]> Pileus Git - ~andy/linux/blob - fs/f2fs/node.c
f2fs: clean up the needless end 'return' of void function
[~andy/linux] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26
27 static void clear_node_page_dirty(struct page *page)
28 {
29         struct address_space *mapping = page->mapping;
30         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31         unsigned int long flags;
32
33         if (PageDirty(page)) {
34                 spin_lock_irqsave(&mapping->tree_lock, flags);
35                 radix_tree_tag_clear(&mapping->page_tree,
36                                 page_index(page),
37                                 PAGECACHE_TAG_DIRTY);
38                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40                 clear_page_dirty_for_io(page);
41                 dec_page_count(sbi, F2FS_DIRTY_NODES);
42         }
43         ClearPageUptodate(page);
44 }
45
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48         pgoff_t index = current_nat_addr(sbi, nid);
49         return get_meta_page(sbi, index);
50 }
51
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54         struct page *src_page;
55         struct page *dst_page;
56         pgoff_t src_off;
57         pgoff_t dst_off;
58         void *src_addr;
59         void *dst_addr;
60         struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62         src_off = current_nat_addr(sbi, nid);
63         dst_off = next_nat_addr(sbi, src_off);
64
65         /* get current nat block page with lock */
66         src_page = get_meta_page(sbi, src_off);
67
68         /* Dirty src_page means that it is already the new target NAT page. */
69         if (PageDirty(src_page))
70                 return src_page;
71
72         dst_page = grab_meta_page(sbi, dst_off);
73
74         src_addr = page_address(src_page);
75         dst_addr = page_address(dst_page);
76         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77         set_page_dirty(dst_page);
78         f2fs_put_page(src_page, 1);
79
80         set_to_next_nat(nm_i, nid);
81
82         return dst_page;
83 }
84
85 /*
86  * Readahead NAT pages
87  */
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90         struct address_space *mapping = sbi->meta_inode->i_mapping;
91         struct f2fs_nm_info *nm_i = NM_I(sbi);
92         struct blk_plug plug;
93         struct page *page;
94         pgoff_t index;
95         int i;
96
97         blk_start_plug(&plug);
98
99         for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100                 if (nid >= nm_i->max_nid)
101                         nid = 0;
102                 index = current_nat_addr(sbi, nid);
103
104                 page = grab_cache_page(mapping, index);
105                 if (!page)
106                         continue;
107                 if (PageUptodate(page)) {
108                         f2fs_put_page(page, 1);
109                         continue;
110                 }
111                 if (f2fs_readpage(sbi, page, index, READ))
112                         continue;
113
114                 f2fs_put_page(page, 0);
115         }
116         blk_finish_plug(&plug);
117 }
118
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120 {
121         return radix_tree_lookup(&nm_i->nat_root, n);
122 }
123
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125                 nid_t start, unsigned int nr, struct nat_entry **ep)
126 {
127         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128 }
129
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131 {
132         list_del(&e->list);
133         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134         nm_i->nat_cnt--;
135         kmem_cache_free(nat_entry_slab, e);
136 }
137
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct f2fs_nm_info *nm_i = NM_I(sbi);
141         struct nat_entry *e;
142         int is_cp = 1;
143
144         read_lock(&nm_i->nat_tree_lock);
145         e = __lookup_nat_cache(nm_i, nid);
146         if (e && !e->checkpointed)
147                 is_cp = 0;
148         read_unlock(&nm_i->nat_tree_lock);
149         return is_cp;
150 }
151
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153 {
154         struct nat_entry *new;
155
156         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157         if (!new)
158                 return NULL;
159         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160                 kmem_cache_free(nat_entry_slab, new);
161                 return NULL;
162         }
163         memset(new, 0, sizeof(struct nat_entry));
164         nat_set_nid(new, nid);
165         list_add_tail(&new->list, &nm_i->nat_entries);
166         nm_i->nat_cnt++;
167         return new;
168 }
169
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171                                                 struct f2fs_nat_entry *ne)
172 {
173         struct nat_entry *e;
174 retry:
175         write_lock(&nm_i->nat_tree_lock);
176         e = __lookup_nat_cache(nm_i, nid);
177         if (!e) {
178                 e = grab_nat_entry(nm_i, nid);
179                 if (!e) {
180                         write_unlock(&nm_i->nat_tree_lock);
181                         goto retry;
182                 }
183                 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184                 nat_set_ino(e, le32_to_cpu(ne->ino));
185                 nat_set_version(e, ne->version);
186                 e->checkpointed = true;
187         }
188         write_unlock(&nm_i->nat_tree_lock);
189 }
190
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192                         block_t new_blkaddr)
193 {
194         struct f2fs_nm_info *nm_i = NM_I(sbi);
195         struct nat_entry *e;
196 retry:
197         write_lock(&nm_i->nat_tree_lock);
198         e = __lookup_nat_cache(nm_i, ni->nid);
199         if (!e) {
200                 e = grab_nat_entry(nm_i, ni->nid);
201                 if (!e) {
202                         write_unlock(&nm_i->nat_tree_lock);
203                         goto retry;
204                 }
205                 e->ni = *ni;
206                 e->checkpointed = true;
207                 BUG_ON(ni->blk_addr == NEW_ADDR);
208         } else if (new_blkaddr == NEW_ADDR) {
209                 /*
210                  * when nid is reallocated,
211                  * previous nat entry can be remained in nat cache.
212                  * So, reinitialize it with new information.
213                  */
214                 e->ni = *ni;
215                 BUG_ON(ni->blk_addr != NULL_ADDR);
216         }
217
218         if (new_blkaddr == NEW_ADDR)
219                 e->checkpointed = false;
220
221         /* sanity check */
222         BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223         BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224                         new_blkaddr == NULL_ADDR);
225         BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226                         new_blkaddr == NEW_ADDR);
227         BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228                         nat_get_blkaddr(e) != NULL_ADDR &&
229                         new_blkaddr == NEW_ADDR);
230
231         /* increament version no as node is removed */
232         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233                 unsigned char version = nat_get_version(e);
234                 nat_set_version(e, inc_node_version(version));
235         }
236
237         /* change address */
238         nat_set_blkaddr(e, new_blkaddr);
239         __set_nat_cache_dirty(nm_i, e);
240         write_unlock(&nm_i->nat_tree_lock);
241 }
242
243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244 {
245         struct f2fs_nm_info *nm_i = NM_I(sbi);
246
247         if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248                 return 0;
249
250         write_lock(&nm_i->nat_tree_lock);
251         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252                 struct nat_entry *ne;
253                 ne = list_first_entry(&nm_i->nat_entries,
254                                         struct nat_entry, list);
255                 __del_from_nat_cache(nm_i, ne);
256                 nr_shrink--;
257         }
258         write_unlock(&nm_i->nat_tree_lock);
259         return nr_shrink;
260 }
261
262 /*
263  * This function returns always success
264  */
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266 {
267         struct f2fs_nm_info *nm_i = NM_I(sbi);
268         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269         struct f2fs_summary_block *sum = curseg->sum_blk;
270         nid_t start_nid = START_NID(nid);
271         struct f2fs_nat_block *nat_blk;
272         struct page *page = NULL;
273         struct f2fs_nat_entry ne;
274         struct nat_entry *e;
275         int i;
276
277         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278         ni->nid = nid;
279
280         /* Check nat cache */
281         read_lock(&nm_i->nat_tree_lock);
282         e = __lookup_nat_cache(nm_i, nid);
283         if (e) {
284                 ni->ino = nat_get_ino(e);
285                 ni->blk_addr = nat_get_blkaddr(e);
286                 ni->version = nat_get_version(e);
287         }
288         read_unlock(&nm_i->nat_tree_lock);
289         if (e)
290                 return;
291
292         /* Check current segment summary */
293         mutex_lock(&curseg->curseg_mutex);
294         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295         if (i >= 0) {
296                 ne = nat_in_journal(sum, i);
297                 node_info_from_raw_nat(ni, &ne);
298         }
299         mutex_unlock(&curseg->curseg_mutex);
300         if (i >= 0)
301                 goto cache;
302
303         /* Fill node_info from nat page */
304         page = get_current_nat_page(sbi, start_nid);
305         nat_blk = (struct f2fs_nat_block *)page_address(page);
306         ne = nat_blk->entries[nid - start_nid];
307         node_info_from_raw_nat(ni, &ne);
308         f2fs_put_page(page, 1);
309 cache:
310         /* cache nat entry */
311         cache_nat_entry(NM_I(sbi), nid, &ne);
312 }
313
314 /*
315  * The maximum depth is four.
316  * Offset[0] will have raw inode offset.
317  */
318 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319 {
320         const long direct_index = ADDRS_PER_INODE;
321         const long direct_blks = ADDRS_PER_BLOCK;
322         const long dptrs_per_blk = NIDS_PER_BLOCK;
323         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325         int n = 0;
326         int level = 0;
327
328         noffset[0] = 0;
329
330         if (block < direct_index) {
331                 offset[n] = block;
332                 goto got;
333         }
334         block -= direct_index;
335         if (block < direct_blks) {
336                 offset[n++] = NODE_DIR1_BLOCK;
337                 noffset[n] = 1;
338                 offset[n] = block;
339                 level = 1;
340                 goto got;
341         }
342         block -= direct_blks;
343         if (block < direct_blks) {
344                 offset[n++] = NODE_DIR2_BLOCK;
345                 noffset[n] = 2;
346                 offset[n] = block;
347                 level = 1;
348                 goto got;
349         }
350         block -= direct_blks;
351         if (block < indirect_blks) {
352                 offset[n++] = NODE_IND1_BLOCK;
353                 noffset[n] = 3;
354                 offset[n++] = block / direct_blks;
355                 noffset[n] = 4 + offset[n - 1];
356                 offset[n] = block % direct_blks;
357                 level = 2;
358                 goto got;
359         }
360         block -= indirect_blks;
361         if (block < indirect_blks) {
362                 offset[n++] = NODE_IND2_BLOCK;
363                 noffset[n] = 4 + dptrs_per_blk;
364                 offset[n++] = block / direct_blks;
365                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366                 offset[n] = block % direct_blks;
367                 level = 2;
368                 goto got;
369         }
370         block -= indirect_blks;
371         if (block < dindirect_blks) {
372                 offset[n++] = NODE_DIND_BLOCK;
373                 noffset[n] = 5 + (dptrs_per_blk * 2);
374                 offset[n++] = block / indirect_blks;
375                 noffset[n] = 6 + (dptrs_per_blk * 2) +
376                               offset[n - 1] * (dptrs_per_blk + 1);
377                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378                 noffset[n] = 7 + (dptrs_per_blk * 2) +
379                               offset[n - 2] * (dptrs_per_blk + 1) +
380                               offset[n - 1];
381                 offset[n] = block % direct_blks;
382                 level = 3;
383                 goto got;
384         } else {
385                 BUG();
386         }
387 got:
388         return level;
389 }
390
391 /*
392  * Caller should call f2fs_put_dnode(dn).
393  * Also, it should grab and release a mutex by calling mutex_lock_op() and
394  * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395  * In the case of RDONLY_NODE, we don't need to care about mutex.
396  */
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400         struct page *npage[4];
401         struct page *parent;
402         int offset[4];
403         unsigned int noffset[4];
404         nid_t nids[4];
405         int level, i;
406         int err = 0;
407
408         level = get_node_path(index, offset, noffset);
409
410         nids[0] = dn->inode->i_ino;
411         npage[0] = dn->inode_page;
412
413         if (!npage[0]) {
414                 npage[0] = get_node_page(sbi, nids[0]);
415                 if (IS_ERR(npage[0]))
416                         return PTR_ERR(npage[0]);
417         }
418         parent = npage[0];
419         if (level != 0)
420                 nids[1] = get_nid(parent, offset[0], true);
421         dn->inode_page = npage[0];
422         dn->inode_page_locked = true;
423
424         /* get indirect or direct nodes */
425         for (i = 1; i <= level; i++) {
426                 bool done = false;
427
428                 if (!nids[i] && mode == ALLOC_NODE) {
429                         /* alloc new node */
430                         if (!alloc_nid(sbi, &(nids[i]))) {
431                                 err = -ENOSPC;
432                                 goto release_pages;
433                         }
434
435                         dn->nid = nids[i];
436                         npage[i] = new_node_page(dn, noffset[i], NULL);
437                         if (IS_ERR(npage[i])) {
438                                 alloc_nid_failed(sbi, nids[i]);
439                                 err = PTR_ERR(npage[i]);
440                                 goto release_pages;
441                         }
442
443                         set_nid(parent, offset[i - 1], nids[i], i == 1);
444                         alloc_nid_done(sbi, nids[i]);
445                         done = true;
446                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
448                         if (IS_ERR(npage[i])) {
449                                 err = PTR_ERR(npage[i]);
450                                 goto release_pages;
451                         }
452                         done = true;
453                 }
454                 if (i == 1) {
455                         dn->inode_page_locked = false;
456                         unlock_page(parent);
457                 } else {
458                         f2fs_put_page(parent, 1);
459                 }
460
461                 if (!done) {
462                         npage[i] = get_node_page(sbi, nids[i]);
463                         if (IS_ERR(npage[i])) {
464                                 err = PTR_ERR(npage[i]);
465                                 f2fs_put_page(npage[0], 0);
466                                 goto release_out;
467                         }
468                 }
469                 if (i < level) {
470                         parent = npage[i];
471                         nids[i + 1] = get_nid(parent, offset[i], false);
472                 }
473         }
474         dn->nid = nids[level];
475         dn->ofs_in_node = offset[level];
476         dn->node_page = npage[level];
477         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478         return 0;
479
480 release_pages:
481         f2fs_put_page(parent, 1);
482         if (i > 1)
483                 f2fs_put_page(npage[0], 0);
484 release_out:
485         dn->inode_page = NULL;
486         dn->node_page = NULL;
487         return err;
488 }
489
490 static void truncate_node(struct dnode_of_data *dn)
491 {
492         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493         struct node_info ni;
494
495         get_node_info(sbi, dn->nid, &ni);
496         if (dn->inode->i_blocks == 0) {
497                 BUG_ON(ni.blk_addr != NULL_ADDR);
498                 goto invalidate;
499         }
500         BUG_ON(ni.blk_addr == NULL_ADDR);
501
502         /* Deallocate node address */
503         invalidate_blocks(sbi, ni.blk_addr);
504         dec_valid_node_count(sbi, dn->inode, 1);
505         set_node_addr(sbi, &ni, NULL_ADDR);
506
507         if (dn->nid == dn->inode->i_ino) {
508                 remove_orphan_inode(sbi, dn->nid);
509                 dec_valid_inode_count(sbi);
510         } else {
511                 sync_inode_page(dn);
512         }
513 invalidate:
514         clear_node_page_dirty(dn->node_page);
515         F2FS_SET_SB_DIRT(sbi);
516
517         f2fs_put_page(dn->node_page, 1);
518         dn->node_page = NULL;
519         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
520 }
521
522 static int truncate_dnode(struct dnode_of_data *dn)
523 {
524         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
525         struct page *page;
526
527         if (dn->nid == 0)
528                 return 1;
529
530         /* get direct node */
531         page = get_node_page(sbi, dn->nid);
532         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
533                 return 1;
534         else if (IS_ERR(page))
535                 return PTR_ERR(page);
536
537         /* Make dnode_of_data for parameter */
538         dn->node_page = page;
539         dn->ofs_in_node = 0;
540         truncate_data_blocks(dn);
541         truncate_node(dn);
542         return 1;
543 }
544
545 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
546                                                 int ofs, int depth)
547 {
548         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
549         struct dnode_of_data rdn = *dn;
550         struct page *page;
551         struct f2fs_node *rn;
552         nid_t child_nid;
553         unsigned int child_nofs;
554         int freed = 0;
555         int i, ret;
556
557         if (dn->nid == 0)
558                 return NIDS_PER_BLOCK + 1;
559
560         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
561
562         page = get_node_page(sbi, dn->nid);
563         if (IS_ERR(page)) {
564                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
565                 return PTR_ERR(page);
566         }
567
568         rn = F2FS_NODE(page);
569         if (depth < 3) {
570                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
571                         child_nid = le32_to_cpu(rn->in.nid[i]);
572                         if (child_nid == 0)
573                                 continue;
574                         rdn.nid = child_nid;
575                         ret = truncate_dnode(&rdn);
576                         if (ret < 0)
577                                 goto out_err;
578                         set_nid(page, i, 0, false);
579                 }
580         } else {
581                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
582                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
583                         child_nid = le32_to_cpu(rn->in.nid[i]);
584                         if (child_nid == 0) {
585                                 child_nofs += NIDS_PER_BLOCK + 1;
586                                 continue;
587                         }
588                         rdn.nid = child_nid;
589                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
590                         if (ret == (NIDS_PER_BLOCK + 1)) {
591                                 set_nid(page, i, 0, false);
592                                 child_nofs += ret;
593                         } else if (ret < 0 && ret != -ENOENT) {
594                                 goto out_err;
595                         }
596                 }
597                 freed = child_nofs;
598         }
599
600         if (!ofs) {
601                 /* remove current indirect node */
602                 dn->node_page = page;
603                 truncate_node(dn);
604                 freed++;
605         } else {
606                 f2fs_put_page(page, 1);
607         }
608         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
609         return freed;
610
611 out_err:
612         f2fs_put_page(page, 1);
613         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
614         return ret;
615 }
616
617 static int truncate_partial_nodes(struct dnode_of_data *dn,
618                         struct f2fs_inode *ri, int *offset, int depth)
619 {
620         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
621         struct page *pages[2];
622         nid_t nid[3];
623         nid_t child_nid;
624         int err = 0;
625         int i;
626         int idx = depth - 2;
627
628         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
629         if (!nid[0])
630                 return 0;
631
632         /* get indirect nodes in the path */
633         for (i = 0; i < depth - 1; i++) {
634                 /* refernece count'll be increased */
635                 pages[i] = get_node_page(sbi, nid[i]);
636                 if (IS_ERR(pages[i])) {
637                         depth = i + 1;
638                         err = PTR_ERR(pages[i]);
639                         goto fail;
640                 }
641                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
642         }
643
644         /* free direct nodes linked to a partial indirect node */
645         for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
646                 child_nid = get_nid(pages[idx], i, false);
647                 if (!child_nid)
648                         continue;
649                 dn->nid = child_nid;
650                 err = truncate_dnode(dn);
651                 if (err < 0)
652                         goto fail;
653                 set_nid(pages[idx], i, 0, false);
654         }
655
656         if (offset[depth - 1] == 0) {
657                 dn->node_page = pages[idx];
658                 dn->nid = nid[idx];
659                 truncate_node(dn);
660         } else {
661                 f2fs_put_page(pages[idx], 1);
662         }
663         offset[idx]++;
664         offset[depth - 1] = 0;
665 fail:
666         for (i = depth - 3; i >= 0; i--)
667                 f2fs_put_page(pages[i], 1);
668
669         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
670
671         return err;
672 }
673
674 /*
675  * All the block addresses of data and nodes should be nullified.
676  */
677 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
678 {
679         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
680         struct address_space *node_mapping = sbi->node_inode->i_mapping;
681         int err = 0, cont = 1;
682         int level, offset[4], noffset[4];
683         unsigned int nofs = 0;
684         struct f2fs_node *rn;
685         struct dnode_of_data dn;
686         struct page *page;
687
688         trace_f2fs_truncate_inode_blocks_enter(inode, from);
689
690         level = get_node_path(from, offset, noffset);
691 restart:
692         page = get_node_page(sbi, inode->i_ino);
693         if (IS_ERR(page)) {
694                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
695                 return PTR_ERR(page);
696         }
697
698         set_new_dnode(&dn, inode, page, NULL, 0);
699         unlock_page(page);
700
701         rn = F2FS_NODE(page);
702         switch (level) {
703         case 0:
704         case 1:
705                 nofs = noffset[1];
706                 break;
707         case 2:
708                 nofs = noffset[1];
709                 if (!offset[level - 1])
710                         goto skip_partial;
711                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
712                 if (err < 0 && err != -ENOENT)
713                         goto fail;
714                 nofs += 1 + NIDS_PER_BLOCK;
715                 break;
716         case 3:
717                 nofs = 5 + 2 * NIDS_PER_BLOCK;
718                 if (!offset[level - 1])
719                         goto skip_partial;
720                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
721                 if (err < 0 && err != -ENOENT)
722                         goto fail;
723                 break;
724         default:
725                 BUG();
726         }
727
728 skip_partial:
729         while (cont) {
730                 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
731                 switch (offset[0]) {
732                 case NODE_DIR1_BLOCK:
733                 case NODE_DIR2_BLOCK:
734                         err = truncate_dnode(&dn);
735                         break;
736
737                 case NODE_IND1_BLOCK:
738                 case NODE_IND2_BLOCK:
739                         err = truncate_nodes(&dn, nofs, offset[1], 2);
740                         break;
741
742                 case NODE_DIND_BLOCK:
743                         err = truncate_nodes(&dn, nofs, offset[1], 3);
744                         cont = 0;
745                         break;
746
747                 default:
748                         BUG();
749                 }
750                 if (err < 0 && err != -ENOENT)
751                         goto fail;
752                 if (offset[1] == 0 &&
753                                 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
754                         lock_page(page);
755                         if (page->mapping != node_mapping) {
756                                 f2fs_put_page(page, 1);
757                                 goto restart;
758                         }
759                         wait_on_page_writeback(page);
760                         rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
761                         set_page_dirty(page);
762                         unlock_page(page);
763                 }
764                 offset[1] = 0;
765                 offset[0]++;
766                 nofs += err;
767         }
768 fail:
769         f2fs_put_page(page, 0);
770         trace_f2fs_truncate_inode_blocks_exit(inode, err);
771         return err > 0 ? 0 : err;
772 }
773
774 /*
775  * Caller should grab and release a mutex by calling mutex_lock_op() and
776  * mutex_unlock_op().
777  */
778 int remove_inode_page(struct inode *inode)
779 {
780         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781         struct page *page;
782         nid_t ino = inode->i_ino;
783         struct dnode_of_data dn;
784
785         page = get_node_page(sbi, ino);
786         if (IS_ERR(page))
787                 return PTR_ERR(page);
788
789         if (F2FS_I(inode)->i_xattr_nid) {
790                 nid_t nid = F2FS_I(inode)->i_xattr_nid;
791                 struct page *npage = get_node_page(sbi, nid);
792
793                 if (IS_ERR(npage))
794                         return PTR_ERR(npage);
795
796                 F2FS_I(inode)->i_xattr_nid = 0;
797                 set_new_dnode(&dn, inode, page, npage, nid);
798                 dn.inode_page_locked = 1;
799                 truncate_node(&dn);
800         }
801
802         /* 0 is possible, after f2fs_new_inode() is failed */
803         BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
804         set_new_dnode(&dn, inode, page, page, ino);
805         truncate_node(&dn);
806         return 0;
807 }
808
809 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
810 {
811         struct dnode_of_data dn;
812
813         /* allocate inode page for new inode */
814         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
815
816         /* caller should f2fs_put_page(page, 1); */
817         return new_node_page(&dn, 0, NULL);
818 }
819
820 struct page *new_node_page(struct dnode_of_data *dn,
821                                 unsigned int ofs, struct page *ipage)
822 {
823         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
824         struct address_space *mapping = sbi->node_inode->i_mapping;
825         struct node_info old_ni, new_ni;
826         struct page *page;
827         int err;
828
829         if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
830                 return ERR_PTR(-EPERM);
831
832         page = grab_cache_page(mapping, dn->nid);
833         if (!page)
834                 return ERR_PTR(-ENOMEM);
835
836         get_node_info(sbi, dn->nid, &old_ni);
837
838         SetPageUptodate(page);
839         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
840
841         /* Reinitialize old_ni with new node page */
842         BUG_ON(old_ni.blk_addr != NULL_ADDR);
843         new_ni = old_ni;
844         new_ni.ino = dn->inode->i_ino;
845
846         if (!inc_valid_node_count(sbi, dn->inode, 1)) {
847                 err = -ENOSPC;
848                 goto fail;
849         }
850         set_node_addr(sbi, &new_ni, NEW_ADDR);
851         set_cold_node(dn->inode, page);
852
853         dn->node_page = page;
854         if (ipage)
855                 update_inode(dn->inode, ipage);
856         else
857                 sync_inode_page(dn);
858         set_page_dirty(page);
859         if (ofs == 0)
860                 inc_valid_inode_count(sbi);
861
862         return page;
863
864 fail:
865         clear_node_page_dirty(page);
866         f2fs_put_page(page, 1);
867         return ERR_PTR(err);
868 }
869
870 /*
871  * Caller should do after getting the following values.
872  * 0: f2fs_put_page(page, 0)
873  * LOCKED_PAGE: f2fs_put_page(page, 1)
874  * error: nothing
875  */
876 static int read_node_page(struct page *page, int type)
877 {
878         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
879         struct node_info ni;
880
881         get_node_info(sbi, page->index, &ni);
882
883         if (ni.blk_addr == NULL_ADDR) {
884                 f2fs_put_page(page, 1);
885                 return -ENOENT;
886         }
887
888         if (PageUptodate(page))
889                 return LOCKED_PAGE;
890
891         return f2fs_readpage(sbi, page, ni.blk_addr, type);
892 }
893
894 /*
895  * Readahead a node page
896  */
897 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
898 {
899         struct address_space *mapping = sbi->node_inode->i_mapping;
900         struct page *apage;
901         int err;
902
903         apage = find_get_page(mapping, nid);
904         if (apage && PageUptodate(apage)) {
905                 f2fs_put_page(apage, 0);
906                 return;
907         }
908         f2fs_put_page(apage, 0);
909
910         apage = grab_cache_page(mapping, nid);
911         if (!apage)
912                 return;
913
914         err = read_node_page(apage, READA);
915         if (err == 0)
916                 f2fs_put_page(apage, 0);
917         else if (err == LOCKED_PAGE)
918                 f2fs_put_page(apage, 1);
919 }
920
921 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
922 {
923         struct address_space *mapping = sbi->node_inode->i_mapping;
924         struct page *page;
925         int err;
926 repeat:
927         page = grab_cache_page(mapping, nid);
928         if (!page)
929                 return ERR_PTR(-ENOMEM);
930
931         err = read_node_page(page, READ_SYNC);
932         if (err < 0)
933                 return ERR_PTR(err);
934         else if (err == LOCKED_PAGE)
935                 goto got_it;
936
937         lock_page(page);
938         if (!PageUptodate(page)) {
939                 f2fs_put_page(page, 1);
940                 return ERR_PTR(-EIO);
941         }
942         if (page->mapping != mapping) {
943                 f2fs_put_page(page, 1);
944                 goto repeat;
945         }
946 got_it:
947         BUG_ON(nid != nid_of_node(page));
948         mark_page_accessed(page);
949         return page;
950 }
951
952 /*
953  * Return a locked page for the desired node page.
954  * And, readahead MAX_RA_NODE number of node pages.
955  */
956 struct page *get_node_page_ra(struct page *parent, int start)
957 {
958         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
959         struct address_space *mapping = sbi->node_inode->i_mapping;
960         struct blk_plug plug;
961         struct page *page;
962         int err, i, end;
963         nid_t nid;
964
965         /* First, try getting the desired direct node. */
966         nid = get_nid(parent, start, false);
967         if (!nid)
968                 return ERR_PTR(-ENOENT);
969 repeat:
970         page = grab_cache_page(mapping, nid);
971         if (!page)
972                 return ERR_PTR(-ENOMEM);
973
974         err = read_node_page(page, READ_SYNC);
975         if (err < 0)
976                 return ERR_PTR(err);
977         else if (err == LOCKED_PAGE)
978                 goto page_hit;
979
980         blk_start_plug(&plug);
981
982         /* Then, try readahead for siblings of the desired node */
983         end = start + MAX_RA_NODE;
984         end = min(end, NIDS_PER_BLOCK);
985         for (i = start + 1; i < end; i++) {
986                 nid = get_nid(parent, i, false);
987                 if (!nid)
988                         continue;
989                 ra_node_page(sbi, nid);
990         }
991
992         blk_finish_plug(&plug);
993
994         lock_page(page);
995         if (page->mapping != mapping) {
996                 f2fs_put_page(page, 1);
997                 goto repeat;
998         }
999 page_hit:
1000         if (!PageUptodate(page)) {
1001                 f2fs_put_page(page, 1);
1002                 return ERR_PTR(-EIO);
1003         }
1004         mark_page_accessed(page);
1005         return page;
1006 }
1007
1008 void sync_inode_page(struct dnode_of_data *dn)
1009 {
1010         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1011                 update_inode(dn->inode, dn->node_page);
1012         } else if (dn->inode_page) {
1013                 if (!dn->inode_page_locked)
1014                         lock_page(dn->inode_page);
1015                 update_inode(dn->inode, dn->inode_page);
1016                 if (!dn->inode_page_locked)
1017                         unlock_page(dn->inode_page);
1018         } else {
1019                 update_inode_page(dn->inode);
1020         }
1021 }
1022
1023 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1024                                         struct writeback_control *wbc)
1025 {
1026         struct address_space *mapping = sbi->node_inode->i_mapping;
1027         pgoff_t index, end;
1028         struct pagevec pvec;
1029         int step = ino ? 2 : 0;
1030         int nwritten = 0, wrote = 0;
1031
1032         pagevec_init(&pvec, 0);
1033
1034 next_step:
1035         index = 0;
1036         end = LONG_MAX;
1037
1038         while (index <= end) {
1039                 int i, nr_pages;
1040                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1041                                 PAGECACHE_TAG_DIRTY,
1042                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1043                 if (nr_pages == 0)
1044                         break;
1045
1046                 for (i = 0; i < nr_pages; i++) {
1047                         struct page *page = pvec.pages[i];
1048
1049                         /*
1050                          * flushing sequence with step:
1051                          * 0. indirect nodes
1052                          * 1. dentry dnodes
1053                          * 2. file dnodes
1054                          */
1055                         if (step == 0 && IS_DNODE(page))
1056                                 continue;
1057                         if (step == 1 && (!IS_DNODE(page) ||
1058                                                 is_cold_node(page)))
1059                                 continue;
1060                         if (step == 2 && (!IS_DNODE(page) ||
1061                                                 !is_cold_node(page)))
1062                                 continue;
1063
1064                         /*
1065                          * If an fsync mode,
1066                          * we should not skip writing node pages.
1067                          */
1068                         if (ino && ino_of_node(page) == ino)
1069                                 lock_page(page);
1070                         else if (!trylock_page(page))
1071                                 continue;
1072
1073                         if (unlikely(page->mapping != mapping)) {
1074 continue_unlock:
1075                                 unlock_page(page);
1076                                 continue;
1077                         }
1078                         if (ino && ino_of_node(page) != ino)
1079                                 goto continue_unlock;
1080
1081                         if (!PageDirty(page)) {
1082                                 /* someone wrote it for us */
1083                                 goto continue_unlock;
1084                         }
1085
1086                         if (!clear_page_dirty_for_io(page))
1087                                 goto continue_unlock;
1088
1089                         /* called by fsync() */
1090                         if (ino && IS_DNODE(page)) {
1091                                 int mark = !is_checkpointed_node(sbi, ino);
1092                                 set_fsync_mark(page, 1);
1093                                 if (IS_INODE(page))
1094                                         set_dentry_mark(page, mark);
1095                                 nwritten++;
1096                         } else {
1097                                 set_fsync_mark(page, 0);
1098                                 set_dentry_mark(page, 0);
1099                         }
1100                         mapping->a_ops->writepage(page, wbc);
1101                         wrote++;
1102
1103                         if (--wbc->nr_to_write == 0)
1104                                 break;
1105                 }
1106                 pagevec_release(&pvec);
1107                 cond_resched();
1108
1109                 if (wbc->nr_to_write == 0) {
1110                         step = 2;
1111                         break;
1112                 }
1113         }
1114
1115         if (step < 2) {
1116                 step++;
1117                 goto next_step;
1118         }
1119
1120         if (wrote)
1121                 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1122
1123         return nwritten;
1124 }
1125
1126 static int f2fs_write_node_page(struct page *page,
1127                                 struct writeback_control *wbc)
1128 {
1129         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1130         nid_t nid;
1131         block_t new_addr;
1132         struct node_info ni;
1133
1134         wait_on_page_writeback(page);
1135
1136         /* get old block addr of this node page */
1137         nid = nid_of_node(page);
1138         BUG_ON(page->index != nid);
1139
1140         get_node_info(sbi, nid, &ni);
1141
1142         /* This page is already truncated */
1143         if (ni.blk_addr == NULL_ADDR) {
1144                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1145                 unlock_page(page);
1146                 return 0;
1147         }
1148
1149         if (wbc->for_reclaim) {
1150                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1151                 wbc->pages_skipped++;
1152                 set_page_dirty(page);
1153                 return AOP_WRITEPAGE_ACTIVATE;
1154         }
1155
1156         mutex_lock(&sbi->node_write);
1157         set_page_writeback(page);
1158         write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1159         set_node_addr(sbi, &ni, new_addr);
1160         dec_page_count(sbi, F2FS_DIRTY_NODES);
1161         mutex_unlock(&sbi->node_write);
1162         unlock_page(page);
1163         return 0;
1164 }
1165
1166 /*
1167  * It is very important to gather dirty pages and write at once, so that we can
1168  * submit a big bio without interfering other data writes.
1169  * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1170  */
1171 #define COLLECT_DIRTY_NODES     512
1172 static int f2fs_write_node_pages(struct address_space *mapping,
1173                             struct writeback_control *wbc)
1174 {
1175         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1176         long nr_to_write = wbc->nr_to_write;
1177
1178         /* First check balancing cached NAT entries */
1179         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1180                 f2fs_sync_fs(sbi->sb, true);
1181                 return 0;
1182         }
1183
1184         /* collect a number of dirty node pages and write together */
1185         if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1186                 return 0;
1187
1188         /* if mounting is failed, skip writing node pages */
1189         wbc->nr_to_write = max_hw_blocks(sbi);
1190         sync_node_pages(sbi, 0, wbc);
1191         wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
1192         return 0;
1193 }
1194
1195 static int f2fs_set_node_page_dirty(struct page *page)
1196 {
1197         struct address_space *mapping = page->mapping;
1198         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1199
1200         SetPageUptodate(page);
1201         if (!PageDirty(page)) {
1202                 __set_page_dirty_nobuffers(page);
1203                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1204                 SetPagePrivate(page);
1205                 return 1;
1206         }
1207         return 0;
1208 }
1209
1210 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1211                                       unsigned int length)
1212 {
1213         struct inode *inode = page->mapping->host;
1214         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1215         if (PageDirty(page))
1216                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1217         ClearPagePrivate(page);
1218 }
1219
1220 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1221 {
1222         ClearPagePrivate(page);
1223         return 1;
1224 }
1225
1226 /*
1227  * Structure of the f2fs node operations
1228  */
1229 const struct address_space_operations f2fs_node_aops = {
1230         .writepage      = f2fs_write_node_page,
1231         .writepages     = f2fs_write_node_pages,
1232         .set_page_dirty = f2fs_set_node_page_dirty,
1233         .invalidatepage = f2fs_invalidate_node_page,
1234         .releasepage    = f2fs_release_node_page,
1235 };
1236
1237 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1238 {
1239         struct list_head *this;
1240         struct free_nid *i;
1241         list_for_each(this, head) {
1242                 i = list_entry(this, struct free_nid, list);
1243                 if (i->nid == n)
1244                         return i;
1245         }
1246         return NULL;
1247 }
1248
1249 static void __del_from_free_nid_list(struct free_nid *i)
1250 {
1251         list_del(&i->list);
1252         kmem_cache_free(free_nid_slab, i);
1253 }
1254
1255 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1256 {
1257         struct free_nid *i;
1258         struct nat_entry *ne;
1259         bool allocated = false;
1260
1261         if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1262                 return -1;
1263
1264         /* 0 nid should not be used */
1265         if (nid == 0)
1266                 return 0;
1267
1268         if (!build)
1269                 goto retry;
1270
1271         /* do not add allocated nids */
1272         read_lock(&nm_i->nat_tree_lock);
1273         ne = __lookup_nat_cache(nm_i, nid);
1274         if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1275                 allocated = true;
1276         read_unlock(&nm_i->nat_tree_lock);
1277         if (allocated)
1278                 return 0;
1279 retry:
1280         i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1281         if (!i) {
1282                 cond_resched();
1283                 goto retry;
1284         }
1285         i->nid = nid;
1286         i->state = NID_NEW;
1287
1288         spin_lock(&nm_i->free_nid_list_lock);
1289         if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1290                 spin_unlock(&nm_i->free_nid_list_lock);
1291                 kmem_cache_free(free_nid_slab, i);
1292                 return 0;
1293         }
1294         list_add_tail(&i->list, &nm_i->free_nid_list);
1295         nm_i->fcnt++;
1296         spin_unlock(&nm_i->free_nid_list_lock);
1297         return 1;
1298 }
1299
1300 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1301 {
1302         struct free_nid *i;
1303         spin_lock(&nm_i->free_nid_list_lock);
1304         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1305         if (i && i->state == NID_NEW) {
1306                 __del_from_free_nid_list(i);
1307                 nm_i->fcnt--;
1308         }
1309         spin_unlock(&nm_i->free_nid_list_lock);
1310 }
1311
1312 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1313                         struct page *nat_page, nid_t start_nid)
1314 {
1315         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1316         block_t blk_addr;
1317         int i;
1318
1319         i = start_nid % NAT_ENTRY_PER_BLOCK;
1320
1321         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1322
1323                 if (start_nid >= nm_i->max_nid)
1324                         break;
1325
1326                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1327                 BUG_ON(blk_addr == NEW_ADDR);
1328                 if (blk_addr == NULL_ADDR) {
1329                         if (add_free_nid(nm_i, start_nid, true) < 0)
1330                                 break;
1331                 }
1332         }
1333 }
1334
1335 static void build_free_nids(struct f2fs_sb_info *sbi)
1336 {
1337         struct f2fs_nm_info *nm_i = NM_I(sbi);
1338         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1339         struct f2fs_summary_block *sum = curseg->sum_blk;
1340         int i = 0;
1341         nid_t nid = nm_i->next_scan_nid;
1342
1343         /* Enough entries */
1344         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1345                 return;
1346
1347         /* readahead nat pages to be scanned */
1348         ra_nat_pages(sbi, nid);
1349
1350         while (1) {
1351                 struct page *page = get_current_nat_page(sbi, nid);
1352
1353                 scan_nat_page(nm_i, page, nid);
1354                 f2fs_put_page(page, 1);
1355
1356                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1357                 if (nid >= nm_i->max_nid)
1358                         nid = 0;
1359
1360                 if (i++ == FREE_NID_PAGES)
1361                         break;
1362         }
1363
1364         /* go to the next free nat pages to find free nids abundantly */
1365         nm_i->next_scan_nid = nid;
1366
1367         /* find free nids from current sum_pages */
1368         mutex_lock(&curseg->curseg_mutex);
1369         for (i = 0; i < nats_in_cursum(sum); i++) {
1370                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1371                 nid = le32_to_cpu(nid_in_journal(sum, i));
1372                 if (addr == NULL_ADDR)
1373                         add_free_nid(nm_i, nid, true);
1374                 else
1375                         remove_free_nid(nm_i, nid);
1376         }
1377         mutex_unlock(&curseg->curseg_mutex);
1378 }
1379
1380 /*
1381  * If this function returns success, caller can obtain a new nid
1382  * from second parameter of this function.
1383  * The returned nid could be used ino as well as nid when inode is created.
1384  */
1385 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1386 {
1387         struct f2fs_nm_info *nm_i = NM_I(sbi);
1388         struct free_nid *i = NULL;
1389         struct list_head *this;
1390 retry:
1391         if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1392                 return false;
1393
1394         spin_lock(&nm_i->free_nid_list_lock);
1395
1396         /* We should not use stale free nids created by build_free_nids */
1397         if (nm_i->fcnt && !sbi->on_build_free_nids) {
1398                 BUG_ON(list_empty(&nm_i->free_nid_list));
1399                 list_for_each(this, &nm_i->free_nid_list) {
1400                         i = list_entry(this, struct free_nid, list);
1401                         if (i->state == NID_NEW)
1402                                 break;
1403                 }
1404
1405                 BUG_ON(i->state != NID_NEW);
1406                 *nid = i->nid;
1407                 i->state = NID_ALLOC;
1408                 nm_i->fcnt--;
1409                 spin_unlock(&nm_i->free_nid_list_lock);
1410                 return true;
1411         }
1412         spin_unlock(&nm_i->free_nid_list_lock);
1413
1414         /* Let's scan nat pages and its caches to get free nids */
1415         mutex_lock(&nm_i->build_lock);
1416         sbi->on_build_free_nids = 1;
1417         build_free_nids(sbi);
1418         sbi->on_build_free_nids = 0;
1419         mutex_unlock(&nm_i->build_lock);
1420         goto retry;
1421 }
1422
1423 /*
1424  * alloc_nid() should be called prior to this function.
1425  */
1426 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1427 {
1428         struct f2fs_nm_info *nm_i = NM_I(sbi);
1429         struct free_nid *i;
1430
1431         spin_lock(&nm_i->free_nid_list_lock);
1432         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1433         BUG_ON(!i || i->state != NID_ALLOC);
1434         __del_from_free_nid_list(i);
1435         spin_unlock(&nm_i->free_nid_list_lock);
1436 }
1437
1438 /*
1439  * alloc_nid() should be called prior to this function.
1440  */
1441 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1442 {
1443         struct f2fs_nm_info *nm_i = NM_I(sbi);
1444         struct free_nid *i;
1445
1446         spin_lock(&nm_i->free_nid_list_lock);
1447         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1448         BUG_ON(!i || i->state != NID_ALLOC);
1449         if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1450                 __del_from_free_nid_list(i);
1451         } else {
1452                 i->state = NID_NEW;
1453                 nm_i->fcnt++;
1454         }
1455         spin_unlock(&nm_i->free_nid_list_lock);
1456 }
1457
1458 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1459                 struct f2fs_summary *sum, struct node_info *ni,
1460                 block_t new_blkaddr)
1461 {
1462         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1463         set_node_addr(sbi, ni, new_blkaddr);
1464         clear_node_page_dirty(page);
1465 }
1466
1467 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1468 {
1469         struct address_space *mapping = sbi->node_inode->i_mapping;
1470         struct f2fs_node *src, *dst;
1471         nid_t ino = ino_of_node(page);
1472         struct node_info old_ni, new_ni;
1473         struct page *ipage;
1474
1475         ipage = grab_cache_page(mapping, ino);
1476         if (!ipage)
1477                 return -ENOMEM;
1478
1479         /* Should not use this inode  from free nid list */
1480         remove_free_nid(NM_I(sbi), ino);
1481
1482         get_node_info(sbi, ino, &old_ni);
1483         SetPageUptodate(ipage);
1484         fill_node_footer(ipage, ino, ino, 0, true);
1485
1486         src = F2FS_NODE(page);
1487         dst = F2FS_NODE(ipage);
1488
1489         memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1490         dst->i.i_size = 0;
1491         dst->i.i_blocks = cpu_to_le64(1);
1492         dst->i.i_links = cpu_to_le32(1);
1493         dst->i.i_xattr_nid = 0;
1494
1495         new_ni = old_ni;
1496         new_ni.ino = ino;
1497
1498         if (!inc_valid_node_count(sbi, NULL, 1))
1499                 WARN_ON(1);
1500         set_node_addr(sbi, &new_ni, NEW_ADDR);
1501         inc_valid_inode_count(sbi);
1502         f2fs_put_page(ipage, 1);
1503         return 0;
1504 }
1505
1506 int restore_node_summary(struct f2fs_sb_info *sbi,
1507                         unsigned int segno, struct f2fs_summary_block *sum)
1508 {
1509         struct f2fs_node *rn;
1510         struct f2fs_summary *sum_entry;
1511         struct page *page;
1512         block_t addr;
1513         int i, last_offset;
1514
1515         /* alloc temporal page for read node */
1516         page = alloc_page(GFP_NOFS | __GFP_ZERO);
1517         if (IS_ERR(page))
1518                 return PTR_ERR(page);
1519         lock_page(page);
1520
1521         /* scan the node segment */
1522         last_offset = sbi->blocks_per_seg;
1523         addr = START_BLOCK(sbi, segno);
1524         sum_entry = &sum->entries[0];
1525
1526         for (i = 0; i < last_offset; i++, sum_entry++) {
1527                 /*
1528                  * In order to read next node page,
1529                  * we must clear PageUptodate flag.
1530                  */
1531                 ClearPageUptodate(page);
1532
1533                 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1534                         goto out;
1535
1536                 lock_page(page);
1537                 rn = F2FS_NODE(page);
1538                 sum_entry->nid = rn->footer.nid;
1539                 sum_entry->version = 0;
1540                 sum_entry->ofs_in_node = 0;
1541                 addr++;
1542         }
1543         unlock_page(page);
1544 out:
1545         __free_pages(page, 0);
1546         return 0;
1547 }
1548
1549 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1550 {
1551         struct f2fs_nm_info *nm_i = NM_I(sbi);
1552         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1553         struct f2fs_summary_block *sum = curseg->sum_blk;
1554         int i;
1555
1556         mutex_lock(&curseg->curseg_mutex);
1557
1558         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1559                 mutex_unlock(&curseg->curseg_mutex);
1560                 return false;
1561         }
1562
1563         for (i = 0; i < nats_in_cursum(sum); i++) {
1564                 struct nat_entry *ne;
1565                 struct f2fs_nat_entry raw_ne;
1566                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1567
1568                 raw_ne = nat_in_journal(sum, i);
1569 retry:
1570                 write_lock(&nm_i->nat_tree_lock);
1571                 ne = __lookup_nat_cache(nm_i, nid);
1572                 if (ne) {
1573                         __set_nat_cache_dirty(nm_i, ne);
1574                         write_unlock(&nm_i->nat_tree_lock);
1575                         continue;
1576                 }
1577                 ne = grab_nat_entry(nm_i, nid);
1578                 if (!ne) {
1579                         write_unlock(&nm_i->nat_tree_lock);
1580                         goto retry;
1581                 }
1582                 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1583                 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1584                 nat_set_version(ne, raw_ne.version);
1585                 __set_nat_cache_dirty(nm_i, ne);
1586                 write_unlock(&nm_i->nat_tree_lock);
1587         }
1588         update_nats_in_cursum(sum, -i);
1589         mutex_unlock(&curseg->curseg_mutex);
1590         return true;
1591 }
1592
1593 /*
1594  * This function is called during the checkpointing process.
1595  */
1596 void flush_nat_entries(struct f2fs_sb_info *sbi)
1597 {
1598         struct f2fs_nm_info *nm_i = NM_I(sbi);
1599         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1600         struct f2fs_summary_block *sum = curseg->sum_blk;
1601         struct list_head *cur, *n;
1602         struct page *page = NULL;
1603         struct f2fs_nat_block *nat_blk = NULL;
1604         nid_t start_nid = 0, end_nid = 0;
1605         bool flushed;
1606
1607         flushed = flush_nats_in_journal(sbi);
1608
1609         if (!flushed)
1610                 mutex_lock(&curseg->curseg_mutex);
1611
1612         /* 1) flush dirty nat caches */
1613         list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1614                 struct nat_entry *ne;
1615                 nid_t nid;
1616                 struct f2fs_nat_entry raw_ne;
1617                 int offset = -1;
1618                 block_t new_blkaddr;
1619
1620                 ne = list_entry(cur, struct nat_entry, list);
1621                 nid = nat_get_nid(ne);
1622
1623                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1624                         continue;
1625                 if (flushed)
1626                         goto to_nat_page;
1627
1628                 /* if there is room for nat enries in curseg->sumpage */
1629                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1630                 if (offset >= 0) {
1631                         raw_ne = nat_in_journal(sum, offset);
1632                         goto flush_now;
1633                 }
1634 to_nat_page:
1635                 if (!page || (start_nid > nid || nid > end_nid)) {
1636                         if (page) {
1637                                 f2fs_put_page(page, 1);
1638                                 page = NULL;
1639                         }
1640                         start_nid = START_NID(nid);
1641                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1642
1643                         /*
1644                          * get nat block with dirty flag, increased reference
1645                          * count, mapped and lock
1646                          */
1647                         page = get_next_nat_page(sbi, start_nid);
1648                         nat_blk = page_address(page);
1649                 }
1650
1651                 BUG_ON(!nat_blk);
1652                 raw_ne = nat_blk->entries[nid - start_nid];
1653 flush_now:
1654                 new_blkaddr = nat_get_blkaddr(ne);
1655
1656                 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1657                 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1658                 raw_ne.version = nat_get_version(ne);
1659
1660                 if (offset < 0) {
1661                         nat_blk->entries[nid - start_nid] = raw_ne;
1662                 } else {
1663                         nat_in_journal(sum, offset) = raw_ne;
1664                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1665                 }
1666
1667                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1668                                 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1669                         write_lock(&nm_i->nat_tree_lock);
1670                         __del_from_nat_cache(nm_i, ne);
1671                         write_unlock(&nm_i->nat_tree_lock);
1672                 } else {
1673                         write_lock(&nm_i->nat_tree_lock);
1674                         __clear_nat_cache_dirty(nm_i, ne);
1675                         ne->checkpointed = true;
1676                         write_unlock(&nm_i->nat_tree_lock);
1677                 }
1678         }
1679         if (!flushed)
1680                 mutex_unlock(&curseg->curseg_mutex);
1681         f2fs_put_page(page, 1);
1682
1683         /* 2) shrink nat caches if necessary */
1684         try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1685 }
1686
1687 static int init_node_manager(struct f2fs_sb_info *sbi)
1688 {
1689         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1690         struct f2fs_nm_info *nm_i = NM_I(sbi);
1691         unsigned char *version_bitmap;
1692         unsigned int nat_segs, nat_blocks;
1693
1694         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1695
1696         /* segment_count_nat includes pair segment so divide to 2. */
1697         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1698         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1699         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1700         nm_i->fcnt = 0;
1701         nm_i->nat_cnt = 0;
1702
1703         INIT_LIST_HEAD(&nm_i->free_nid_list);
1704         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1705         INIT_LIST_HEAD(&nm_i->nat_entries);
1706         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1707
1708         mutex_init(&nm_i->build_lock);
1709         spin_lock_init(&nm_i->free_nid_list_lock);
1710         rwlock_init(&nm_i->nat_tree_lock);
1711
1712         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1713         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1714         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1715         if (!version_bitmap)
1716                 return -EFAULT;
1717
1718         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1719                                         GFP_KERNEL);
1720         if (!nm_i->nat_bitmap)
1721                 return -ENOMEM;
1722         return 0;
1723 }
1724
1725 int build_node_manager(struct f2fs_sb_info *sbi)
1726 {
1727         int err;
1728
1729         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1730         if (!sbi->nm_info)
1731                 return -ENOMEM;
1732
1733         err = init_node_manager(sbi);
1734         if (err)
1735                 return err;
1736
1737         build_free_nids(sbi);
1738         return 0;
1739 }
1740
1741 void destroy_node_manager(struct f2fs_sb_info *sbi)
1742 {
1743         struct f2fs_nm_info *nm_i = NM_I(sbi);
1744         struct free_nid *i, *next_i;
1745         struct nat_entry *natvec[NATVEC_SIZE];
1746         nid_t nid = 0;
1747         unsigned int found;
1748
1749         if (!nm_i)
1750                 return;
1751
1752         /* destroy free nid list */
1753         spin_lock(&nm_i->free_nid_list_lock);
1754         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1755                 BUG_ON(i->state == NID_ALLOC);
1756                 __del_from_free_nid_list(i);
1757                 nm_i->fcnt--;
1758         }
1759         BUG_ON(nm_i->fcnt);
1760         spin_unlock(&nm_i->free_nid_list_lock);
1761
1762         /* destroy nat cache */
1763         write_lock(&nm_i->nat_tree_lock);
1764         while ((found = __gang_lookup_nat_cache(nm_i,
1765                                         nid, NATVEC_SIZE, natvec))) {
1766                 unsigned idx;
1767                 for (idx = 0; idx < found; idx++) {
1768                         struct nat_entry *e = natvec[idx];
1769                         nid = nat_get_nid(e) + 1;
1770                         __del_from_nat_cache(nm_i, e);
1771                 }
1772         }
1773         BUG_ON(nm_i->nat_cnt);
1774         write_unlock(&nm_i->nat_tree_lock);
1775
1776         kfree(nm_i->nat_bitmap);
1777         sbi->nm_info = NULL;
1778         kfree(nm_i);
1779 }
1780
1781 int __init create_node_manager_caches(void)
1782 {
1783         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1784                         sizeof(struct nat_entry), NULL);
1785         if (!nat_entry_slab)
1786                 return -ENOMEM;
1787
1788         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1789                         sizeof(struct free_nid), NULL);
1790         if (!free_nid_slab) {
1791                 kmem_cache_destroy(nat_entry_slab);
1792                 return -ENOMEM;
1793         }
1794         return 0;
1795 }
1796
1797 void destroy_node_manager_caches(void)
1798 {
1799         kmem_cache_destroy(free_nid_slab);
1800         kmem_cache_destroy(nat_entry_slab);
1801 }