459
460         handle->h_buffer_credits += nblocks;
461         handle->h_requested_credits += nblocks;
462         result = 0;
463
464         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
465 unlock:
466         spin_unlock(&transaction->t_handle_lock);
467 error_out:
468         read_unlock(&journal->j_state_lock);
469 out:
470         return result;
471 }
472
473
474 /**
475  * int jbd2_journal_restart() - restart a handle .
476  * @handle:  handle to restart
477  * @nblocks: nr credits requested
478  *
479  * Restart a handle for a multi-transaction filesystem
480  * operation.
481  *
482  * If the jbd2_journal_extend() call above fails to grant new buffer credits
483  * to a running handle, a call to jbd2_journal_restart will commit the
484  * handle's transaction so far and reattach the handle to a new
485  * transaction capabable of guaranteeing the requested number of
486  * credits.
487  */
488 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
489 {
490         transaction_t *transaction = handle->h_transaction;
491         journal_t *journal = transaction->t_journal;
492         tid_t           tid;
493         int             need_to_start, ret;
494
495         /* If we've had an abort of any type, don't even think about
496          * actually doing the restart! */
497         if (is_handle_aborted(handle))
498                 return 0;
499
500         /*
501          * First unlink the handle from its current transaction, and start the
502          * commit on that.
503          */
504         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
505         J_ASSERT(journal_current_handle() == handle);
506
507         read_lock(&journal->j_state_lock);
508         spin_lock(&transaction->t_handle_lock);
509         atomic_sub(handle->h_buffer_credits,
510                    &transaction->t_outstanding_credits);
511         if (atomic_dec_and_test(&transaction->t_updates))
512                 wake_up(&journal->j_wait_updates);
513         spin_unlock(&transaction->t_handle_lock);
514
515         jbd_debug(2, "restarting handle %p\n", handle);
516         tid = transaction->t_tid;
517         need_to_start = !tid_geq(journal->j_commit_request, tid);
518         read_unlock(&journal->j_state_lock);
519         if (need_to_start)
520                 jbd2_log_start_commit(journal, tid);
521
522         lock_map_release(&handle->h_lockdep_map);
523         handle->h_buffer_credits = nblocks;
524         ret = start_this_handle(journal, handle, gfp_mask);
525         return ret;
526 }
527 EXPORT_SYMBOL(jbd2__journal_restart);
528
529
530 int jbd2_journal_restart(handle_t *handle, int nblocks)
531 {
532         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
533 }
534 EXPORT_SYMBOL(jbd2_journal_restart);
535
536 /**
537  * void jbd2_journal_lock_updates () - establish a transaction barrier.
538  * @journal:  Journal to establish a barrier on.
539  *
540  * This locks out any further updates from being started, and blocks
541  * until all existing updates have completed, returning only once the
542  * journal is in a quiescent state with no updates running.
543  *
544  * The journal lock should not be held on entry.
545  */
546 void jbd2_journal_lock_updates(journal_t *journal)
547 {
548         DEFINE_WAIT(wait);
549
550         write_lock(&journal->j_state_lock);
551         ++journal->j_barrier_count;
552
553         /* Wait until there are no running updates */
554         while (1) {
555                 transaction_t *transaction = journal->j_running_transaction;
556
557                 if (!transaction)
558                         break;
559
560                 spin_lock(&transaction->t_handle_lock);
561                 prepare_to_wait(&journal->j_wait_updates, &wait,
562                                 TASK_UNINTERRUPTIBLE);
563                 if (!atomic_read(&transaction->t_updates)) {
564                         spin_unlock(&transaction->t_handle_lock);
565                         finish_wait(&journal->j_wait_updates, &wait);
566                         break;
567                 }
568                 spin_unlock(&transaction->t_handle_lock);
569                 write_unlock(&journal->j_state_lock);
570                 schedule();
571                 finish_wait(&journal->j_wait_updates, &wait);
572                 write_lock(&journal->j_state_lock);
573         }
574         write_unlock(&journal->j_state_lock);
575
576         /*
577          * We have now established a barrier against other normal updates, but
578          * we also need to barrier against other jbd2_journal_lock_updates() calls
579          * to make sure that we serialise special journal-locked operations
580          * too.
581          */
582         mutex_lock(&journal->j_barrier);
583 }
584
585 /**
586  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
587  * @journal:  Journal to release the barrier on.
588  *
589  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
590  *
591  * Should be called without the journal lock held.
592  */
593 void jbd2_journal_unlock_updates (journal_t *journal)
594 {
595         J_ASSERT(journal->j_barrier_count != 0);
596
597         mutex_unlock(&journal->j_barrier);
598         write_lock(&journal->j_state_lock);
599         --journal->j_barrier_count;
600         write_unlock(&journal->j_state_lock);
601         wake_up(&journal->j_wait_transaction_locked);
602 }
603
604 static void warn_dirty_buffer(struct buffer_head *bh)
605 {
606         char b[BDEVNAME_SIZE];
607
608         printk(KERN_WARNING
609                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
610                "There's a risk of filesystem corruption in case of system "
611                "crash.\n",
612                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
613 }
614
615 static int sleep_on_shadow_bh(void *word)
616 {
617         io_schedule();
618         return 0;
619 }
620
621 /*
622  * If the buffer is already part of the current transaction, then there
623  * is nothing we need to do.  If it is already part of a prior
624  * transaction which we are still committing to disk, then we need to
625  * make sure that we do not overwrite the old copy: we do copy-out to
626  * preserve the copy going to disk.  We also account the buffer against
627  * the handle's metadata buffer credits (unless the buffer is already
628  * part of the transaction, that is).
629  *
630  */
631 static int
632 do_get_write_access(handle_t *handle, struct journal_head *jh,
633                         int force_copy)
634 {
635         struct buffer_head *bh;
636         transaction_t *transaction;
637         journal_t *journal;
638         int error;
639         char *frozen_buffer = NULL;
640         int need_copy = 0;
641         unsigned long start_lock, time_lock;
642
643         if (is_handle_aborted(handle))
644                 return -EROFS;
645
646         transaction = handle->h_transaction;
647         journal = transaction->t_journal;
648
649         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
650
651         JBUFFER_TRACE(jh, "entry");
652 repeat:
653         bh = jh2bh(jh);
654
655         /* @@@ Need to check for errors here at some point. */
656
657         start_lock = jiffies;
658         lock_buffer(bh);
659         jbd_lock_bh_state(bh);
660
661         /* If it takes too long to lock the buffer, trace it */
662         time_lock = jbd2_time_diff(start_lock, jiffies);
663         if (time_lock > HZ/10)
664                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
665                         jiffies_to_msecs(time_lock));
666
667         /* We now hold the buffer lock so it is safe to query the buffer
668          * state.  Is the buffer dirty?
669          *
670          * If so, there are two possibilities.  The buffer may be
671          * non-journaled, and undergoing a quite legitimate writeback.
672          * Otherwise, it is journaled, and we don't expect dirty buffers
673          * in that state (the buffers should be marked JBD_Dirty
674          * instead.)  So either the IO is being done under our own
675          * control and this is a bug, or it's a third party IO such as
676          * dump(8) (which may leave the buffer scheduled for read ---
677          * ie. locked but not dirty) or tune2fs (which may actually have
678          * the buffer dirtied, ugh.)  */
679
680         if (buffer_dirty(bh)) {
681                 /*
682                  * First question: is this buffer already part of the current
683                  * transaction or the existing committing transaction?
684                  */
685                 if (jh->b_transaction) {
686                         J_ASSERT_JH(jh,
687                                 jh->b_transaction == transaction ||
688                                 jh->b_transaction ==
689                                         journal->j_committing_transaction);
690                         if (jh->b_next_transaction)
691                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
692                                                         transaction);
693                         warn_dirty_buffer(bh);
694                 }
695                 /*
696                  * In any case we need to clean the dirty flag and we must
697                  * do it under the buffer lock to be sure we don't race
698                  * with running write-out.
699                  */
700                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
701                 clear_buffer_dirty(bh);
702                 set_buffer_jbddirty(bh);
703         }
704
705         unlock_buffer(bh);
706
707         error = -EROFS;
708         if (is_handle_aborted(handle)) {
709                 jbd_unlock_bh_state(bh);
710                 goto out;
711         }
712         error = 0;
713
714         /*
715          * The buffer is already part of this transaction if b_transaction or
716          * b_next_transaction points to it
717          */
718         if (jh->b_transaction == transaction ||
719             jh->b_next_transaction == transaction)
720                 goto done;
721
722         /*
723          * this is the first time this transaction is touching this buffer,
724          * reset the modified flag
725          */
726        jh->b_modified = 0;
727
728         /*
729          * If there is already a copy-out version of this buffer, then we don't
730          * need to make another one
731          */
732         if (jh->b_frozen_data) {
733                 JBUFFER_TRACE(jh, "has frozen data");
734                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
735                 jh->b_next_transaction = transaction;
736                 goto done;
737         }
738
739         /* Is there data here we need to preserve? */
740
741         if (jh->b_transaction && jh->b_transaction != transaction) {
742                 JBUFFER_TRACE(jh, "owned by older transaction");
743                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
744                 J_ASSERT_JH(jh, jh->b_transaction ==
745                                         journal->j_committing_transaction);
746
747                 /* There is one case we have to be very careful about.
748                  * If the committing transaction is currently writing
749                  * this buffer out to disk and has NOT made a copy-out,
750                  * then we cannot modify the buffer contents at all
751                  * right now.  The essence of copy-out is that it is the
752                  * extra copy, not the primary copy, which gets
753                  * journaled.  If the primary copy is already going to
754                  * disk then we cannot do copy-out here. */
755
756                 if (buffer_shadow(bh)) {
757                         JBUFFER_TRACE(jh, "on shadow: sleep");
758                         jbd_unlock_bh_state(bh);
759                         wait_on_bit(&bh->b_state, BH_Shadow,
760                                     sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
761                         goto repeat;
762                 }
763
764                 /*
765                  * Only do the copy if the currently-owning transaction still
766                  * needs it. If buffer isn't on BJ_Metadata list, the
767                  * committing transaction is past that stage (here we use the
768                  * fact that BH_Shadow is set under bh_state lock together with
769                  * refiling to BJ_Shadow list and at this point we know the
770                  * buffer doesn't have BH_Shadow set).
771                  *
772                  * Subtle point, though: if this is a get_undo_access,
773                  * then we will be relying on the frozen_data to contain
774                  * the new value of the committed_data record after the
775                  * transaction, so we HAVE to force the frozen_data copy
776                  * in that case.
777                  */
778                 if (jh->b_jlist == BJ_Metadata || force_copy) {
779                         JBUFFER_TRACE(jh, "generate frozen data");
780                         if (!frozen_buffer) {
781                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
782                                 jbd_unlock_bh_state(bh);
783                                 frozen_buffer =
784                                         jbd2_alloc(jh2bh(jh)->b_size,
785                                                          GFP_NOFS);
786                                 if (!frozen_buffer) {
787                                         printk(KERN_EMERG
788                                                "%s: OOM for frozen_buffer\n",
789                                                __func__);
790                                         JBUFFER_TRACE(jh, "oom!");
791                                         error = -ENOMEM;
792                                         jbd_lock_bh_state(bh);
793                                         goto done;
794                                 }
795                                 goto repeat;
796                         }
797                         jh->b_frozen_data = frozen_buffer;
798                         frozen_buffer = NULL;
799                         need_copy = 1;
800                 }
801                 jh->b_next_transaction = transaction;
802         }
803
804
805         /*
806          * Finally, if the buffer is not journaled right now, we need to make
807          * sure it doesn't get written to disk before the caller actually
808          * commits the new data
809          */
810         if (!jh->b_transaction) {
811                 JBUFFER_TRACE(jh, "no transaction");
812                 J_ASSERT_JH(jh, !jh->b_next_transaction);
813                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
814                 spin_lock(&journal->j_list_lock);
815                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
816                 spin_unlock(&journal->j_list_lock);
817         }
818
819 done:
820         if (need_copy) {
821                 struct page *page;
822                 int offset;
823                 char *source;
824
825                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
826                             "Possible IO failure.\n");
827                 page = jh2bh(jh)->b_page;
828                 offset = offset_in_page(jh2bh(jh)->b_data);
829                 source = kmap_atomic(page);
830                 /* Fire data frozen trigger just before we copy the data */
831                 jbd2_buffer_frozen_trigger(jh, source + offset,
832                                            jh->b_triggers);
833                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
834                 kunmap_atomic(source);
835
836                 /*
837                  * Now that the frozen data is saved off, we need to store
838                  * any matching triggers.
839                  */
840                 jh->b_frozen_triggers = jh->b_triggers;
841         }
842         jbd_unlock_bh_state(bh);
843
844         /*
845          * If we are about to journal a buffer, then any revoke pending on it is
846          * no longer valid
847          */
848         jbd2_journal_cancel_revoke(handle, jh);
849
850 out:
851         if (unlikely(frozen_buffer))    /* It's usually NULL */
852                 jbd2_free(frozen_buffer, bh->b_size);
853
854         JBUFFER_TRACE(jh, "exit");
855         return error;
856 }
857
858 /**
859  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
860  * @handle: transaction to add buffer modifications to
861  * @bh:     bh to be used for metadata writes
862  *
863  * Returns an error code or 0 on success.
864  *
865  * In full data journalling mode the buffer may be of type BJ_AsyncData,
866  * because we're write()ing a buffer which is also part of a shared mapping.
867  */
868
869 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
870 {
871         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
872         int rc;
873
874         /* We do not want to get caught playing with fields which the
875          * log thread also manipulates.  Make sure that the buffer
876          * completes any outstanding IO before proceeding. */
877         rc = do_get_write_access(handle, jh, 0);
878         jbd2_journal_put_journal_head(jh);
879         return rc;
880 }
881
882
883 /*
884  * When the user wants to journal a newly created buffer_head
885  * (ie. getblk() returned a new buffer and we are going to populate it
886  * manually rather than reading off disk), then we need to keep the
887  * buffer_head locked until it has been completely filled with new
888  * data.  In this case, we should be able to make the assertion that
889  * the bh is not already part of an existing transaction.
890  *
891  * The buffer should already be locked by the caller by this point.
892  * There is no lock ranking violation: it was a newly created,
893  * unlocked buffer beforehand. */
894
895 /**
896  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
897  * @handle: transaction to new buffer to
898  * @bh: new buffer.
899  *
900  * Call this if you create a new bh.
901  */
902 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
903 {
904         transaction_t *transaction = handle->h_transaction;
905         journal_t *journal = transaction->t_journal;
906         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
907         int err;
908
909         jbd_debug(5, "journal_head %p\n", jh);
910         err = -EROFS;
911         if (is_handle_aborted(handle))
912                 goto out;
913         err = 0;
914
915         JBUFFER_TRACE(jh, "entry");
916         /*
917          * The buffer may already belong to this transaction due to pre-zeroing
918          * in the filesystem's new_block code.  It may also be on the previous,
919          * committing transaction's lists, but it HAS to be in Forget state in
920          * that case: the transaction must have deleted the buffer for it to be
921          * reused here.
922          */
923         jbd_lock_bh_state(bh);
924         spin_lock(&journal->j_list_lock);
925         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
926                 jh->b_transaction == NULL ||
927                 (jh->b_transaction == journal->j_committing_transaction &&
928                           jh->b_jlist == BJ_Forget)));
929
930         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
931         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
932
933         if (jh->b_transaction == NULL) {
934                 /*
935                  * Previous jbd2_journal_forget() could have left the buffer
936                  * with jbddirty bit set because it was being committed. When
937                  * the commit finished, we've filed the buffer for
938                  * checkpointing and marked it dirty. Now we are reallocating
939                  * the buffer so the transaction freeing it must have
940                  * committed and so it's safe to clear the dirty bit.
941                  */
942                 clear_buffer_dirty(jh2bh(jh));
943                 /* first access by this transaction */
944                 jh->b_modified = 0;
945
946                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
947                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
948         } else if (jh->b_transaction == journal->j_committing_transaction) {
949                 /* first access by this transaction */
950                 jh->b_modified = 0;
951
952                 JBUFFER_TRACE(jh, "set next transaction");
953                 jh->b_next_transaction = transaction;
954         }
955         spin_unlock(&journal->j_list_lock);
956         jbd_unlock_bh_state(bh);
957
958         /*
959          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
960          * blocks which contain freed but then revoked metadata.  We need
961          * to cancel the revoke in case we end up freeing it yet again
962          * and the reallocating as data - this would cause a second revoke,
963          * which hits an assertion error.
964          */
965         JBUFFER_TRACE(jh, "cancelling revoke");
966         jbd2_journal_cancel_revoke(handle, jh);
967 out:
968         jbd2_journal_put_journal_head(jh);
969         return err;
970 }
971
972 /**
973  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
974  *     non-rewindable consequences
975  * @handle: transaction
976  * @bh: buffer to undo
977  *
978  * Sometimes there is a need to distinguish between metadata which has
979  * been committed to disk and that which has not.  The ext3fs code uses
980  * this for freeing and allocating space, we have to make sure that we
981  * do not reuse freed space until the deallocation has been committed,
982  * since if we overwrote that space we would make the delete
983  * un-rewindable in case of a crash.
984  *
985  * To deal with that, jbd2_journal_get_undo_access requests write access to a
986  * buffer for parts of non-rewindable operations such as delete
987  * operations on the bitmaps.  The journaling code must keep a copy of
988  * the buffer's contents prior to the undo_access call until such time
989  * as we know that the buffer has definitely been committed to disk.
990  *
991  * We never need to know which transaction the committed data is part
992  * of, buffers touched here are guaranteed to be dirtied later and so
993  * will be committed to a new transaction in due course, at which point
994  * we can discard the old committed data pointer.
995  *
996  * Returns error number or 0 on success.
997  */
998 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
999 {
1000         int err;
1001         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1002         char *committed_data = NULL;
1003
1004         JBUFFER_TRACE(jh, "entry");
1005
1006         /*
1007          * Do this first --- it can drop the journal lock, so we want to
1008          * make sure that obtaining the committed_data is done
1009          * atomically wrt. completion of any outstanding commits.
1010          */
1011         err = do_get_write_access(handle, jh, 1);
1012         if (err)
1013                 goto out;
1014
1015 repeat:
1016         if (!jh->b_committed_data) {
1017                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1018                 if (!committed_data) {
1019                         printk(KERN_EMERG "%s: No memory for committed data\n",
1020                                 __func__);
1021                         err = -ENOMEM;
1022                         goto out;
1023                 }
1024         }
1025
1026         jbd_lock_bh_state(bh);
1027         if (!jh->b_committed_data) {
1028                 /* Copy out the current buffer contents into the
1029                  * preserved, committed copy. */
1030                 JBUFFER_TRACE(jh, "generate b_committed data");
1031                 if (!committed_data) {
1032                         jbd_unlock_bh_state(bh);
1033                         goto repeat;
1034                 }
1035
1036                 jh->b_committed_data = committed_data;
1037                 committed_data = NULL;
1038                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1039         }
1040         jbd_unlock_bh_state(bh);
1041 out:
1042         jbd2_journal_put_journal_head(jh);
1043         if (unlikely(committed_data))
1044                 jbd2_free(committed_data, bh->b_size);
1045         return err;
1046 }
1047
1048 /**
1049  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1050  * @bh: buffer to trigger on
1051  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1052  *
1053  * Set any triggers on this journal_head.  This is always safe, because
1054  * triggers for a committing buffer will be saved off, and triggers for
1055  * a running transaction will match the buffer in that transaction.
1056  *
1057  * Call with NULL to clear the triggers.
1058  */
1059 void jbd2_journal_set_triggers(struct buffer_head *bh,
1060                                struct jbd2_buffer_trigger_type *type)
1061 {
1062         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1063
1064         if (WARN_ON(!jh))
1065                 return;
1066         jh->b_triggers = type;
1067         jbd2_journal_put_journal_head(jh);
1068 }
1069
1070 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1071                                 struct jbd2_buffer_trigger_type *triggers)
1072 {
1073         struct buffer_head *bh = jh2bh(jh);
1074
1075         if (!triggers || !triggers->t_frozen)
1076                 return;
1077
1078         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1079 }
1080
1081 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1082                                struct jbd2_buffer_trigger_type *triggers)
1083 {
1084         if (!triggers || !triggers->t_abort)
1085                 return;
1086
1087         triggers->t_abort(triggers, jh2bh(jh));
1088 }
1089
1090
1091
1092 /**
1093  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1094  * @handle: transaction to add buffer to.
1095  * @bh: buffer to mark
1096  *
1097  * mark dirty metadata which needs to be journaled as part of the current
1098  * transaction.
1099  *
1100  * The buffer must have previously had jbd2_journal_get_write_access()
1101  * called so that it has a valid journal_head attached to the buffer
1102  * head.
1103  *
1104  * The buffer is placed on the transaction's metadata list and is marked
1105  * as belonging to the transaction.
1106  *
1107  * Returns error number or 0 on success.
1108  *
1109  * Special care needs to be taken if the buffer already belongs to the
1110  * current committing transaction (in which case we should have frozen
1111  * data present for that commit).  In that case, we don't relink the
1112  * buffer: that only gets done when the old transaction finally
1113  * completes its commit.
1114  */
1115 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1116 {
1117         transaction_t *transaction = handle->h_transaction;
1118         journal_t *journal = transaction->t_journal;
1119         struct journal_head *jh;
1120         int ret = 0;
1121
1122         if (is_handle_aborted(handle))
1123                 goto out;
1124         jh = jbd2_journal_grab_journal_head(bh);
1125         if (!jh) {
1126                 ret = -EUCLEAN;
1127                 goto out;
1128         }
1129         jbd_debug(5, "journal_head %p\n", jh);
1130         JBUFFER_TRACE(jh, "entry");
1131
1132         jbd_lock_bh_state(bh);
1133
1134         if (jh->b_modified == 0) {
1135                 /*
1136                  * This buffer's got modified and becoming part
1137                  * of the transaction. This needs to be done
1138                  * once a transaction -bzzz
1139                  */
1140                 jh->b_modified = 1;
1141                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1142                 handle->h_buffer_credits--;
1143         }
1144
1145         /*
1146          * fastpath, to avoid expensive locking.  If this buffer is already
1147          * on the running transaction's metadata list there is nothing to do.
1148          * Nobody can take it off again because there is a handle open.
1149          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1150          * result in this test being false, so we go in and take the locks.
1151          */
1152         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1153                 JBUFFER_TRACE(jh, "fastpath");
1154                 if (unlikely(jh->b_transaction !=
1155                              journal->j_running_transaction)) {
1156                         printk(KERN_EMERG "JBD: %s: "
1157                                "jh->b_transaction (%llu, %p, %u) != "
1158                                "journal->j_running_transaction (%p, %u)",
1159                                journal->j_devname,
1160                                (unsigned long long) bh->b_blocknr,
1161                                jh->b_transaction,
1162                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1163                                journal->j_running_transaction,
1164                                journal->j_running_transaction ?
1165                                journal->j_running_transaction->t_tid : 0);
1166                         ret = -EINVAL;
1167                 }
1168                 goto out_unlock_bh;
1169         }
1170
1171         set_buffer_jbddirty(bh);
1172
1173         /*
1174          * Metadata already on the current transaction list doesn't
1175          * need to be filed.  Metadata on another transaction's list must
1176          * be committing, and will be refiled once the commit completes:
1177          * leave it alone for now.
1178          */
1179         if (jh->b_transaction != transaction) {
1180                 JBUFFER_TRACE(jh, "already on other transaction");
1181                 if (unlikely(jh->b_transaction !=
1182                              journal->j_committing_transaction)) {
1183                         printk(KERN_EMERG "JBD: %s: "
1184                                "jh->b_transaction (%llu, %p, %u) != "
1185                                "journal->j_committing_transaction (%p, %u)",
1186                                journal->j_devname,
1187                                (unsigned long long) bh->b_blocknr,
1188                                jh->b_transaction,
1189                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1190                                journal->j_committing_transaction,
1191                                journal->j_committing_transaction ?
1192                                journal->j_committing_transaction->t_tid : 0);
1193                         ret = -EINVAL;
1194                 }
1195                 if (unlikely(jh->b_next_transaction != transaction)) {
1196                         printk(KERN_EMERG "JBD: %s: "
1197                                "jh->b_next_transaction (%llu, %p, %u) != "
1198                                "transaction (%p, %u)",
1199                                journal->j_devname,
1200                                (unsigned long long) bh->b_blocknr,
1201                                jh->b_next_transaction,
1202                                jh->b_next_transaction ?
1203                                jh->b_next_transaction->t_tid : 0,
1204                                transaction, transaction->t_tid);
1205                         ret = -EINVAL;
1206                 }
1207                 /* And this case is illegal: we can't reuse another
1208                  * transaction's data buffer, ever. */
1209                 goto out_unlock_bh;
1210         }
1211
1212         /* That test should have eliminated the following case: */
1213         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1214
1215         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1216         spin_lock(&journal->j_list_lock);
1217         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1218         spin_unlock(&journal->j_list_lock);
1219 out_unlock_bh:
1220         jbd_unlock_bh_state(bh);
1221         jbd2_journal_put_journal_head(jh);
1222 out:
1223         JBUFFER_TRACE(jh, "exit");
1224         WARN_ON(ret);   /* All errors are bugs, so dump the stack */
1225         return ret;
1226 }
1227
1228 /**
1229  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1230  * @handle: transaction handle
1231  * @bh:     bh to 'forget'
1232  *
1233  * We can only do the bforget if there are no commits pending against the
1234  * buffer.  If the buffer is dirty in the current running transaction we
1235  * can safely unlink it.
1236  *
1237  * bh may not be a journalled buffer at all - it may be a non-JBD
1238  * buffer which came off the hashtable.  Check for this.
1239  *
1240  * Decrements bh->b_count by one.
1241  *
1242  * Allow this call even if the handle has aborted --- it may be part of
1243  * the caller's cleanup after an abort.
1244  */
1245 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1246 {
1247         transaction_t *transaction = handle->h_transaction;
1248         journal_t *journal = transaction->t_journal;
1249         struct journal_head *jh;
1250         int drop_reserve = 0;
1251         int err = 0;
1252         int was_modified = 0;
1253
1254         BUFFER_TRACE(bh, "entry");
1255
1256         jbd_lock_bh_state(bh);
1257         spin_lock(&journal->j_list_lock);
1258
1259         if (!buffer_jbd(bh))
1260                 goto not_jbd;
1261         jh = bh2jh(bh);
1262
1263         /* Critical error: attempting to delete a bitmap buffer, maybe?
1264          * Don't do any jbd operations, and return an error. */
1265         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1266                          "inconsistent data on disk")) {
1267                 err = -EIO;
1268                 goto not_jbd;
1269         }
1270
1271         /* keep track of whether or not this transaction modified us */
1272         was_modified = jh->b_modified;
1273
1274         /*
1275          * The buffer's going from the transaction, we must drop
1276          * all references -bzzz
1277          */
1278         jh->b_modified = 0;
1279
1280         if (jh->b_transaction == handle->h_transaction) {
1281                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1282
1283                 /* If we are forgetting a buffer which is already part
1284                  * of this transaction, then we can just drop it from
1285                  * the transaction immediately. */
1286                 clear_buffer_dirty(bh);
1287                 clear_buffer_jbddirty(bh);
1288
1289                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1290
1291                 /*
1292                  * we only want to drop a reference if this transaction
1293                  * modified the buffer
1294                  */
1295                 if (was_modified)
1296                         drop_reserve = 1;
1297
1298                 /*
1299                  * We are no longer going to journal this buffer.
1300                  * However, the commit of this transaction is still
1301                  * important to the buffer: the delete that we are now
1302                  * processing might obsolete an old log entry, so by
1303                  * committing, we can satisfy the buffer's checkpoint.
1304                  *
1305                  * So, if we have a checkpoint on the buffer, we should
1306                  * now refile the buffer on our BJ_Forget list so that
1307                  * we know to remove the checkpoint after we commit.
1308                  */
1309
1310                 if (jh->b_cp_transaction) {
1311                         __jbd2_journal_temp_unlink_buffer(jh);
1312                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1313                 } else {
1314                         __jbd2_journal_unfile_buffer(jh);
1315                         if (!buffer_jbd(bh)) {
1316                                 spin_unlock(&journal->j_list_lock);
1317                                 jbd_unlock_bh_state(bh);
1318                                 __bforget(bh);
1319                                 goto drop;
1320                         }
1321                 }
1322         } else if (jh->b_transaction) {
1323                 J_ASSERT_JH(jh, (jh->b_transaction ==
1324                                  journal->j_committing_transaction));
1325                 /* However, if the buffer is still owned by a prior
1326                  * (committing) transaction, we can't drop it yet... */
1327                 JBUFFER_TRACE(jh, "belongs to older transaction");
1328                 /* ... but we CAN drop it from the new transaction if we
1329                  * have also modified it since the original commit. */
1330
1331                 if (jh->b_next_transaction) {
1332                         J_ASSERT(jh->b_next_transaction == transaction);
1333                         jh->b_next_transaction = NULL;
1334
1335                         /*
1336                          * only drop a reference if this transaction modified
1337                          * the buffer
1338                          */
1339                         if (was_modified)
1340                                 drop_reserve = 1;
1341                 }
1342         }
1343
1344 not_jbd:
1345         spin_unlock(&journal->j_list_lock);
1346         jbd_unlock_bh_state(bh);
1347         __brelse(bh);
1348 drop:
1349         if (drop_reserve) {
1350                 /* no need to reserve log space for this block -bzzz */
1351                 handle->h_buffer_credits++;
1352         }
1353         return err;
1354 }
1355
1356 /**
1357  * int jbd2_journal_stop() - complete a transaction
1358  * @handle: tranaction to complete.
1359  *
1360  * All done for a particular handle.
1361  *
1362  * There is not much action needed here.  We just return any remaining
1363  * buffer credits to the transaction and remove the handle.  The only
1364  * complication is that we need to start a commit operation if the
1365  * filesystem is marked for synchronous update.
1366  *
1367  * jbd2_journal_stop itself will not usually return an error, but it may
1368  * do so in unusual circumstances.  In particular, expect it to
1369  * return -EIO if a jbd2_journal_abort has been executed since the
1370  * transaction began.
1371  */
1372 int jbd2_journal_stop(handle_t *handle)
1373 {
1374         transaction_t *transaction = handle->h_transaction;
1375         journal_t *journal = transaction->t_journal;
1376         int err, wait_for_commit = 0;
1377         tid_t tid;
1378         pid_t pid;
1379
1380         J_ASSERT(journal_current_handle() == handle);
1381
1382         if (is_handle_aborted(handle))
1383                 err = -EIO;
1384         else {
1385                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1386                 err = 0;
1387         }
1388
1389         if (--handle->h_ref > 0) {
1390                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1391                           handle->h_ref);
1392                 return err;
1393         }
1394
1395         jbd_debug(4, "Handle %p going down\n", handle);
1396         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1397                                 handle->h_transaction->t_tid,
1398                                 handle->h_type, handle->h_line_no,
1399                                 jiffies - handle->h_start_jiffies,
1400                                 handle->h_sync, handle->h_requested_credits,
1401                                 (handle->h_requested_credits -
1402                                  handle->h_buffer_credits));
1403
1404         /*
1405          * Implement synchronous transaction batching.  If the handle
1406          * was synchronous, don't force a commit immediately.  Let's
1407          * yield and let another thread piggyback onto this
1408          * transaction.  Keep doing that while new threads continue to
1409          * arrive.  It doesn't cost much - we're about to run a commit
1410          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1411          * operations by 30x or more...
1412          *
1413          * We try and optimize the sleep time against what the
1414          * underlying disk can do, instead of having a static sleep
1415          * time.  This is useful for the case where our storage is so
1416          * fast that it is more optimal to go ahead and force a flush
1417          * and wait for the transaction to be committed than it is to
1418          * wait for an arbitrary amount of time for new writers to
1419          * join the transaction.  We achieve this by measuring how
1420          * long it takes to commit a transaction, and compare it with
1421          * how long this transaction has been running, and if run time
1422          * < commit time then we sleep for the delta and commit.  This
1423          * greatly helps super fast disks that would see slowdowns as
1424          * more threads started doing fsyncs.
1425          *
1426          * But don't do this if this process was the most recent one
1427          * to perform a synchronous write.  We do this to detect the
1428          * case where a single process is doing a stream of sync
1429          * writes.  No point in waiting for joiners in that case.
1430          */
1431         pid = current->pid;
1432         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1433                 u64 commit_time, trans_time;
1434
1435                 journal->j_last_sync_writer = pid;
1436
1437                 read_lock(&journal->j_state_lock);
1438                 commit_time = journal->j_average_commit_time;
1439                 read_unlock(&journal->j_state_lock);
1440
1441                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1442                                                    transaction->t_start_time));
1443
1444                 commit_time = max_t(u64, commit_time,
1445                                     1000*journal->j_min_batch_time);
1446                 commit_time = min_t(u64, commit_time,
1447                                     1000*journal->j_max_batch_time);
1448
1449                 if (trans_time < commit_time) {
1450                         ktime_t expires = ktime_add_ns(ktime_get(),
1451                                                        commit_time);
1452                         set_current_state(TASK_UNINTERRUPTIBLE);
1453                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1454                 }
1455         }
1456
1457         if (handle->h_sync)
1458                 transaction->t_synchronous_commit = 1;
1459         current->journal_info = NULL;
1460         atomic_sub(handle->h_buffer_credits,
1461                    &transaction->t_outstanding_credits);
1462
1463         /*
1464          * If the handle is marked SYNC, we need to set another commit
1465          * going!  We also want to force a commit if the current
1466          * transaction is occupying too much of the log, or if the
1467          * transaction is too old now.
1468          */
1469         if (handle->h_sync ||
1470             (atomic_read(&transaction->t_outstanding_credits) >
1471              journal->j_max_transaction_buffers) ||
1472             time_after_eq(jiffies, transaction->t_expires)) {
1473                 /* Do this even for aborted journals: an abort still
1474                  * completes the commit thread, it just doesn't write
1475                  * anything to disk. */
1476
1477                 jbd_debug(2, "transaction too old, requesting commit for "
1478                                         "handle %p\n", handle);
1479                 /* This is non-blocking */
1480                 jbd2_log_start_commit(journal, transaction->t_tid);
1481
1482                 /*
1483                  * Special case: JBD2_SYNC synchronous updates require us
1484                  * to wait for the commit to complete.
1485                  */
1486                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1487                         wait_for_commit = 1;
1488         }
1489
1490         /*
1491          * Once we drop t_updates, if it goes to zero the transaction
1492          * could start committing on us and eventually disappear.  So
1493          * once we do this, we must not dereference transaction
1494          * pointer again.
1495          */
1496         tid = transaction->t_tid;
1497         if (atomic_dec_and_test(&transaction->t_updates)) {
1498                 wake_up(&journal->j_wait_updates);
1499                 if (journal->j_barrier_count)
1500                         wake_up(&journal->j_wait_transaction_locked);
1501         }
1502
1503         if (wait_for_commit)
1504                 err = jbd2_log_wait_commit(journal, tid);
1505
1506         lock_map_release(&handle->h_lockdep_map);
1507
1508         jbd2_free_handle(handle);
1509         return err;
1510 }
1511
1512 /**
1513  * int jbd2_journal_force_commit() - force any uncommitted transactions
1514  * @journal: journal to force
1515  *
1516  * For synchronous operations: force any uncommitted transactions
1517  * to disk.  May seem kludgy, but it reuses all the handle batching
1518  * code in a very simple manner.
1519  */
1520 int jbd2_journal_force_commit(journal_t *journal)
1521 {
1522         handle_t *handle;
1523         int ret;
1524
1525         handle = jbd2_journal_start(journal, 1);
1526         if (IS_ERR(handle)) {
1527                 ret = PTR_ERR(handle);
1528         } else {
1529                 handle->h_sync = 1;
1530                 ret = jbd2_journal_stop(handle);
1531         }
1532         return ret;
1533 }
1534
1535 /*
1536  *
1537  * List management code snippets: various functions for manipulating the
1538  * transaction buffer lists.
1539  *
1540  */
1541
1542 /*
1543  * Append a buffer to a transaction list, given the transaction's list head
1544  * pointer.
1545  *
1546  * j_list_lock is held.
1547  *
1548  * jbd_lock_bh_state(jh2bh(jh)) is held.
1549  */
1550
1551 static inline void
1552 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1553 {
1554         if (!*list) {
1555                 jh->b_tnext = jh->b_tprev = jh;
1556                 *list = jh;
1557         } else {
1558                 /* Insert at the tail of the list to preserve order */
1559                 struct journal_head *first = *list, *last = first->b_tprev;
1560                 jh->b_tprev = last;
1561                 jh->b_tnext = first;
1562                 last->b_tnext = first->b_tprev = jh;
1563         }
1564 }
1565
1566 /*
1567  * Remove a buffer from a transaction list, given the transaction's list
1568  * head pointer.
1569  *
1570  * Called with j_list_lock held, and the journal may not be locked.
1571  *
1572  * jbd_lock_bh_state(jh2bh(jh)) is held.
1573  */
1574
1575 static inline void
1576 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1577 {
1578         if (*list == jh) {
1579                 *list = jh->b_tnext;
1580                 if (*list == jh)
1581                         *list = NULL;
1582         }
1583         jh->b_tprev->b_tnext = jh->b_tnext;
1584         jh->b_tnext->b_tprev = jh->b_tprev;
1585 }
1586
1587 /*
1588  * Remove a buffer from the appropriate transaction list.
1589  *
1590  * Note that this function can *change* the value of
1591  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1592  * t_reserved_list.  If the caller is holding onto a copy of one of these
1593  * pointers, it could go bad.  Generally the caller needs to re-read the
1594  * pointer from the transaction_t.
1595  *
1596  * Called under j_list_lock.
1597  */
1598 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1599 {
1600         struct journal_head **list = NULL;
1601         transaction_t *transaction;
1602         struct buffer_head *bh = jh2bh(jh);
1603
1604         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1605         transaction = jh->b_transaction;
1606         if (transaction)
1607                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1608
1609         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1610         if (jh->b_jlist != BJ_None)
1611                 J_ASSERT_JH(jh, transaction != NULL);
1612
1613         switch (jh->b_jlist) {
1614         case BJ_None:
1615                 return;
1616         case BJ_Metadata:
1617                 transaction->t_nr_buffers--;
1618                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1619                 list = &transaction->t_buffers;
1620                 break;
1621         case BJ_Forget:
1622                 list = &transaction->t_forget;
1623                 break;
1624         case BJ_Shadow:
1625                 list = &transaction->t_shadow_list;
1626                 break;
1627         case BJ_Reserved:
1628                 list = &transaction->t_reserved_list;
1629                 break;
1630         }
1631
1632         __blist_del_buffer(list, jh);
1633         jh->b_jlist = BJ_None;
1634         if (test_clear_buffer_jbddirty(bh))
1635                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1636 }
1637
1638 /*
1639  * Remove buffer from all transactions.
1640  *
1641  * Called with bh_state lock and j_list_lock
1642  *
1643  * jh and bh may be already freed when this function returns.
1644  */
1645 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1646 {
1647         __jbd2_journal_temp_unlink_buffer(jh);
1648         jh->b_transaction = NULL;
1649         jbd2_journal_put_journal_head(jh);
1650 }
1651
1652 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1653 {
1654         struct buffer_head *bh = jh2bh(jh);
1655
1656         /* Get reference so that buffer cannot be freed before we unlock it */
1657         get_bh(bh);
1658         jbd_lock_bh_state(bh);
1659         spin_lock(&journal->j_list_lock);
1660         __jbd2_journal_unfile_buffer(jh);
1661         spin_unlock(&journal->j_list_lock);
1662         jbd_unlock_bh_state(bh);
1663         __brelse(bh);
1664 }
1665
1666 /*
1667  * Called from jbd2_journal_try_to_free_buffers().
1668  *
1669  * Called under jbd_lock_bh_state(bh)
1670  */
1671 static void
1672 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1673 {
1674         struct journal_head *jh;
1675
1676         jh = bh2jh(bh);
1677
1678         if (buffer_locked(bh) || buffer_dirty(bh))
1679                 goto out;
1680
1681         if (jh->b_next_transaction != NULL)
1682                 goto out;
1683
1684         spin_lock(&journal->j_list_lock);
1685         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1686                 /* written-back checkpointed metadata buffer */
1687                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1688                 __jbd2_journal_remove_checkpoint(jh);
1689         }
1690         spin_unlock(&journal->j_list_lock);
1691 out:
1692         return;
1693 }
1694
1695 /**
1696  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1697  * @journal: journal for operation
1698  * @page: to try and free
1699  * @gfp_mask: we use the mask to detect how hard should we try to release
1700  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1701  * release the buffers.
1702  *
1703  *
1704  * For all the buffers on this page,
1705  * if they are fully written out ordered data, move them onto BUF_CLEAN
1706  * so try_to_free_buffers() can reap them.
1707  *
1708  * This function returns non-zero if we wish try_to_free_buffers()
1709  * to be called. We do this if the page is releasable by try_to_free_buffers().
1710  * We also do it if the page has locked or dirty buffers and the caller wants
1711  * us to perform sync or async writeout.
1712  *
1713  * This complicates JBD locking somewhat.  We aren't protected by the
1714  * BKL here.  We wish to remove the buffer from its committing or
1715  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1716  *
1717  * This may *change* the value of transaction_t->t_datalist, so anyone
1718  * who looks at t_datalist needs to lock against this function.
1719  *
1720  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1721  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1722  * will come out of the lock with the buffer dirty, which makes it
1723  * ineligible for release here.
1724  *
1725  * Who else is affected by this?  hmm...  Really the only contender
1726  * is do_get_write_access() - it could be looking at the buffer while
1727  * journal_try_to_free_buffer() is changing its state.  But that
1728  * cannot happen because we never reallocate freed data as metadata
1729  * while the data is part of a transaction.  Yes?
1730  *
1731  * Return 0 on failure, 1 on success
1732  */
1733 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1734                                 struct page *page, gfp_t gfp_mask)
1735 {
1736         struct buffer_head *head;
1737         struct buffer_head *bh;
1738         int ret = 0;
1739
1740         J_ASSERT(PageLocked(page));
1741
1742         head = page_buffers(page);
1743         bh = head;
1744         do {
1745                 struct journal_head *jh;
1746
1747                 /*
1748                  * We take our own ref against the journal_head here to avoid
1749                  * having to add tons of locking around each instance of
1750                  * jbd2_journal_put_journal_head().
1751                  */
1752                 jh = jbd2_journal_grab_journal_head(bh);
1753                 if (!jh)
1754                         continue;
1755
1756                 jbd_lock_bh_state(bh);
1757                 __journal_try_to_free_buffer(journal, bh);
1758                 jbd2_journal_put_journal_head(jh);
1759                 jbd_unlock_bh_state(bh);
1760                 if (buffer_jbd(bh))
1761                         goto busy;
1762         } while ((bh = bh->b_this_page) != head);
1763
1764         ret = try_to_free_buffers(page);
1765
1766 busy:
1767         return ret;
1768 }
1769
1770 /*
1771  * This buffer is no longer needed.  If it is on an older transaction's
1772  * checkpoint list we need to record it on this transaction's forget list
1773  * to pin this buffer (and hence its checkpointing transaction) down until
1774  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1775  * release it.
1776  * Returns non-zero if JBD no longer has an interest in the buffer.
1777  *
1778  * Called under j_list_lock.
1779  *
1780  * Called under jbd_lock_bh_state(bh).
1781  */
1782 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1783 {
1784         int may_free = 1;
1785         struct buffer_head *bh = jh2bh(jh);
1786
1787         if (jh->b_cp_transaction) {
1788                 JBUFFER_TRACE(jh, "on running+cp transaction");
1789                 __jbd2_journal_temp_unlink_buffer(jh);
1790                 /*
1791                  * We don't want to write the buffer anymore, clear the
1792                  * bit so that we don't confuse checks in
1793                  * __journal_file_buffer
1794                  */
1795                 clear_buffer_dirty(bh);
1796                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1797                 may_free = 0;
1798         } else {
1799                 JBUFFER_TRACE(jh, "on running transaction");
1800                 __jbd2_journal_unfile_buffer(jh);
1801         }
1802         return may_free;
1803 }
1804
1805 /*
1806  * jbd2_journal_invalidatepage
1807  *
1808  * This code is tricky.  It has a number of cases to deal with.
1809  *
1810  * There are two invariants which this code relies on:
1811  *
1812  * i_size must be updated on disk before we start calling invalidatepage on the
1813  * data.
1814  *
1815  *  This is done in ext3 by defining an ext3_setattr method which
1816  *  updates i_size before truncate gets going.  By maintaining this
1817  *  invariant, we can be sure that it is safe to throw away any buffers
1818  *  attached to the current transaction: once the transaction commits,
1819  *  we know that the data will not be needed.
1820  *
1821  *  Note however that we can *not* throw away data belonging to the
1822  *  previous, committing transaction!
1823  *
1824  * Any disk blocks which *are* part of the previous, committing
1825  * transaction (and which therefore cannot be discarded immediately) are
1826  * not going to be reused in the new running transaction
1827  *
1828  *  The bitmap committed_data images guarantee this: any block which is
1829  *  allocated in one transaction and removed in the next will be marked
1830  *  as in-use in the committed_data bitmap, so cannot be reused until
1831  *  the next transaction to delete the block commits.  This means that
1832  *  leaving committing buffers dirty is quite safe: the disk blocks
1833  *  cannot be reallocated to a different file and so buffer aliasing is
1834  *  not possible.
1835  *
1836  *
1837  * The above applies mainly to ordered data mode.  In writeback mode we
1838  * don't make guarantees about the order in which data hits disk --- in
1839  * particular we don't guarantee that new dirty data is flushed before
1840  * transaction commit --- so it is always safe just to discard data
1841  * immediately in that mode.  --sct
1842  */
1843
1844 /*
1845  * The journal_unmap_buffer helper function returns zero if the buffer
1846  * concerned remains pinned as an anonymous buffer belonging to an older
1847  * transaction.
1848  *
1849  * We're outside-transaction here.  Either or both of j_running_transaction
1850  * and j_committing_transaction may be NULL.
1851  */
1852 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1853                                 int partial_page)
1854 {
1855         transaction_t *transaction;
1856         struct journal_head *jh;
1857         int may_free = 1;
1858
1859         BUFFER_TRACE(bh, "entry");
1860
1861         /*
1862          * It is safe to proceed here without the j_list_lock because the
1863          * buffers cannot be stolen by try_to_free_buffers as long as we are
1864          * holding the page lock. --sct
1865          */
1866
1867         if (!buffer_jbd(bh))
1868                 goto zap_buffer_unlocked;
1869
1870         /* OK, we have data buffer in journaled mode */
1871         write_lock(&journal->j_state_lock);
1872         jbd_lock_bh_state(bh);
1873         spin_lock(&journal->j_list_lock);
1874
1875         jh = jbd2_journal_grab_journal_head(bh);
1876         if (!jh)
1877                 goto zap_buffer_no_jh;
1878
1879         /*
1880          * We cannot remove the buffer from checkpoint lists until the
1881          * transaction adding inode to orphan list (let's call it T)
1882          * is committed.  Otherwise if the transaction changing the
1883          * buffer would be cleaned from the journal before T is
1884          * committed, a crash will cause that the correct contents of
1885          * the buffer will be lost.  On the other hand we have to
1886          * clear the buffer dirty bit at latest at the moment when the
1887          * transaction marking the buffer as freed in the filesystem
1888          * structures is committed because from that moment on the
1889          * block can be reallocated and used by a different page.
1890          * Since the block hasn't been freed yet but the inode has
1891          * already been added to orphan list, it is safe for us to add
1892          * the buffer to BJ_Forget list of the newest transaction.
1893          *
1894          * Also we have to clear buffer_mapped flag of a truncated buffer
1895          * because the buffer_head may be attached to the page straddling
1896          * i_size (can happen only when blocksize < pagesize) and thus the
1897          * buffer_head can be reused when the file is extended again. So we end
1898          * up keeping around invalidated buffers attached to transactions'
1899          * BJ_Forget list just to stop checkpointing code from cleaning up
1900          * the transaction this buffer was modified in.
1901          */
1902         transaction = jh->b_transaction;
1903         if (transaction == NULL) {
1904                 /* First case: not on any transaction.  If it
1905                  * has no checkpoint link, then we can zap it:
1906                  * it's a writeback-mode buffer so we don't care
1907                  * if it hits disk safely. */
1908                 if (!jh->b_cp_transaction) {
1909                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1910                         goto zap_buffer;
1911                 }
1912
1913                 if (!buffer_dirty(bh)) {
1914                         /* bdflush has written it.  We can drop it now */
1915                         goto zap_buffer;
1916                 }
1917
1918                 /* OK, it must be in the journal but still not
1919                  * written fully to disk: it's metadata or
1920                  * journaled data... */
1921
1922                 if (journal->j_running_transaction) {
1923                         /* ... and once the current transaction has
1924                          * committed, the buffer won't be needed any
1925                          * longer. */
1926                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1927                         may_free = __dispose_buffer(jh,
1928                                         journal->j_running_transaction);
1929                         goto zap_buffer;
1930                 } else {
1931                         /* There is no currently-running transaction. So the
1932                          * orphan record which we wrote for this file must have
1933                          * passed into commit.  We must attach this buffer to
1934                          * the committing transaction, if it exists. */
1935                         if (journal->j_committing_transaction) {
1936                                 JBUFFER_TRACE(jh, "give to committing trans");
1937                                 may_free = __dispose_buffer(jh,
1938                                         journal->j_committing_transaction);
1939                                 goto zap_buffer;
1940                         } else {
1941                                 /* The orphan record's transaction has
1942                                  * committed.  We can cleanse this buffer */
1943                                 clear_buffer_jbddirty(bh);
1944                                 goto zap_buffer;
1945                         }
1946                 }
1947         } else if (transaction == journal->j_committing_transaction) {
1948                 JBUFFER_TRACE(jh, "on committing transaction");
1949                 /*
1950                  * The buffer is committing, we simply cannot touch
1951                  * it. If the page is straddling i_size we have to wait
1952                  * for commit and try again.
1953                  */
1954                 if (partial_page) {
1955                         jbd2_journal_put_journal_head(jh);
1956                         spin_unlock(&journal->j_list_lock);
1957                         jbd_unlock_bh_state(bh);
1958                         write_unlock(&journal->j_state_lock);
1959                         return -EBUSY;
1960                 }
1961                 /*
1962                  * OK, buffer won't be reachable after truncate. We just set
1963                  * j_next_transaction to the running transaction (if there is
1964                  * one) and mark buffer as freed so that commit code knows it
1965                  * should clear dirty bits when it is done with the buffer.
1966                  */
1967                 set_buffer_freed(bh);
1968                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1969                         jh->b_next_transaction = journal->j_running_transaction;
1970                 jbd2_journal_put_journal_head(jh);
1971                 spin_unlock(&journal->j_list_lock);
1972                 jbd_unlock_bh_state(bh);
1973                 write_unlock(&journal->j_state_lock);
1974                 return 0;
1975         } else {
1976                 /* Good, the buffer belongs to the running transaction.
1977                  * We are writing our own transaction's data, not any
1978                  * previous one's, so it is safe to throw it away
1979                  * (remember that we expect the filesystem to have set
1980                  * i_size already for this truncate so recovery will not
1981                  * expose the disk blocks we are discarding here.) */
1982                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1983                 JBUFFER_TRACE(jh, "on running transaction");
1984                 may_free = __dispose_buffer(jh, transaction);
1985         }
1986
1987 zap_buffer:
1988         /*
1989          * This is tricky. Although the buffer is truncated, it may be reused
1990          * if blocksize < pagesize and it is attached to the page straddling
1991          * EOF. Since the buffer might have been added to BJ_Forget list of the
1992          * running transaction, journal_get_write_access() won't clear
1993          * b_modified and credit accounting gets confused. So clear b_modified
1994          * here.
1995          */
1996         jh->b_modified = 0;
1997         jbd2_journal_put_journal_head(jh);
1998 zap_buffer_no_jh:
1999         spin_unlock(&journal->j_list_lock);
2000         jbd_unlock_bh_state(bh);
2001         write_unlock(&journal->j_state_lock);
2002 zap_buffer_unlocked:
2003         clear_buffer_dirty(bh);
2004         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2005         clear_buffer_mapped(bh);
2006         clear_buffer_req(bh);
2007         clear_buffer_new(bh);
2008         clear_buffer_delay(bh);
2009         clear_buffer_unwritten(bh);
2010         bh->b_bdev = NULL;
2011         return may_free;
2012 }
2013
2014 /**
2015  * void jbd2_journal_invalidatepage()
2016  * @journal: journal to use for flush...
2017  * @page:    page to flush
2018  * @offset:  start of the range to invalidate
2019  * @length:  length of the range to invalidate
2020  *
2021  * Reap page buffers containing data after in the specified range in page.
2022  * Can return -EBUSY if buffers are part of the committing transaction and
2023  * the page is straddling i_size. Caller then has to wait for current commit
2024  * and try again.
2025  */
2026 int jbd2_journal_invalidatepage(journal_t *journal,
2027                                 struct page *page,
2028                                 unsigned int offset,
2029                                 unsigned int length)
2030 {
2031         struct buffer_head *head, *bh, *next;
2032         unsigned int stop = offset + length;
2033         unsigned int curr_off = 0;
2034         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2035         int may_free = 1;
2036         int ret = 0;
2037
2038         if (!PageLocked(page))
2039                 BUG();
2040         if (!page_has_buffers(page))
2041                 return 0;
2042
2043         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2044
2045         /* We will potentially be playing with lists other than just the
2046          * data lists (especially for journaled data mode), so be
2047          * cautious in our locking. */
2048
2049         head = bh = page_buffers(page);
2050         do {
2051                 unsigned int next_off = curr_off + bh->b_size;
2052                 next = bh->b_this_page;
2053
2054                 if (next_off > stop)
2055                         return 0;
2056
2057                 if (offset <= curr_off) {
2058                         /* This block is wholly outside the truncation point */
2059                         lock_buffer(bh);
2060                         ret = journal_unmap_buffer(journal, bh, partial_page);
2061                         unlock_buffer(bh);
2062                         if (ret < 0)
2063                                 return ret;
2064                         may_free &= ret;
2065                 }
2066                 curr_off = next_off;
2067                 bh = next;
2068
2069         } while (bh != head);
2070
2071         if (!partial_page) {
2072                 if (may_free && try_to_free_buffers(page))
2073                         J_ASSERT(!page_has_buffers(page));
2074         }
2075         return 0;
2076 }
2077
2078 /*
2079  * File a buffer on the given transaction list.
2080  */
2081 void __jbd2_journal_file_buffer(struct journal_head *jh,
2082                         transaction_t *transaction, int jlist)
2083 {
2084         struct journal_head **list = NULL;
2085         int was_dirty = 0;
2086         struct buffer_head *bh = jh2bh(jh);
2087
2088         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2089         assert_spin_locked(&transaction->t_journal->j_list_lock);
2090
2091         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2092         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2093                                 jh->b_transaction == NULL);
2094
2095         if (jh->b_transaction && jh->b_jlist == jlist)
2096                 return;
2097
2098         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2099             jlist == BJ_Shadow || jlist == BJ_Forget) {
2100                 /*
2101                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2102                  * instead of buffer_dirty. We should not see a dirty bit set
2103                  * here because we clear it in do_get_write_access but e.g.
2104                  * tune2fs can modify the sb and set the dirty bit at any time
2105                  * so we try to gracefully handle that.
2106                  */
2107                 if (buffer_dirty(bh))
2108                         warn_dirty_buffer(bh);
2109                 if (test_clear_buffer_dirty(bh) ||
2110                     test_clear_buffer_jbddirty(bh))
2111                         was_dirty = 1;
2112         }
2113
2114         if (jh->b_transaction)
2115                 __jbd2_journal_temp_unlink_buffer(jh);
2116         else
2117                 jbd2_journal_grab_journal_head(bh);
2118         jh->b_transaction = transaction;
2119
2120         switch (jlist) {
2121         case BJ_None:
2122                 J_ASSERT_JH(jh, !jh->b_committed_data);
2123                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2124                 return;
2125         case BJ_Metadata:
2126                 transaction->t_nr_buffers++;
2127                 list = &transaction->t_buffers;
2128                 break;
2129         case BJ_Forget:
2130                 list = &transaction->t_forget;
2131                 break;
2132         case BJ_Shadow:
2133                 list = &transaction->t_shadow_list;
2134                 break;
2135         case BJ_Reserved:
2136                 list = &transaction->t_reserved_list;
2137                 break;
2138         }
2139
2140         __blist_add_buffer(list, jh);
2141         jh->b_jlist = jlist;
2142
2143         if (was_dirty)
2144                 set_buffer_jbddirty(bh);
2145 }
2146
2147 void jbd2_journal_file_buffer(struct journal_head *jh,
2148                                 transaction_t *transaction, int jlist)
2149 {
2150         jbd_lock_bh_state(jh2bh(jh));
2151         spin_lock(&transaction->t_journal->j_list_lock);
2152         __jbd2_journal_file_buffer(jh, transaction, jlist);
2153         spin_unlock(&transaction->t_journal->j_list_lock);
2154         jbd_unlock_bh_state(jh2bh(jh));
2155 }
2156
2157 /*
2158  * Remove a buffer from its current buffer list in preparation for
2159  * dropping it from its current transaction entirely.  If the buffer has
2160  * already started to be used by a subsequent transaction, refile the
2161  * buffer on that transaction's metadata list.
2162  *
2163  * Called under j_list_lock
2164  * Called under jbd_lock_bh_state(jh2bh(jh))
2165  *
2166  * jh and bh may be already free when this function returns
2167  */
2168 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2169 {
2170         int was_dirty, jlist;
2171         struct buffer_head *bh = jh2bh(jh);
2172
2173         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2174         if (jh->b_transaction)
2175                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2176
2177         /* If the buffer is now unused, just drop it. */
2178         if (jh->b_next_transaction == NULL) {
2179                 __jbd2_journal_unfile_buffer(jh);
2180                 return;
2181         }
2182
2183         /*
2184          * It has been modified by a later transaction: add it to the new
2185          * transaction's metadata list.
2186          */
2187
2188         was_dirty = test_clear_buffer_jbddirty(bh);
2189         __jbd2_journal_temp_unlink_buffer(jh);
2190         /*
2191          * We set b_transaction here because b_next_transaction will inherit
2192          * our jh reference and thus __jbd2_journal_file_buffer() must not
2193          * take a new one.
2194          */
2195         jh->b_transaction = jh->b_next_transaction;
2196         jh->b_next_transaction = NULL;
2197         if (buffer_freed(bh))
2198                 jlist = BJ_Forget;
2199         else if (jh->b_modified)
2200                 jlist = BJ_Metadata;
2201         else
2202                 jlist = BJ_Reserved;
2203         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2204         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2205
2206         if (was_dirty)
2207                 set_buffer_jbddirty(bh);
2208 }
2209
2210 /*
2211  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2212  * bh reference so that we can safely unlock bh.
2213  *
2214  * The jh and bh may be freed by this call.
2215  */
2216 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2217 {
2218         struct buffer_head *bh = jh2bh(jh);
2219
2220         /* Get reference so that buffer cannot be freed before we unlock it */
2221         get_bh(bh);
2222         jbd_lock_bh_state(bh);
2223         spin_lock(&journal->j_list_lock);
2224         __jbd2_journal_refile_buffer(jh);
2225         jbd_unlock_bh_state(bh);
2226         spin_unlock(&journal->j_list_lock);
2227         __brelse(bh);
2228 }
2229
2230 /*
2231  * File inode in the inode list of the handle's transaction
2232  */
2233 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2234 {
2235         transaction_t *transaction = handle->h_transaction;
2236         journal_t *journal = transaction->t_journal;
2237
2238         if (is_handle_aborted(handle))
2239                 return -EIO;
2240
2241         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2242                         transaction->t_tid);
2243
2244         /*
2245          * First check whether inode isn't already on the transaction's
2246          * lists without taking the lock. Note that this check is safe
2247          * without the lock as we cannot race with somebody removing inode
2248          * from the transaction. The reason is that we remove inode from the
2249          * transaction only in journal_release_jbd_inode() and when we commit
2250          * the transaction. We are guarded from the first case by holding
2251          * a reference to the inode. We are safe against the second case
2252          * because if jinode->i_transaction == transaction, commit code
2253          * cannot touch the transaction because we hold reference to it,
2254          * and if jinode->i_next_transaction == transaction, commit code
2255          * will only file the inode where we want it.
2256          */
2257         if (jinode->i_transaction == transaction ||
2258             jinode->i_next_transaction == transaction)
2259                 return 0;
2260
2261         spin_lock(&journal->j_list_lock);
2262
2263         if (jinode->i_transaction == transaction ||
2264             jinode->i_next_transaction == transaction)
2265                 goto done;
2266
2267         /*
2268          * We only ever set this variable to 1 so the test is safe. Since
2269          * t_need_data_flush is likely to be set, we do the test to save some
2270          * cacheline bouncing
2271          */
2272         if (!transaction->t_need_data_flush)
2273                 transaction->t_need_data_flush = 1;
2274         /* On some different transaction's list - should be
2275          * the committing one */
2276         if (jinode->i_transaction) {
2277                 J_ASSERT(jinode->i_next_transaction == NULL);
2278                 J_ASSERT(jinode->i_transaction ==
2279                                         journal->j_committing_transaction);
2280                 jinode->i_next_transaction = transaction;
2281                 goto done;
2282         }
2283         /* Not on any transaction list... */
2284         J_ASSERT(!jinode->i_next_transaction);
2285         jinode->i_transaction = transaction;
2286         list_add(&jinode->i_list, &transaction->t_inode_list);
2287 done:
2288         spin_unlock(&journal->j_list_lock);
2289
2290         return 0;
2291 }
2292
2293 /*
2294  * File truncate and transaction commit interact with each other in a
2295  * non-trivial way.  If a transaction writing data block A is
2296  * committing, we cannot discard the data by truncate until we have
2297  * written them.  Otherwise if we crashed after the transaction with
2298  * write has committed but before the transaction with truncate has
2299  * committed, we could see stale data in block A.  This function is a
2300  * helper to solve this problem.  It starts writeout of the truncated
2301  * part in case it is in the committing transaction.
2302  *
2303  * Filesystem code must call this function when inode is journaled in
2304  * ordered mode before truncation happens and after the inode has been
2305  * placed on orphan list with the new inode size. The second condition
2306  * avoids the race that someone writes new data and we start
2307  * committing the transaction after this function has been called but
2308  * before a transaction for truncate is started (and furthermore it
2309  * allows us to optimize the case where the addition to orphan list
2310  * happens in the same transaction as write --- we don't have to write
2311  * any data in such case).
2312  */
2313 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2314                                         struct jbd2_inode *jinode,
2315                                         loff_t new_size)
2316 {
2317         transaction_t *inode_trans, *commit_trans;
2318         int ret = 0;
2319
2320         /* This is a quick check to avoid locking if not necessary */
2321         if (!jinode->i_transaction)
2322                 goto out;
2323         /* Locks are here just to force reading of recent values, it is
2324          * enough that the transaction was not committing before we started
2325          * a transaction adding the inode to orphan list */
2326         read_lock(&journal->j_state_lock);
2327         commit_trans = journal->j_committing_transaction;
2328         read_unlock(&journal->j_state_lock);
2329         spin_lock(&journal->j_list_lock);
2330         inode_trans = jinode->i_transaction;
2331         spin_unlock(&journal->j_list_lock);
2332         if (inode_trans == commit_trans) {
2333                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2334                         new_size, LLONG_MAX);
2335                 if (ret)
2336                         jbd2_journal_abort(journal, ret);
2337         }
2338 out:
2339         return ret;
2340 }