]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: protect extent conversion after DIO with i_dio_count
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 #ifdef ES_AGGRESSIVE_TEST
427 static void ext4_map_blocks_es_recheck(handle_t *handle,
428                                        struct inode *inode,
429                                        struct ext4_map_blocks *es_map,
430                                        struct ext4_map_blocks *map,
431                                        int flags)
432 {
433         int retval;
434
435         map->m_flags = 0;
436         /*
437          * There is a race window that the result is not the same.
438          * e.g. xfstests #223 when dioread_nolock enables.  The reason
439          * is that we lookup a block mapping in extent status tree with
440          * out taking i_data_sem.  So at the time the unwritten extent
441          * could be converted.
442          */
443         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
444                 down_read((&EXT4_I(inode)->i_data_sem));
445         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
446                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
447                                              EXT4_GET_BLOCKS_KEEP_SIZE);
448         } else {
449                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
450                                              EXT4_GET_BLOCKS_KEEP_SIZE);
451         }
452         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
453                 up_read((&EXT4_I(inode)->i_data_sem));
454         /*
455          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
456          * because it shouldn't be marked in es_map->m_flags.
457          */
458         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
459
460         /*
461          * We don't check m_len because extent will be collpased in status
462          * tree.  So the m_len might not equal.
463          */
464         if (es_map->m_lblk != map->m_lblk ||
465             es_map->m_flags != map->m_flags ||
466             es_map->m_pblk != map->m_pblk) {
467                 printk("ES cache assertation failed for inode: %lu "
468                        "es_cached ex [%d/%d/%llu/%x] != "
469                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470                        inode->i_ino, es_map->m_lblk, es_map->m_len,
471                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
472                        map->m_len, map->m_pblk, map->m_flags,
473                        retval, flags);
474         }
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477
478 /*
479  * The ext4_map_blocks() function tries to look up the requested blocks,
480  * and returns if the blocks are already mapped.
481  *
482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483  * and store the allocated blocks in the result buffer head and mark it
484  * mapped.
485  *
486  * If file type is extents based, it will call ext4_ext_map_blocks(),
487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488  * based files
489  *
490  * On success, it returns the number of blocks being mapped or allocate.
491  * if create==0 and the blocks are pre-allocated and uninitialized block,
492  * the result buffer head is unmapped. If the create ==1, it will make sure
493  * the buffer head is mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, buffer head is unmapped
497  *
498  * It returns the error in case of allocation failure.
499  */
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501                     struct ext4_map_blocks *map, int flags)
502 {
503         struct extent_status es;
504         int retval;
505 #ifdef ES_AGGRESSIVE_TEST
506         struct ext4_map_blocks orig_map;
507
508         memcpy(&orig_map, map, sizeof(*map));
509 #endif
510
511         map->m_flags = 0;
512         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
513                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
514                   (unsigned long) map->m_lblk);
515
516         /* Lookup extent status tree firstly */
517         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
518                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519                         map->m_pblk = ext4_es_pblock(&es) +
520                                         map->m_lblk - es.es_lblk;
521                         map->m_flags |= ext4_es_is_written(&es) ?
522                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523                         retval = es.es_len - (map->m_lblk - es.es_lblk);
524                         if (retval > map->m_len)
525                                 retval = map->m_len;
526                         map->m_len = retval;
527                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528                         retval = 0;
529                 } else {
530                         BUG_ON(1);
531                 }
532 #ifdef ES_AGGRESSIVE_TEST
533                 ext4_map_blocks_es_recheck(handle, inode, map,
534                                            &orig_map, flags);
535 #endif
536                 goto found;
537         }
538
539         /*
540          * Try to see if we can get the block without requesting a new
541          * file system block.
542          */
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 down_read((&EXT4_I(inode)->i_data_sem));
545         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
546                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
547                                              EXT4_GET_BLOCKS_KEEP_SIZE);
548         } else {
549                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         }
552         if (retval > 0) {
553                 int ret;
554                 unsigned long long status;
555
556 #ifdef ES_AGGRESSIVE_TEST
557                 if (retval != map->m_len) {
558                         printk("ES len assertation failed for inode: %lu "
559                                "retval %d != map->m_len %d "
560                                "in %s (lookup)\n", inode->i_ino, retval,
561                                map->m_len, __func__);
562                 }
563 #endif
564
565                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568                     ext4_find_delalloc_range(inode, map->m_lblk,
569                                              map->m_lblk + map->m_len - 1))
570                         status |= EXTENT_STATUS_DELAYED;
571                 ret = ext4_es_insert_extent(inode, map->m_lblk,
572                                             map->m_len, map->m_pblk, status);
573                 if (ret < 0)
574                         retval = ret;
575         }
576         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
577                 up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581                 int ret = check_block_validity(inode, map);
582                 if (ret != 0)
583                         return ret;
584         }
585
586         /* If it is only a block(s) look up */
587         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588                 return retval;
589
590         /*
591          * Returns if the blocks have already allocated
592          *
593          * Note that if blocks have been preallocated
594          * ext4_ext_get_block() returns the create = 0
595          * with buffer head unmapped.
596          */
597         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598                 return retval;
599
600         /*
601          * Here we clear m_flags because after allocating an new extent,
602          * it will be set again.
603          */
604         map->m_flags &= ~EXT4_MAP_FLAGS;
605
606         /*
607          * New blocks allocate and/or writing to uninitialized extent
608          * will possibly result in updating i_data, so we take
609          * the write lock of i_data_sem, and call get_blocks()
610          * with create == 1 flag.
611          */
612         down_write((&EXT4_I(inode)->i_data_sem));
613
614         /*
615          * if the caller is from delayed allocation writeout path
616          * we have already reserved fs blocks for allocation
617          * let the underlying get_block() function know to
618          * avoid double accounting
619          */
620         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
621                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
622         /*
623          * We need to check for EXT4 here because migrate
624          * could have changed the inode type in between
625          */
626         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
627                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
628         } else {
629                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
630
631                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
632                         /*
633                          * We allocated new blocks which will result in
634                          * i_data's format changing.  Force the migrate
635                          * to fail by clearing migrate flags
636                          */
637                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
638                 }
639
640                 /*
641                  * Update reserved blocks/metadata blocks after successful
642                  * block allocation which had been deferred till now. We don't
643                  * support fallocate for non extent files. So we can update
644                  * reserve space here.
645                  */
646                 if ((retval > 0) &&
647                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
648                         ext4_da_update_reserve_space(inode, retval, 1);
649         }
650         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
651                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
652
653         if (retval > 0) {
654                 int ret;
655                 unsigned long long status;
656
657 #ifdef ES_AGGRESSIVE_TEST
658                 if (retval != map->m_len) {
659                         printk("ES len assertation failed for inode: %lu "
660                                "retval %d != map->m_len %d "
661                                "in %s (allocation)\n", inode->i_ino, retval,
662                                map->m_len, __func__);
663                 }
664 #endif
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 map_bh(bh, inode->i_sb, map.m_pblk);
731                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
733                 ret = 0;
734         }
735         if (started)
736                 ext4_journal_stop(handle);
737         return ret;
738 }
739
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741                    struct buffer_head *bh, int create)
742 {
743         return _ext4_get_block(inode, iblock, bh,
744                                create ? EXT4_GET_BLOCKS_CREATE : 0);
745 }
746
747 /*
748  * `handle' can be NULL if create is zero
749  */
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751                                 ext4_lblk_t block, int create, int *errp)
752 {
753         struct ext4_map_blocks map;
754         struct buffer_head *bh;
755         int fatal = 0, err;
756
757         J_ASSERT(handle != NULL || create == 0);
758
759         map.m_lblk = block;
760         map.m_len = 1;
761         err = ext4_map_blocks(handle, inode, &map,
762                               create ? EXT4_GET_BLOCKS_CREATE : 0);
763
764         /* ensure we send some value back into *errp */
765         *errp = 0;
766
767         if (create && err == 0)
768                 err = -ENOSPC;  /* should never happen */
769         if (err < 0)
770                 *errp = err;
771         if (err <= 0)
772                 return NULL;
773
774         bh = sb_getblk(inode->i_sb, map.m_pblk);
775         if (unlikely(!bh)) {
776                 *errp = -ENOMEM;
777                 return NULL;
778         }
779         if (map.m_flags & EXT4_MAP_NEW) {
780                 J_ASSERT(create != 0);
781                 J_ASSERT(handle != NULL);
782
783                 /*
784                  * Now that we do not always journal data, we should
785                  * keep in mind whether this should always journal the
786                  * new buffer as metadata.  For now, regular file
787                  * writes use ext4_get_block instead, so it's not a
788                  * problem.
789                  */
790                 lock_buffer(bh);
791                 BUFFER_TRACE(bh, "call get_create_access");
792                 fatal = ext4_journal_get_create_access(handle, bh);
793                 if (!fatal && !buffer_uptodate(bh)) {
794                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795                         set_buffer_uptodate(bh);
796                 }
797                 unlock_buffer(bh);
798                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799                 err = ext4_handle_dirty_metadata(handle, inode, bh);
800                 if (!fatal)
801                         fatal = err;
802         } else {
803                 BUFFER_TRACE(bh, "not a new buffer");
804         }
805         if (fatal) {
806                 *errp = fatal;
807                 brelse(bh);
808                 bh = NULL;
809         }
810         return bh;
811 }
812
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814                                ext4_lblk_t block, int create, int *err)
815 {
816         struct buffer_head *bh;
817
818         bh = ext4_getblk(handle, inode, block, create, err);
819         if (!bh)
820                 return bh;
821         if (buffer_uptodate(bh))
822                 return bh;
823         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
824         wait_on_buffer(bh);
825         if (buffer_uptodate(bh))
826                 return bh;
827         put_bh(bh);
828         *err = -EIO;
829         return NULL;
830 }
831
832 int ext4_walk_page_buffers(handle_t *handle,
833                            struct buffer_head *head,
834                            unsigned from,
835                            unsigned to,
836                            int *partial,
837                            int (*fn)(handle_t *handle,
838                                      struct buffer_head *bh))
839 {
840         struct buffer_head *bh;
841         unsigned block_start, block_end;
842         unsigned blocksize = head->b_size;
843         int err, ret = 0;
844         struct buffer_head *next;
845
846         for (bh = head, block_start = 0;
847              ret == 0 && (bh != head || !block_start);
848              block_start = block_end, bh = next) {
849                 next = bh->b_this_page;
850                 block_end = block_start + blocksize;
851                 if (block_end <= from || block_start >= to) {
852                         if (partial && !buffer_uptodate(bh))
853                                 *partial = 1;
854                         continue;
855                 }
856                 err = (*fn)(handle, bh);
857                 if (!ret)
858                         ret = err;
859         }
860         return ret;
861 }
862
863 /*
864  * To preserve ordering, it is essential that the hole instantiation and
865  * the data write be encapsulated in a single transaction.  We cannot
866  * close off a transaction and start a new one between the ext4_get_block()
867  * and the commit_write().  So doing the jbd2_journal_start at the start of
868  * prepare_write() is the right place.
869  *
870  * Also, this function can nest inside ext4_writepage().  In that case, we
871  * *know* that ext4_writepage() has generated enough buffer credits to do the
872  * whole page.  So we won't block on the journal in that case, which is good,
873  * because the caller may be PF_MEMALLOC.
874  *
875  * By accident, ext4 can be reentered when a transaction is open via
876  * quota file writes.  If we were to commit the transaction while thus
877  * reentered, there can be a deadlock - we would be holding a quota
878  * lock, and the commit would never complete if another thread had a
879  * transaction open and was blocking on the quota lock - a ranking
880  * violation.
881  *
882  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883  * will _not_ run commit under these circumstances because handle->h_ref
884  * is elevated.  We'll still have enough credits for the tiny quotafile
885  * write.
886  */
887 int do_journal_get_write_access(handle_t *handle,
888                                 struct buffer_head *bh)
889 {
890         int dirty = buffer_dirty(bh);
891         int ret;
892
893         if (!buffer_mapped(bh) || buffer_freed(bh))
894                 return 0;
895         /*
896          * __block_write_begin() could have dirtied some buffers. Clean
897          * the dirty bit as jbd2_journal_get_write_access() could complain
898          * otherwise about fs integrity issues. Setting of the dirty bit
899          * by __block_write_begin() isn't a real problem here as we clear
900          * the bit before releasing a page lock and thus writeback cannot
901          * ever write the buffer.
902          */
903         if (dirty)
904                 clear_buffer_dirty(bh);
905         ret = ext4_journal_get_write_access(handle, bh);
906         if (!ret && dirty)
907                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908         return ret;
909 }
910
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912                    struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914                             loff_t pos, unsigned len, unsigned flags,
915                             struct page **pagep, void **fsdata)
916 {
917         struct inode *inode = mapping->host;
918         int ret, needed_blocks;
919         handle_t *handle;
920         int retries = 0;
921         struct page *page;
922         pgoff_t index;
923         unsigned from, to;
924
925         trace_ext4_write_begin(inode, pos, len, flags);
926         /*
927          * Reserve one block more for addition to orphan list in case
928          * we allocate blocks but write fails for some reason
929          */
930         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931         index = pos >> PAGE_CACHE_SHIFT;
932         from = pos & (PAGE_CACHE_SIZE - 1);
933         to = from + len;
934
935         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937                                                     flags, pagep);
938                 if (ret < 0)
939                         return ret;
940                 if (ret == 1)
941                         return 0;
942         }
943
944         /*
945          * grab_cache_page_write_begin() can take a long time if the
946          * system is thrashing due to memory pressure, or if the page
947          * is being written back.  So grab it first before we start
948          * the transaction handle.  This also allows us to allocate
949          * the page (if needed) without using GFP_NOFS.
950          */
951 retry_grab:
952         page = grab_cache_page_write_begin(mapping, index, flags);
953         if (!page)
954                 return -ENOMEM;
955         unlock_page(page);
956
957 retry_journal:
958         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959         if (IS_ERR(handle)) {
960                 page_cache_release(page);
961                 return PTR_ERR(handle);
962         }
963
964         lock_page(page);
965         if (page->mapping != mapping) {
966                 /* The page got truncated from under us */
967                 unlock_page(page);
968                 page_cache_release(page);
969                 ext4_journal_stop(handle);
970                 goto retry_grab;
971         }
972         wait_on_page_writeback(page);
973
974         if (ext4_should_dioread_nolock(inode))
975                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
976         else
977                 ret = __block_write_begin(page, pos, len, ext4_get_block);
978
979         if (!ret && ext4_should_journal_data(inode)) {
980                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
981                                              from, to, NULL,
982                                              do_journal_get_write_access);
983         }
984
985         if (ret) {
986                 unlock_page(page);
987                 /*
988                  * __block_write_begin may have instantiated a few blocks
989                  * outside i_size.  Trim these off again. Don't need
990                  * i_size_read because we hold i_mutex.
991                  *
992                  * Add inode to orphan list in case we crash before
993                  * truncate finishes
994                  */
995                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
996                         ext4_orphan_add(handle, inode);
997
998                 ext4_journal_stop(handle);
999                 if (pos + len > inode->i_size) {
1000                         ext4_truncate_failed_write(inode);
1001                         /*
1002                          * If truncate failed early the inode might
1003                          * still be on the orphan list; we need to
1004                          * make sure the inode is removed from the
1005                          * orphan list in that case.
1006                          */
1007                         if (inode->i_nlink)
1008                                 ext4_orphan_del(NULL, inode);
1009                 }
1010
1011                 if (ret == -ENOSPC &&
1012                     ext4_should_retry_alloc(inode->i_sb, &retries))
1013                         goto retry_journal;
1014                 page_cache_release(page);
1015                 return ret;
1016         }
1017         *pagep = page;
1018         return ret;
1019 }
1020
1021 /* For write_end() in data=journal mode */
1022 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1023 {
1024         int ret;
1025         if (!buffer_mapped(bh) || buffer_freed(bh))
1026                 return 0;
1027         set_buffer_uptodate(bh);
1028         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029         clear_buffer_meta(bh);
1030         clear_buffer_prio(bh);
1031         return ret;
1032 }
1033
1034 /*
1035  * We need to pick up the new inode size which generic_commit_write gave us
1036  * `file' can be NULL - eg, when called from page_symlink().
1037  *
1038  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1039  * buffers are managed internally.
1040  */
1041 static int ext4_write_end(struct file *file,
1042                           struct address_space *mapping,
1043                           loff_t pos, unsigned len, unsigned copied,
1044                           struct page *page, void *fsdata)
1045 {
1046         handle_t *handle = ext4_journal_current_handle();
1047         struct inode *inode = mapping->host;
1048         int ret = 0, ret2;
1049         int i_size_changed = 0;
1050
1051         trace_ext4_write_end(inode, pos, len, copied);
1052         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053                 ret = ext4_jbd2_file_inode(handle, inode);
1054                 if (ret) {
1055                         unlock_page(page);
1056                         page_cache_release(page);
1057                         goto errout;
1058                 }
1059         }
1060
1061         if (ext4_has_inline_data(inode))
1062                 copied = ext4_write_inline_data_end(inode, pos, len,
1063                                                     copied, page);
1064         else
1065                 copied = block_write_end(file, mapping, pos,
1066                                          len, copied, page, fsdata);
1067
1068         /*
1069          * No need to use i_size_read() here, the i_size
1070          * cannot change under us because we hole i_mutex.
1071          *
1072          * But it's important to update i_size while still holding page lock:
1073          * page writeout could otherwise come in and zero beyond i_size.
1074          */
1075         if (pos + copied > inode->i_size) {
1076                 i_size_write(inode, pos + copied);
1077                 i_size_changed = 1;
1078         }
1079
1080         if (pos + copied > EXT4_I(inode)->i_disksize) {
1081                 /* We need to mark inode dirty even if
1082                  * new_i_size is less that inode->i_size
1083                  * but greater than i_disksize. (hint delalloc)
1084                  */
1085                 ext4_update_i_disksize(inode, (pos + copied));
1086                 i_size_changed = 1;
1087         }
1088         unlock_page(page);
1089         page_cache_release(page);
1090
1091         /*
1092          * Don't mark the inode dirty under page lock. First, it unnecessarily
1093          * makes the holding time of page lock longer. Second, it forces lock
1094          * ordering of page lock and transaction start for journaling
1095          * filesystems.
1096          */
1097         if (i_size_changed)
1098                 ext4_mark_inode_dirty(handle, inode);
1099
1100         if (copied < 0)
1101                 ret = copied;
1102         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1103                 /* if we have allocated more blocks and copied
1104                  * less. We will have blocks allocated outside
1105                  * inode->i_size. So truncate them
1106                  */
1107                 ext4_orphan_add(handle, inode);
1108 errout:
1109         ret2 = ext4_journal_stop(handle);
1110         if (!ret)
1111                 ret = ret2;
1112
1113         if (pos + len > inode->i_size) {
1114                 ext4_truncate_failed_write(inode);
1115                 /*
1116                  * If truncate failed early the inode might still be
1117                  * on the orphan list; we need to make sure the inode
1118                  * is removed from the orphan list in that case.
1119                  */
1120                 if (inode->i_nlink)
1121                         ext4_orphan_del(NULL, inode);
1122         }
1123
1124         return ret ? ret : copied;
1125 }
1126
1127 static int ext4_journalled_write_end(struct file *file,
1128                                      struct address_space *mapping,
1129                                      loff_t pos, unsigned len, unsigned copied,
1130                                      struct page *page, void *fsdata)
1131 {
1132         handle_t *handle = ext4_journal_current_handle();
1133         struct inode *inode = mapping->host;
1134         int ret = 0, ret2;
1135         int partial = 0;
1136         unsigned from, to;
1137         loff_t new_i_size;
1138
1139         trace_ext4_journalled_write_end(inode, pos, len, copied);
1140         from = pos & (PAGE_CACHE_SIZE - 1);
1141         to = from + len;
1142
1143         BUG_ON(!ext4_handle_valid(handle));
1144
1145         if (ext4_has_inline_data(inode))
1146                 copied = ext4_write_inline_data_end(inode, pos, len,
1147                                                     copied, page);
1148         else {
1149                 if (copied < len) {
1150                         if (!PageUptodate(page))
1151                                 copied = 0;
1152                         page_zero_new_buffers(page, from+copied, to);
1153                 }
1154
1155                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1156                                              to, &partial, write_end_fn);
1157                 if (!partial)
1158                         SetPageUptodate(page);
1159         }
1160         new_i_size = pos + copied;
1161         if (new_i_size > inode->i_size)
1162                 i_size_write(inode, pos+copied);
1163         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1164         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1165         if (new_i_size > EXT4_I(inode)->i_disksize) {
1166                 ext4_update_i_disksize(inode, new_i_size);
1167                 ret2 = ext4_mark_inode_dirty(handle, inode);
1168                 if (!ret)
1169                         ret = ret2;
1170         }
1171
1172         unlock_page(page);
1173         page_cache_release(page);
1174         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1175                 /* if we have allocated more blocks and copied
1176                  * less. We will have blocks allocated outside
1177                  * inode->i_size. So truncate them
1178                  */
1179                 ext4_orphan_add(handle, inode);
1180
1181         ret2 = ext4_journal_stop(handle);
1182         if (!ret)
1183                 ret = ret2;
1184         if (pos + len > inode->i_size) {
1185                 ext4_truncate_failed_write(inode);
1186                 /*
1187                  * If truncate failed early the inode might still be
1188                  * on the orphan list; we need to make sure the inode
1189                  * is removed from the orphan list in that case.
1190                  */
1191                 if (inode->i_nlink)
1192                         ext4_orphan_del(NULL, inode);
1193         }
1194
1195         return ret ? ret : copied;
1196 }
1197
1198 /*
1199  * Reserve a metadata for a single block located at lblock
1200  */
1201 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1202 {
1203         int retries = 0;
1204         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205         struct ext4_inode_info *ei = EXT4_I(inode);
1206         unsigned int md_needed;
1207         ext4_lblk_t save_last_lblock;
1208         int save_len;
1209
1210         /*
1211          * recalculate the amount of metadata blocks to reserve
1212          * in order to allocate nrblocks
1213          * worse case is one extent per block
1214          */
1215 repeat:
1216         spin_lock(&ei->i_block_reservation_lock);
1217         /*
1218          * ext4_calc_metadata_amount() has side effects, which we have
1219          * to be prepared undo if we fail to claim space.
1220          */
1221         save_len = ei->i_da_metadata_calc_len;
1222         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1223         md_needed = EXT4_NUM_B2C(sbi,
1224                                  ext4_calc_metadata_amount(inode, lblock));
1225         trace_ext4_da_reserve_space(inode, md_needed);
1226
1227         /*
1228          * We do still charge estimated metadata to the sb though;
1229          * we cannot afford to run out of free blocks.
1230          */
1231         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1232                 ei->i_da_metadata_calc_len = save_len;
1233                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1234                 spin_unlock(&ei->i_block_reservation_lock);
1235                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1236                         cond_resched();
1237                         goto repeat;
1238                 }
1239                 return -ENOSPC;
1240         }
1241         ei->i_reserved_meta_blocks += md_needed;
1242         spin_unlock(&ei->i_block_reservation_lock);
1243
1244         return 0;       /* success */
1245 }
1246
1247 /*
1248  * Reserve a single cluster located at lblock
1249  */
1250 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1251 {
1252         int retries = 0;
1253         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1254         struct ext4_inode_info *ei = EXT4_I(inode);
1255         unsigned int md_needed;
1256         int ret;
1257         ext4_lblk_t save_last_lblock;
1258         int save_len;
1259
1260         /*
1261          * We will charge metadata quota at writeout time; this saves
1262          * us from metadata over-estimation, though we may go over by
1263          * a small amount in the end.  Here we just reserve for data.
1264          */
1265         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1266         if (ret)
1267                 return ret;
1268
1269         /*
1270          * recalculate the amount of metadata blocks to reserve
1271          * in order to allocate nrblocks
1272          * worse case is one extent per block
1273          */
1274 repeat:
1275         spin_lock(&ei->i_block_reservation_lock);
1276         /*
1277          * ext4_calc_metadata_amount() has side effects, which we have
1278          * to be prepared undo if we fail to claim space.
1279          */
1280         save_len = ei->i_da_metadata_calc_len;
1281         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1282         md_needed = EXT4_NUM_B2C(sbi,
1283                                  ext4_calc_metadata_amount(inode, lblock));
1284         trace_ext4_da_reserve_space(inode, md_needed);
1285
1286         /*
1287          * We do still charge estimated metadata to the sb though;
1288          * we cannot afford to run out of free blocks.
1289          */
1290         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1291                 ei->i_da_metadata_calc_len = save_len;
1292                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293                 spin_unlock(&ei->i_block_reservation_lock);
1294                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1295                         cond_resched();
1296                         goto repeat;
1297                 }
1298                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1299                 return -ENOSPC;
1300         }
1301         ei->i_reserved_data_blocks++;
1302         ei->i_reserved_meta_blocks += md_needed;
1303         spin_unlock(&ei->i_block_reservation_lock);
1304
1305         return 0;       /* success */
1306 }
1307
1308 static void ext4_da_release_space(struct inode *inode, int to_free)
1309 {
1310         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311         struct ext4_inode_info *ei = EXT4_I(inode);
1312
1313         if (!to_free)
1314                 return;         /* Nothing to release, exit */
1315
1316         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1317
1318         trace_ext4_da_release_space(inode, to_free);
1319         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1320                 /*
1321                  * if there aren't enough reserved blocks, then the
1322                  * counter is messed up somewhere.  Since this
1323                  * function is called from invalidate page, it's
1324                  * harmless to return without any action.
1325                  */
1326                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1327                          "ino %lu, to_free %d with only %d reserved "
1328                          "data blocks", inode->i_ino, to_free,
1329                          ei->i_reserved_data_blocks);
1330                 WARN_ON(1);
1331                 to_free = ei->i_reserved_data_blocks;
1332         }
1333         ei->i_reserved_data_blocks -= to_free;
1334
1335         if (ei->i_reserved_data_blocks == 0) {
1336                 /*
1337                  * We can release all of the reserved metadata blocks
1338                  * only when we have written all of the delayed
1339                  * allocation blocks.
1340                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1341                  * i_reserved_data_blocks, etc. refer to number of clusters.
1342                  */
1343                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1344                                    ei->i_reserved_meta_blocks);
1345                 ei->i_reserved_meta_blocks = 0;
1346                 ei->i_da_metadata_calc_len = 0;
1347         }
1348
1349         /* update fs dirty data blocks counter */
1350         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1351
1352         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1353
1354         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1355 }
1356
1357 static void ext4_da_page_release_reservation(struct page *page,
1358                                              unsigned int offset,
1359                                              unsigned int length)
1360 {
1361         int to_release = 0;
1362         struct buffer_head *head, *bh;
1363         unsigned int curr_off = 0;
1364         struct inode *inode = page->mapping->host;
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         unsigned int stop = offset + length;
1367         int num_clusters;
1368         ext4_fsblk_t lblk;
1369
1370         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1371
1372         head = page_buffers(page);
1373         bh = head;
1374         do {
1375                 unsigned int next_off = curr_off + bh->b_size;
1376
1377                 if (next_off > stop)
1378                         break;
1379
1380                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1381                         to_release++;
1382                         clear_buffer_delay(bh);
1383                 }
1384                 curr_off = next_off;
1385         } while ((bh = bh->b_this_page) != head);
1386
1387         if (to_release) {
1388                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1389                 ext4_es_remove_extent(inode, lblk, to_release);
1390         }
1391
1392         /* If we have released all the blocks belonging to a cluster, then we
1393          * need to release the reserved space for that cluster. */
1394         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1395         while (num_clusters > 0) {
1396                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1397                         ((num_clusters - 1) << sbi->s_cluster_bits);
1398                 if (sbi->s_cluster_ratio == 1 ||
1399                     !ext4_find_delalloc_cluster(inode, lblk))
1400                         ext4_da_release_space(inode, 1);
1401
1402                 num_clusters--;
1403         }
1404 }
1405
1406 /*
1407  * Delayed allocation stuff
1408  */
1409
1410 struct mpage_da_data {
1411         struct inode *inode;
1412         struct writeback_control *wbc;
1413
1414         pgoff_t first_page;     /* The first page to write */
1415         pgoff_t next_page;      /* Current page to examine */
1416         pgoff_t last_page;      /* Last page to examine */
1417         /*
1418          * Extent to map - this can be after first_page because that can be
1419          * fully mapped. We somewhat abuse m_flags to store whether the extent
1420          * is delalloc or unwritten.
1421          */
1422         struct ext4_map_blocks map;
1423         struct ext4_io_submit io_submit;        /* IO submission data */
1424 };
1425
1426 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1427                                        bool invalidate)
1428 {
1429         int nr_pages, i;
1430         pgoff_t index, end;
1431         struct pagevec pvec;
1432         struct inode *inode = mpd->inode;
1433         struct address_space *mapping = inode->i_mapping;
1434
1435         /* This is necessary when next_page == 0. */
1436         if (mpd->first_page >= mpd->next_page)
1437                 return;
1438
1439         index = mpd->first_page;
1440         end   = mpd->next_page - 1;
1441         if (invalidate) {
1442                 ext4_lblk_t start, last;
1443                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1444                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445                 ext4_es_remove_extent(inode, start, last - start + 1);
1446         }
1447
1448         pagevec_init(&pvec, 0);
1449         while (index <= end) {
1450                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1451                 if (nr_pages == 0)
1452                         break;
1453                 for (i = 0; i < nr_pages; i++) {
1454                         struct page *page = pvec.pages[i];
1455                         if (page->index > end)
1456                                 break;
1457                         BUG_ON(!PageLocked(page));
1458                         BUG_ON(PageWriteback(page));
1459                         if (invalidate) {
1460                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1461                                 ClearPageUptodate(page);
1462                         }
1463                         unlock_page(page);
1464                 }
1465                 index = pvec.pages[nr_pages - 1]->index + 1;
1466                 pagevec_release(&pvec);
1467         }
1468 }
1469
1470 static void ext4_print_free_blocks(struct inode *inode)
1471 {
1472         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1473         struct super_block *sb = inode->i_sb;
1474         struct ext4_inode_info *ei = EXT4_I(inode);
1475
1476         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1477                EXT4_C2B(EXT4_SB(inode->i_sb),
1478                         ext4_count_free_clusters(sb)));
1479         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1480         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1481                (long long) EXT4_C2B(EXT4_SB(sb),
1482                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1483         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1484                (long long) EXT4_C2B(EXT4_SB(sb),
1485                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1486         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1487         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1488                  ei->i_reserved_data_blocks);
1489         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1490                ei->i_reserved_meta_blocks);
1491         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1492                ei->i_allocated_meta_blocks);
1493         return;
1494 }
1495
1496 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1497 {
1498         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1499 }
1500
1501 /*
1502  * This function is grabs code from the very beginning of
1503  * ext4_map_blocks, but assumes that the caller is from delayed write
1504  * time. This function looks up the requested blocks and sets the
1505  * buffer delay bit under the protection of i_data_sem.
1506  */
1507 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1508                               struct ext4_map_blocks *map,
1509                               struct buffer_head *bh)
1510 {
1511         struct extent_status es;
1512         int retval;
1513         sector_t invalid_block = ~((sector_t) 0xffff);
1514 #ifdef ES_AGGRESSIVE_TEST
1515         struct ext4_map_blocks orig_map;
1516
1517         memcpy(&orig_map, map, sizeof(*map));
1518 #endif
1519
1520         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1521                 invalid_block = ~0;
1522
1523         map->m_flags = 0;
1524         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1525                   "logical block %lu\n", inode->i_ino, map->m_len,
1526                   (unsigned long) map->m_lblk);
1527
1528         /* Lookup extent status tree firstly */
1529         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1530
1531                 if (ext4_es_is_hole(&es)) {
1532                         retval = 0;
1533                         down_read((&EXT4_I(inode)->i_data_sem));
1534                         goto add_delayed;
1535                 }
1536
1537                 /*
1538                  * Delayed extent could be allocated by fallocate.
1539                  * So we need to check it.
1540                  */
1541                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1542                         map_bh(bh, inode->i_sb, invalid_block);
1543                         set_buffer_new(bh);
1544                         set_buffer_delay(bh);
1545                         return 0;
1546                 }
1547
1548                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1549                 retval = es.es_len - (iblock - es.es_lblk);
1550                 if (retval > map->m_len)
1551                         retval = map->m_len;
1552                 map->m_len = retval;
1553                 if (ext4_es_is_written(&es))
1554                         map->m_flags |= EXT4_MAP_MAPPED;
1555                 else if (ext4_es_is_unwritten(&es))
1556                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1557                 else
1558                         BUG_ON(1);
1559
1560 #ifdef ES_AGGRESSIVE_TEST
1561                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1562 #endif
1563                 return retval;
1564         }
1565
1566         /*
1567          * Try to see if we can get the block without requesting a new
1568          * file system block.
1569          */
1570         down_read((&EXT4_I(inode)->i_data_sem));
1571         if (ext4_has_inline_data(inode)) {
1572                 /*
1573                  * We will soon create blocks for this page, and let
1574                  * us pretend as if the blocks aren't allocated yet.
1575                  * In case of clusters, we have to handle the work
1576                  * of mapping from cluster so that the reserved space
1577                  * is calculated properly.
1578                  */
1579                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1580                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1581                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1582                 retval = 0;
1583         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1584                 retval = ext4_ext_map_blocks(NULL, inode, map,
1585                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1586         else
1587                 retval = ext4_ind_map_blocks(NULL, inode, map,
1588                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1589
1590 add_delayed:
1591         if (retval == 0) {
1592                 int ret;
1593                 /*
1594                  * XXX: __block_prepare_write() unmaps passed block,
1595                  * is it OK?
1596                  */
1597                 /*
1598                  * If the block was allocated from previously allocated cluster,
1599                  * then we don't need to reserve it again. However we still need
1600                  * to reserve metadata for every block we're going to write.
1601                  */
1602                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1603                         ret = ext4_da_reserve_space(inode, iblock);
1604                         if (ret) {
1605                                 /* not enough space to reserve */
1606                                 retval = ret;
1607                                 goto out_unlock;
1608                         }
1609                 } else {
1610                         ret = ext4_da_reserve_metadata(inode, iblock);
1611                         if (ret) {
1612                                 /* not enough space to reserve */
1613                                 retval = ret;
1614                                 goto out_unlock;
1615                         }
1616                 }
1617
1618                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1619                                             ~0, EXTENT_STATUS_DELAYED);
1620                 if (ret) {
1621                         retval = ret;
1622                         goto out_unlock;
1623                 }
1624
1625                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1626                  * and it should not appear on the bh->b_state.
1627                  */
1628                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1629
1630                 map_bh(bh, inode->i_sb, invalid_block);
1631                 set_buffer_new(bh);
1632                 set_buffer_delay(bh);
1633         } else if (retval > 0) {
1634                 int ret;
1635                 unsigned long long status;
1636
1637 #ifdef ES_AGGRESSIVE_TEST
1638                 if (retval != map->m_len) {
1639                         printk("ES len assertation failed for inode: %lu "
1640                                "retval %d != map->m_len %d "
1641                                "in %s (lookup)\n", inode->i_ino, retval,
1642                                map->m_len, __func__);
1643                 }
1644 #endif
1645
1646                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1647                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1648                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1649                                             map->m_pblk, status);
1650                 if (ret != 0)
1651                         retval = ret;
1652         }
1653
1654 out_unlock:
1655         up_read((&EXT4_I(inode)->i_data_sem));
1656
1657         return retval;
1658 }
1659
1660 /*
1661  * This is a special get_blocks_t callback which is used by
1662  * ext4_da_write_begin().  It will either return mapped block or
1663  * reserve space for a single block.
1664  *
1665  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1666  * We also have b_blocknr = -1 and b_bdev initialized properly
1667  *
1668  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1669  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1670  * initialized properly.
1671  */
1672 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1673                            struct buffer_head *bh, int create)
1674 {
1675         struct ext4_map_blocks map;
1676         int ret = 0;
1677
1678         BUG_ON(create == 0);
1679         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1680
1681         map.m_lblk = iblock;
1682         map.m_len = 1;
1683
1684         /*
1685          * first, we need to know whether the block is allocated already
1686          * preallocated blocks are unmapped but should treated
1687          * the same as allocated blocks.
1688          */
1689         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1690         if (ret <= 0)
1691                 return ret;
1692
1693         map_bh(bh, inode->i_sb, map.m_pblk);
1694         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1695
1696         if (buffer_unwritten(bh)) {
1697                 /* A delayed write to unwritten bh should be marked
1698                  * new and mapped.  Mapped ensures that we don't do
1699                  * get_block multiple times when we write to the same
1700                  * offset and new ensures that we do proper zero out
1701                  * for partial write.
1702                  */
1703                 set_buffer_new(bh);
1704                 set_buffer_mapped(bh);
1705         }
1706         return 0;
1707 }
1708
1709 static int bget_one(handle_t *handle, struct buffer_head *bh)
1710 {
1711         get_bh(bh);
1712         return 0;
1713 }
1714
1715 static int bput_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717         put_bh(bh);
1718         return 0;
1719 }
1720
1721 static int __ext4_journalled_writepage(struct page *page,
1722                                        unsigned int len)
1723 {
1724         struct address_space *mapping = page->mapping;
1725         struct inode *inode = mapping->host;
1726         struct buffer_head *page_bufs = NULL;
1727         handle_t *handle = NULL;
1728         int ret = 0, err = 0;
1729         int inline_data = ext4_has_inline_data(inode);
1730         struct buffer_head *inode_bh = NULL;
1731
1732         ClearPageChecked(page);
1733
1734         if (inline_data) {
1735                 BUG_ON(page->index != 0);
1736                 BUG_ON(len > ext4_get_max_inline_size(inode));
1737                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1738                 if (inode_bh == NULL)
1739                         goto out;
1740         } else {
1741                 page_bufs = page_buffers(page);
1742                 if (!page_bufs) {
1743                         BUG();
1744                         goto out;
1745                 }
1746                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1747                                        NULL, bget_one);
1748         }
1749         /* As soon as we unlock the page, it can go away, but we have
1750          * references to buffers so we are safe */
1751         unlock_page(page);
1752
1753         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1754                                     ext4_writepage_trans_blocks(inode));
1755         if (IS_ERR(handle)) {
1756                 ret = PTR_ERR(handle);
1757                 goto out;
1758         }
1759
1760         BUG_ON(!ext4_handle_valid(handle));
1761
1762         if (inline_data) {
1763                 ret = ext4_journal_get_write_access(handle, inode_bh);
1764
1765                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1766
1767         } else {
1768                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1769                                              do_journal_get_write_access);
1770
1771                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772                                              write_end_fn);
1773         }
1774         if (ret == 0)
1775                 ret = err;
1776         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1777         err = ext4_journal_stop(handle);
1778         if (!ret)
1779                 ret = err;
1780
1781         if (!ext4_has_inline_data(inode))
1782                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1783                                        NULL, bput_one);
1784         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1785 out:
1786         brelse(inode_bh);
1787         return ret;
1788 }
1789
1790 /*
1791  * Note that we don't need to start a transaction unless we're journaling data
1792  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1793  * need to file the inode to the transaction's list in ordered mode because if
1794  * we are writing back data added by write(), the inode is already there and if
1795  * we are writing back data modified via mmap(), no one guarantees in which
1796  * transaction the data will hit the disk. In case we are journaling data, we
1797  * cannot start transaction directly because transaction start ranks above page
1798  * lock so we have to do some magic.
1799  *
1800  * This function can get called via...
1801  *   - ext4_da_writepages after taking page lock (have journal handle)
1802  *   - journal_submit_inode_data_buffers (no journal handle)
1803  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1804  *   - grab_page_cache when doing write_begin (have journal handle)
1805  *
1806  * We don't do any block allocation in this function. If we have page with
1807  * multiple blocks we need to write those buffer_heads that are mapped. This
1808  * is important for mmaped based write. So if we do with blocksize 1K
1809  * truncate(f, 1024);
1810  * a = mmap(f, 0, 4096);
1811  * a[0] = 'a';
1812  * truncate(f, 4096);
1813  * we have in the page first buffer_head mapped via page_mkwrite call back
1814  * but other buffer_heads would be unmapped but dirty (dirty done via the
1815  * do_wp_page). So writepage should write the first block. If we modify
1816  * the mmap area beyond 1024 we will again get a page_fault and the
1817  * page_mkwrite callback will do the block allocation and mark the
1818  * buffer_heads mapped.
1819  *
1820  * We redirty the page if we have any buffer_heads that is either delay or
1821  * unwritten in the page.
1822  *
1823  * We can get recursively called as show below.
1824  *
1825  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1826  *              ext4_writepage()
1827  *
1828  * But since we don't do any block allocation we should not deadlock.
1829  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1830  */
1831 static int ext4_writepage(struct page *page,
1832                           struct writeback_control *wbc)
1833 {
1834         int ret = 0;
1835         loff_t size;
1836         unsigned int len;
1837         struct buffer_head *page_bufs = NULL;
1838         struct inode *inode = page->mapping->host;
1839         struct ext4_io_submit io_submit;
1840
1841         trace_ext4_writepage(page);
1842         size = i_size_read(inode);
1843         if (page->index == size >> PAGE_CACHE_SHIFT)
1844                 len = size & ~PAGE_CACHE_MASK;
1845         else
1846                 len = PAGE_CACHE_SIZE;
1847
1848         page_bufs = page_buffers(page);
1849         /*
1850          * We cannot do block allocation or other extent handling in this
1851          * function. If there are buffers needing that, we have to redirty
1852          * the page. But we may reach here when we do a journal commit via
1853          * journal_submit_inode_data_buffers() and in that case we must write
1854          * allocated buffers to achieve data=ordered mode guarantees.
1855          */
1856         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1857                                    ext4_bh_delay_or_unwritten)) {
1858                 redirty_page_for_writepage(wbc, page);
1859                 if (current->flags & PF_MEMALLOC) {
1860                         /*
1861                          * For memory cleaning there's no point in writing only
1862                          * some buffers. So just bail out. Warn if we came here
1863                          * from direct reclaim.
1864                          */
1865                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1866                                                         == PF_MEMALLOC);
1867                         unlock_page(page);
1868                         return 0;
1869                 }
1870         }
1871
1872         if (PageChecked(page) && ext4_should_journal_data(inode))
1873                 /*
1874                  * It's mmapped pagecache.  Add buffers and journal it.  There
1875                  * doesn't seem much point in redirtying the page here.
1876                  */
1877                 return __ext4_journalled_writepage(page, len);
1878
1879         ext4_io_submit_init(&io_submit, wbc);
1880         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1881         if (!io_submit.io_end) {
1882                 redirty_page_for_writepage(wbc, page);
1883                 unlock_page(page);
1884                 return -ENOMEM;
1885         }
1886         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1887         ext4_io_submit(&io_submit);
1888         /* Drop io_end reference we got from init */
1889         ext4_put_io_end_defer(io_submit.io_end);
1890         return ret;
1891 }
1892
1893 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1894
1895 /*
1896  * mballoc gives us at most this number of blocks...
1897  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1898  * The rest of mballoc seems to handle chunks upto full group size.
1899  */
1900 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1901
1902 /*
1903  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1904  *
1905  * @mpd - extent of blocks
1906  * @lblk - logical number of the block in the file
1907  * @b_state - b_state of the buffer head added
1908  *
1909  * the function is used to collect contig. blocks in same state
1910  */
1911 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1912                                   unsigned long b_state)
1913 {
1914         struct ext4_map_blocks *map = &mpd->map;
1915
1916         /* Don't go larger than mballoc is willing to allocate */
1917         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1918                 return 0;
1919
1920         /* First block in the extent? */
1921         if (map->m_len == 0) {
1922                 map->m_lblk = lblk;
1923                 map->m_len = 1;
1924                 map->m_flags = b_state & BH_FLAGS;
1925                 return 1;
1926         }
1927
1928         /* Can we merge the block to our big extent? */
1929         if (lblk == map->m_lblk + map->m_len &&
1930             (b_state & BH_FLAGS) == map->m_flags) {
1931                 map->m_len++;
1932                 return 1;
1933         }
1934         return 0;
1935 }
1936
1937 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1938                                     struct buffer_head *head,
1939                                     struct buffer_head *bh,
1940                                     ext4_lblk_t lblk)
1941 {
1942         struct inode *inode = mpd->inode;
1943         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1944                                                         >> inode->i_blkbits;
1945
1946         do {
1947                 BUG_ON(buffer_locked(bh));
1948
1949                 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1950                     (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1951                     lblk >= blocks) {
1952                         /* Found extent to map? */
1953                         if (mpd->map.m_len)
1954                                 return false;
1955                         if (lblk >= blocks)
1956                                 return true;
1957                         continue;
1958                 }
1959                 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1960                         return false;
1961         } while (lblk++, (bh = bh->b_this_page) != head);
1962         return true;
1963 }
1964
1965 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1966 {
1967         int len;
1968         loff_t size = i_size_read(mpd->inode);
1969         int err;
1970
1971         BUG_ON(page->index != mpd->first_page);
1972         if (page->index == size >> PAGE_CACHE_SHIFT)
1973                 len = size & ~PAGE_CACHE_MASK;
1974         else
1975                 len = PAGE_CACHE_SIZE;
1976         clear_page_dirty_for_io(page);
1977         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1978         if (!err)
1979                 mpd->wbc->nr_to_write--;
1980         mpd->first_page++;
1981
1982         return err;
1983 }
1984
1985 /*
1986  * mpage_map_buffers - update buffers corresponding to changed extent and
1987  *                     submit fully mapped pages for IO
1988  *
1989  * @mpd - description of extent to map, on return next extent to map
1990  *
1991  * Scan buffers corresponding to changed extent (we expect corresponding pages
1992  * to be already locked) and update buffer state according to new extent state.
1993  * We map delalloc buffers to their physical location, clear unwritten bits,
1994  * and mark buffers as uninit when we perform writes to uninitialized extents
1995  * and do extent conversion after IO is finished. If the last page is not fully
1996  * mapped, we update @map to the next extent in the last page that needs
1997  * mapping. Otherwise we submit the page for IO.
1998  */
1999 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2000 {
2001         struct pagevec pvec;
2002         int nr_pages, i;
2003         struct inode *inode = mpd->inode;
2004         struct buffer_head *head, *bh;
2005         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2006         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2007                                                         >> inode->i_blkbits;
2008         pgoff_t start, end;
2009         ext4_lblk_t lblk;
2010         sector_t pblock;
2011         int err;
2012
2013         start = mpd->map.m_lblk >> bpp_bits;
2014         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2015         lblk = start << bpp_bits;
2016         pblock = mpd->map.m_pblk;
2017
2018         pagevec_init(&pvec, 0);
2019         while (start <= end) {
2020                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2021                                           PAGEVEC_SIZE);
2022                 if (nr_pages == 0)
2023                         break;
2024                 for (i = 0; i < nr_pages; i++) {
2025                         struct page *page = pvec.pages[i];
2026
2027                         if (page->index > end)
2028                                 break;
2029                         /* Upto 'end' pages must be contiguous */
2030                         BUG_ON(page->index != start);
2031                         bh = head = page_buffers(page);
2032                         do {
2033                                 if (lblk < mpd->map.m_lblk)
2034                                         continue;
2035                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2036                                         /*
2037                                          * Buffer after end of mapped extent.
2038                                          * Find next buffer in the page to map.
2039                                          */
2040                                         mpd->map.m_len = 0;
2041                                         mpd->map.m_flags = 0;
2042                                         add_page_bufs_to_extent(mpd, head, bh,
2043                                                                 lblk);
2044                                         pagevec_release(&pvec);
2045                                         return 0;
2046                                 }
2047                                 if (buffer_delay(bh)) {
2048                                         clear_buffer_delay(bh);
2049                                         bh->b_blocknr = pblock++;
2050                                 }
2051                                 clear_buffer_unwritten(bh);
2052                         } while (++lblk < blocks &&
2053                                  (bh = bh->b_this_page) != head);
2054
2055                         /*
2056                          * FIXME: This is going to break if dioread_nolock
2057                          * supports blocksize < pagesize as we will try to
2058                          * convert potentially unmapped parts of inode.
2059                          */
2060                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2061                         /* Page fully mapped - let IO run! */
2062                         err = mpage_submit_page(mpd, page);
2063                         if (err < 0) {
2064                                 pagevec_release(&pvec);
2065                                 return err;
2066                         }
2067                         start++;
2068                 }
2069                 pagevec_release(&pvec);
2070         }
2071         /* Extent fully mapped and matches with page boundary. We are done. */
2072         mpd->map.m_len = 0;
2073         mpd->map.m_flags = 0;
2074         return 0;
2075 }
2076
2077 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2078 {
2079         struct inode *inode = mpd->inode;
2080         struct ext4_map_blocks *map = &mpd->map;
2081         int get_blocks_flags;
2082         int err;
2083
2084         trace_ext4_da_write_pages_extent(inode, map);
2085         /*
2086          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2087          * to convert an uninitialized extent to be initialized (in the case
2088          * where we have written into one or more preallocated blocks).  It is
2089          * possible that we're going to need more metadata blocks than
2090          * previously reserved. However we must not fail because we're in
2091          * writeback and there is nothing we can do about it so it might result
2092          * in data loss.  So use reserved blocks to allocate metadata if
2093          * possible.
2094          *
2095          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2096          * in question are delalloc blocks.  This affects functions in many
2097          * different parts of the allocation call path.  This flag exists
2098          * primarily because we don't want to change *many* call functions, so
2099          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2100          * once the inode's allocation semaphore is taken.
2101          */
2102         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2103                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2104         if (ext4_should_dioread_nolock(inode))
2105                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2106         if (map->m_flags & (1 << BH_Delay))
2107                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2108
2109         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2110         if (err < 0)
2111                 return err;
2112         if (map->m_flags & EXT4_MAP_UNINIT) {
2113                 if (!mpd->io_submit.io_end->handle &&
2114                     ext4_handle_valid(handle)) {
2115                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2116                         handle->h_rsv_handle = NULL;
2117                 }
2118                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2119         }
2120
2121         BUG_ON(map->m_len == 0);
2122         if (map->m_flags & EXT4_MAP_NEW) {
2123                 struct block_device *bdev = inode->i_sb->s_bdev;
2124                 int i;
2125
2126                 for (i = 0; i < map->m_len; i++)
2127                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2128         }
2129         return 0;
2130 }
2131
2132 /*
2133  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134  *                               mpd->len and submit pages underlying it for IO
2135  *
2136  * @handle - handle for journal operations
2137  * @mpd - extent to map
2138  *
2139  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2140  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2141  * them to initialized or split the described range from larger unwritten
2142  * extent. Note that we need not map all the described range since allocation
2143  * can return less blocks or the range is covered by more unwritten extents. We
2144  * cannot map more because we are limited by reserved transaction credits. On
2145  * the other hand we always make sure that the last touched page is fully
2146  * mapped so that it can be written out (and thus forward progress is
2147  * guaranteed). After mapping we submit all mapped pages for IO.
2148  */
2149 static int mpage_map_and_submit_extent(handle_t *handle,
2150                                        struct mpage_da_data *mpd)
2151 {
2152         struct inode *inode = mpd->inode;
2153         struct ext4_map_blocks *map = &mpd->map;
2154         int err;
2155         loff_t disksize;
2156
2157         mpd->io_submit.io_end->offset =
2158                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2159         while (map->m_len) {
2160                 err = mpage_map_one_extent(handle, mpd);
2161                 if (err < 0) {
2162                         struct super_block *sb = inode->i_sb;
2163
2164                         /*
2165                          * Need to commit transaction to free blocks. Let upper
2166                          * layers sort it out.
2167                          */
2168                         if (err == -ENOSPC && ext4_count_free_clusters(sb))
2169                                 return -ENOSPC;
2170
2171                         if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2172                                 ext4_msg(sb, KERN_CRIT,
2173                                          "Delayed block allocation failed for "
2174                                          "inode %lu at logical offset %llu with"
2175                                          " max blocks %u with error %d",
2176                                          inode->i_ino,
2177                                          (unsigned long long)map->m_lblk,
2178                                          (unsigned)map->m_len, err);
2179                                 ext4_msg(sb, KERN_CRIT,
2180                                          "This should not happen!! Data will "
2181                                          "be lost\n");
2182                                 if (err == -ENOSPC)
2183                                         ext4_print_free_blocks(inode);
2184                         }
2185                         /* invalidate all the pages */
2186                         mpage_release_unused_pages(mpd, true);
2187                         return err;
2188                 }
2189                 /*
2190                  * Update buffer state, submit mapped pages, and get us new
2191                  * extent to map
2192                  */
2193                 err = mpage_map_and_submit_buffers(mpd);
2194                 if (err < 0)
2195                         return err;
2196         }
2197
2198         /* Update on-disk size after IO is submitted */
2199         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2200         if (disksize > i_size_read(inode))
2201                 disksize = i_size_read(inode);
2202         if (disksize > EXT4_I(inode)->i_disksize) {
2203                 int err2;
2204
2205                 ext4_update_i_disksize(inode, disksize);
2206                 err2 = ext4_mark_inode_dirty(handle, inode);
2207                 if (err2)
2208                         ext4_error(inode->i_sb,
2209                                    "Failed to mark inode %lu dirty",
2210                                    inode->i_ino);
2211                 if (!err)
2212                         err = err2;
2213         }
2214         return err;
2215 }
2216
2217 /*
2218  * Calculate the total number of credits to reserve for one writepages
2219  * iteration. This is called from ext4_da_writepages(). We map an extent of
2220  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2221  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2222  * bpp - 1 blocks in bpp different extents.
2223  */
2224 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2225 {
2226         int bpp = ext4_journal_blocks_per_page(inode);
2227
2228         return ext4_meta_trans_blocks(inode,
2229                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2230 }
2231
2232 /*
2233  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2234  *                               and underlying extent to map
2235  *
2236  * @mpd - where to look for pages
2237  *
2238  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2239  * IO immediately. When we find a page which isn't mapped we start accumulating
2240  * extent of buffers underlying these pages that needs mapping (formed by
2241  * either delayed or unwritten buffers). We also lock the pages containing
2242  * these buffers. The extent found is returned in @mpd structure (starting at
2243  * mpd->lblk with length mpd->len blocks).
2244  *
2245  * Note that this function can attach bios to one io_end structure which are
2246  * neither logically nor physically contiguous. Although it may seem as an
2247  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2248  * case as we need to track IO to all buffers underlying a page in one io_end.
2249  */
2250 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2251 {
2252         struct address_space *mapping = mpd->inode->i_mapping;
2253         struct pagevec pvec;
2254         unsigned int nr_pages;
2255         pgoff_t index = mpd->first_page;
2256         pgoff_t end = mpd->last_page;
2257         int tag;
2258         int i, err = 0;
2259         int blkbits = mpd->inode->i_blkbits;
2260         ext4_lblk_t lblk;
2261         struct buffer_head *head;
2262
2263         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2264                 tag = PAGECACHE_TAG_TOWRITE;
2265         else
2266                 tag = PAGECACHE_TAG_DIRTY;
2267
2268         pagevec_init(&pvec, 0);
2269         mpd->map.m_len = 0;
2270         mpd->next_page = index;
2271         while (index <= end) {
2272                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2273                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2274                 if (nr_pages == 0)
2275                         goto out;
2276
2277                 for (i = 0; i < nr_pages; i++) {
2278                         struct page *page = pvec.pages[i];
2279
2280                         /*
2281                          * At this point, the page may be truncated or
2282                          * invalidated (changing page->mapping to NULL), or
2283                          * even swizzled back from swapper_space to tmpfs file
2284                          * mapping. However, page->index will not change
2285                          * because we have a reference on the page.
2286                          */
2287                         if (page->index > end)
2288                                 goto out;
2289
2290                         /* If we can't merge this page, we are done. */
2291                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2292                                 goto out;
2293
2294                         lock_page(page);
2295                         /*
2296                          * If the page is no longer dirty, or its mapping no
2297                          * longer corresponds to inode we are writing (which
2298                          * means it has been truncated or invalidated), or the
2299                          * page is already under writeback and we are not doing
2300                          * a data integrity writeback, skip the page
2301                          */
2302                         if (!PageDirty(page) ||
2303                             (PageWriteback(page) &&
2304                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2305                             unlikely(page->mapping != mapping)) {
2306                                 unlock_page(page);
2307                                 continue;
2308                         }
2309
2310                         wait_on_page_writeback(page);
2311                         BUG_ON(PageWriteback(page));
2312
2313                         if (mpd->map.m_len == 0)
2314                                 mpd->first_page = page->index;
2315                         mpd->next_page = page->index + 1;
2316                         /* Add all dirty buffers to mpd */
2317                         lblk = ((ext4_lblk_t)page->index) <<
2318                                 (PAGE_CACHE_SHIFT - blkbits);
2319                         head = page_buffers(page);
2320                         if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2321                                 goto out;
2322                         /* So far everything mapped? Submit the page for IO. */
2323                         if (mpd->map.m_len == 0) {
2324                                 err = mpage_submit_page(mpd, page);
2325                                 if (err < 0)
2326                                         goto out;
2327                         }
2328
2329                         /*
2330                          * Accumulated enough dirty pages? This doesn't apply
2331                          * to WB_SYNC_ALL mode. For integrity sync we have to
2332                          * keep going because someone may be concurrently
2333                          * dirtying pages, and we might have synced a lot of
2334                          * newly appeared dirty pages, but have not synced all
2335                          * of the old dirty pages.
2336                          */
2337                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2338                             mpd->next_page - mpd->first_page >=
2339                                                         mpd->wbc->nr_to_write)
2340                                 goto out;
2341                 }
2342                 pagevec_release(&pvec);
2343                 cond_resched();
2344         }
2345         return 0;
2346 out:
2347         pagevec_release(&pvec);
2348         return err;
2349 }
2350
2351 static int ext4_da_writepages(struct address_space *mapping,
2352                               struct writeback_control *wbc)
2353 {
2354         pgoff_t writeback_index = 0;
2355         long nr_to_write = wbc->nr_to_write;
2356         int range_whole = 0;
2357         int cycled = 1;
2358         handle_t *handle = NULL;
2359         struct mpage_da_data mpd;
2360         struct inode *inode = mapping->host;
2361         int needed_blocks, rsv_blocks = 0, ret = 0;
2362         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2363         bool done;
2364         struct blk_plug plug;
2365
2366         trace_ext4_da_writepages(inode, wbc);
2367
2368         /*
2369          * No pages to write? This is mainly a kludge to avoid starting
2370          * a transaction for special inodes like journal inode on last iput()
2371          * because that could violate lock ordering on umount
2372          */
2373         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2374                 return 0;
2375
2376         /*
2377          * If the filesystem has aborted, it is read-only, so return
2378          * right away instead of dumping stack traces later on that
2379          * will obscure the real source of the problem.  We test
2380          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2381          * the latter could be true if the filesystem is mounted
2382          * read-only, and in that case, ext4_da_writepages should
2383          * *never* be called, so if that ever happens, we would want
2384          * the stack trace.
2385          */
2386         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2387                 return -EROFS;
2388
2389         if (ext4_should_dioread_nolock(inode)) {
2390                 /*
2391                  * We may need to convert upto one extent per block in
2392                  * the page and we may dirty the inode.
2393                  */
2394                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2395         }
2396
2397         /*
2398          * If we have inline data and arrive here, it means that
2399          * we will soon create the block for the 1st page, so
2400          * we'd better clear the inline data here.
2401          */
2402         if (ext4_has_inline_data(inode)) {
2403                 /* Just inode will be modified... */
2404                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2405                 if (IS_ERR(handle)) {
2406                         ret = PTR_ERR(handle);
2407                         goto out_writepages;
2408                 }
2409                 BUG_ON(ext4_test_inode_state(inode,
2410                                 EXT4_STATE_MAY_INLINE_DATA));
2411                 ext4_destroy_inline_data(handle, inode);
2412                 ext4_journal_stop(handle);
2413         }
2414
2415         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2416                 range_whole = 1;
2417
2418         if (wbc->range_cyclic) {
2419                 writeback_index = mapping->writeback_index;
2420                 if (writeback_index)
2421                         cycled = 0;
2422                 mpd.first_page = writeback_index;
2423                 mpd.last_page = -1;
2424         } else {
2425                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2426                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2427         }
2428
2429         mpd.inode = inode;
2430         mpd.wbc = wbc;
2431         ext4_io_submit_init(&mpd.io_submit, wbc);
2432 retry:
2433         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2434                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2435         done = false;
2436         blk_start_plug(&plug);
2437         while (!done && mpd.first_page <= mpd.last_page) {
2438                 /* For each extent of pages we use new io_end */
2439                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2440                 if (!mpd.io_submit.io_end) {
2441                         ret = -ENOMEM;
2442                         break;
2443                 }
2444
2445                 /*
2446                  * We have two constraints: We find one extent to map and we
2447                  * must always write out whole page (makes a difference when
2448                  * blocksize < pagesize) so that we don't block on IO when we
2449                  * try to write out the rest of the page. Journalled mode is
2450                  * not supported by delalloc.
2451                  */
2452                 BUG_ON(ext4_should_journal_data(inode));
2453                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2454
2455                 /* start a new transaction */
2456                 handle = ext4_journal_start_with_reserve(inode,
2457                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2458                 if (IS_ERR(handle)) {
2459                         ret = PTR_ERR(handle);
2460                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2461                                "%ld pages, ino %lu; err %d", __func__,
2462                                 wbc->nr_to_write, inode->i_ino, ret);
2463                         /* Release allocated io_end */
2464                         ext4_put_io_end(mpd.io_submit.io_end);
2465                         break;
2466                 }
2467
2468                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2469                 ret = mpage_prepare_extent_to_map(&mpd);
2470                 if (!ret) {
2471                         if (mpd.map.m_len)
2472                                 ret = mpage_map_and_submit_extent(handle, &mpd);
2473                         else {
2474                                 /*
2475                                  * We scanned the whole range (or exhausted
2476                                  * nr_to_write), submitted what was mapped and
2477                                  * didn't find anything needing mapping. We are
2478                                  * done.
2479                                  */
2480                                 done = true;
2481                         }
2482                 }
2483                 ext4_journal_stop(handle);
2484                 /* Submit prepared bio */
2485                 ext4_io_submit(&mpd.io_submit);
2486                 /* Unlock pages we didn't use */
2487                 mpage_release_unused_pages(&mpd, false);
2488                 /* Drop our io_end reference we got from init */
2489                 ext4_put_io_end(mpd.io_submit.io_end);
2490
2491                 if (ret == -ENOSPC && sbi->s_journal) {
2492                         /*
2493                          * Commit the transaction which would
2494                          * free blocks released in the transaction
2495                          * and try again
2496                          */
2497                         jbd2_journal_force_commit_nested(sbi->s_journal);
2498                         ret = 0;
2499                         continue;
2500                 }
2501                 /* Fatal error - ENOMEM, EIO... */
2502                 if (ret)
2503                         break;
2504         }
2505         blk_finish_plug(&plug);
2506         if (!ret && !cycled) {
2507                 cycled = 1;
2508                 mpd.last_page = writeback_index - 1;
2509                 mpd.first_page = 0;
2510                 goto retry;
2511         }
2512
2513         /* Update index */
2514         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2515                 /*
2516                  * Set the writeback_index so that range_cyclic
2517                  * mode will write it back later
2518                  */
2519                 mapping->writeback_index = mpd.first_page;
2520
2521 out_writepages:
2522         trace_ext4_da_writepages_result(inode, wbc, ret,
2523                                         nr_to_write - wbc->nr_to_write);
2524         return ret;
2525 }
2526
2527 static int ext4_nonda_switch(struct super_block *sb)
2528 {
2529         s64 free_clusters, dirty_clusters;
2530         struct ext4_sb_info *sbi = EXT4_SB(sb);
2531
2532         /*
2533          * switch to non delalloc mode if we are running low
2534          * on free block. The free block accounting via percpu
2535          * counters can get slightly wrong with percpu_counter_batch getting
2536          * accumulated on each CPU without updating global counters
2537          * Delalloc need an accurate free block accounting. So switch
2538          * to non delalloc when we are near to error range.
2539          */
2540         free_clusters =
2541                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2542         dirty_clusters =
2543                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2544         /*
2545          * Start pushing delalloc when 1/2 of free blocks are dirty.
2546          */
2547         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2548                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2549
2550         if (2 * free_clusters < 3 * dirty_clusters ||
2551             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2552                 /*
2553                  * free block count is less than 150% of dirty blocks
2554                  * or free blocks is less than watermark
2555                  */
2556                 return 1;
2557         }
2558         return 0;
2559 }
2560
2561 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2562                                loff_t pos, unsigned len, unsigned flags,
2563                                struct page **pagep, void **fsdata)
2564 {
2565         int ret, retries = 0;
2566         struct page *page;
2567         pgoff_t index;
2568         struct inode *inode = mapping->host;
2569         handle_t *handle;
2570
2571         index = pos >> PAGE_CACHE_SHIFT;
2572
2573         if (ext4_nonda_switch(inode->i_sb)) {
2574                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2575                 return ext4_write_begin(file, mapping, pos,
2576                                         len, flags, pagep, fsdata);
2577         }
2578         *fsdata = (void *)0;
2579         trace_ext4_da_write_begin(inode, pos, len, flags);
2580
2581         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2582                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2583                                                       pos, len, flags,
2584                                                       pagep, fsdata);
2585                 if (ret < 0)
2586                         return ret;
2587                 if (ret == 1)
2588                         return 0;
2589         }
2590
2591         /*
2592          * grab_cache_page_write_begin() can take a long time if the
2593          * system is thrashing due to memory pressure, or if the page
2594          * is being written back.  So grab it first before we start
2595          * the transaction handle.  This also allows us to allocate
2596          * the page (if needed) without using GFP_NOFS.
2597          */
2598 retry_grab:
2599         page = grab_cache_page_write_begin(mapping, index, flags);
2600         if (!page)
2601                 return -ENOMEM;
2602         unlock_page(page);
2603
2604         /*
2605          * With delayed allocation, we don't log the i_disksize update
2606          * if there is delayed block allocation. But we still need
2607          * to journalling the i_disksize update if writes to the end
2608          * of file which has an already mapped buffer.
2609          */
2610 retry_journal:
2611         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2612         if (IS_ERR(handle)) {
2613                 page_cache_release(page);
2614                 return PTR_ERR(handle);
2615         }
2616
2617         lock_page(page);
2618         if (page->mapping != mapping) {
2619                 /* The page got truncated from under us */
2620                 unlock_page(page);
2621                 page_cache_release(page);
2622                 ext4_journal_stop(handle);
2623                 goto retry_grab;
2624         }
2625         /* In case writeback began while the page was unlocked */
2626         wait_on_page_writeback(page);
2627
2628         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2629         if (ret < 0) {
2630                 unlock_page(page);
2631                 ext4_journal_stop(handle);
2632                 /*
2633                  * block_write_begin may have instantiated a few blocks
2634                  * outside i_size.  Trim these off again. Don't need
2635                  * i_size_read because we hold i_mutex.
2636                  */
2637                 if (pos + len > inode->i_size)
2638                         ext4_truncate_failed_write(inode);
2639
2640                 if (ret == -ENOSPC &&
2641                     ext4_should_retry_alloc(inode->i_sb, &retries))
2642                         goto retry_journal;
2643
2644                 page_cache_release(page);
2645                 return ret;
2646         }
2647
2648         *pagep = page;
2649         return ret;
2650 }
2651
2652 /*
2653  * Check if we should update i_disksize
2654  * when write to the end of file but not require block allocation
2655  */
2656 static int ext4_da_should_update_i_disksize(struct page *page,
2657                                             unsigned long offset)
2658 {
2659         struct buffer_head *bh;
2660         struct inode *inode = page->mapping->host;
2661         unsigned int idx;
2662         int i;
2663
2664         bh = page_buffers(page);
2665         idx = offset >> inode->i_blkbits;
2666
2667         for (i = 0; i < idx; i++)
2668                 bh = bh->b_this_page;
2669
2670         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2671                 return 0;
2672         return 1;
2673 }
2674
2675 static int ext4_da_write_end(struct file *file,
2676                              struct address_space *mapping,
2677                              loff_t pos, unsigned len, unsigned copied,
2678                              struct page *page, void *fsdata)
2679 {
2680         struct inode *inode = mapping->host;
2681         int ret = 0, ret2;
2682         handle_t *handle = ext4_journal_current_handle();
2683         loff_t new_i_size;
2684         unsigned long start, end;
2685         int write_mode = (int)(unsigned long)fsdata;
2686
2687         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2688                 return ext4_write_end(file, mapping, pos,
2689                                       len, copied, page, fsdata);
2690
2691         trace_ext4_da_write_end(inode, pos, len, copied);
2692         start = pos & (PAGE_CACHE_SIZE - 1);
2693         end = start + copied - 1;
2694
2695         /*
2696          * generic_write_end() will run mark_inode_dirty() if i_size
2697          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2698          * into that.
2699          */
2700         new_i_size = pos + copied;
2701         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2702                 if (ext4_has_inline_data(inode) ||
2703                     ext4_da_should_update_i_disksize(page, end)) {
2704                         down_write(&EXT4_I(inode)->i_data_sem);
2705                         if (new_i_size > EXT4_I(inode)->i_disksize)
2706                                 EXT4_I(inode)->i_disksize = new_i_size;
2707                         up_write(&EXT4_I(inode)->i_data_sem);
2708                         /* We need to mark inode dirty even if
2709                          * new_i_size is less that inode->i_size
2710                          * bu greater than i_disksize.(hint delalloc)
2711                          */
2712                         ext4_mark_inode_dirty(handle, inode);
2713                 }
2714         }
2715
2716         if (write_mode != CONVERT_INLINE_DATA &&
2717             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2718             ext4_has_inline_data(inode))
2719                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2720                                                      page);
2721         else
2722                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2723                                                         page, fsdata);
2724
2725         copied = ret2;
2726         if (ret2 < 0)
2727                 ret = ret2;
2728         ret2 = ext4_journal_stop(handle);
2729         if (!ret)
2730                 ret = ret2;
2731
2732         return ret ? ret : copied;
2733 }
2734
2735 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2736                                    unsigned int length)
2737 {
2738         /*
2739          * Drop reserved blocks
2740          */
2741         BUG_ON(!PageLocked(page));
2742         if (!page_has_buffers(page))
2743                 goto out;
2744
2745         ext4_da_page_release_reservation(page, offset, length);
2746
2747 out:
2748         ext4_invalidatepage(page, offset, length);
2749
2750         return;
2751 }
2752
2753 /*
2754  * Force all delayed allocation blocks to be allocated for a given inode.
2755  */
2756 int ext4_alloc_da_blocks(struct inode *inode)
2757 {
2758         trace_ext4_alloc_da_blocks(inode);
2759
2760         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2761             !EXT4_I(inode)->i_reserved_meta_blocks)
2762                 return 0;
2763
2764         /*
2765          * We do something simple for now.  The filemap_flush() will
2766          * also start triggering a write of the data blocks, which is
2767          * not strictly speaking necessary (and for users of
2768          * laptop_mode, not even desirable).  However, to do otherwise
2769          * would require replicating code paths in:
2770          *
2771          * ext4_da_writepages() ->
2772          *    write_cache_pages() ---> (via passed in callback function)
2773          *        __mpage_da_writepage() -->
2774          *           mpage_add_bh_to_extent()
2775          *           mpage_da_map_blocks()
2776          *
2777          * The problem is that write_cache_pages(), located in
2778          * mm/page-writeback.c, marks pages clean in preparation for
2779          * doing I/O, which is not desirable if we're not planning on
2780          * doing I/O at all.
2781          *
2782          * We could call write_cache_pages(), and then redirty all of
2783          * the pages by calling redirty_page_for_writepage() but that
2784          * would be ugly in the extreme.  So instead we would need to
2785          * replicate parts of the code in the above functions,
2786          * simplifying them because we wouldn't actually intend to
2787          * write out the pages, but rather only collect contiguous
2788          * logical block extents, call the multi-block allocator, and
2789          * then update the buffer heads with the block allocations.
2790          *
2791          * For now, though, we'll cheat by calling filemap_flush(),
2792          * which will map the blocks, and start the I/O, but not
2793          * actually wait for the I/O to complete.
2794          */
2795         return filemap_flush(inode->i_mapping);
2796 }
2797
2798 /*
2799  * bmap() is special.  It gets used by applications such as lilo and by
2800  * the swapper to find the on-disk block of a specific piece of data.
2801  *
2802  * Naturally, this is dangerous if the block concerned is still in the
2803  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2804  * filesystem and enables swap, then they may get a nasty shock when the
2805  * data getting swapped to that swapfile suddenly gets overwritten by
2806  * the original zero's written out previously to the journal and
2807  * awaiting writeback in the kernel's buffer cache.
2808  *
2809  * So, if we see any bmap calls here on a modified, data-journaled file,
2810  * take extra steps to flush any blocks which might be in the cache.
2811  */
2812 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2813 {
2814         struct inode *inode = mapping->host;
2815         journal_t *journal;
2816         int err;
2817
2818         /*
2819          * We can get here for an inline file via the FIBMAP ioctl
2820          */
2821         if (ext4_has_inline_data(inode))
2822                 return 0;
2823
2824         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2825                         test_opt(inode->i_sb, DELALLOC)) {
2826                 /*
2827                  * With delalloc we want to sync the file
2828                  * so that we can make sure we allocate
2829                  * blocks for file
2830                  */
2831                 filemap_write_and_wait(mapping);
2832         }
2833
2834         if (EXT4_JOURNAL(inode) &&
2835             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2836                 /*
2837                  * This is a REALLY heavyweight approach, but the use of
2838                  * bmap on dirty files is expected to be extremely rare:
2839                  * only if we run lilo or swapon on a freshly made file
2840                  * do we expect this to happen.
2841                  *
2842                  * (bmap requires CAP_SYS_RAWIO so this does not
2843                  * represent an unprivileged user DOS attack --- we'd be
2844                  * in trouble if mortal users could trigger this path at
2845                  * will.)
2846                  *
2847                  * NB. EXT4_STATE_JDATA is not set on files other than
2848                  * regular files.  If somebody wants to bmap a directory
2849                  * or symlink and gets confused because the buffer
2850                  * hasn't yet been flushed to disk, they deserve
2851                  * everything they get.
2852                  */
2853
2854                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2855                 journal = EXT4_JOURNAL(inode);
2856                 jbd2_journal_lock_updates(journal);
2857                 err = jbd2_journal_flush(journal);
2858                 jbd2_journal_unlock_updates(journal);
2859
2860                 if (err)
2861                         return 0;
2862         }
2863
2864         return generic_block_bmap(mapping, block, ext4_get_block);
2865 }
2866
2867 static int ext4_readpage(struct file *file, struct page *page)
2868 {
2869         int ret = -EAGAIN;
2870         struct inode *inode = page->mapping->host;
2871
2872         trace_ext4_readpage(page);
2873
2874         if (ext4_has_inline_data(inode))
2875                 ret = ext4_readpage_inline(inode, page);
2876
2877         if (ret == -EAGAIN)
2878                 return mpage_readpage(page, ext4_get_block);
2879
2880         return ret;
2881 }
2882
2883 static int
2884 ext4_readpages(struct file *file, struct address_space *mapping,
2885                 struct list_head *pages, unsigned nr_pages)
2886 {
2887         struct inode *inode = mapping->host;
2888
2889         /* If the file has inline data, no need to do readpages. */
2890         if (ext4_has_inline_data(inode))
2891                 return 0;
2892
2893         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2894 }
2895
2896 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2897                                 unsigned int length)
2898 {
2899         trace_ext4_invalidatepage(page, offset, length);
2900
2901         /* No journalling happens on data buffers when this function is used */
2902         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2903
2904         block_invalidatepage(page, offset, length);
2905 }
2906
2907 static int __ext4_journalled_invalidatepage(struct page *page,
2908                                             unsigned int offset,
2909                                             unsigned int length)
2910 {
2911         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2912
2913         trace_ext4_journalled_invalidatepage(page, offset, length);
2914
2915         /*
2916          * If it's a full truncate we just forget about the pending dirtying
2917          */
2918         if (offset == 0 && length == PAGE_CACHE_SIZE)
2919                 ClearPageChecked(page);
2920
2921         return jbd2_journal_invalidatepage(journal, page, offset, length);
2922 }
2923
2924 /* Wrapper for aops... */
2925 static void ext4_journalled_invalidatepage(struct page *page,
2926                                            unsigned int offset,
2927                                            unsigned int length)
2928 {
2929         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2930 }
2931
2932 static int ext4_releasepage(struct page *page, gfp_t wait)
2933 {
2934         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2935
2936         trace_ext4_releasepage(page);
2937
2938         /* Page has dirty journalled data -> cannot release */
2939         if (PageChecked(page))
2940                 return 0;
2941         if (journal)
2942                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2943         else
2944                 return try_to_free_buffers(page);
2945 }
2946
2947 /*
2948  * ext4_get_block used when preparing for a DIO write or buffer write.
2949  * We allocate an uinitialized extent if blocks haven't been allocated.
2950  * The extent will be converted to initialized after the IO is complete.
2951  */
2952 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2953                    struct buffer_head *bh_result, int create)
2954 {
2955         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2956                    inode->i_ino, create);
2957         return _ext4_get_block(inode, iblock, bh_result,
2958                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2959 }
2960
2961 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2962                    struct buffer_head *bh_result, int create)
2963 {
2964         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2965                    inode->i_ino, create);
2966         return _ext4_get_block(inode, iblock, bh_result,
2967                                EXT4_GET_BLOCKS_NO_LOCK);
2968 }
2969
2970 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2971                             ssize_t size, void *private, int ret,
2972                             bool is_async)
2973 {
2974         struct inode *inode = file_inode(iocb->ki_filp);
2975         ext4_io_end_t *io_end = iocb->private;
2976
2977         /* if not async direct IO just return */
2978         if (!io_end) {
2979                 inode_dio_done(inode);
2980                 if (is_async)
2981                         aio_complete(iocb, ret, 0);
2982                 return;
2983         }
2984
2985         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2986                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2987                   iocb->private, io_end->inode->i_ino, iocb, offset,
2988                   size);
2989
2990         iocb->private = NULL;
2991         io_end->offset = offset;
2992         io_end->size = size;
2993         if (is_async) {
2994                 io_end->iocb = iocb;
2995                 io_end->result = ret;
2996         }
2997         ext4_put_io_end_defer(io_end);
2998 }
2999
3000 /*
3001  * For ext4 extent files, ext4 will do direct-io write to holes,
3002  * preallocated extents, and those write extend the file, no need to
3003  * fall back to buffered IO.
3004  *
3005  * For holes, we fallocate those blocks, mark them as uninitialized
3006  * If those blocks were preallocated, we mark sure they are split, but
3007  * still keep the range to write as uninitialized.
3008  *
3009  * The unwritten extents will be converted to written when DIO is completed.
3010  * For async direct IO, since the IO may still pending when return, we
3011  * set up an end_io call back function, which will do the conversion
3012  * when async direct IO completed.
3013  *
3014  * If the O_DIRECT write will extend the file then add this inode to the
3015  * orphan list.  So recovery will truncate it back to the original size
3016  * if the machine crashes during the write.
3017  *
3018  */
3019 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3020                               const struct iovec *iov, loff_t offset,
3021                               unsigned long nr_segs)
3022 {
3023         struct file *file = iocb->ki_filp;
3024         struct inode *inode = file->f_mapping->host;
3025         ssize_t ret;
3026         size_t count = iov_length(iov, nr_segs);
3027         int overwrite = 0;
3028         get_block_t *get_block_func = NULL;
3029         int dio_flags = 0;
3030         loff_t final_size = offset + count;
3031         ext4_io_end_t *io_end = NULL;
3032
3033         /* Use the old path for reads and writes beyond i_size. */
3034         if (rw != WRITE || final_size > inode->i_size)
3035                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3036
3037         BUG_ON(iocb->private == NULL);
3038
3039         /*
3040          * Make all waiters for direct IO properly wait also for extent
3041          * conversion. This also disallows race between truncate() and
3042          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3043          */
3044         if (rw == WRITE)
3045                 atomic_inc(&inode->i_dio_count);
3046
3047         /* If we do a overwrite dio, i_mutex locking can be released */
3048         overwrite = *((int *)iocb->private);
3049
3050         if (overwrite) {
3051                 down_read(&EXT4_I(inode)->i_data_sem);
3052                 mutex_unlock(&inode->i_mutex);
3053         }
3054
3055         /*
3056          * We could direct write to holes and fallocate.
3057          *
3058          * Allocated blocks to fill the hole are marked as
3059          * uninitialized to prevent parallel buffered read to expose
3060          * the stale data before DIO complete the data IO.
3061          *
3062          * As to previously fallocated extents, ext4 get_block will
3063          * just simply mark the buffer mapped but still keep the
3064          * extents uninitialized.
3065          *
3066          * For non AIO case, we will convert those unwritten extents
3067          * to written after return back from blockdev_direct_IO.
3068          *
3069          * For async DIO, the conversion needs to be deferred when the
3070          * IO is completed. The ext4 end_io callback function will be
3071          * called to take care of the conversion work.  Here for async
3072          * case, we allocate an io_end structure to hook to the iocb.
3073          */
3074         iocb->private = NULL;
3075         ext4_inode_aio_set(inode, NULL);
3076         if (!is_sync_kiocb(iocb)) {
3077                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3078                 if (!io_end) {
3079                         ret = -ENOMEM;
3080                         goto retake_lock;
3081                 }
3082                 io_end->flag |= EXT4_IO_END_DIRECT;
3083                 /*
3084                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3085                  */
3086                 iocb->private = ext4_get_io_end(io_end);
3087                 /*
3088                  * we save the io structure for current async direct
3089                  * IO, so that later ext4_map_blocks() could flag the
3090                  * io structure whether there is a unwritten extents
3091                  * needs to be converted when IO is completed.
3092                  */
3093                 ext4_inode_aio_set(inode, io_end);
3094         }
3095
3096         if (overwrite) {
3097                 get_block_func = ext4_get_block_write_nolock;
3098         } else {
3099                 get_block_func = ext4_get_block_write;
3100                 dio_flags = DIO_LOCKING;
3101         }
3102         ret = __blockdev_direct_IO(rw, iocb, inode,
3103                                    inode->i_sb->s_bdev, iov,
3104                                    offset, nr_segs,
3105                                    get_block_func,
3106                                    ext4_end_io_dio,
3107                                    NULL,
3108                                    dio_flags);
3109
3110         /*
3111          * Put our reference to io_end. This can free the io_end structure e.g.
3112          * in sync IO case or in case of error. It can even perform extent
3113          * conversion if all bios we submitted finished before we got here.
3114          * Note that in that case iocb->private can be already set to NULL
3115          * here.
3116          */
3117         if (io_end) {
3118                 ext4_inode_aio_set(inode, NULL);
3119                 ext4_put_io_end(io_end);
3120                 /*
3121                  * When no IO was submitted ext4_end_io_dio() was not
3122                  * called so we have to put iocb's reference.
3123                  */
3124                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3125                         WARN_ON(iocb->private != io_end);
3126                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3127                         WARN_ON(io_end->iocb);
3128                         /*
3129                          * Generic code already did inode_dio_done() so we
3130                          * have to clear EXT4_IO_END_DIRECT to not do it for
3131                          * the second time.
3132                          */
3133                         io_end->flag = 0;
3134                         ext4_put_io_end(io_end);
3135                         iocb->private = NULL;
3136                 }
3137         }
3138         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3139                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3140                 int err;
3141                 /*
3142                  * for non AIO case, since the IO is already
3143                  * completed, we could do the conversion right here
3144                  */
3145                 err = ext4_convert_unwritten_extents(NULL, inode,
3146                                                      offset, ret);
3147                 if (err < 0)
3148                         ret = err;
3149                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3150         }
3151
3152 retake_lock:
3153         if (rw == WRITE)
3154                 inode_dio_done(inode);
3155         /* take i_mutex locking again if we do a ovewrite dio */
3156         if (overwrite) {
3157                 up_read(&EXT4_I(inode)->i_data_sem);
3158                 mutex_lock(&inode->i_mutex);
3159         }
3160
3161         return ret;
3162 }
3163
3164 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3165                               const struct iovec *iov, loff_t offset,
3166                               unsigned long nr_segs)
3167 {
3168         struct file *file = iocb->ki_filp;
3169         struct inode *inode = file->f_mapping->host;
3170         ssize_t ret;
3171
3172         /*
3173          * If we are doing data journalling we don't support O_DIRECT
3174          */
3175         if (ext4_should_journal_data(inode))
3176                 return 0;
3177
3178         /* Let buffer I/O handle the inline data case. */
3179         if (ext4_has_inline_data(inode))
3180                 return 0;
3181
3182         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3183         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3184                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3185         else
3186                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3187         trace_ext4_direct_IO_exit(inode, offset,
3188                                 iov_length(iov, nr_segs), rw, ret);
3189         return ret;
3190 }
3191
3192 /*
3193  * Pages can be marked dirty completely asynchronously from ext4's journalling
3194  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3195  * much here because ->set_page_dirty is called under VFS locks.  The page is
3196  * not necessarily locked.
3197  *
3198  * We cannot just dirty the page and leave attached buffers clean, because the
3199  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3200  * or jbddirty because all the journalling code will explode.
3201  *
3202  * So what we do is to mark the page "pending dirty" and next time writepage
3203  * is called, propagate that into the buffers appropriately.
3204  */
3205 static int ext4_journalled_set_page_dirty(struct page *page)
3206 {
3207         SetPageChecked(page);
3208         return __set_page_dirty_nobuffers(page);
3209 }
3210
3211 static const struct address_space_operations ext4_aops = {
3212         .readpage               = ext4_readpage,
3213         .readpages              = ext4_readpages,
3214         .writepage              = ext4_writepage,
3215         .write_begin            = ext4_write_begin,
3216         .write_end              = ext4_write_end,
3217         .bmap                   = ext4_bmap,
3218         .invalidatepage         = ext4_invalidatepage,
3219         .releasepage            = ext4_releasepage,
3220         .direct_IO              = ext4_direct_IO,
3221         .migratepage            = buffer_migrate_page,
3222         .is_partially_uptodate  = block_is_partially_uptodate,
3223         .error_remove_page      = generic_error_remove_page,
3224 };
3225
3226 static const struct address_space_operations ext4_journalled_aops = {
3227         .readpage               = ext4_readpage,
3228         .readpages              = ext4_readpages,
3229         .writepage              = ext4_writepage,
3230         .write_begin            = ext4_write_begin,
3231         .write_end              = ext4_journalled_write_end,
3232         .set_page_dirty         = ext4_journalled_set_page_dirty,
3233         .bmap                   = ext4_bmap,
3234         .invalidatepage         = ext4_journalled_invalidatepage,
3235         .releasepage            = ext4_releasepage,
3236         .direct_IO              = ext4_direct_IO,
3237         .is_partially_uptodate  = block_is_partially_uptodate,
3238         .error_remove_page      = generic_error_remove_page,
3239 };
3240
3241 static const struct address_space_operations ext4_da_aops = {
3242         .readpage               = ext4_readpage,
3243         .readpages              = ext4_readpages,
3244         .writepage              = ext4_writepage,
3245         .writepages             = ext4_da_writepages,
3246         .write_begin            = ext4_da_write_begin,
3247         .write_end              = ext4_da_write_end,
3248         .bmap                   = ext4_bmap,
3249         .invalidatepage         = ext4_da_invalidatepage,
3250         .releasepage            = ext4_releasepage,
3251         .direct_IO              = ext4_direct_IO,
3252         .migratepage            = buffer_migrate_page,
3253         .is_partially_uptodate  = block_is_partially_uptodate,
3254         .error_remove_page      = generic_error_remove_page,
3255 };
3256
3257 void ext4_set_aops(struct inode *inode)
3258 {
3259         switch (ext4_inode_journal_mode(inode)) {
3260         case EXT4_INODE_ORDERED_DATA_MODE:
3261                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3262                 break;
3263         case EXT4_INODE_WRITEBACK_DATA_MODE:
3264                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3265                 break;
3266         case EXT4_INODE_JOURNAL_DATA_MODE:
3267                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3268                 return;
3269         default:
3270                 BUG();
3271         }
3272         if (test_opt(inode->i_sb, DELALLOC))
3273                 inode->i_mapping->a_ops = &ext4_da_aops;
3274         else
3275                 inode->i_mapping->a_ops = &ext4_aops;
3276 }
3277
3278 /*
3279  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3280  * up to the end of the block which corresponds to `from'.
3281  * This required during truncate. We need to physically zero the tail end
3282  * of that block so it doesn't yield old data if the file is later grown.
3283  */
3284 int ext4_block_truncate_page(handle_t *handle,
3285                 struct address_space *mapping, loff_t from)
3286 {
3287         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3288         unsigned length;
3289         unsigned blocksize;
3290         struct inode *inode = mapping->host;
3291
3292         blocksize = inode->i_sb->s_blocksize;
3293         length = blocksize - (offset & (blocksize - 1));
3294
3295         return ext4_block_zero_page_range(handle, mapping, from, length);
3296 }
3297
3298 /*
3299  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3300  * starting from file offset 'from'.  The range to be zero'd must
3301  * be contained with in one block.  If the specified range exceeds
3302  * the end of the block it will be shortened to end of the block
3303  * that cooresponds to 'from'
3304  */
3305 int ext4_block_zero_page_range(handle_t *handle,
3306                 struct address_space *mapping, loff_t from, loff_t length)
3307 {
3308         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3309         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3310         unsigned blocksize, max, pos;
3311         ext4_lblk_t iblock;
3312         struct inode *inode = mapping->host;
3313         struct buffer_head *bh;
3314         struct page *page;
3315         int err = 0;
3316
3317         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3318                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3319         if (!page)
3320                 return -ENOMEM;
3321
3322         blocksize = inode->i_sb->s_blocksize;
3323         max = blocksize - (offset & (blocksize - 1));
3324
3325         /*
3326          * correct length if it does not fall between
3327          * 'from' and the end of the block
3328          */
3329         if (length > max || length < 0)
3330                 length = max;
3331
3332         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3333
3334         if (!page_has_buffers(page))
3335                 create_empty_buffers(page, blocksize, 0);
3336
3337         /* Find the buffer that contains "offset" */
3338         bh = page_buffers(page);
3339         pos = blocksize;
3340         while (offset >= pos) {
3341                 bh = bh->b_this_page;
3342                 iblock++;
3343                 pos += blocksize;
3344         }
3345
3346         err = 0;
3347         if (buffer_freed(bh)) {
3348                 BUFFER_TRACE(bh, "freed: skip");
3349                 goto unlock;
3350         }
3351
3352         if (!buffer_mapped(bh)) {
3353                 BUFFER_TRACE(bh, "unmapped");
3354                 ext4_get_block(inode, iblock, bh, 0);
3355                 /* unmapped? It's a hole - nothing to do */
3356                 if (!buffer_mapped(bh)) {
3357                         BUFFER_TRACE(bh, "still unmapped");
3358                         goto unlock;
3359                 }
3360         }
3361
3362         /* Ok, it's mapped. Make sure it's up-to-date */
3363         if (PageUptodate(page))
3364                 set_buffer_uptodate(bh);
3365
3366         if (!buffer_uptodate(bh)) {
3367                 err = -EIO;
3368                 ll_rw_block(READ, 1, &bh);
3369                 wait_on_buffer(bh);
3370                 /* Uhhuh. Read error. Complain and punt. */
3371                 if (!buffer_uptodate(bh))
3372                         goto unlock;
3373         }
3374
3375         if (ext4_should_journal_data(inode)) {
3376                 BUFFER_TRACE(bh, "get write access");
3377                 err = ext4_journal_get_write_access(handle, bh);
3378                 if (err)
3379                         goto unlock;
3380         }
3381
3382         zero_user(page, offset, length);
3383
3384         BUFFER_TRACE(bh, "zeroed end of block");
3385
3386         err = 0;
3387         if (ext4_should_journal_data(inode)) {
3388                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3389         } else {
3390                 mark_buffer_dirty(bh);
3391                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3392                         err = ext4_jbd2_file_inode(handle, inode);
3393         }
3394
3395 unlock:
3396         unlock_page(page);
3397         page_cache_release(page);
3398         return err;
3399 }
3400
3401 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3402                              loff_t lstart, loff_t length)
3403 {
3404         struct super_block *sb = inode->i_sb;
3405         struct address_space *mapping = inode->i_mapping;
3406         unsigned partial = lstart & (sb->s_blocksize - 1);
3407         ext4_fsblk_t start, end;
3408         loff_t byte_end = (lstart + length - 1);
3409         int err = 0;
3410
3411         start = lstart >> sb->s_blocksize_bits;
3412         end = byte_end >> sb->s_blocksize_bits;
3413
3414         /* Handle partial zero within the single block */
3415         if (start == end) {
3416                 err = ext4_block_zero_page_range(handle, mapping,
3417                                                  lstart, length);
3418                 return err;
3419         }
3420         /* Handle partial zero out on the start of the range */
3421         if (partial) {
3422                 err = ext4_block_zero_page_range(handle, mapping,
3423                                                  lstart, sb->s_blocksize);
3424                 if (err)
3425                         return err;
3426         }
3427         /* Handle partial zero out on the end of the range */
3428         partial = byte_end & (sb->s_blocksize - 1);
3429         if (partial != sb->s_blocksize - 1)
3430                 err = ext4_block_zero_page_range(handle, mapping,
3431                                                  byte_end - partial,
3432                                                  partial + 1);
3433         return err;
3434 }
3435
3436 int ext4_can_truncate(struct inode *inode)
3437 {
3438         if (S_ISREG(inode->i_mode))
3439                 return 1;
3440         if (S_ISDIR(inode->i_mode))
3441                 return 1;
3442         if (S_ISLNK(inode->i_mode))
3443                 return !ext4_inode_is_fast_symlink(inode);
3444         return 0;
3445 }
3446
3447 /*
3448  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3449  * associated with the given offset and length
3450  *
3451  * @inode:  File inode
3452  * @offset: The offset where the hole will begin
3453  * @len:    The length of the hole
3454  *
3455  * Returns: 0 on success or negative on failure
3456  */
3457
3458 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3459 {
3460         struct inode *inode = file_inode(file);
3461         struct super_block *sb = inode->i_sb;
3462         ext4_lblk_t first_block, stop_block;
3463         struct address_space *mapping = inode->i_mapping;
3464         loff_t first_block_offset, last_block_offset;
3465         handle_t *handle;
3466         unsigned int credits;
3467         int ret = 0;
3468
3469         if (!S_ISREG(inode->i_mode))
3470                 return -EOPNOTSUPP;
3471
3472         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3473                 /* TODO: Add support for bigalloc file systems */
3474                 return -EOPNOTSUPP;
3475         }
3476
3477         trace_ext4_punch_hole(inode, offset, length);
3478
3479         /*
3480          * Write out all dirty pages to avoid race conditions
3481          * Then release them.
3482          */
3483         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3484                 ret = filemap_write_and_wait_range(mapping, offset,
3485                                                    offset + length - 1);
3486                 if (ret)
3487                         return ret;
3488         }
3489
3490         mutex_lock(&inode->i_mutex);
3491         /* It's not possible punch hole on append only file */
3492         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3493                 ret = -EPERM;
3494                 goto out_mutex;
3495         }
3496         if (IS_SWAPFILE(inode)) {
3497                 ret = -ETXTBSY;
3498                 goto out_mutex;
3499         }
3500
3501         /* No need to punch hole beyond i_size */
3502         if (offset >= inode->i_size)
3503                 goto out_mutex;
3504
3505         /*
3506          * If the hole extends beyond i_size, set the hole
3507          * to end after the page that contains i_size
3508          */
3509         if (offset + length > inode->i_size) {
3510                 length = inode->i_size +
3511                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3512                    offset;
3513         }
3514
3515         first_block_offset = round_up(offset, sb->s_blocksize);
3516         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3517
3518         /* Now release the pages and zero block aligned part of pages*/
3519         if (last_block_offset > first_block_offset)
3520                 truncate_pagecache_range(inode, first_block_offset,
3521                                          last_block_offset);
3522
3523         /* Wait all existing dio workers, newcomers will block on i_mutex */
3524         ext4_inode_block_unlocked_dio(inode);
3525         ret = ext4_flush_unwritten_io(inode);
3526         if (ret)
3527                 goto out_dio;
3528         inode_dio_wait(inode);
3529
3530         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3531                 credits = ext4_writepage_trans_blocks(inode);
3532         else
3533                 credits = ext4_blocks_for_truncate(inode);
3534         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3535         if (IS_ERR(handle)) {
3536                 ret = PTR_ERR(handle);
3537                 ext4_std_error(sb, ret);
3538                 goto out_dio;
3539         }
3540
3541         ret = ext4_zero_partial_blocks(handle, inode, offset,
3542                                        length);
3543         if (ret)
3544                 goto out_stop;
3545
3546         first_block = (offset + sb->s_blocksize - 1) >>
3547                 EXT4_BLOCK_SIZE_BITS(sb);
3548         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3549
3550         /* If there are no blocks to remove, return now */
3551         if (first_block >= stop_block)
3552                 goto out_stop;
3553
3554         down_write(&EXT4_I(inode)->i_data_sem);
3555         ext4_discard_preallocations(inode);
3556
3557         ret = ext4_es_remove_extent(inode, first_block,
3558                                     stop_block - first_block);
3559         if (ret) {
3560                 up_write(&EXT4_I(inode)->i_data_sem);
3561                 goto out_stop;
3562         }
3563
3564         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3565                 ret = ext4_ext_remove_space(inode, first_block,
3566                                             stop_block - 1);
3567         else
3568                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3569                                             stop_block);
3570
3571         ext4_discard_preallocations(inode);
3572         up_write(&EXT4_I(inode)->i_data_sem);
3573         if (IS_SYNC(inode))
3574                 ext4_handle_sync(handle);
3575         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3576         ext4_mark_inode_dirty(handle, inode);
3577 out_stop:
3578         ext4_journal_stop(handle);
3579 out_dio:
3580         ext4_inode_resume_unlocked_dio(inode);
3581 out_mutex:
3582         mutex_unlock(&inode->i_mutex);
3583         return ret;
3584 }
3585
3586 /*
3587  * ext4_truncate()
3588  *
3589  * We block out ext4_get_block() block instantiations across the entire
3590  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3591  * simultaneously on behalf of the same inode.
3592  *
3593  * As we work through the truncate and commit bits of it to the journal there
3594  * is one core, guiding principle: the file's tree must always be consistent on
3595  * disk.  We must be able to restart the truncate after a crash.
3596  *
3597  * The file's tree may be transiently inconsistent in memory (although it
3598  * probably isn't), but whenever we close off and commit a journal transaction,
3599  * the contents of (the filesystem + the journal) must be consistent and
3600  * restartable.  It's pretty simple, really: bottom up, right to left (although
3601  * left-to-right works OK too).
3602  *
3603  * Note that at recovery time, journal replay occurs *before* the restart of
3604  * truncate against the orphan inode list.
3605  *
3606  * The committed inode has the new, desired i_size (which is the same as
3607  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3608  * that this inode's truncate did not complete and it will again call
3609  * ext4_truncate() to have another go.  So there will be instantiated blocks
3610  * to the right of the truncation point in a crashed ext4 filesystem.  But
3611  * that's fine - as long as they are linked from the inode, the post-crash
3612  * ext4_truncate() run will find them and release them.
3613  */
3614 void ext4_truncate(struct inode *inode)
3615 {
3616         struct ext4_inode_info *ei = EXT4_I(inode);
3617         unsigned int credits;
3618         handle_t *handle;
3619         struct address_space *mapping = inode->i_mapping;
3620
3621         /*
3622          * There is a possibility that we're either freeing the inode
3623          * or it completely new indode. In those cases we might not
3624          * have i_mutex locked because it's not necessary.
3625          */
3626         if (!(inode->i_state & (I_NEW|I_FREEING)))
3627                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3628         trace_ext4_truncate_enter(inode);
3629
3630         if (!ext4_can_truncate(inode))
3631                 return;
3632
3633         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3634
3635         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3636                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3637
3638         if (ext4_has_inline_data(inode)) {
3639                 int has_inline = 1;
3640
3641                 ext4_inline_data_truncate(inode, &has_inline);
3642                 if (has_inline)
3643                         return;
3644         }
3645
3646         /*
3647          * finish any pending end_io work so we won't run the risk of
3648          * converting any truncated blocks to initialized later
3649          */
3650         ext4_flush_unwritten_io(inode);
3651
3652         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3653                 credits = ext4_writepage_trans_blocks(inode);
3654         else
3655                 credits = ext4_blocks_for_truncate(inode);
3656
3657         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3658         if (IS_ERR(handle)) {
3659                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3660                 return;
3661         }
3662
3663         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3664                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3665
3666         /*
3667          * We add the inode to the orphan list, so that if this
3668          * truncate spans multiple transactions, and we crash, we will
3669          * resume the truncate when the filesystem recovers.  It also
3670          * marks the inode dirty, to catch the new size.
3671          *
3672          * Implication: the file must always be in a sane, consistent
3673          * truncatable state while each transaction commits.
3674          */
3675         if (ext4_orphan_add(handle, inode))
3676                 goto out_stop;
3677
3678         down_write(&EXT4_I(inode)->i_data_sem);
3679
3680         ext4_discard_preallocations(inode);
3681
3682         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3683                 ext4_ext_truncate(handle, inode);
3684         else
3685                 ext4_ind_truncate(handle, inode);
3686
3687         up_write(&ei->i_data_sem);
3688
3689         if (IS_SYNC(inode))
3690                 ext4_handle_sync(handle);
3691
3692 out_stop:
3693         /*
3694          * If this was a simple ftruncate() and the file will remain alive,
3695          * then we need to clear up the orphan record which we created above.
3696          * However, if this was a real unlink then we were called by
3697          * ext4_delete_inode(), and we allow that function to clean up the
3698          * orphan info for us.
3699          */
3700         if (inode->i_nlink)
3701                 ext4_orphan_del(handle, inode);
3702
3703         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3704         ext4_mark_inode_dirty(handle, inode);
3705         ext4_journal_stop(handle);
3706
3707         trace_ext4_truncate_exit(inode);
3708 }
3709
3710 /*
3711  * ext4_get_inode_loc returns with an extra refcount against the inode's
3712  * underlying buffer_head on success. If 'in_mem' is true, we have all
3713  * data in memory that is needed to recreate the on-disk version of this
3714  * inode.
3715  */
3716 static int __ext4_get_inode_loc(struct inode *inode,
3717                                 struct ext4_iloc *iloc, int in_mem)
3718 {
3719         struct ext4_group_desc  *gdp;
3720         struct buffer_head      *bh;
3721         struct super_block      *sb = inode->i_sb;
3722         ext4_fsblk_t            block;
3723         int                     inodes_per_block, inode_offset;
3724
3725         iloc->bh = NULL;
3726         if (!ext4_valid_inum(sb, inode->i_ino))
3727                 return -EIO;
3728
3729         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3730         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3731         if (!gdp)
3732                 return -EIO;
3733
3734         /*
3735          * Figure out the offset within the block group inode table
3736          */
3737         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3738         inode_offset = ((inode->i_ino - 1) %
3739                         EXT4_INODES_PER_GROUP(sb));
3740         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3741         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3742
3743         bh = sb_getblk(sb, block);
3744         if (unlikely(!bh))
3745                 return -ENOMEM;
3746         if (!buffer_uptodate(bh)) {
3747                 lock_buffer(bh);
3748
3749                 /*
3750                  * If the buffer has the write error flag, we have failed
3751                  * to write out another inode in the same block.  In this
3752                  * case, we don't have to read the block because we may
3753                  * read the old inode data successfully.
3754                  */
3755                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3756                         set_buffer_uptodate(bh);
3757
3758                 if (buffer_uptodate(bh)) {
3759                         /* someone brought it uptodate while we waited */
3760                         unlock_buffer(bh);
3761                         goto has_buffer;
3762                 }
3763
3764                 /*
3765                  * If we have all information of the inode in memory and this
3766                  * is the only valid inode in the block, we need not read the
3767                  * block.
3768                  */
3769                 if (in_mem) {
3770                         struct buffer_head *bitmap_bh;
3771                         int i, start;
3772
3773                         start = inode_offset & ~(inodes_per_block - 1);
3774
3775                         /* Is the inode bitmap in cache? */
3776                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3777                         if (unlikely(!bitmap_bh))
3778                                 goto make_io;
3779
3780                         /*
3781                          * If the inode bitmap isn't in cache then the
3782                          * optimisation may end up performing two reads instead
3783                          * of one, so skip it.
3784                          */
3785                         if (!buffer_uptodate(bitmap_bh)) {
3786                                 brelse(bitmap_bh);
3787                                 goto make_io;
3788                         }
3789                         for (i = start; i < start + inodes_per_block; i++) {
3790                                 if (i == inode_offset)
3791                                         continue;
3792                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3793                                         break;
3794                         }
3795                         brelse(bitmap_bh);
3796                         if (i == start + inodes_per_block) {
3797                                 /* all other inodes are free, so skip I/O */
3798                                 memset(bh->b_data, 0, bh->b_size);
3799                                 set_buffer_uptodate(bh);
3800                                 unlock_buffer(bh);
3801                                 goto has_buffer;
3802                         }
3803                 }
3804
3805 make_io:
3806                 /*
3807                  * If we need to do any I/O, try to pre-readahead extra
3808                  * blocks from the inode table.
3809                  */
3810                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3811                         ext4_fsblk_t b, end, table;
3812                         unsigned num;
3813                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3814
3815                         table = ext4_inode_table(sb, gdp);
3816                         /* s_inode_readahead_blks is always a power of 2 */
3817                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3818                         if (table > b)
3819                                 b = table;
3820                         end = b + ra_blks;
3821                         num = EXT4_INODES_PER_GROUP(sb);
3822                         if (ext4_has_group_desc_csum(sb))
3823                                 num -= ext4_itable_unused_count(sb, gdp);
3824                         table += num / inodes_per_block;
3825                         if (end > table)
3826                                 end = table;
3827                         while (b <= end)
3828                                 sb_breadahead(sb, b++);
3829                 }
3830
3831                 /*
3832                  * There are other valid inodes in the buffer, this inode
3833                  * has in-inode xattrs, or we don't have this inode in memory.
3834                  * Read the block from disk.
3835                  */
3836                 trace_ext4_load_inode(inode);
3837                 get_bh(bh);
3838                 bh->b_end_io = end_buffer_read_sync;
3839                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3840                 wait_on_buffer(bh);
3841                 if (!buffer_uptodate(bh)) {
3842                         EXT4_ERROR_INODE_BLOCK(inode, block,
3843                                                "unable to read itable block");
3844                         brelse(bh);
3845                         return -EIO;
3846                 }
3847         }
3848 has_buffer:
3849         iloc->bh = bh;
3850         return 0;
3851 }
3852
3853 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3854 {
3855         /* We have all inode data except xattrs in memory here. */
3856         return __ext4_get_inode_loc(inode, iloc,
3857                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3858 }
3859
3860 void ext4_set_inode_flags(struct inode *inode)
3861 {
3862         unsigned int flags = EXT4_I(inode)->i_flags;
3863
3864         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3865         if (flags & EXT4_SYNC_FL)
3866                 inode->i_flags |= S_SYNC;
3867         if (flags & EXT4_APPEND_FL)
3868                 inode->i_flags |= S_APPEND;
3869         if (flags & EXT4_IMMUTABLE_FL)
3870                 inode->i_flags |= S_IMMUTABLE;
3871         if (flags & EXT4_NOATIME_FL)
3872                 inode->i_flags |= S_NOATIME;
3873         if (flags & EXT4_DIRSYNC_FL)
3874                 inode->i_flags |= S_DIRSYNC;
3875 }
3876
3877 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3878 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3879 {
3880         unsigned int vfs_fl;
3881         unsigned long old_fl, new_fl;
3882
3883         do {
3884                 vfs_fl = ei->vfs_inode.i_flags;
3885                 old_fl = ei->i_flags;
3886                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3887                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3888                                 EXT4_DIRSYNC_FL);
3889                 if (vfs_fl & S_SYNC)
3890                         new_fl |= EXT4_SYNC_FL;
3891                 if (vfs_fl & S_APPEND)
3892                         new_fl |= EXT4_APPEND_FL;
3893                 if (vfs_fl & S_IMMUTABLE)
3894                         new_fl |= EXT4_IMMUTABLE_FL;
3895                 if (vfs_fl & S_NOATIME)
3896                         new_fl |= EXT4_NOATIME_FL;
3897                 if (vfs_fl & S_DIRSYNC)
3898                         new_fl |= EXT4_DIRSYNC_FL;
3899         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3900 }
3901
3902 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3903                                   struct ext4_inode_info *ei)
3904 {
3905         blkcnt_t i_blocks ;
3906         struct inode *inode = &(ei->vfs_inode);
3907         struct super_block *sb = inode->i_sb;
3908
3909         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3910                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3911                 /* we are using combined 48 bit field */
3912                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3913                                         le32_to_cpu(raw_inode->i_blocks_lo);
3914                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3915                         /* i_blocks represent file system block size */
3916                         return i_blocks  << (inode->i_blkbits - 9);
3917                 } else {
3918                         return i_blocks;
3919                 }
3920         } else {
3921                 return le32_to_cpu(raw_inode->i_blocks_lo);
3922         }
3923 }
3924
3925 static inline void ext4_iget_extra_inode(struct inode *inode,
3926                                          struct ext4_inode *raw_inode,
3927                                          struct ext4_inode_info *ei)
3928 {
3929         __le32 *magic = (void *)raw_inode +
3930                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3931         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3932                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3933                 ext4_find_inline_data_nolock(inode);
3934         } else
3935                 EXT4_I(inode)->i_inline_off = 0;
3936 }
3937
3938 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3939 {
3940         struct ext4_iloc iloc;
3941         struct ext4_inode *raw_inode;
3942         struct ext4_inode_info *ei;
3943         struct inode *inode;
3944         journal_t *journal = EXT4_SB(sb)->s_journal;
3945         long ret;
3946         int block;
3947         uid_t i_uid;
3948         gid_t i_gid;
3949
3950         inode = iget_locked(sb, ino);
3951         if (!inode)
3952                 return ERR_PTR(-ENOMEM);
3953         if (!(inode->i_state & I_NEW))
3954                 return inode;
3955
3956         ei = EXT4_I(inode);
3957         iloc.bh = NULL;
3958
3959         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3960         if (ret < 0)
3961                 goto bad_inode;
3962         raw_inode = ext4_raw_inode(&iloc);
3963
3964         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3965                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3966                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3967                     EXT4_INODE_SIZE(inode->i_sb)) {
3968                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3969                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3970                                 EXT4_INODE_SIZE(inode->i_sb));
3971                         ret = -EIO;
3972                         goto bad_inode;
3973                 }
3974         } else
3975                 ei->i_extra_isize = 0;
3976
3977         /* Precompute checksum seed for inode metadata */
3978         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3979                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3980                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3981                 __u32 csum;
3982                 __le32 inum = cpu_to_le32(inode->i_ino);
3983                 __le32 gen = raw_inode->i_generation;
3984                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3985                                    sizeof(inum));
3986                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3987                                               sizeof(gen));
3988         }
3989
3990         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3991                 EXT4_ERROR_INODE(inode, "checksum invalid");
3992                 ret = -EIO;
3993                 goto bad_inode;
3994         }
3995
3996         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3997         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3998         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3999         if (!(test_opt(inode->i_sb, NO_UID32))) {
4000                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4001                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4002         }
4003         i_uid_write(inode, i_uid);
4004         i_gid_write(inode, i_gid);
4005         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4006
4007         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4008         ei->i_inline_off = 0;
4009         ei->i_dir_start_lookup = 0;
4010         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4011         /* We now have enough fields to check if the inode was active or not.
4012          * This is needed because nfsd might try to access dead inodes
4013          * the test is that same one that e2fsck uses
4014          * NeilBrown 1999oct15
4015          */
4016         if (inode->i_nlink == 0) {
4017                 if ((inode->i_mode == 0 ||
4018                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4019                     ino != EXT4_BOOT_LOADER_INO) {
4020                         /* this inode is deleted */
4021                         ret = -ESTALE;
4022                         goto bad_inode;
4023                 }
4024                 /* The only unlinked inodes we let through here have
4025                  * valid i_mode and are being read by the orphan
4026                  * recovery code: that's fine, we're about to complete
4027                  * the process of deleting those.
4028                  * OR it is the EXT4_BOOT_LOADER_INO which is
4029                  * not initialized on a new filesystem. */
4030         }
4031         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4032         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4033         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4034         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4035                 ei->i_file_acl |=
4036                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4037         inode->i_size = ext4_isize(raw_inode);
4038         ei->i_disksize = inode->i_size;
4039 #ifdef CONFIG_QUOTA
4040         ei->i_reserved_quota = 0;
4041 #endif
4042         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4043         ei->i_block_group = iloc.block_group;
4044         ei->i_last_alloc_group = ~0;
4045         /*
4046          * NOTE! The in-memory inode i_data array is in little-endian order
4047          * even on big-endian machines: we do NOT byteswap the block numbers!
4048          */
4049         for (block = 0; block < EXT4_N_BLOCKS; block++)
4050                 ei->i_data[block] = raw_inode->i_block[block];
4051         INIT_LIST_HEAD(&ei->i_orphan);
4052
4053         /*
4054          * Set transaction id's of transactions that have to be committed
4055          * to finish f[data]sync. We set them to currently running transaction
4056          * as we cannot be sure that the inode or some of its metadata isn't
4057          * part of the transaction - the inode could have been reclaimed and
4058          * now it is reread from disk.
4059          */
4060         if (journal) {
4061                 transaction_t *transaction;
4062                 tid_t tid;
4063
4064                 read_lock(&journal->j_state_lock);
4065                 if (journal->j_running_transaction)
4066                         transaction = journal->j_running_transaction;
4067                 else
4068                         transaction = journal->j_committing_transaction;
4069                 if (transaction)
4070                         tid = transaction->t_tid;
4071                 else
4072                         tid = journal->j_commit_sequence;
4073                 read_unlock(&journal->j_state_lock);
4074                 ei->i_sync_tid = tid;
4075                 ei->i_datasync_tid = tid;
4076         }
4077
4078         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4079                 if (ei->i_extra_isize == 0) {
4080                         /* The extra space is currently unused. Use it. */
4081                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4082                                             EXT4_GOOD_OLD_INODE_SIZE;
4083                 } else {
4084                         ext4_iget_extra_inode(inode, raw_inode, ei);
4085                 }
4086         }
4087
4088         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4089         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4090         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4091         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4092
4093         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4094         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4095                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4096                         inode->i_version |=
4097                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4098         }
4099
4100         ret = 0;
4101         if (ei->i_file_acl &&
4102             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4103                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4104                                  ei->i_file_acl);
4105                 ret = -EIO;
4106                 goto bad_inode;
4107         } else if (!ext4_has_inline_data(inode)) {
4108                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4109                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4110                             (S_ISLNK(inode->i_mode) &&
4111                              !ext4_inode_is_fast_symlink(inode))))
4112                                 /* Validate extent which is part of inode */
4113                                 ret = ext4_ext_check_inode(inode);
4114                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4115                            (S_ISLNK(inode->i_mode) &&
4116                             !ext4_inode_is_fast_symlink(inode))) {
4117                         /* Validate block references which are part of inode */
4118                         ret = ext4_ind_check_inode(inode);
4119                 }
4120         }
4121         if (ret)
4122                 goto bad_inode;
4123
4124         if (S_ISREG(inode->i_mode)) {
4125                 inode->i_op = &ext4_file_inode_operations;
4126                 inode->i_fop = &ext4_file_operations;
4127                 ext4_set_aops(inode);
4128         } else if (S_ISDIR(inode->i_mode)) {
4129                 inode->i_op = &ext4_dir_inode_operations;
4130                 inode->i_fop = &ext4_dir_operations;
4131         } else if (S_ISLNK(inode->i_mode)) {
4132                 if (ext4_inode_is_fast_symlink(inode)) {
4133                         inode->i_op = &ext4_fast_symlink_inode_operations;
4134                         nd_terminate_link(ei->i_data, inode->i_size,
4135                                 sizeof(ei->i_data) - 1);
4136                 } else {
4137                         inode->i_op = &ext4_symlink_inode_operations;
4138                         ext4_set_aops(inode);
4139                 }
4140         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4141               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4142                 inode->i_op = &ext4_special_inode_operations;
4143                 if (raw_inode->i_block[0])
4144                         init_special_inode(inode, inode->i_mode,
4145                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4146                 else
4147                         init_special_inode(inode, inode->i_mode,
4148                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4149         } else if (ino == EXT4_BOOT_LOADER_INO) {
4150                 make_bad_inode(inode);
4151         } else {
4152                 ret = -EIO;
4153                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4154                 goto bad_inode;
4155         }
4156         brelse(iloc.bh);
4157         ext4_set_inode_flags(inode);
4158         unlock_new_inode(inode);
4159         return inode;
4160
4161 bad_inode:
4162         brelse(iloc.bh);
4163         iget_failed(inode);
4164         return ERR_PTR(ret);
4165 }
4166
4167 static int ext4_inode_blocks_set(handle_t *handle,
4168                                 struct ext4_inode *raw_inode,
4169                                 struct ext4_inode_info *ei)
4170 {
4171         struct inode *inode = &(ei->vfs_inode);
4172         u64 i_blocks = inode->i_blocks;
4173         struct super_block *sb = inode->i_sb;
4174
4175         if (i_blocks <= ~0U) {
4176                 /*
4177                  * i_blocks can be represented in a 32 bit variable
4178                  * as multiple of 512 bytes
4179                  */
4180                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4181                 raw_inode->i_blocks_high = 0;
4182                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4183                 return 0;
4184         }
4185         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4186                 return -EFBIG;
4187
4188         if (i_blocks <= 0xffffffffffffULL) {
4189                 /*
4190                  * i_blocks can be represented in a 48 bit variable
4191                  * as multiple of 512 bytes
4192                  */
4193                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4194                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4195                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4196         } else {
4197                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4198                 /* i_block is stored in file system block size */
4199                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4200                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4201                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4202         }
4203         return 0;
4204 }
4205
4206 /*
4207  * Post the struct inode info into an on-disk inode location in the
4208  * buffer-cache.  This gobbles the caller's reference to the
4209  * buffer_head in the inode location struct.
4210  *
4211  * The caller must have write access to iloc->bh.
4212  */
4213 static int ext4_do_update_inode(handle_t *handle,
4214                                 struct inode *inode,
4215                                 struct ext4_iloc *iloc)
4216 {
4217         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4218         struct ext4_inode_info *ei = EXT4_I(inode);
4219         struct buffer_head *bh = iloc->bh;
4220         int err = 0, rc, block;
4221         int need_datasync = 0;
4222         uid_t i_uid;
4223         gid_t i_gid;
4224
4225         /* For fields not not tracking in the in-memory inode,
4226          * initialise them to zero for new inodes. */
4227         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4228                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4229
4230         ext4_get_inode_flags(ei);
4231         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4232         i_uid = i_uid_read(inode);
4233         i_gid = i_gid_read(inode);
4234         if (!(test_opt(inode->i_sb, NO_UID32))) {
4235                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4236                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4237 /*
4238  * Fix up interoperability with old kernels. Otherwise, old inodes get
4239  * re-used with the upper 16 bits of the uid/gid intact
4240  */
4241                 if (!ei->i_dtime) {
4242                         raw_inode->i_uid_high =
4243                                 cpu_to_le16(high_16_bits(i_uid));
4244                         raw_inode->i_gid_high =
4245                                 cpu_to_le16(high_16_bits(i_gid));
4246                 } else {
4247                         raw_inode->i_uid_high = 0;
4248                         raw_inode->i_gid_high = 0;
4249                 }
4250         } else {
4251                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4252                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4253                 raw_inode->i_uid_high = 0;
4254                 raw_inode->i_gid_high = 0;
4255         }
4256         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4257
4258         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4259         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4260         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4261         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4262
4263         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4264                 goto out_brelse;
4265         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4266         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4267         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4268             cpu_to_le32(EXT4_OS_HURD))
4269                 raw_inode->i_file_acl_high =
4270                         cpu_to_le16(ei->i_file_acl >> 32);
4271         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4272         if (ei->i_disksize != ext4_isize(raw_inode)) {
4273                 ext4_isize_set(raw_inode, ei->i_disksize);
4274                 need_datasync = 1;
4275         }
4276         if (ei->i_disksize > 0x7fffffffULL) {
4277                 struct super_block *sb = inode->i_sb;
4278                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4279                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4280                                 EXT4_SB(sb)->s_es->s_rev_level ==
4281                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4282                         /* If this is the first large file
4283                          * created, add a flag to the superblock.
4284                          */
4285                         err = ext4_journal_get_write_access(handle,
4286                                         EXT4_SB(sb)->s_sbh);
4287                         if (err)
4288                                 goto out_brelse;
4289                         ext4_update_dynamic_rev(sb);
4290                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4291                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4292                         ext4_handle_sync(handle);
4293                         err = ext4_handle_dirty_super(handle, sb);
4294                 }
4295         }
4296         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4297         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4298                 if (old_valid_dev(inode->i_rdev)) {
4299                         raw_inode->i_block[0] =
4300                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4301                         raw_inode->i_block[1] = 0;
4302                 } else {
4303                         raw_inode->i_block[0] = 0;
4304                         raw_inode->i_block[1] =
4305                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4306                         raw_inode->i_block[2] = 0;
4307                 }
4308         } else if (!ext4_has_inline_data(inode)) {
4309                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4310                         raw_inode->i_block[block] = ei->i_data[block];
4311         }
4312
4313         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4314         if (ei->i_extra_isize) {
4315                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4316                         raw_inode->i_version_hi =
4317                         cpu_to_le32(inode->i_version >> 32);
4318                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4319         }
4320
4321         ext4_inode_csum_set(inode, raw_inode, ei);
4322
4323         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4324         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4325         if (!err)
4326                 err = rc;
4327         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4328
4329         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4330 out_brelse:
4331         brelse(bh);
4332         ext4_std_error(inode->i_sb, err);
4333         return err;
4334 }
4335
4336 /*
4337  * ext4_write_inode()
4338  *
4339  * We are called from a few places:
4340  *
4341  * - Within generic_file_write() for O_SYNC files.
4342  *   Here, there will be no transaction running. We wait for any running
4343  *   transaction to commit.
4344  *
4345  * - Within sys_sync(), kupdate and such.
4346  *   We wait on commit, if tol to.
4347  *
4348  * - Within prune_icache() (PF_MEMALLOC == true)
4349  *   Here we simply return.  We can't afford to block kswapd on the
4350  *   journal commit.
4351  *
4352  * In all cases it is actually safe for us to return without doing anything,
4353  * because the inode has been copied into a raw inode buffer in
4354  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4355  * knfsd.
4356  *
4357  * Note that we are absolutely dependent upon all inode dirtiers doing the
4358  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4359  * which we are interested.
4360  *
4361  * It would be a bug for them to not do this.  The code:
4362  *
4363  *      mark_inode_dirty(inode)
4364  *      stuff();
4365  *      inode->i_size = expr;
4366  *
4367  * is in error because a kswapd-driven write_inode() could occur while
4368  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4369  * will no longer be on the superblock's dirty inode list.
4370  */
4371 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4372 {
4373         int err;
4374
4375         if (current->flags & PF_MEMALLOC)
4376                 return 0;
4377
4378         if (EXT4_SB(inode->i_sb)->s_journal) {
4379                 if (ext4_journal_current_handle()) {
4380                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4381                         dump_stack();
4382                         return -EIO;
4383                 }
4384
4385                 if (wbc->sync_mode != WB_SYNC_ALL)
4386                         return 0;
4387
4388                 err = ext4_force_commit(inode->i_sb);
4389         } else {
4390                 struct ext4_iloc iloc;
4391
4392                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4393                 if (err)
4394                         return err;
4395                 if (wbc->sync_mode == WB_SYNC_ALL)
4396                         sync_dirty_buffer(iloc.bh);
4397                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4398                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4399                                          "IO error syncing inode");
4400                         err = -EIO;
4401                 }
4402                 brelse(iloc.bh);
4403         }
4404         return err;
4405 }
4406
4407 /*
4408  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4409  * buffers that are attached to a page stradding i_size and are undergoing
4410  * commit. In that case we have to wait for commit to finish and try again.
4411  */
4412 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4413 {
4414         struct page *page;
4415         unsigned offset;
4416         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4417         tid_t commit_tid = 0;
4418         int ret;
4419
4420         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4421         /*
4422          * All buffers in the last page remain valid? Then there's nothing to
4423          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4424          * blocksize case
4425          */
4426         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4427                 return;
4428         while (1) {
4429                 page = find_lock_page(inode->i_mapping,
4430                                       inode->i_size >> PAGE_CACHE_SHIFT);
4431                 if (!page)
4432                         return;
4433                 ret = __ext4_journalled_invalidatepage(page, offset,
4434                                                 PAGE_CACHE_SIZE - offset);
4435                 unlock_page(page);
4436                 page_cache_release(page);
4437                 if (ret != -EBUSY)
4438                         return;
4439                 commit_tid = 0;
4440                 read_lock(&journal->j_state_lock);
4441                 if (journal->j_committing_transaction)
4442                         commit_tid = journal->j_committing_transaction->t_tid;
4443                 read_unlock(&journal->j_state_lock);
4444                 if (commit_tid)
4445                         jbd2_log_wait_commit(journal, commit_tid);
4446         }
4447 }
4448
4449 /*
4450  * ext4_setattr()
4451  *
4452  * Called from notify_change.
4453  *
4454  * We want to trap VFS attempts to truncate the file as soon as
4455  * possible.  In particular, we want to make sure that when the VFS
4456  * shrinks i_size, we put the inode on the orphan list and modify
4457  * i_disksize immediately, so that during the subsequent flushing of
4458  * dirty pages and freeing of disk blocks, we can guarantee that any
4459  * commit will leave the blocks being flushed in an unused state on
4460  * disk.  (On recovery, the inode will get truncated and the blocks will
4461  * be freed, so we have a strong guarantee that no future commit will
4462  * leave these blocks visible to the user.)
4463  *
4464  * Another thing we have to assure is that if we are in ordered mode
4465  * and inode is still attached to the committing transaction, we must
4466  * we start writeout of all the dirty pages which are being truncated.
4467  * This way we are sure that all the data written in the previous
4468  * transaction are already on disk (truncate waits for pages under
4469  * writeback).
4470  *
4471  * Called with inode->i_mutex down.
4472  */
4473 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4474 {
4475         struct inode *inode = dentry->d_inode;
4476         int error, rc = 0;
4477         int orphan = 0;
4478         const unsigned int ia_valid = attr->ia_valid;
4479
4480         error = inode_change_ok(inode, attr);
4481         if (error)
4482                 return error;
4483
4484         if (is_quota_modification(inode, attr))
4485                 dquot_initialize(inode);
4486         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4487             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4488                 handle_t *handle;
4489
4490                 /* (user+group)*(old+new) structure, inode write (sb,
4491                  * inode block, ? - but truncate inode update has it) */
4492                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4493                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4494                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4495                 if (IS_ERR(handle)) {
4496                         error = PTR_ERR(handle);
4497                         goto err_out;
4498                 }
4499                 error = dquot_transfer(inode, attr);
4500                 if (error) {
4501                         ext4_journal_stop(handle);
4502                         return error;
4503                 }
4504                 /* Update corresponding info in inode so that everything is in
4505                  * one transaction */
4506                 if (attr->ia_valid & ATTR_UID)
4507                         inode->i_uid = attr->ia_uid;
4508                 if (attr->ia_valid & ATTR_GID)
4509                         inode->i_gid = attr->ia_gid;
4510                 error = ext4_mark_inode_dirty(handle, inode);
4511                 ext4_journal_stop(handle);
4512         }
4513
4514         if (attr->ia_valid & ATTR_SIZE) {
4515
4516                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4517                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4518
4519                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4520                                 return -EFBIG;
4521                 }
4522         }
4523
4524         if (S_ISREG(inode->i_mode) &&
4525             attr->ia_valid & ATTR_SIZE &&
4526             (attr->ia_size < inode->i_size)) {
4527                 handle_t *handle;
4528
4529                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4530                 if (IS_ERR(handle)) {
4531                         error = PTR_ERR(handle);
4532                         goto err_out;
4533                 }
4534                 if (ext4_handle_valid(handle)) {
4535                         error = ext4_orphan_add(handle, inode);
4536                         orphan = 1;
4537                 }
4538                 EXT4_I(inode)->i_disksize = attr->ia_size;
4539                 rc = ext4_mark_inode_dirty(handle, inode);
4540                 if (!error)
4541                         error = rc;
4542                 ext4_journal_stop(handle);
4543
4544                 if (ext4_should_order_data(inode)) {
4545                         error = ext4_begin_ordered_truncate(inode,
4546                                                             attr->ia_size);
4547                         if (error) {
4548                                 /* Do as much error cleanup as possible */
4549                                 handle = ext4_journal_start(inode,
4550                                                             EXT4_HT_INODE, 3);
4551                                 if (IS_ERR(handle)) {
4552                                         ext4_orphan_del(NULL, inode);
4553                                         goto err_out;
4554                                 }
4555                                 ext4_orphan_del(handle, inode);
4556                                 orphan = 0;
4557                                 ext4_journal_stop(handle);
4558                                 goto err_out;
4559                         }
4560                 }
4561         }
4562
4563         if (attr->ia_valid & ATTR_SIZE) {
4564                 if (attr->ia_size != inode->i_size) {
4565                         loff_t oldsize = inode->i_size;
4566
4567                         i_size_write(inode, attr->ia_size);
4568                         /*
4569                          * Blocks are going to be removed from the inode. Wait
4570                          * for dio in flight.  Temporarily disable
4571                          * dioread_nolock to prevent livelock.
4572                          */
4573                         if (orphan) {
4574                                 if (!ext4_should_journal_data(inode)) {
4575                                         ext4_inode_block_unlocked_dio(inode);
4576                                         inode_dio_wait(inode);
4577                                         ext4_inode_resume_unlocked_dio(inode);
4578                                 } else
4579                                         ext4_wait_for_tail_page_commit(inode);
4580                         }
4581                         /*
4582                          * Truncate pagecache after we've waited for commit
4583                          * in data=journal mode to make pages freeable.
4584                          */
4585                         truncate_pagecache(inode, oldsize, inode->i_size);
4586                 }
4587                 ext4_truncate(inode);
4588         }
4589
4590         if (!rc) {
4591                 setattr_copy(inode, attr);
4592                 mark_inode_dirty(inode);
4593         }
4594
4595         /*
4596          * If the call to ext4_truncate failed to get a transaction handle at
4597          * all, we need to clean up the in-core orphan list manually.
4598          */
4599         if (orphan && inode->i_nlink)
4600                 ext4_orphan_del(NULL, inode);
4601
4602         if (!rc && (ia_valid & ATTR_MODE))
4603                 rc = ext4_acl_chmod(inode);
4604
4605 err_out:
4606         ext4_std_error(inode->i_sb, error);
4607         if (!error)
4608                 error = rc;
4609         return error;
4610 }
4611
4612 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4613                  struct kstat *stat)
4614 {
4615         struct inode *inode;
4616         unsigned long long delalloc_blocks;
4617
4618         inode = dentry->d_inode;
4619         generic_fillattr(inode, stat);
4620
4621         /*
4622          * We can't update i_blocks if the block allocation is delayed
4623          * otherwise in the case of system crash before the real block
4624          * allocation is done, we will have i_blocks inconsistent with
4625          * on-disk file blocks.
4626          * We always keep i_blocks updated together with real
4627          * allocation. But to not confuse with user, stat
4628          * will return the blocks that include the delayed allocation
4629          * blocks for this file.
4630          */
4631         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4632                                 EXT4_I(inode)->i_reserved_data_blocks);
4633
4634         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4635         return 0;
4636 }
4637
4638 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4639                                    int pextents)
4640 {
4641         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4642                 return ext4_ind_trans_blocks(inode, lblocks);
4643         return ext4_ext_index_trans_blocks(inode, pextents);
4644 }
4645
4646 /*
4647  * Account for index blocks, block groups bitmaps and block group
4648  * descriptor blocks if modify datablocks and index blocks
4649  * worse case, the indexs blocks spread over different block groups
4650  *
4651  * If datablocks are discontiguous, they are possible to spread over
4652  * different block groups too. If they are contiguous, with flexbg,
4653  * they could still across block group boundary.
4654  *
4655  * Also account for superblock, inode, quota and xattr blocks
4656  */
4657 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4658                                   int pextents)
4659 {
4660         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4661         int gdpblocks;
4662         int idxblocks;
4663         int ret = 0;
4664
4665         /*
4666          * How many index blocks need to touch to map @lblocks logical blocks
4667          * to @pextents physical extents?
4668          */
4669         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4670
4671         ret = idxblocks;
4672
4673         /*
4674          * Now let's see how many group bitmaps and group descriptors need
4675          * to account
4676          */
4677         groups = idxblocks + pextents;
4678         gdpblocks = groups;
4679         if (groups > ngroups)
4680                 groups = ngroups;
4681         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4682                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4683
4684         /* bitmaps and block group descriptor blocks */
4685         ret += groups + gdpblocks;
4686
4687         /* Blocks for super block, inode, quota and xattr blocks */
4688         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4689
4690         return ret;
4691 }
4692
4693 /*
4694  * Calculate the total number of credits to reserve to fit
4695  * the modification of a single pages into a single transaction,
4696  * which may include multiple chunks of block allocations.
4697  *
4698  * This could be called via ext4_write_begin()
4699  *
4700  * We need to consider the worse case, when
4701  * one new block per extent.
4702  */
4703 int ext4_writepage_trans_blocks(struct inode *inode)
4704 {
4705         int bpp = ext4_journal_blocks_per_page(inode);
4706         int ret;
4707
4708         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4709
4710         /* Account for data blocks for journalled mode */
4711         if (ext4_should_journal_data(inode))
4712                 ret += bpp;
4713         return ret;
4714 }
4715
4716 /*
4717  * Calculate the journal credits for a chunk of data modification.
4718  *
4719  * This is called from DIO, fallocate or whoever calling
4720  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4721  *
4722  * journal buffers for data blocks are not included here, as DIO
4723  * and fallocate do no need to journal data buffers.
4724  */
4725 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4726 {
4727         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4728 }
4729
4730 /*
4731  * The caller must have previously called ext4_reserve_inode_write().
4732  * Give this, we know that the caller already has write access to iloc->bh.
4733  */
4734 int ext4_mark_iloc_dirty(handle_t *handle,
4735                          struct inode *inode, struct ext4_iloc *iloc)
4736 {
4737         int err = 0;
4738
4739         if (IS_I_VERSION(inode))
4740                 inode_inc_iversion(inode);
4741
4742         /* the do_update_inode consumes one bh->b_count */
4743         get_bh(iloc->bh);
4744
4745         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4746         err = ext4_do_update_inode(handle, inode, iloc);
4747         put_bh(iloc->bh);
4748         return err;
4749 }
4750
4751 /*
4752  * On success, We end up with an outstanding reference count against
4753  * iloc->bh.  This _must_ be cleaned up later.
4754  */
4755
4756 int
4757 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4758                          struct ext4_iloc *iloc)
4759 {
4760         int err;
4761
4762         err = ext4_get_inode_loc(inode, iloc);
4763         if (!err) {
4764                 BUFFER_TRACE(iloc->bh, "get_write_access");
4765                 err = ext4_journal_get_write_access(handle, iloc->bh);
4766                 if (err) {
4767                         brelse(iloc->bh);
4768                         iloc->bh = NULL;
4769                 }
4770         }
4771         ext4_std_error(inode->i_sb, err);
4772         return err;
4773 }
4774
4775 /*
4776  * Expand an inode by new_extra_isize bytes.
4777  * Returns 0 on success or negative error number on failure.
4778  */
4779 static int ext4_expand_extra_isize(struct inode *inode,
4780                                    unsigned int new_extra_isize,
4781                                    struct ext4_iloc iloc,
4782                                    handle_t *handle)
4783 {
4784         struct ext4_inode *raw_inode;
4785         struct ext4_xattr_ibody_header *header;
4786
4787         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4788                 return 0;
4789
4790         raw_inode = ext4_raw_inode(&iloc);
4791
4792         header = IHDR(inode, raw_inode);
4793
4794         /* No extended attributes present */
4795         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4796             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4797                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4798                         new_extra_isize);
4799                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4800                 return 0;
4801         }
4802
4803         /* try to expand with EAs present */
4804         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4805                                           raw_inode, handle);
4806 }
4807
4808 /*
4809  * What we do here is to mark the in-core inode as clean with respect to inode
4810  * dirtiness (it may still be data-dirty).
4811  * This means that the in-core inode may be reaped by prune_icache
4812  * without having to perform any I/O.  This is a very good thing,
4813  * because *any* task may call prune_icache - even ones which
4814  * have a transaction open against a different journal.
4815  *
4816  * Is this cheating?  Not really.  Sure, we haven't written the
4817  * inode out, but prune_icache isn't a user-visible syncing function.
4818  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4819  * we start and wait on commits.
4820  */
4821 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4822 {
4823         struct ext4_iloc iloc;
4824         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4825         static unsigned int mnt_count;
4826         int err, ret;
4827
4828         might_sleep();
4829         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4830         err = ext4_reserve_inode_write(handle, inode, &iloc);
4831         if (ext4_handle_valid(handle) &&
4832             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4833             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4834                 /*
4835                  * We need extra buffer credits since we may write into EA block
4836                  * with this same handle. If journal_extend fails, then it will
4837                  * only result in a minor loss of functionality for that inode.
4838                  * If this is felt to be critical, then e2fsck should be run to
4839                  * force a large enough s_min_extra_isize.
4840                  */
4841                 if ((jbd2_journal_extend(handle,
4842                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4843                         ret = ext4_expand_extra_isize(inode,
4844                                                       sbi->s_want_extra_isize,
4845                                                       iloc, handle);
4846                         if (ret) {
4847                                 ext4_set_inode_state(inode,
4848                                                      EXT4_STATE_NO_EXPAND);
4849                                 if (mnt_count !=
4850                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4851                                         ext4_warning(inode->i_sb,
4852                                         "Unable to expand inode %lu. Delete"
4853                                         " some EAs or run e2fsck.",
4854                                         inode->i_ino);
4855                                         mnt_count =
4856                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4857                                 }
4858                         }
4859                 }
4860         }
4861         if (!err)
4862                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4863         return err;
4864 }
4865
4866 /*
4867  * ext4_dirty_inode() is called from __mark_inode_dirty()
4868  *
4869  * We're really interested in the case where a file is being extended.
4870  * i_size has been changed by generic_commit_write() and we thus need
4871  * to include the updated inode in the current transaction.
4872  *
4873  * Also, dquot_alloc_block() will always dirty the inode when blocks
4874  * are allocated to the file.
4875  *
4876  * If the inode is marked synchronous, we don't honour that here - doing
4877  * so would cause a commit on atime updates, which we don't bother doing.
4878  * We handle synchronous inodes at the highest possible level.
4879  */
4880 void ext4_dirty_inode(struct inode *inode, int flags)
4881 {
4882         handle_t *handle;
4883
4884         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4885         if (IS_ERR(handle))
4886                 goto out;
4887
4888         ext4_mark_inode_dirty(handle, inode);
4889
4890         ext4_journal_stop(handle);
4891 out:
4892         return;
4893 }
4894
4895 #if 0
4896 /*
4897  * Bind an inode's backing buffer_head into this transaction, to prevent
4898  * it from being flushed to disk early.  Unlike
4899  * ext4_reserve_inode_write, this leaves behind no bh reference and
4900  * returns no iloc structure, so the caller needs to repeat the iloc
4901  * lookup to mark the inode dirty later.
4902  */
4903 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4904 {
4905         struct ext4_iloc iloc;
4906
4907         int err = 0;
4908         if (handle) {
4909                 err = ext4_get_inode_loc(inode, &iloc);
4910                 if (!err) {
4911                         BUFFER_TRACE(iloc.bh, "get_write_access");
4912                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4913                         if (!err)
4914                                 err = ext4_handle_dirty_metadata(handle,
4915                                                                  NULL,
4916                                                                  iloc.bh);
4917                         brelse(iloc.bh);
4918                 }
4919         }
4920         ext4_std_error(inode->i_sb, err);
4921         return err;
4922 }
4923 #endif
4924
4925 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4926 {
4927         journal_t *journal;
4928         handle_t *handle;
4929         int err;
4930
4931         /*
4932          * We have to be very careful here: changing a data block's
4933          * journaling status dynamically is dangerous.  If we write a
4934          * data block to the journal, change the status and then delete
4935          * that block, we risk forgetting to revoke the old log record
4936          * from the journal and so a subsequent replay can corrupt data.
4937          * So, first we make sure that the journal is empty and that
4938          * nobody is changing anything.
4939          */
4940
4941         journal = EXT4_JOURNAL(inode);
4942         if (!journal)
4943                 return 0;
4944         if (is_journal_aborted(journal))
4945                 return -EROFS;
4946         /* We have to allocate physical blocks for delalloc blocks
4947          * before flushing journal. otherwise delalloc blocks can not
4948          * be allocated any more. even more truncate on delalloc blocks
4949          * could trigger BUG by flushing delalloc blocks in journal.
4950          * There is no delalloc block in non-journal data mode.
4951          */
4952         if (val && test_opt(inode->i_sb, DELALLOC)) {
4953                 err = ext4_alloc_da_blocks(inode);
4954                 if (err < 0)
4955                         return err;
4956         }
4957
4958         /* Wait for all existing dio workers */
4959         ext4_inode_block_unlocked_dio(inode);
4960         inode_dio_wait(inode);
4961
4962         jbd2_journal_lock_updates(journal);
4963
4964         /*
4965          * OK, there are no updates running now, and all cached data is
4966          * synced to disk.  We are now in a completely consistent state
4967          * which doesn't have anything in the journal, and we know that
4968          * no filesystem updates are running, so it is safe to modify
4969          * the inode's in-core data-journaling state flag now.
4970          */
4971
4972         if (val)
4973                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4974         else {
4975                 jbd2_journal_flush(journal);
4976                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4977         }
4978         ext4_set_aops(inode);
4979
4980         jbd2_journal_unlock_updates(journal);
4981         ext4_inode_resume_unlocked_dio(inode);
4982
4983         /* Finally we can mark the inode as dirty. */
4984
4985         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4986         if (IS_ERR(handle))
4987                 return PTR_ERR(handle);
4988
4989         err = ext4_mark_inode_dirty(handle, inode);
4990         ext4_handle_sync(handle);
4991         ext4_journal_stop(handle);
4992         ext4_std_error(inode->i_sb, err);
4993
4994         return err;
4995 }
4996
4997 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4998 {
4999         return !buffer_mapped(bh);
5000 }
5001
5002 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5003 {
5004         struct page *page = vmf->page;
5005         loff_t size;
5006         unsigned long len;
5007         int ret;
5008         struct file *file = vma->vm_file;
5009         struct inode *inode = file_inode(file);
5010         struct address_space *mapping = inode->i_mapping;
5011         handle_t *handle;
5012         get_block_t *get_block;
5013         int retries = 0;
5014
5015         sb_start_pagefault(inode->i_sb);
5016         file_update_time(vma->vm_file);
5017         /* Delalloc case is easy... */
5018         if (test_opt(inode->i_sb, DELALLOC) &&
5019             !ext4_should_journal_data(inode) &&
5020             !ext4_nonda_switch(inode->i_sb)) {
5021                 do {
5022                         ret = __block_page_mkwrite(vma, vmf,
5023                                                    ext4_da_get_block_prep);
5024                 } while (ret == -ENOSPC &&
5025                        ext4_should_retry_alloc(inode->i_sb, &retries));
5026                 goto out_ret;
5027         }
5028
5029         lock_page(page);
5030         size = i_size_read(inode);
5031         /* Page got truncated from under us? */
5032         if (page->mapping != mapping || page_offset(page) > size) {
5033                 unlock_page(page);
5034                 ret = VM_FAULT_NOPAGE;
5035                 goto out;
5036         }
5037
5038         if (page->index == size >> PAGE_CACHE_SHIFT)
5039                 len = size & ~PAGE_CACHE_MASK;
5040         else
5041                 len = PAGE_CACHE_SIZE;
5042         /*
5043          * Return if we have all the buffers mapped. This avoids the need to do
5044          * journal_start/journal_stop which can block and take a long time
5045          */
5046         if (page_has_buffers(page)) {
5047                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5048                                             0, len, NULL,
5049                                             ext4_bh_unmapped)) {
5050                         /* Wait so that we don't change page under IO */
5051                         wait_for_stable_page(page);
5052                         ret = VM_FAULT_LOCKED;
5053                         goto out;
5054                 }
5055         }
5056         unlock_page(page);
5057         /* OK, we need to fill the hole... */
5058         if (ext4_should_dioread_nolock(inode))
5059                 get_block = ext4_get_block_write;
5060         else
5061                 get_block = ext4_get_block;
5062 retry_alloc:
5063         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5064                                     ext4_writepage_trans_blocks(inode));
5065         if (IS_ERR(handle)) {
5066                 ret = VM_FAULT_SIGBUS;
5067                 goto out;
5068         }
5069         ret = __block_page_mkwrite(vma, vmf, get_block);
5070         if (!ret && ext4_should_journal_data(inode)) {
5071                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5072                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5073                         unlock_page(page);
5074                         ret = VM_FAULT_SIGBUS;
5075                         ext4_journal_stop(handle);
5076                         goto out;
5077                 }
5078                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5079         }
5080         ext4_journal_stop(handle);
5081         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5082                 goto retry_alloc;
5083 out_ret:
5084         ret = block_page_mkwrite_return(ret);
5085 out:
5086         sb_end_pagefault(inode->i_sb);
5087         return ret;
5088 }