]> Pileus Git - ~andy/linux/blob - fs/jbd/journal.c
Merge branch 'topic/hda' into topic/hda-switcheroo
[~andy/linux] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 /*
94  * Helper function used to manage commit timeouts
95  */
96
97 static void commit_timeout(unsigned long __data)
98 {
99         struct task_struct * p = (struct task_struct *) __data;
100
101         wake_up_process(p);
102 }
103
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119
120 static int kjournald(void *arg)
121 {
122         journal_t *journal = arg;
123         transaction_t *transaction;
124
125         /*
126          * Set up an interval timer which can be used to trigger a commit wakeup
127          * after the commit interval expires
128          */
129         setup_timer(&journal->j_commit_timer, commit_timeout,
130                         (unsigned long)current);
131
132         set_freezable();
133
134         /* Record that the journal thread is running */
135         journal->j_task = current;
136         wake_up(&journal->j_wait_done_commit);
137
138         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
139                         journal->j_commit_interval / HZ);
140
141         /*
142          * And now, wait forever for commit wakeup events.
143          */
144         spin_lock(&journal->j_state_lock);
145
146 loop:
147         if (journal->j_flags & JFS_UNMOUNT)
148                 goto end_loop;
149
150         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
151                 journal->j_commit_sequence, journal->j_commit_request);
152
153         if (journal->j_commit_sequence != journal->j_commit_request) {
154                 jbd_debug(1, "OK, requests differ\n");
155                 spin_unlock(&journal->j_state_lock);
156                 del_timer_sync(&journal->j_commit_timer);
157                 journal_commit_transaction(journal);
158                 spin_lock(&journal->j_state_lock);
159                 goto loop;
160         }
161
162         wake_up(&journal->j_wait_done_commit);
163         if (freezing(current)) {
164                 /*
165                  * The simpler the better. Flushing journal isn't a
166                  * good idea, because that depends on threads that may
167                  * be already stopped.
168                  */
169                 jbd_debug(1, "Now suspending kjournald\n");
170                 spin_unlock(&journal->j_state_lock);
171                 try_to_freeze();
172                 spin_lock(&journal->j_state_lock);
173         } else {
174                 /*
175                  * We assume on resume that commits are already there,
176                  * so we don't sleep
177                  */
178                 DEFINE_WAIT(wait);
179                 int should_sleep = 1;
180
181                 prepare_to_wait(&journal->j_wait_commit, &wait,
182                                 TASK_INTERRUPTIBLE);
183                 if (journal->j_commit_sequence != journal->j_commit_request)
184                         should_sleep = 0;
185                 transaction = journal->j_running_transaction;
186                 if (transaction && time_after_eq(jiffies,
187                                                 transaction->t_expires))
188                         should_sleep = 0;
189                 if (journal->j_flags & JFS_UNMOUNT)
190                         should_sleep = 0;
191                 if (should_sleep) {
192                         spin_unlock(&journal->j_state_lock);
193                         schedule();
194                         spin_lock(&journal->j_state_lock);
195                 }
196                 finish_wait(&journal->j_wait_commit, &wait);
197         }
198
199         jbd_debug(1, "kjournald wakes\n");
200
201         /*
202          * Were we woken up by a commit wakeup event?
203          */
204         transaction = journal->j_running_transaction;
205         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
206                 journal->j_commit_request = transaction->t_tid;
207                 jbd_debug(1, "woke because of timeout\n");
208         }
209         goto loop;
210
211 end_loop:
212         spin_unlock(&journal->j_state_lock);
213         del_timer_sync(&journal->j_commit_timer);
214         journal->j_task = NULL;
215         wake_up(&journal->j_wait_done_commit);
216         jbd_debug(1, "Journal thread exiting.\n");
217         return 0;
218 }
219
220 static int journal_start_thread(journal_t *journal)
221 {
222         struct task_struct *t;
223
224         t = kthread_run(kjournald, journal, "kjournald");
225         if (IS_ERR(t))
226                 return PTR_ERR(t);
227
228         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
229         return 0;
230 }
231
232 static void journal_kill_thread(journal_t *journal)
233 {
234         spin_lock(&journal->j_state_lock);
235         journal->j_flags |= JFS_UNMOUNT;
236
237         while (journal->j_task) {
238                 wake_up(&journal->j_wait_commit);
239                 spin_unlock(&journal->j_state_lock);
240                 wait_event(journal->j_wait_done_commit,
241                                 journal->j_task == NULL);
242                 spin_lock(&journal->j_state_lock);
243         }
244         spin_unlock(&journal->j_state_lock);
245 }
246
247 /*
248  * journal_write_metadata_buffer: write a metadata buffer to the journal.
249  *
250  * Writes a metadata buffer to a given disk block.  The actual IO is not
251  * performed but a new buffer_head is constructed which labels the data
252  * to be written with the correct destination disk block.
253  *
254  * Any magic-number escaping which needs to be done will cause a
255  * copy-out here.  If the buffer happens to start with the
256  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
257  * magic number is only written to the log for descripter blocks.  In
258  * this case, we copy the data and replace the first word with 0, and we
259  * return a result code which indicates that this buffer needs to be
260  * marked as an escaped buffer in the corresponding log descriptor
261  * block.  The missing word can then be restored when the block is read
262  * during recovery.
263  *
264  * If the source buffer has already been modified by a new transaction
265  * since we took the last commit snapshot, we use the frozen copy of
266  * that data for IO.  If we end up using the existing buffer_head's data
267  * for the write, then we *have* to lock the buffer to prevent anyone
268  * else from using and possibly modifying it while the IO is in
269  * progress.
270  *
271  * The function returns a pointer to the buffer_heads to be used for IO.
272  *
273  * We assume that the journal has already been locked in this function.
274  *
275  * Return value:
276  *  <0: Error
277  * >=0: Finished OK
278  *
279  * On success:
280  * Bit 0 set == escape performed on the data
281  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
282  */
283
284 int journal_write_metadata_buffer(transaction_t *transaction,
285                                   struct journal_head  *jh_in,
286                                   struct journal_head **jh_out,
287                                   unsigned int blocknr)
288 {
289         int need_copy_out = 0;
290         int done_copy_out = 0;
291         int do_escape = 0;
292         char *mapped_data;
293         struct buffer_head *new_bh;
294         struct journal_head *new_jh;
295         struct page *new_page;
296         unsigned int new_offset;
297         struct buffer_head *bh_in = jh2bh(jh_in);
298         journal_t *journal = transaction->t_journal;
299
300         /*
301          * The buffer really shouldn't be locked: only the current committing
302          * transaction is allowed to write it, so nobody else is allowed
303          * to do any IO.
304          *
305          * akpm: except if we're journalling data, and write() output is
306          * also part of a shared mapping, and another thread has
307          * decided to launch a writepage() against this buffer.
308          */
309         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
310
311         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312         /* keep subsequent assertions sane */
313         new_bh->b_state = 0;
314         init_buffer(new_bh, NULL, NULL);
315         atomic_set(&new_bh->b_count, 1);
316         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
317
318         /*
319          * If a new transaction has already done a buffer copy-out, then
320          * we use that version of the data for the commit.
321          */
322         jbd_lock_bh_state(bh_in);
323 repeat:
324         if (jh_in->b_frozen_data) {
325                 done_copy_out = 1;
326                 new_page = virt_to_page(jh_in->b_frozen_data);
327                 new_offset = offset_in_page(jh_in->b_frozen_data);
328         } else {
329                 new_page = jh2bh(jh_in)->b_page;
330                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
331         }
332
333         mapped_data = kmap_atomic(new_page);
334         /*
335          * Check for escaping
336          */
337         if (*((__be32 *)(mapped_data + new_offset)) ==
338                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
339                 need_copy_out = 1;
340                 do_escape = 1;
341         }
342         kunmap_atomic(mapped_data);
343
344         /*
345          * Do we need to do a data copy?
346          */
347         if (need_copy_out && !done_copy_out) {
348                 char *tmp;
349
350                 jbd_unlock_bh_state(bh_in);
351                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
352                 jbd_lock_bh_state(bh_in);
353                 if (jh_in->b_frozen_data) {
354                         jbd_free(tmp, bh_in->b_size);
355                         goto repeat;
356                 }
357
358                 jh_in->b_frozen_data = tmp;
359                 mapped_data = kmap_atomic(new_page);
360                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
361                 kunmap_atomic(mapped_data);
362
363                 new_page = virt_to_page(tmp);
364                 new_offset = offset_in_page(tmp);
365                 done_copy_out = 1;
366         }
367
368         /*
369          * Did we need to do an escaping?  Now we've done all the
370          * copying, we can finally do so.
371          */
372         if (do_escape) {
373                 mapped_data = kmap_atomic(new_page);
374                 *((unsigned int *)(mapped_data + new_offset)) = 0;
375                 kunmap_atomic(mapped_data);
376         }
377
378         set_bh_page(new_bh, new_page, new_offset);
379         new_jh->b_transaction = NULL;
380         new_bh->b_size = jh2bh(jh_in)->b_size;
381         new_bh->b_bdev = transaction->t_journal->j_dev;
382         new_bh->b_blocknr = blocknr;
383         set_buffer_mapped(new_bh);
384         set_buffer_dirty(new_bh);
385
386         *jh_out = new_jh;
387
388         /*
389          * The to-be-written buffer needs to get moved to the io queue,
390          * and the original buffer whose contents we are shadowing or
391          * copying is moved to the transaction's shadow queue.
392          */
393         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
394         spin_lock(&journal->j_list_lock);
395         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
396         spin_unlock(&journal->j_list_lock);
397         jbd_unlock_bh_state(bh_in);
398
399         JBUFFER_TRACE(new_jh, "file as BJ_IO");
400         journal_file_buffer(new_jh, transaction, BJ_IO);
401
402         return do_escape | (done_copy_out << 1);
403 }
404
405 /*
406  * Allocation code for the journal file.  Manage the space left in the
407  * journal, so that we can begin checkpointing when appropriate.
408  */
409
410 /*
411  * __log_space_left: Return the number of free blocks left in the journal.
412  *
413  * Called with the journal already locked.
414  *
415  * Called under j_state_lock
416  */
417
418 int __log_space_left(journal_t *journal)
419 {
420         int left = journal->j_free;
421
422         assert_spin_locked(&journal->j_state_lock);
423
424         /*
425          * Be pessimistic here about the number of those free blocks which
426          * might be required for log descriptor control blocks.
427          */
428
429 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
430
431         left -= MIN_LOG_RESERVED_BLOCKS;
432
433         if (left <= 0)
434                 return 0;
435         left -= (left >> 3);
436         return left;
437 }
438
439 /*
440  * Called under j_state_lock.  Returns true if a transaction commit was started.
441  */
442 int __log_start_commit(journal_t *journal, tid_t target)
443 {
444         /*
445          * The only transaction we can possibly wait upon is the
446          * currently running transaction (if it exists).  Otherwise,
447          * the target tid must be an old one.
448          */
449         if (journal->j_running_transaction &&
450             journal->j_running_transaction->t_tid == target) {
451                 /*
452                  * We want a new commit: OK, mark the request and wakeup the
453                  * commit thread.  We do _not_ do the commit ourselves.
454                  */
455
456                 journal->j_commit_request = target;
457                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
458                           journal->j_commit_request,
459                           journal->j_commit_sequence);
460                 wake_up(&journal->j_wait_commit);
461                 return 1;
462         } else if (!tid_geq(journal->j_commit_request, target))
463                 /* This should never happen, but if it does, preserve
464                    the evidence before kjournald goes into a loop and
465                    increments j_commit_sequence beyond all recognition. */
466                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
467                     journal->j_commit_request, journal->j_commit_sequence,
468                     target, journal->j_running_transaction ?
469                     journal->j_running_transaction->t_tid : 0);
470         return 0;
471 }
472
473 int log_start_commit(journal_t *journal, tid_t tid)
474 {
475         int ret;
476
477         spin_lock(&journal->j_state_lock);
478         ret = __log_start_commit(journal, tid);
479         spin_unlock(&journal->j_state_lock);
480         return ret;
481 }
482
483 /*
484  * Force and wait upon a commit if the calling process is not within
485  * transaction.  This is used for forcing out undo-protected data which contains
486  * bitmaps, when the fs is running out of space.
487  *
488  * We can only force the running transaction if we don't have an active handle;
489  * otherwise, we will deadlock.
490  *
491  * Returns true if a transaction was started.
492  */
493 int journal_force_commit_nested(journal_t *journal)
494 {
495         transaction_t *transaction = NULL;
496         tid_t tid;
497
498         spin_lock(&journal->j_state_lock);
499         if (journal->j_running_transaction && !current->journal_info) {
500                 transaction = journal->j_running_transaction;
501                 __log_start_commit(journal, transaction->t_tid);
502         } else if (journal->j_committing_transaction)
503                 transaction = journal->j_committing_transaction;
504
505         if (!transaction) {
506                 spin_unlock(&journal->j_state_lock);
507                 return 0;       /* Nothing to retry */
508         }
509
510         tid = transaction->t_tid;
511         spin_unlock(&journal->j_state_lock);
512         log_wait_commit(journal, tid);
513         return 1;
514 }
515
516 /*
517  * Start a commit of the current running transaction (if any).  Returns true
518  * if a transaction is going to be committed (or is currently already
519  * committing), and fills its tid in at *ptid
520  */
521 int journal_start_commit(journal_t *journal, tid_t *ptid)
522 {
523         int ret = 0;
524
525         spin_lock(&journal->j_state_lock);
526         if (journal->j_running_transaction) {
527                 tid_t tid = journal->j_running_transaction->t_tid;
528
529                 __log_start_commit(journal, tid);
530                 /* There's a running transaction and we've just made sure
531                  * it's commit has been scheduled. */
532                 if (ptid)
533                         *ptid = tid;
534                 ret = 1;
535         } else if (journal->j_committing_transaction) {
536                 /*
537                  * If ext3_write_super() recently started a commit, then we
538                  * have to wait for completion of that transaction
539                  */
540                 if (ptid)
541                         *ptid = journal->j_committing_transaction->t_tid;
542                 ret = 1;
543         }
544         spin_unlock(&journal->j_state_lock);
545         return ret;
546 }
547
548 /*
549  * Wait for a specified commit to complete.
550  * The caller may not hold the journal lock.
551  */
552 int log_wait_commit(journal_t *journal, tid_t tid)
553 {
554         int err = 0;
555
556 #ifdef CONFIG_JBD_DEBUG
557         spin_lock(&journal->j_state_lock);
558         if (!tid_geq(journal->j_commit_request, tid)) {
559                 printk(KERN_EMERG
560                        "%s: error: j_commit_request=%d, tid=%d\n",
561                        __func__, journal->j_commit_request, tid);
562         }
563         spin_unlock(&journal->j_state_lock);
564 #endif
565         spin_lock(&journal->j_state_lock);
566         while (tid_gt(tid, journal->j_commit_sequence)) {
567                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
568                                   tid, journal->j_commit_sequence);
569                 wake_up(&journal->j_wait_commit);
570                 spin_unlock(&journal->j_state_lock);
571                 wait_event(journal->j_wait_done_commit,
572                                 !tid_gt(tid, journal->j_commit_sequence));
573                 spin_lock(&journal->j_state_lock);
574         }
575         spin_unlock(&journal->j_state_lock);
576
577         if (unlikely(is_journal_aborted(journal))) {
578                 printk(KERN_EMERG "journal commit I/O error\n");
579                 err = -EIO;
580         }
581         return err;
582 }
583
584 /*
585  * Return 1 if a given transaction has not yet sent barrier request
586  * connected with a transaction commit. If 0 is returned, transaction
587  * may or may not have sent the barrier. Used to avoid sending barrier
588  * twice in common cases.
589  */
590 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
591 {
592         int ret = 0;
593         transaction_t *commit_trans;
594
595         if (!(journal->j_flags & JFS_BARRIER))
596                 return 0;
597         spin_lock(&journal->j_state_lock);
598         /* Transaction already committed? */
599         if (tid_geq(journal->j_commit_sequence, tid))
600                 goto out;
601         /*
602          * Transaction is being committed and we already proceeded to
603          * writing commit record?
604          */
605         commit_trans = journal->j_committing_transaction;
606         if (commit_trans && commit_trans->t_tid == tid &&
607             commit_trans->t_state >= T_COMMIT_RECORD)
608                 goto out;
609         ret = 1;
610 out:
611         spin_unlock(&journal->j_state_lock);
612         return ret;
613 }
614 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
615
616 /*
617  * Log buffer allocation routines:
618  */
619
620 int journal_next_log_block(journal_t *journal, unsigned int *retp)
621 {
622         unsigned int blocknr;
623
624         spin_lock(&journal->j_state_lock);
625         J_ASSERT(journal->j_free > 1);
626
627         blocknr = journal->j_head;
628         journal->j_head++;
629         journal->j_free--;
630         if (journal->j_head == journal->j_last)
631                 journal->j_head = journal->j_first;
632         spin_unlock(&journal->j_state_lock);
633         return journal_bmap(journal, blocknr, retp);
634 }
635
636 /*
637  * Conversion of logical to physical block numbers for the journal
638  *
639  * On external journals the journal blocks are identity-mapped, so
640  * this is a no-op.  If needed, we can use j_blk_offset - everything is
641  * ready.
642  */
643 int journal_bmap(journal_t *journal, unsigned int blocknr,
644                  unsigned int *retp)
645 {
646         int err = 0;
647         unsigned int ret;
648
649         if (journal->j_inode) {
650                 ret = bmap(journal->j_inode, blocknr);
651                 if (ret)
652                         *retp = ret;
653                 else {
654                         char b[BDEVNAME_SIZE];
655
656                         printk(KERN_ALERT "%s: journal block not found "
657                                         "at offset %u on %s\n",
658                                 __func__,
659                                 blocknr,
660                                 bdevname(journal->j_dev, b));
661                         err = -EIO;
662                         __journal_abort_soft(journal, err);
663                 }
664         } else {
665                 *retp = blocknr; /* +journal->j_blk_offset */
666         }
667         return err;
668 }
669
670 /*
671  * We play buffer_head aliasing tricks to write data/metadata blocks to
672  * the journal without copying their contents, but for journal
673  * descriptor blocks we do need to generate bona fide buffers.
674  *
675  * After the caller of journal_get_descriptor_buffer() has finished modifying
676  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
677  * But we don't bother doing that, so there will be coherency problems with
678  * mmaps of blockdevs which hold live JBD-controlled filesystems.
679  */
680 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
681 {
682         struct buffer_head *bh;
683         unsigned int blocknr;
684         int err;
685
686         err = journal_next_log_block(journal, &blocknr);
687
688         if (err)
689                 return NULL;
690
691         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
692         if (!bh)
693                 return NULL;
694         lock_buffer(bh);
695         memset(bh->b_data, 0, journal->j_blocksize);
696         set_buffer_uptodate(bh);
697         unlock_buffer(bh);
698         BUFFER_TRACE(bh, "return this buffer");
699         return journal_add_journal_head(bh);
700 }
701
702 /*
703  * Management for journal control blocks: functions to create and
704  * destroy journal_t structures, and to initialise and read existing
705  * journal blocks from disk.  */
706
707 /* First: create and setup a journal_t object in memory.  We initialise
708  * very few fields yet: that has to wait until we have created the
709  * journal structures from from scratch, or loaded them from disk. */
710
711 static journal_t * journal_init_common (void)
712 {
713         journal_t *journal;
714         int err;
715
716         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
717         if (!journal)
718                 goto fail;
719
720         init_waitqueue_head(&journal->j_wait_transaction_locked);
721         init_waitqueue_head(&journal->j_wait_logspace);
722         init_waitqueue_head(&journal->j_wait_done_commit);
723         init_waitqueue_head(&journal->j_wait_checkpoint);
724         init_waitqueue_head(&journal->j_wait_commit);
725         init_waitqueue_head(&journal->j_wait_updates);
726         mutex_init(&journal->j_checkpoint_mutex);
727         spin_lock_init(&journal->j_revoke_lock);
728         spin_lock_init(&journal->j_list_lock);
729         spin_lock_init(&journal->j_state_lock);
730
731         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
732
733         /* The journal is marked for error until we succeed with recovery! */
734         journal->j_flags = JFS_ABORT;
735
736         /* Set up a default-sized revoke table for the new mount. */
737         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
738         if (err) {
739                 kfree(journal);
740                 goto fail;
741         }
742         return journal;
743 fail:
744         return NULL;
745 }
746
747 /* journal_init_dev and journal_init_inode:
748  *
749  * Create a journal structure assigned some fixed set of disk blocks to
750  * the journal.  We don't actually touch those disk blocks yet, but we
751  * need to set up all of the mapping information to tell the journaling
752  * system where the journal blocks are.
753  *
754  */
755
756 /**
757  *  journal_t * journal_init_dev() - creates and initialises a journal structure
758  *  @bdev: Block device on which to create the journal
759  *  @fs_dev: Device which hold journalled filesystem for this journal.
760  *  @start: Block nr Start of journal.
761  *  @len:  Length of the journal in blocks.
762  *  @blocksize: blocksize of journalling device
763  *
764  *  Returns: a newly created journal_t *
765  *
766  *  journal_init_dev creates a journal which maps a fixed contiguous
767  *  range of blocks on an arbitrary block device.
768  *
769  */
770 journal_t * journal_init_dev(struct block_device *bdev,
771                         struct block_device *fs_dev,
772                         int start, int len, int blocksize)
773 {
774         journal_t *journal = journal_init_common();
775         struct buffer_head *bh;
776         int n;
777
778         if (!journal)
779                 return NULL;
780
781         /* journal descriptor can store up to n blocks -bzzz */
782         journal->j_blocksize = blocksize;
783         n = journal->j_blocksize / sizeof(journal_block_tag_t);
784         journal->j_wbufsize = n;
785         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
786         if (!journal->j_wbuf) {
787                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
788                         __func__);
789                 goto out_err;
790         }
791         journal->j_dev = bdev;
792         journal->j_fs_dev = fs_dev;
793         journal->j_blk_offset = start;
794         journal->j_maxlen = len;
795
796         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
797         if (!bh) {
798                 printk(KERN_ERR
799                        "%s: Cannot get buffer for journal superblock\n",
800                        __func__);
801                 goto out_err;
802         }
803         journal->j_sb_buffer = bh;
804         journal->j_superblock = (journal_superblock_t *)bh->b_data;
805
806         return journal;
807 out_err:
808         kfree(journal->j_wbuf);
809         kfree(journal);
810         return NULL;
811 }
812
813 /**
814  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
815  *  @inode: An inode to create the journal in
816  *
817  * journal_init_inode creates a journal which maps an on-disk inode as
818  * the journal.  The inode must exist already, must support bmap() and
819  * must have all data blocks preallocated.
820  */
821 journal_t * journal_init_inode (struct inode *inode)
822 {
823         struct buffer_head *bh;
824         journal_t *journal = journal_init_common();
825         int err;
826         int n;
827         unsigned int blocknr;
828
829         if (!journal)
830                 return NULL;
831
832         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
833         journal->j_inode = inode;
834         jbd_debug(1,
835                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
836                   journal, inode->i_sb->s_id, inode->i_ino,
837                   (long long) inode->i_size,
838                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
839
840         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
841         journal->j_blocksize = inode->i_sb->s_blocksize;
842
843         /* journal descriptor can store up to n blocks -bzzz */
844         n = journal->j_blocksize / sizeof(journal_block_tag_t);
845         journal->j_wbufsize = n;
846         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
847         if (!journal->j_wbuf) {
848                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
849                         __func__);
850                 goto out_err;
851         }
852
853         err = journal_bmap(journal, 0, &blocknr);
854         /* If that failed, give up */
855         if (err) {
856                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
857                        __func__);
858                 goto out_err;
859         }
860
861         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
862         if (!bh) {
863                 printk(KERN_ERR
864                        "%s: Cannot get buffer for journal superblock\n",
865                        __func__);
866                 goto out_err;
867         }
868         journal->j_sb_buffer = bh;
869         journal->j_superblock = (journal_superblock_t *)bh->b_data;
870
871         return journal;
872 out_err:
873         kfree(journal->j_wbuf);
874         kfree(journal);
875         return NULL;
876 }
877
878 /*
879  * If the journal init or create aborts, we need to mark the journal
880  * superblock as being NULL to prevent the journal destroy from writing
881  * back a bogus superblock.
882  */
883 static void journal_fail_superblock (journal_t *journal)
884 {
885         struct buffer_head *bh = journal->j_sb_buffer;
886         brelse(bh);
887         journal->j_sb_buffer = NULL;
888 }
889
890 /*
891  * Given a journal_t structure, initialise the various fields for
892  * startup of a new journaling session.  We use this both when creating
893  * a journal, and after recovering an old journal to reset it for
894  * subsequent use.
895  */
896
897 static int journal_reset(journal_t *journal)
898 {
899         journal_superblock_t *sb = journal->j_superblock;
900         unsigned int first, last;
901
902         first = be32_to_cpu(sb->s_first);
903         last = be32_to_cpu(sb->s_maxlen);
904         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
905                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
906                        first, last);
907                 journal_fail_superblock(journal);
908                 return -EINVAL;
909         }
910
911         journal->j_first = first;
912         journal->j_last = last;
913
914         journal->j_head = first;
915         journal->j_tail = first;
916         journal->j_free = last - first;
917
918         journal->j_tail_sequence = journal->j_transaction_sequence;
919         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
920         journal->j_commit_request = journal->j_commit_sequence;
921
922         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
923
924         /* Add the dynamic fields and write it to disk. */
925         journal_update_superblock(journal, 1);
926         return journal_start_thread(journal);
927 }
928
929 /**
930  * int journal_create() - Initialise the new journal file
931  * @journal: Journal to create. This structure must have been initialised
932  *
933  * Given a journal_t structure which tells us which disk blocks we can
934  * use, create a new journal superblock and initialise all of the
935  * journal fields from scratch.
936  **/
937 int journal_create(journal_t *journal)
938 {
939         unsigned int blocknr;
940         struct buffer_head *bh;
941         journal_superblock_t *sb;
942         int i, err;
943
944         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
945                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
946                         journal->j_maxlen);
947                 journal_fail_superblock(journal);
948                 return -EINVAL;
949         }
950
951         if (journal->j_inode == NULL) {
952                 /*
953                  * We don't know what block to start at!
954                  */
955                 printk(KERN_EMERG
956                        "%s: creation of journal on external device!\n",
957                        __func__);
958                 BUG();
959         }
960
961         /* Zero out the entire journal on disk.  We cannot afford to
962            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
963         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
964         for (i = 0; i < journal->j_maxlen; i++) {
965                 err = journal_bmap(journal, i, &blocknr);
966                 if (err)
967                         return err;
968                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
969                 if (unlikely(!bh))
970                         return -ENOMEM;
971                 lock_buffer(bh);
972                 memset (bh->b_data, 0, journal->j_blocksize);
973                 BUFFER_TRACE(bh, "marking dirty");
974                 mark_buffer_dirty(bh);
975                 BUFFER_TRACE(bh, "marking uptodate");
976                 set_buffer_uptodate(bh);
977                 unlock_buffer(bh);
978                 __brelse(bh);
979         }
980
981         sync_blockdev(journal->j_dev);
982         jbd_debug(1, "JBD: journal cleared.\n");
983
984         /* OK, fill in the initial static fields in the new superblock */
985         sb = journal->j_superblock;
986
987         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
988         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
989
990         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
991         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
992         sb->s_first     = cpu_to_be32(1);
993
994         journal->j_transaction_sequence = 1;
995
996         journal->j_flags &= ~JFS_ABORT;
997         journal->j_format_version = 2;
998
999         return journal_reset(journal);
1000 }
1001
1002 /**
1003  * void journal_update_superblock() - Update journal sb on disk.
1004  * @journal: The journal to update.
1005  * @wait: Set to '0' if you don't want to wait for IO completion.
1006  *
1007  * Update a journal's dynamic superblock fields and write it to disk,
1008  * optionally waiting for the IO to complete.
1009  */
1010 void journal_update_superblock(journal_t *journal, int wait)
1011 {
1012         journal_superblock_t *sb = journal->j_superblock;
1013         struct buffer_head *bh = journal->j_sb_buffer;
1014
1015         /*
1016          * As a special case, if the on-disk copy is already marked as needing
1017          * no recovery (s_start == 0) and there are no outstanding transactions
1018          * in the filesystem, then we can safely defer the superblock update
1019          * until the next commit by setting JFS_FLUSHED.  This avoids
1020          * attempting a write to a potential-readonly device.
1021          */
1022         if (sb->s_start == 0 && journal->j_tail_sequence ==
1023                                 journal->j_transaction_sequence) {
1024                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1025                         "(start %u, seq %d, errno %d)\n",
1026                         journal->j_tail, journal->j_tail_sequence,
1027                         journal->j_errno);
1028                 goto out;
1029         }
1030
1031         if (buffer_write_io_error(bh)) {
1032                 char b[BDEVNAME_SIZE];
1033                 /*
1034                  * Oh, dear.  A previous attempt to write the journal
1035                  * superblock failed.  This could happen because the
1036                  * USB device was yanked out.  Or it could happen to
1037                  * be a transient write error and maybe the block will
1038                  * be remapped.  Nothing we can do but to retry the
1039                  * write and hope for the best.
1040                  */
1041                 printk(KERN_ERR "JBD: previous I/O error detected "
1042                        "for journal superblock update for %s.\n",
1043                        journal_dev_name(journal, b));
1044                 clear_buffer_write_io_error(bh);
1045                 set_buffer_uptodate(bh);
1046         }
1047
1048         spin_lock(&journal->j_state_lock);
1049         jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1050                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1051
1052         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1053         sb->s_start    = cpu_to_be32(journal->j_tail);
1054         sb->s_errno    = cpu_to_be32(journal->j_errno);
1055         spin_unlock(&journal->j_state_lock);
1056
1057         BUFFER_TRACE(bh, "marking dirty");
1058         mark_buffer_dirty(bh);
1059         if (wait) {
1060                 sync_dirty_buffer(bh);
1061                 if (buffer_write_io_error(bh)) {
1062                         char b[BDEVNAME_SIZE];
1063                         printk(KERN_ERR "JBD: I/O error detected "
1064                                "when updating journal superblock for %s.\n",
1065                                journal_dev_name(journal, b));
1066                         clear_buffer_write_io_error(bh);
1067                         set_buffer_uptodate(bh);
1068                 }
1069         } else
1070                 write_dirty_buffer(bh, WRITE);
1071
1072         trace_jbd_update_superblock_end(journal, wait);
1073 out:
1074         /* If we have just flushed the log (by marking s_start==0), then
1075          * any future commit will have to be careful to update the
1076          * superblock again to re-record the true start of the log. */
1077
1078         spin_lock(&journal->j_state_lock);
1079         if (sb->s_start)
1080                 journal->j_flags &= ~JFS_FLUSHED;
1081         else
1082                 journal->j_flags |= JFS_FLUSHED;
1083         spin_unlock(&journal->j_state_lock);
1084 }
1085
1086 /*
1087  * Read the superblock for a given journal, performing initial
1088  * validation of the format.
1089  */
1090
1091 static int journal_get_superblock(journal_t *journal)
1092 {
1093         struct buffer_head *bh;
1094         journal_superblock_t *sb;
1095         int err = -EIO;
1096
1097         bh = journal->j_sb_buffer;
1098
1099         J_ASSERT(bh != NULL);
1100         if (!buffer_uptodate(bh)) {
1101                 ll_rw_block(READ, 1, &bh);
1102                 wait_on_buffer(bh);
1103                 if (!buffer_uptodate(bh)) {
1104                         printk (KERN_ERR
1105                                 "JBD: IO error reading journal superblock\n");
1106                         goto out;
1107                 }
1108         }
1109
1110         sb = journal->j_superblock;
1111
1112         err = -EINVAL;
1113
1114         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1115             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1116                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1117                 goto out;
1118         }
1119
1120         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1121         case JFS_SUPERBLOCK_V1:
1122                 journal->j_format_version = 1;
1123                 break;
1124         case JFS_SUPERBLOCK_V2:
1125                 journal->j_format_version = 2;
1126                 break;
1127         default:
1128                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1129                 goto out;
1130         }
1131
1132         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1133                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1134         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1135                 printk (KERN_WARNING "JBD: journal file too short\n");
1136                 goto out;
1137         }
1138
1139         if (be32_to_cpu(sb->s_first) == 0 ||
1140             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1141                 printk(KERN_WARNING
1142                         "JBD: Invalid start block of journal: %u\n",
1143                         be32_to_cpu(sb->s_first));
1144                 goto out;
1145         }
1146
1147         return 0;
1148
1149 out:
1150         journal_fail_superblock(journal);
1151         return err;
1152 }
1153
1154 /*
1155  * Load the on-disk journal superblock and read the key fields into the
1156  * journal_t.
1157  */
1158
1159 static int load_superblock(journal_t *journal)
1160 {
1161         int err;
1162         journal_superblock_t *sb;
1163
1164         err = journal_get_superblock(journal);
1165         if (err)
1166                 return err;
1167
1168         sb = journal->j_superblock;
1169
1170         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1171         journal->j_tail = be32_to_cpu(sb->s_start);
1172         journal->j_first = be32_to_cpu(sb->s_first);
1173         journal->j_last = be32_to_cpu(sb->s_maxlen);
1174         journal->j_errno = be32_to_cpu(sb->s_errno);
1175
1176         return 0;
1177 }
1178
1179
1180 /**
1181  * int journal_load() - Read journal from disk.
1182  * @journal: Journal to act on.
1183  *
1184  * Given a journal_t structure which tells us which disk blocks contain
1185  * a journal, read the journal from disk to initialise the in-memory
1186  * structures.
1187  */
1188 int journal_load(journal_t *journal)
1189 {
1190         int err;
1191         journal_superblock_t *sb;
1192
1193         err = load_superblock(journal);
1194         if (err)
1195                 return err;
1196
1197         sb = journal->j_superblock;
1198         /* If this is a V2 superblock, then we have to check the
1199          * features flags on it. */
1200
1201         if (journal->j_format_version >= 2) {
1202                 if ((sb->s_feature_ro_compat &
1203                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1204                     (sb->s_feature_incompat &
1205                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1206                         printk (KERN_WARNING
1207                                 "JBD: Unrecognised features on journal\n");
1208                         return -EINVAL;
1209                 }
1210         }
1211
1212         /* Let the recovery code check whether it needs to recover any
1213          * data from the journal. */
1214         if (journal_recover(journal))
1215                 goto recovery_error;
1216
1217         /* OK, we've finished with the dynamic journal bits:
1218          * reinitialise the dynamic contents of the superblock in memory
1219          * and reset them on disk. */
1220         if (journal_reset(journal))
1221                 goto recovery_error;
1222
1223         journal->j_flags &= ~JFS_ABORT;
1224         journal->j_flags |= JFS_LOADED;
1225         return 0;
1226
1227 recovery_error:
1228         printk (KERN_WARNING "JBD: recovery failed\n");
1229         return -EIO;
1230 }
1231
1232 /**
1233  * void journal_destroy() - Release a journal_t structure.
1234  * @journal: Journal to act on.
1235  *
1236  * Release a journal_t structure once it is no longer in use by the
1237  * journaled object.
1238  * Return <0 if we couldn't clean up the journal.
1239  */
1240 int journal_destroy(journal_t *journal)
1241 {
1242         int err = 0;
1243
1244         
1245         /* Wait for the commit thread to wake up and die. */
1246         journal_kill_thread(journal);
1247
1248         /* Force a final log commit */
1249         if (journal->j_running_transaction)
1250                 journal_commit_transaction(journal);
1251
1252         /* Force any old transactions to disk */
1253
1254         /* Totally anal locking here... */
1255         spin_lock(&journal->j_list_lock);
1256         while (journal->j_checkpoint_transactions != NULL) {
1257                 spin_unlock(&journal->j_list_lock);
1258                 log_do_checkpoint(journal);
1259                 spin_lock(&journal->j_list_lock);
1260         }
1261
1262         J_ASSERT(journal->j_running_transaction == NULL);
1263         J_ASSERT(journal->j_committing_transaction == NULL);
1264         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1265         spin_unlock(&journal->j_list_lock);
1266
1267         if (journal->j_sb_buffer) {
1268                 if (!is_journal_aborted(journal)) {
1269                         /* We can now mark the journal as empty. */
1270                         journal->j_tail = 0;
1271                         journal->j_tail_sequence =
1272                                 ++journal->j_transaction_sequence;
1273                         journal_update_superblock(journal, 1);
1274                 } else {
1275                         err = -EIO;
1276                 }
1277                 brelse(journal->j_sb_buffer);
1278         }
1279
1280         if (journal->j_inode)
1281                 iput(journal->j_inode);
1282         if (journal->j_revoke)
1283                 journal_destroy_revoke(journal);
1284         kfree(journal->j_wbuf);
1285         kfree(journal);
1286
1287         return err;
1288 }
1289
1290
1291 /**
1292  *int journal_check_used_features () - Check if features specified are used.
1293  * @journal: Journal to check.
1294  * @compat: bitmask of compatible features
1295  * @ro: bitmask of features that force read-only mount
1296  * @incompat: bitmask of incompatible features
1297  *
1298  * Check whether the journal uses all of a given set of
1299  * features.  Return true (non-zero) if it does.
1300  **/
1301
1302 int journal_check_used_features (journal_t *journal, unsigned long compat,
1303                                  unsigned long ro, unsigned long incompat)
1304 {
1305         journal_superblock_t *sb;
1306
1307         if (!compat && !ro && !incompat)
1308                 return 1;
1309         if (journal->j_format_version == 1)
1310                 return 0;
1311
1312         sb = journal->j_superblock;
1313
1314         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1315             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1316             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1317                 return 1;
1318
1319         return 0;
1320 }
1321
1322 /**
1323  * int journal_check_available_features() - Check feature set in journalling layer
1324  * @journal: Journal to check.
1325  * @compat: bitmask of compatible features
1326  * @ro: bitmask of features that force read-only mount
1327  * @incompat: bitmask of incompatible features
1328  *
1329  * Check whether the journaling code supports the use of
1330  * all of a given set of features on this journal.  Return true
1331  * (non-zero) if it can. */
1332
1333 int journal_check_available_features (journal_t *journal, unsigned long compat,
1334                                       unsigned long ro, unsigned long incompat)
1335 {
1336         if (!compat && !ro && !incompat)
1337                 return 1;
1338
1339         /* We can support any known requested features iff the
1340          * superblock is in version 2.  Otherwise we fail to support any
1341          * extended sb features. */
1342
1343         if (journal->j_format_version != 2)
1344                 return 0;
1345
1346         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1347             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1348             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1349                 return 1;
1350
1351         return 0;
1352 }
1353
1354 /**
1355  * int journal_set_features () - Mark a given journal feature in the superblock
1356  * @journal: Journal to act on.
1357  * @compat: bitmask of compatible features
1358  * @ro: bitmask of features that force read-only mount
1359  * @incompat: bitmask of incompatible features
1360  *
1361  * Mark a given journal feature as present on the
1362  * superblock.  Returns true if the requested features could be set.
1363  *
1364  */
1365
1366 int journal_set_features (journal_t *journal, unsigned long compat,
1367                           unsigned long ro, unsigned long incompat)
1368 {
1369         journal_superblock_t *sb;
1370
1371         if (journal_check_used_features(journal, compat, ro, incompat))
1372                 return 1;
1373
1374         if (!journal_check_available_features(journal, compat, ro, incompat))
1375                 return 0;
1376
1377         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1378                   compat, ro, incompat);
1379
1380         sb = journal->j_superblock;
1381
1382         sb->s_feature_compat    |= cpu_to_be32(compat);
1383         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1384         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1385
1386         return 1;
1387 }
1388
1389
1390 /**
1391  * int journal_update_format () - Update on-disk journal structure.
1392  * @journal: Journal to act on.
1393  *
1394  * Given an initialised but unloaded journal struct, poke about in the
1395  * on-disk structure to update it to the most recent supported version.
1396  */
1397 int journal_update_format (journal_t *journal)
1398 {
1399         journal_superblock_t *sb;
1400         int err;
1401
1402         err = journal_get_superblock(journal);
1403         if (err)
1404                 return err;
1405
1406         sb = journal->j_superblock;
1407
1408         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1409         case JFS_SUPERBLOCK_V2:
1410                 return 0;
1411         case JFS_SUPERBLOCK_V1:
1412                 return journal_convert_superblock_v1(journal, sb);
1413         default:
1414                 break;
1415         }
1416         return -EINVAL;
1417 }
1418
1419 static int journal_convert_superblock_v1(journal_t *journal,
1420                                          journal_superblock_t *sb)
1421 {
1422         int offset, blocksize;
1423         struct buffer_head *bh;
1424
1425         printk(KERN_WARNING
1426                 "JBD: Converting superblock from version 1 to 2.\n");
1427
1428         /* Pre-initialise new fields to zero */
1429         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1430         blocksize = be32_to_cpu(sb->s_blocksize);
1431         memset(&sb->s_feature_compat, 0, blocksize-offset);
1432
1433         sb->s_nr_users = cpu_to_be32(1);
1434         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1435         journal->j_format_version = 2;
1436
1437         bh = journal->j_sb_buffer;
1438         BUFFER_TRACE(bh, "marking dirty");
1439         mark_buffer_dirty(bh);
1440         sync_dirty_buffer(bh);
1441         return 0;
1442 }
1443
1444
1445 /**
1446  * int journal_flush () - Flush journal
1447  * @journal: Journal to act on.
1448  *
1449  * Flush all data for a given journal to disk and empty the journal.
1450  * Filesystems can use this when remounting readonly to ensure that
1451  * recovery does not need to happen on remount.
1452  */
1453
1454 int journal_flush(journal_t *journal)
1455 {
1456         int err = 0;
1457         transaction_t *transaction = NULL;
1458         unsigned int old_tail;
1459
1460         spin_lock(&journal->j_state_lock);
1461
1462         /* Force everything buffered to the log... */
1463         if (journal->j_running_transaction) {
1464                 transaction = journal->j_running_transaction;
1465                 __log_start_commit(journal, transaction->t_tid);
1466         } else if (journal->j_committing_transaction)
1467                 transaction = journal->j_committing_transaction;
1468
1469         /* Wait for the log commit to complete... */
1470         if (transaction) {
1471                 tid_t tid = transaction->t_tid;
1472
1473                 spin_unlock(&journal->j_state_lock);
1474                 log_wait_commit(journal, tid);
1475         } else {
1476                 spin_unlock(&journal->j_state_lock);
1477         }
1478
1479         /* ...and flush everything in the log out to disk. */
1480         spin_lock(&journal->j_list_lock);
1481         while (!err && journal->j_checkpoint_transactions != NULL) {
1482                 spin_unlock(&journal->j_list_lock);
1483                 mutex_lock(&journal->j_checkpoint_mutex);
1484                 err = log_do_checkpoint(journal);
1485                 mutex_unlock(&journal->j_checkpoint_mutex);
1486                 spin_lock(&journal->j_list_lock);
1487         }
1488         spin_unlock(&journal->j_list_lock);
1489
1490         if (is_journal_aborted(journal))
1491                 return -EIO;
1492
1493         cleanup_journal_tail(journal);
1494
1495         /* Finally, mark the journal as really needing no recovery.
1496          * This sets s_start==0 in the underlying superblock, which is
1497          * the magic code for a fully-recovered superblock.  Any future
1498          * commits of data to the journal will restore the current
1499          * s_start value. */
1500         spin_lock(&journal->j_state_lock);
1501         old_tail = journal->j_tail;
1502         journal->j_tail = 0;
1503         spin_unlock(&journal->j_state_lock);
1504         journal_update_superblock(journal, 1);
1505         spin_lock(&journal->j_state_lock);
1506         journal->j_tail = old_tail;
1507
1508         J_ASSERT(!journal->j_running_transaction);
1509         J_ASSERT(!journal->j_committing_transaction);
1510         J_ASSERT(!journal->j_checkpoint_transactions);
1511         J_ASSERT(journal->j_head == journal->j_tail);
1512         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1513         spin_unlock(&journal->j_state_lock);
1514         return 0;
1515 }
1516
1517 /**
1518  * int journal_wipe() - Wipe journal contents
1519  * @journal: Journal to act on.
1520  * @write: flag (see below)
1521  *
1522  * Wipe out all of the contents of a journal, safely.  This will produce
1523  * a warning if the journal contains any valid recovery information.
1524  * Must be called between journal_init_*() and journal_load().
1525  *
1526  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1527  * we merely suppress recovery.
1528  */
1529
1530 int journal_wipe(journal_t *journal, int write)
1531 {
1532         int err = 0;
1533
1534         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1535
1536         err = load_superblock(journal);
1537         if (err)
1538                 return err;
1539
1540         if (!journal->j_tail)
1541                 goto no_recovery;
1542
1543         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1544                 write ? "Clearing" : "Ignoring");
1545
1546         err = journal_skip_recovery(journal);
1547         if (write)
1548                 journal_update_superblock(journal, 1);
1549
1550  no_recovery:
1551         return err;
1552 }
1553
1554 /*
1555  * journal_dev_name: format a character string to describe on what
1556  * device this journal is present.
1557  */
1558
1559 static const char *journal_dev_name(journal_t *journal, char *buffer)
1560 {
1561         struct block_device *bdev;
1562
1563         if (journal->j_inode)
1564                 bdev = journal->j_inode->i_sb->s_bdev;
1565         else
1566                 bdev = journal->j_dev;
1567
1568         return bdevname(bdev, buffer);
1569 }
1570
1571 /*
1572  * Journal abort has very specific semantics, which we describe
1573  * for journal abort.
1574  *
1575  * Two internal function, which provide abort to te jbd layer
1576  * itself are here.
1577  */
1578
1579 /*
1580  * Quick version for internal journal use (doesn't lock the journal).
1581  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1582  * and don't attempt to make any other journal updates.
1583  */
1584 static void __journal_abort_hard(journal_t *journal)
1585 {
1586         transaction_t *transaction;
1587         char b[BDEVNAME_SIZE];
1588
1589         if (journal->j_flags & JFS_ABORT)
1590                 return;
1591
1592         printk(KERN_ERR "Aborting journal on device %s.\n",
1593                 journal_dev_name(journal, b));
1594
1595         spin_lock(&journal->j_state_lock);
1596         journal->j_flags |= JFS_ABORT;
1597         transaction = journal->j_running_transaction;
1598         if (transaction)
1599                 __log_start_commit(journal, transaction->t_tid);
1600         spin_unlock(&journal->j_state_lock);
1601 }
1602
1603 /* Soft abort: record the abort error status in the journal superblock,
1604  * but don't do any other IO. */
1605 static void __journal_abort_soft (journal_t *journal, int errno)
1606 {
1607         if (journal->j_flags & JFS_ABORT)
1608                 return;
1609
1610         if (!journal->j_errno)
1611                 journal->j_errno = errno;
1612
1613         __journal_abort_hard(journal);
1614
1615         if (errno)
1616                 journal_update_superblock(journal, 1);
1617 }
1618
1619 /**
1620  * void journal_abort () - Shutdown the journal immediately.
1621  * @journal: the journal to shutdown.
1622  * @errno:   an error number to record in the journal indicating
1623  *           the reason for the shutdown.
1624  *
1625  * Perform a complete, immediate shutdown of the ENTIRE
1626  * journal (not of a single transaction).  This operation cannot be
1627  * undone without closing and reopening the journal.
1628  *
1629  * The journal_abort function is intended to support higher level error
1630  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1631  * mode.
1632  *
1633  * Journal abort has very specific semantics.  Any existing dirty,
1634  * unjournaled buffers in the main filesystem will still be written to
1635  * disk by bdflush, but the journaling mechanism will be suspended
1636  * immediately and no further transaction commits will be honoured.
1637  *
1638  * Any dirty, journaled buffers will be written back to disk without
1639  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1640  * filesystem, but we _do_ attempt to leave as much data as possible
1641  * behind for fsck to use for cleanup.
1642  *
1643  * Any attempt to get a new transaction handle on a journal which is in
1644  * ABORT state will just result in an -EROFS error return.  A
1645  * journal_stop on an existing handle will return -EIO if we have
1646  * entered abort state during the update.
1647  *
1648  * Recursive transactions are not disturbed by journal abort until the
1649  * final journal_stop, which will receive the -EIO error.
1650  *
1651  * Finally, the journal_abort call allows the caller to supply an errno
1652  * which will be recorded (if possible) in the journal superblock.  This
1653  * allows a client to record failure conditions in the middle of a
1654  * transaction without having to complete the transaction to record the
1655  * failure to disk.  ext3_error, for example, now uses this
1656  * functionality.
1657  *
1658  * Errors which originate from within the journaling layer will NOT
1659  * supply an errno; a null errno implies that absolutely no further
1660  * writes are done to the journal (unless there are any already in
1661  * progress).
1662  *
1663  */
1664
1665 void journal_abort(journal_t *journal, int errno)
1666 {
1667         __journal_abort_soft(journal, errno);
1668 }
1669
1670 /**
1671  * int journal_errno () - returns the journal's error state.
1672  * @journal: journal to examine.
1673  *
1674  * This is the errno numbet set with journal_abort(), the last
1675  * time the journal was mounted - if the journal was stopped
1676  * without calling abort this will be 0.
1677  *
1678  * If the journal has been aborted on this mount time -EROFS will
1679  * be returned.
1680  */
1681 int journal_errno(journal_t *journal)
1682 {
1683         int err;
1684
1685         spin_lock(&journal->j_state_lock);
1686         if (journal->j_flags & JFS_ABORT)
1687                 err = -EROFS;
1688         else
1689                 err = journal->j_errno;
1690         spin_unlock(&journal->j_state_lock);
1691         return err;
1692 }
1693
1694 /**
1695  * int journal_clear_err () - clears the journal's error state
1696  * @journal: journal to act on.
1697  *
1698  * An error must be cleared or Acked to take a FS out of readonly
1699  * mode.
1700  */
1701 int journal_clear_err(journal_t *journal)
1702 {
1703         int err = 0;
1704
1705         spin_lock(&journal->j_state_lock);
1706         if (journal->j_flags & JFS_ABORT)
1707                 err = -EROFS;
1708         else
1709                 journal->j_errno = 0;
1710         spin_unlock(&journal->j_state_lock);
1711         return err;
1712 }
1713
1714 /**
1715  * void journal_ack_err() - Ack journal err.
1716  * @journal: journal to act on.
1717  *
1718  * An error must be cleared or Acked to take a FS out of readonly
1719  * mode.
1720  */
1721 void journal_ack_err(journal_t *journal)
1722 {
1723         spin_lock(&journal->j_state_lock);
1724         if (journal->j_errno)
1725                 journal->j_flags |= JFS_ACK_ERR;
1726         spin_unlock(&journal->j_state_lock);
1727 }
1728
1729 int journal_blocks_per_page(struct inode *inode)
1730 {
1731         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1732 }
1733
1734 /*
1735  * Journal_head storage management
1736  */
1737 static struct kmem_cache *journal_head_cache;
1738 #ifdef CONFIG_JBD_DEBUG
1739 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1740 #endif
1741
1742 static int journal_init_journal_head_cache(void)
1743 {
1744         int retval;
1745
1746         J_ASSERT(journal_head_cache == NULL);
1747         journal_head_cache = kmem_cache_create("journal_head",
1748                                 sizeof(struct journal_head),
1749                                 0,              /* offset */
1750                                 SLAB_TEMPORARY, /* flags */
1751                                 NULL);          /* ctor */
1752         retval = 0;
1753         if (!journal_head_cache) {
1754                 retval = -ENOMEM;
1755                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1756         }
1757         return retval;
1758 }
1759
1760 static void journal_destroy_journal_head_cache(void)
1761 {
1762         if (journal_head_cache) {
1763                 kmem_cache_destroy(journal_head_cache);
1764                 journal_head_cache = NULL;
1765         }
1766 }
1767
1768 /*
1769  * journal_head splicing and dicing
1770  */
1771 static struct journal_head *journal_alloc_journal_head(void)
1772 {
1773         struct journal_head *ret;
1774
1775 #ifdef CONFIG_JBD_DEBUG
1776         atomic_inc(&nr_journal_heads);
1777 #endif
1778         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1779         if (ret == NULL) {
1780                 jbd_debug(1, "out of memory for journal_head\n");
1781                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1782                                    __func__);
1783
1784                 while (ret == NULL) {
1785                         yield();
1786                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1787                 }
1788         }
1789         return ret;
1790 }
1791
1792 static void journal_free_journal_head(struct journal_head *jh)
1793 {
1794 #ifdef CONFIG_JBD_DEBUG
1795         atomic_dec(&nr_journal_heads);
1796         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1797 #endif
1798         kmem_cache_free(journal_head_cache, jh);
1799 }
1800
1801 /*
1802  * A journal_head is attached to a buffer_head whenever JBD has an
1803  * interest in the buffer.
1804  *
1805  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1806  * is set.  This bit is tested in core kernel code where we need to take
1807  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1808  * there.
1809  *
1810  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1811  *
1812  * When a buffer has its BH_JBD bit set it is immune from being released by
1813  * core kernel code, mainly via ->b_count.
1814  *
1815  * A journal_head is detached from its buffer_head when the journal_head's
1816  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1817  * transaction (b_cp_transaction) hold their references to b_jcount.
1818  *
1819  * Various places in the kernel want to attach a journal_head to a buffer_head
1820  * _before_ attaching the journal_head to a transaction.  To protect the
1821  * journal_head in this situation, journal_add_journal_head elevates the
1822  * journal_head's b_jcount refcount by one.  The caller must call
1823  * journal_put_journal_head() to undo this.
1824  *
1825  * So the typical usage would be:
1826  *
1827  *      (Attach a journal_head if needed.  Increments b_jcount)
1828  *      struct journal_head *jh = journal_add_journal_head(bh);
1829  *      ...
1830  *      (Get another reference for transaction)
1831  *      journal_grab_journal_head(bh);
1832  *      jh->b_transaction = xxx;
1833  *      (Put original reference)
1834  *      journal_put_journal_head(jh);
1835  */
1836
1837 /*
1838  * Give a buffer_head a journal_head.
1839  *
1840  * May sleep.
1841  */
1842 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1843 {
1844         struct journal_head *jh;
1845         struct journal_head *new_jh = NULL;
1846
1847 repeat:
1848         if (!buffer_jbd(bh)) {
1849                 new_jh = journal_alloc_journal_head();
1850                 memset(new_jh, 0, sizeof(*new_jh));
1851         }
1852
1853         jbd_lock_bh_journal_head(bh);
1854         if (buffer_jbd(bh)) {
1855                 jh = bh2jh(bh);
1856         } else {
1857                 J_ASSERT_BH(bh,
1858                         (atomic_read(&bh->b_count) > 0) ||
1859                         (bh->b_page && bh->b_page->mapping));
1860
1861                 if (!new_jh) {
1862                         jbd_unlock_bh_journal_head(bh);
1863                         goto repeat;
1864                 }
1865
1866                 jh = new_jh;
1867                 new_jh = NULL;          /* We consumed it */
1868                 set_buffer_jbd(bh);
1869                 bh->b_private = jh;
1870                 jh->b_bh = bh;
1871                 get_bh(bh);
1872                 BUFFER_TRACE(bh, "added journal_head");
1873         }
1874         jh->b_jcount++;
1875         jbd_unlock_bh_journal_head(bh);
1876         if (new_jh)
1877                 journal_free_journal_head(new_jh);
1878         return bh->b_private;
1879 }
1880
1881 /*
1882  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1883  * having a journal_head, return NULL
1884  */
1885 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1886 {
1887         struct journal_head *jh = NULL;
1888
1889         jbd_lock_bh_journal_head(bh);
1890         if (buffer_jbd(bh)) {
1891                 jh = bh2jh(bh);
1892                 jh->b_jcount++;
1893         }
1894         jbd_unlock_bh_journal_head(bh);
1895         return jh;
1896 }
1897
1898 static void __journal_remove_journal_head(struct buffer_head *bh)
1899 {
1900         struct journal_head *jh = bh2jh(bh);
1901
1902         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1903         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1904         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1905         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1906         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1907         J_ASSERT_BH(bh, buffer_jbd(bh));
1908         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1909         BUFFER_TRACE(bh, "remove journal_head");
1910         if (jh->b_frozen_data) {
1911                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1912                 jbd_free(jh->b_frozen_data, bh->b_size);
1913         }
1914         if (jh->b_committed_data) {
1915                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1916                 jbd_free(jh->b_committed_data, bh->b_size);
1917         }
1918         bh->b_private = NULL;
1919         jh->b_bh = NULL;        /* debug, really */
1920         clear_buffer_jbd(bh);
1921         journal_free_journal_head(jh);
1922 }
1923
1924 /*
1925  * Drop a reference on the passed journal_head.  If it fell to zero then
1926  * release the journal_head from the buffer_head.
1927  */
1928 void journal_put_journal_head(struct journal_head *jh)
1929 {
1930         struct buffer_head *bh = jh2bh(jh);
1931
1932         jbd_lock_bh_journal_head(bh);
1933         J_ASSERT_JH(jh, jh->b_jcount > 0);
1934         --jh->b_jcount;
1935         if (!jh->b_jcount) {
1936                 __journal_remove_journal_head(bh);
1937                 jbd_unlock_bh_journal_head(bh);
1938                 __brelse(bh);
1939         } else
1940                 jbd_unlock_bh_journal_head(bh);
1941 }
1942
1943 /*
1944  * debugfs tunables
1945  */
1946 #ifdef CONFIG_JBD_DEBUG
1947
1948 u8 journal_enable_debug __read_mostly;
1949 EXPORT_SYMBOL(journal_enable_debug);
1950
1951 static struct dentry *jbd_debugfs_dir;
1952 static struct dentry *jbd_debug;
1953
1954 static void __init jbd_create_debugfs_entry(void)
1955 {
1956         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1957         if (jbd_debugfs_dir)
1958                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1959                                                jbd_debugfs_dir,
1960                                                &journal_enable_debug);
1961 }
1962
1963 static void __exit jbd_remove_debugfs_entry(void)
1964 {
1965         debugfs_remove(jbd_debug);
1966         debugfs_remove(jbd_debugfs_dir);
1967 }
1968
1969 #else
1970
1971 static inline void jbd_create_debugfs_entry(void)
1972 {
1973 }
1974
1975 static inline void jbd_remove_debugfs_entry(void)
1976 {
1977 }
1978
1979 #endif
1980
1981 struct kmem_cache *jbd_handle_cache;
1982
1983 static int __init journal_init_handle_cache(void)
1984 {
1985         jbd_handle_cache = kmem_cache_create("journal_handle",
1986                                 sizeof(handle_t),
1987                                 0,              /* offset */
1988                                 SLAB_TEMPORARY, /* flags */
1989                                 NULL);          /* ctor */
1990         if (jbd_handle_cache == NULL) {
1991                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1992                 return -ENOMEM;
1993         }
1994         return 0;
1995 }
1996
1997 static void journal_destroy_handle_cache(void)
1998 {
1999         if (jbd_handle_cache)
2000                 kmem_cache_destroy(jbd_handle_cache);
2001 }
2002
2003 /*
2004  * Module startup and shutdown
2005  */
2006
2007 static int __init journal_init_caches(void)
2008 {
2009         int ret;
2010
2011         ret = journal_init_revoke_caches();
2012         if (ret == 0)
2013                 ret = journal_init_journal_head_cache();
2014         if (ret == 0)
2015                 ret = journal_init_handle_cache();
2016         return ret;
2017 }
2018
2019 static void journal_destroy_caches(void)
2020 {
2021         journal_destroy_revoke_caches();
2022         journal_destroy_journal_head_cache();
2023         journal_destroy_handle_cache();
2024 }
2025
2026 static int __init journal_init(void)
2027 {
2028         int ret;
2029
2030         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2031
2032         ret = journal_init_caches();
2033         if (ret != 0)
2034                 journal_destroy_caches();
2035         jbd_create_debugfs_entry();
2036         return ret;
2037 }
2038
2039 static void __exit journal_exit(void)
2040 {
2041 #ifdef CONFIG_JBD_DEBUG
2042         int n = atomic_read(&nr_journal_heads);
2043         if (n)
2044                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2045 #endif
2046         jbd_remove_debugfs_entry();
2047         journal_destroy_caches();
2048 }
2049
2050 MODULE_LICENSE("GPL");
2051 module_init(journal_init);
2052 module_exit(journal_exit);
2053