]> Pileus Git - ~andy/linux/blob - fs/f2fs/segment.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[~andy/linux] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS    100     /* 200MB of prefree segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg)                                             \
27         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
28          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
29          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
30          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno)                                           \
35         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
36           sbi->segs_per_sec) || \
37          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
38           sbi->segs_per_sec) || \
39          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
46           sbi->segs_per_sec))   \
47
48 #define START_BLOCK(sbi, segno)                                         \
49         (SM_I(sbi)->seg0_blkaddr +                                      \
50          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
52         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
57         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
59         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr)                                        \
61         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
62         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
63                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno)                                   \
65         ((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
67         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69 #define GET_SUM_BLOCK(sbi, segno)                               \
70         ((sbi->sm_info->ssa_blkaddr) + segno)
71
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
76         (segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
78         (segno / SIT_ENTRY_PER_BLOCK)
79 #define START_SEGNO(sit_i, segno)               \
80         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define SIT_BLK_CNT(sbi)                        \
82         ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
83 #define f2fs_bitmap_size(nr)                    \
84         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
85 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
86 #define TOTAL_SECS(sbi) (sbi->total_sections)
87
88 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
89         (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
90 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
91         (sectors >> (sbi)->log_sectors_per_block)
92 #define MAX_BIO_BLOCKS(max_hw_blocks)                                   \
93         (min((int)max_hw_blocks, BIO_MAX_PAGES))
94
95 /*
96  * indicate a block allocation direction: RIGHT and LEFT.
97  * RIGHT means allocating new sections towards the end of volume.
98  * LEFT means the opposite direction.
99  */
100 enum {
101         ALLOC_RIGHT = 0,
102         ALLOC_LEFT
103 };
104
105 /*
106  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
107  * LFS writes data sequentially with cleaning operations.
108  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
109  */
110 enum {
111         LFS = 0,
112         SSR
113 };
114
115 /*
116  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
117  * GC_CB is based on cost-benefit algorithm.
118  * GC_GREEDY is based on greedy algorithm.
119  */
120 enum {
121         GC_CB = 0,
122         GC_GREEDY
123 };
124
125 /*
126  * BG_GC means the background cleaning job.
127  * FG_GC means the on-demand cleaning job.
128  */
129 enum {
130         BG_GC = 0,
131         FG_GC
132 };
133
134 /* for a function parameter to select a victim segment */
135 struct victim_sel_policy {
136         int alloc_mode;                 /* LFS or SSR */
137         int gc_mode;                    /* GC_CB or GC_GREEDY */
138         unsigned long *dirty_segmap;    /* dirty segment bitmap */
139         unsigned int max_search;        /* maximum # of segments to search */
140         unsigned int offset;            /* last scanned bitmap offset */
141         unsigned int ofs_unit;          /* bitmap search unit */
142         unsigned int min_cost;          /* minimum cost */
143         unsigned int min_segno;         /* segment # having min. cost */
144 };
145
146 struct seg_entry {
147         unsigned short valid_blocks;    /* # of valid blocks */
148         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
149         /*
150          * # of valid blocks and the validity bitmap stored in the the last
151          * checkpoint pack. This information is used by the SSR mode.
152          */
153         unsigned short ckpt_valid_blocks;
154         unsigned char *ckpt_valid_map;
155         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
156         unsigned long long mtime;       /* modification time of the segment */
157 };
158
159 struct sec_entry {
160         unsigned int valid_blocks;      /* # of valid blocks in a section */
161 };
162
163 struct segment_allocation {
164         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
165 };
166
167 struct sit_info {
168         const struct segment_allocation *s_ops;
169
170         block_t sit_base_addr;          /* start block address of SIT area */
171         block_t sit_blocks;             /* # of blocks used by SIT area */
172         block_t written_valid_blocks;   /* # of valid blocks in main area */
173         char *sit_bitmap;               /* SIT bitmap pointer */
174         unsigned int bitmap_size;       /* SIT bitmap size */
175
176         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
177         unsigned int dirty_sentries;            /* # of dirty sentries */
178         unsigned int sents_per_block;           /* # of SIT entries per block */
179         struct mutex sentry_lock;               /* to protect SIT cache */
180         struct seg_entry *sentries;             /* SIT segment-level cache */
181         struct sec_entry *sec_entries;          /* SIT section-level cache */
182
183         /* for cost-benefit algorithm in cleaning procedure */
184         unsigned long long elapsed_time;        /* elapsed time after mount */
185         unsigned long long mounted_time;        /* mount time */
186         unsigned long long min_mtime;           /* min. modification time */
187         unsigned long long max_mtime;           /* max. modification time */
188 };
189
190 struct free_segmap_info {
191         unsigned int start_segno;       /* start segment number logically */
192         unsigned int free_segments;     /* # of free segments */
193         unsigned int free_sections;     /* # of free sections */
194         rwlock_t segmap_lock;           /* free segmap lock */
195         unsigned long *free_segmap;     /* free segment bitmap */
196         unsigned long *free_secmap;     /* free section bitmap */
197 };
198
199 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
200 enum dirty_type {
201         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
202         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
203         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
204         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
205         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
206         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
207         DIRTY,                  /* to count # of dirty segments */
208         PRE,                    /* to count # of entirely obsolete segments */
209         NR_DIRTY_TYPE
210 };
211
212 struct dirty_seglist_info {
213         const struct victim_selection *v_ops;   /* victim selction operation */
214         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
215         struct mutex seglist_lock;              /* lock for segment bitmaps */
216         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
217         unsigned long *victim_secmap;           /* background GC victims */
218 };
219
220 /* victim selection function for cleaning and SSR */
221 struct victim_selection {
222         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
223                                                         int, int, char);
224 };
225
226 /* for active log information */
227 struct curseg_info {
228         struct mutex curseg_mutex;              /* lock for consistency */
229         struct f2fs_summary_block *sum_blk;     /* cached summary block */
230         unsigned char alloc_type;               /* current allocation type */
231         unsigned int segno;                     /* current segment number */
232         unsigned short next_blkoff;             /* next block offset to write */
233         unsigned int zone;                      /* current zone number */
234         unsigned int next_segno;                /* preallocated segment */
235 };
236
237 /*
238  * inline functions
239  */
240 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
241 {
242         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
243 }
244
245 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
246                                                 unsigned int segno)
247 {
248         struct sit_info *sit_i = SIT_I(sbi);
249         return &sit_i->sentries[segno];
250 }
251
252 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
253                                                 unsigned int segno)
254 {
255         struct sit_info *sit_i = SIT_I(sbi);
256         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
257 }
258
259 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
260                                 unsigned int segno, int section)
261 {
262         /*
263          * In order to get # of valid blocks in a section instantly from many
264          * segments, f2fs manages two counting structures separately.
265          */
266         if (section > 1)
267                 return get_sec_entry(sbi, segno)->valid_blocks;
268         else
269                 return get_seg_entry(sbi, segno)->valid_blocks;
270 }
271
272 static inline void seg_info_from_raw_sit(struct seg_entry *se,
273                                         struct f2fs_sit_entry *rs)
274 {
275         se->valid_blocks = GET_SIT_VBLOCKS(rs);
276         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
277         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
278         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
279         se->type = GET_SIT_TYPE(rs);
280         se->mtime = le64_to_cpu(rs->mtime);
281 }
282
283 static inline void seg_info_to_raw_sit(struct seg_entry *se,
284                                         struct f2fs_sit_entry *rs)
285 {
286         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
287                                         se->valid_blocks;
288         rs->vblocks = cpu_to_le16(raw_vblocks);
289         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
290         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
291         se->ckpt_valid_blocks = se->valid_blocks;
292         rs->mtime = cpu_to_le64(se->mtime);
293 }
294
295 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
296                 unsigned int max, unsigned int segno)
297 {
298         unsigned int ret;
299         read_lock(&free_i->segmap_lock);
300         ret = find_next_bit(free_i->free_segmap, max, segno);
301         read_unlock(&free_i->segmap_lock);
302         return ret;
303 }
304
305 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
306 {
307         struct free_segmap_info *free_i = FREE_I(sbi);
308         unsigned int secno = segno / sbi->segs_per_sec;
309         unsigned int start_segno = secno * sbi->segs_per_sec;
310         unsigned int next;
311
312         write_lock(&free_i->segmap_lock);
313         clear_bit(segno, free_i->free_segmap);
314         free_i->free_segments++;
315
316         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
317         if (next >= start_segno + sbi->segs_per_sec) {
318                 clear_bit(secno, free_i->free_secmap);
319                 free_i->free_sections++;
320         }
321         write_unlock(&free_i->segmap_lock);
322 }
323
324 static inline void __set_inuse(struct f2fs_sb_info *sbi,
325                 unsigned int segno)
326 {
327         struct free_segmap_info *free_i = FREE_I(sbi);
328         unsigned int secno = segno / sbi->segs_per_sec;
329         set_bit(segno, free_i->free_segmap);
330         free_i->free_segments--;
331         if (!test_and_set_bit(secno, free_i->free_secmap))
332                 free_i->free_sections--;
333 }
334
335 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
336                 unsigned int segno)
337 {
338         struct free_segmap_info *free_i = FREE_I(sbi);
339         unsigned int secno = segno / sbi->segs_per_sec;
340         unsigned int start_segno = secno * sbi->segs_per_sec;
341         unsigned int next;
342
343         write_lock(&free_i->segmap_lock);
344         if (test_and_clear_bit(segno, free_i->free_segmap)) {
345                 free_i->free_segments++;
346
347                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
348                                                                 start_segno);
349                 if (next >= start_segno + sbi->segs_per_sec) {
350                         if (test_and_clear_bit(secno, free_i->free_secmap))
351                                 free_i->free_sections++;
352                 }
353         }
354         write_unlock(&free_i->segmap_lock);
355 }
356
357 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
358                 unsigned int segno)
359 {
360         struct free_segmap_info *free_i = FREE_I(sbi);
361         unsigned int secno = segno / sbi->segs_per_sec;
362         write_lock(&free_i->segmap_lock);
363         if (!test_and_set_bit(segno, free_i->free_segmap)) {
364                 free_i->free_segments--;
365                 if (!test_and_set_bit(secno, free_i->free_secmap))
366                         free_i->free_sections--;
367         }
368         write_unlock(&free_i->segmap_lock);
369 }
370
371 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
372                 void *dst_addr)
373 {
374         struct sit_info *sit_i = SIT_I(sbi);
375         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
376 }
377
378 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
379 {
380         struct sit_info *sit_i = SIT_I(sbi);
381         block_t vblocks;
382
383         mutex_lock(&sit_i->sentry_lock);
384         vblocks = sit_i->written_valid_blocks;
385         mutex_unlock(&sit_i->sentry_lock);
386
387         return vblocks;
388 }
389
390 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
391 {
392         struct free_segmap_info *free_i = FREE_I(sbi);
393         unsigned int free_segs;
394
395         read_lock(&free_i->segmap_lock);
396         free_segs = free_i->free_segments;
397         read_unlock(&free_i->segmap_lock);
398
399         return free_segs;
400 }
401
402 static inline int reserved_segments(struct f2fs_sb_info *sbi)
403 {
404         return SM_I(sbi)->reserved_segments;
405 }
406
407 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
408 {
409         struct free_segmap_info *free_i = FREE_I(sbi);
410         unsigned int free_secs;
411
412         read_lock(&free_i->segmap_lock);
413         free_secs = free_i->free_sections;
414         read_unlock(&free_i->segmap_lock);
415
416         return free_secs;
417 }
418
419 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
420 {
421         return DIRTY_I(sbi)->nr_dirty[PRE];
422 }
423
424 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
425 {
426         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
427                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
428                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
429                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
430                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
431                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
432 }
433
434 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
435 {
436         return SM_I(sbi)->ovp_segments;
437 }
438
439 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
440 {
441         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
442 }
443
444 static inline int reserved_sections(struct f2fs_sb_info *sbi)
445 {
446         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
447 }
448
449 static inline bool need_SSR(struct f2fs_sb_info *sbi)
450 {
451         return (prefree_segments(sbi) / sbi->segs_per_sec)
452                         + free_sections(sbi) < overprovision_sections(sbi);
453 }
454
455 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
456 {
457         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
458         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
459
460         if (unlikely(sbi->por_doing))
461                 return false;
462
463         return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
464                                                 reserved_sections(sbi));
465 }
466
467 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
468 {
469         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
470 }
471
472 static inline int utilization(struct f2fs_sb_info *sbi)
473 {
474         return div_u64((u64)valid_user_blocks(sbi) * 100,
475                                         sbi->user_block_count);
476 }
477
478 /*
479  * Sometimes f2fs may be better to drop out-of-place update policy.
480  * And, users can control the policy through sysfs entries.
481  * There are five policies with triggering conditions as follows.
482  * F2FS_IPU_FORCE - all the time,
483  * F2FS_IPU_SSR - if SSR mode is activated,
484  * F2FS_IPU_UTIL - if FS utilization is over threashold,
485  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
486  *                     threashold,
487  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
488  */
489 #define DEF_MIN_IPU_UTIL        70
490
491 enum {
492         F2FS_IPU_FORCE,
493         F2FS_IPU_SSR,
494         F2FS_IPU_UTIL,
495         F2FS_IPU_SSR_UTIL,
496         F2FS_IPU_DISABLE,
497 };
498
499 static inline bool need_inplace_update(struct inode *inode)
500 {
501         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
502
503         /* IPU can be done only for the user data */
504         if (S_ISDIR(inode->i_mode))
505                 return false;
506
507         switch (SM_I(sbi)->ipu_policy) {
508         case F2FS_IPU_FORCE:
509                 return true;
510         case F2FS_IPU_SSR:
511                 if (need_SSR(sbi))
512                         return true;
513                 break;
514         case F2FS_IPU_UTIL:
515                 if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
516                         return true;
517                 break;
518         case F2FS_IPU_SSR_UTIL:
519                 if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
520                         return true;
521                 break;
522         case F2FS_IPU_DISABLE:
523                 break;
524         }
525         return false;
526 }
527
528 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
529                 int type)
530 {
531         struct curseg_info *curseg = CURSEG_I(sbi, type);
532         return curseg->segno;
533 }
534
535 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
536                 int type)
537 {
538         struct curseg_info *curseg = CURSEG_I(sbi, type);
539         return curseg->alloc_type;
540 }
541
542 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
543 {
544         struct curseg_info *curseg = CURSEG_I(sbi, type);
545         return curseg->next_blkoff;
546 }
547
548 #ifdef CONFIG_F2FS_CHECK_FS
549 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
550 {
551         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
552         BUG_ON(segno > end_segno);
553 }
554
555 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
556 {
557         struct f2fs_sm_info *sm_info = SM_I(sbi);
558         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
559         block_t start_addr = sm_info->seg0_blkaddr;
560         block_t end_addr = start_addr + total_blks - 1;
561         BUG_ON(blk_addr < start_addr);
562         BUG_ON(blk_addr > end_addr);
563 }
564
565 /*
566  * Summary block is always treated as invalid block
567  */
568 static inline void check_block_count(struct f2fs_sb_info *sbi,
569                 int segno, struct f2fs_sit_entry *raw_sit)
570 {
571         struct f2fs_sm_info *sm_info = SM_I(sbi);
572         unsigned int end_segno = sm_info->segment_count - 1;
573         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
574         int valid_blocks = 0;
575         int cur_pos = 0, next_pos;
576
577         /* check segment usage */
578         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
579
580         /* check boundary of a given segment number */
581         BUG_ON(segno > end_segno);
582
583         /* check bitmap with valid block count */
584         do {
585                 if (is_valid) {
586                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
587                                         sbi->blocks_per_seg,
588                                         cur_pos);
589                         valid_blocks += next_pos - cur_pos;
590                 } else
591                         next_pos = find_next_bit_le(&raw_sit->valid_map,
592                                         sbi->blocks_per_seg,
593                                         cur_pos);
594                 cur_pos = next_pos;
595                 is_valid = !is_valid;
596         } while (cur_pos < sbi->blocks_per_seg);
597         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
598 }
599 #else
600 #define check_seg_range(sbi, segno)
601 #define verify_block_addr(sbi, blk_addr)
602 #define check_block_count(sbi, segno, raw_sit)
603 #endif
604
605 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
606                                                 unsigned int start)
607 {
608         struct sit_info *sit_i = SIT_I(sbi);
609         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
610         block_t blk_addr = sit_i->sit_base_addr + offset;
611
612         check_seg_range(sbi, start);
613
614         /* calculate sit block address */
615         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
616                 blk_addr += sit_i->sit_blocks;
617
618         return blk_addr;
619 }
620
621 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
622                                                 pgoff_t block_addr)
623 {
624         struct sit_info *sit_i = SIT_I(sbi);
625         block_addr -= sit_i->sit_base_addr;
626         if (block_addr < sit_i->sit_blocks)
627                 block_addr += sit_i->sit_blocks;
628         else
629                 block_addr -= sit_i->sit_blocks;
630
631         return block_addr + sit_i->sit_base_addr;
632 }
633
634 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
635 {
636         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
637
638         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
639                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
640         else
641                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
642 }
643
644 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
645 {
646         struct sit_info *sit_i = SIT_I(sbi);
647         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
648                                                 sit_i->mounted_time;
649 }
650
651 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
652                         unsigned int ofs_in_node, unsigned char version)
653 {
654         sum->nid = cpu_to_le32(nid);
655         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
656         sum->version = version;
657 }
658
659 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
660 {
661         return __start_cp_addr(sbi) +
662                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
663 }
664
665 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
666 {
667         return __start_cp_addr(sbi) +
668                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
669                                 - (base + 1) + type;
670 }
671
672 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
673 {
674         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
675                 return true;
676         return false;
677 }
678
679 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
680 {
681         struct block_device *bdev = sbi->sb->s_bdev;
682         struct request_queue *q = bdev_get_queue(bdev);
683         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
684 }