]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139                 struct inode *inode, struct page *page, loff_t from,
140                 loff_t length, int flags);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488                                        struct inode *inode,
489                                        struct ext4_map_blocks *es_map,
490                                        struct ext4_map_blocks *map,
491                                        int flags)
492 {
493         int retval;
494
495         map->m_flags = 0;
496         /*
497          * There is a race window that the result is not the same.
498          * e.g. xfstests #223 when dioread_nolock enables.  The reason
499          * is that we lookup a block mapping in extent status tree with
500          * out taking i_data_sem.  So at the time the unwritten extent
501          * could be converted.
502          */
503         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504                 down_read((&EXT4_I(inode)->i_data_sem));
505         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507                                              EXT4_GET_BLOCKS_KEEP_SIZE);
508         } else {
509                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510                                              EXT4_GET_BLOCKS_KEEP_SIZE);
511         }
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 up_read((&EXT4_I(inode)->i_data_sem));
514         /*
515          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516          * because it shouldn't be marked in es_map->m_flags.
517          */
518         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520         /*
521          * We don't check m_len because extent will be collpased in status
522          * tree.  So the m_len might not equal.
523          */
524         if (es_map->m_lblk != map->m_lblk ||
525             es_map->m_flags != map->m_flags ||
526             es_map->m_pblk != map->m_pblk) {
527                 printk("ES cache assertation failed for inode: %lu "
528                        "es_cached ex [%d/%d/%llu/%x] != "
529                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530                        inode->i_ino, es_map->m_lblk, es_map->m_len,
531                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
532                        map->m_len, map->m_pblk, map->m_flags,
533                        retval, flags);
534         }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561                     struct ext4_map_blocks *map, int flags)
562 {
563         struct extent_status es;
564         int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566         struct ext4_map_blocks orig_map;
567
568         memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571         map->m_flags = 0;
572         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
574                   (unsigned long) map->m_lblk);
575
576         /* Lookup extent status tree firstly */
577         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579                         map->m_pblk = ext4_es_pblock(&es) +
580                                         map->m_lblk - es.es_lblk;
581                         map->m_flags |= ext4_es_is_written(&es) ?
582                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583                         retval = es.es_len - (map->m_lblk - es.es_lblk);
584                         if (retval > map->m_len)
585                                 retval = map->m_len;
586                         map->m_len = retval;
587                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588                         retval = 0;
589                 } else {
590                         BUG_ON(1);
591                 }
592 #ifdef ES_AGGRESSIVE_TEST
593                 ext4_map_blocks_es_recheck(handle, inode, map,
594                                            &orig_map, flags);
595 #endif
596                 goto found;
597         }
598
599         /*
600          * Try to see if we can get the block without requesting a new
601          * file system block.
602          */
603         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604                 down_read((&EXT4_I(inode)->i_data_sem));
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607                                              EXT4_GET_BLOCKS_KEEP_SIZE);
608         } else {
609                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610                                              EXT4_GET_BLOCKS_KEEP_SIZE);
611         }
612         if (retval > 0) {
613                 int ret;
614                 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617                 if (retval != map->m_len) {
618                         printk("ES len assertation failed for inode: %lu "
619                                "retval %d != map->m_len %d "
620                                "in %s (lookup)\n", inode->i_ino, retval,
621                                map->m_len, __func__);
622                 }
623 #endif
624
625                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628                     ext4_find_delalloc_range(inode, map->m_lblk,
629                                              map->m_lblk + map->m_len - 1))
630                         status |= EXTENT_STATUS_DELAYED;
631                 ret = ext4_es_insert_extent(inode, map->m_lblk,
632                                             map->m_len, map->m_pblk, status);
633                 if (ret < 0)
634                         retval = ret;
635         }
636         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637                 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641                 int ret = check_block_validity(inode, map);
642                 if (ret != 0)
643                         return ret;
644         }
645
646         /* If it is only a block(s) look up */
647         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648                 return retval;
649
650         /*
651          * Returns if the blocks have already allocated
652          *
653          * Note that if blocks have been preallocated
654          * ext4_ext_get_block() returns the create = 0
655          * with buffer head unmapped.
656          */
657         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658                 return retval;
659
660         /*
661          * Here we clear m_flags because after allocating an new extent,
662          * it will be set again.
663          */
664         map->m_flags &= ~EXT4_MAP_FLAGS;
665
666         /*
667          * New blocks allocate and/or writing to uninitialized extent
668          * will possibly result in updating i_data, so we take
669          * the write lock of i_data_sem, and call get_blocks()
670          * with create == 1 flag.
671          */
672         down_write((&EXT4_I(inode)->i_data_sem));
673
674         /*
675          * if the caller is from delayed allocation writeout path
676          * we have already reserved fs blocks for allocation
677          * let the underlying get_block() function know to
678          * avoid double accounting
679          */
680         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682         /*
683          * We need to check for EXT4 here because migrate
684          * could have changed the inode type in between
685          */
686         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688         } else {
689                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692                         /*
693                          * We allocated new blocks which will result in
694                          * i_data's format changing.  Force the migrate
695                          * to fail by clearing migrate flags
696                          */
697                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698                 }
699
700                 /*
701                  * Update reserved blocks/metadata blocks after successful
702                  * block allocation which had been deferred till now. We don't
703                  * support fallocate for non extent files. So we can update
704                  * reserve space here.
705                  */
706                 if ((retval > 0) &&
707                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708                         ext4_da_update_reserve_space(inode, retval, 1);
709         }
710         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713         if (retval > 0) {
714                 int ret;
715                 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718                 if (retval != map->m_len) {
719                         printk("ES len assertation failed for inode: %lu "
720                                "retval %d != map->m_len %d "
721                                "in %s (allocation)\n", inode->i_ino, retval,
722                                map->m_len, __func__);
723                 }
724 #endif
725
726                 /*
727                  * If the extent has been zeroed out, we don't need to update
728                  * extent status tree.
729                  */
730                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732                         if (ext4_es_is_written(&es))
733                                 goto has_zeroout;
734                 }
735                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738                     ext4_find_delalloc_range(inode, map->m_lblk,
739                                              map->m_lblk + map->m_len - 1))
740                         status |= EXTENT_STATUS_DELAYED;
741                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742                                             map->m_pblk, status);
743                 if (ret < 0)
744                         retval = ret;
745         }
746
747 has_zeroout:
748         up_write((&EXT4_I(inode)->i_data_sem));
749         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750                 int ret = check_block_validity(inode, map);
751                 if (ret != 0)
752                         return ret;
753         }
754         return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         handle_t *handle = ext4_journal_current_handle();
764         struct ext4_map_blocks map;
765         int ret = 0, started = 0;
766         int dio_credits;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775                 /* Direct IO write... */
776                 if (map.m_len > DIO_MAX_BLOCKS)
777                         map.m_len = DIO_MAX_BLOCKS;
778                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780                                             dio_credits);
781                 if (IS_ERR(handle)) {
782                         ret = PTR_ERR(handle);
783                         return ret;
784                 }
785                 started = 1;
786         }
787
788         ret = ext4_map_blocks(handle, inode, &map, flags);
789         if (ret > 0) {
790                 map_bh(bh, inode->i_sb, map.m_pblk);
791                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793                 ret = 0;
794         }
795         if (started)
796                 ext4_journal_stop(handle);
797         return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801                    struct buffer_head *bh, int create)
802 {
803         return _ext4_get_block(inode, iblock, bh,
804                                create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811                                 ext4_lblk_t block, int create, int *errp)
812 {
813         struct ext4_map_blocks map;
814         struct buffer_head *bh;
815         int fatal = 0, err;
816
817         J_ASSERT(handle != NULL || create == 0);
818
819         map.m_lblk = block;
820         map.m_len = 1;
821         err = ext4_map_blocks(handle, inode, &map,
822                               create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824         /* ensure we send some value back into *errp */
825         *errp = 0;
826
827         if (create && err == 0)
828                 err = -ENOSPC;  /* should never happen */
829         if (err < 0)
830                 *errp = err;
831         if (err <= 0)
832                 return NULL;
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh)) {
836                 *errp = -ENOMEM;
837                 return NULL;
838         }
839         if (map.m_flags & EXT4_MAP_NEW) {
840                 J_ASSERT(create != 0);
841                 J_ASSERT(handle != NULL);
842
843                 /*
844                  * Now that we do not always journal data, we should
845                  * keep in mind whether this should always journal the
846                  * new buffer as metadata.  For now, regular file
847                  * writes use ext4_get_block instead, so it's not a
848                  * problem.
849                  */
850                 lock_buffer(bh);
851                 BUFFER_TRACE(bh, "call get_create_access");
852                 fatal = ext4_journal_get_create_access(handle, bh);
853                 if (!fatal && !buffer_uptodate(bh)) {
854                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855                         set_buffer_uptodate(bh);
856                 }
857                 unlock_buffer(bh);
858                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859                 err = ext4_handle_dirty_metadata(handle, inode, bh);
860                 if (!fatal)
861                         fatal = err;
862         } else {
863                 BUFFER_TRACE(bh, "not a new buffer");
864         }
865         if (fatal) {
866                 *errp = fatal;
867                 brelse(bh);
868                 bh = NULL;
869         }
870         return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874                                ext4_lblk_t block, int create, int *err)
875 {
876         struct buffer_head *bh;
877
878         bh = ext4_getblk(handle, inode, block, create, err);
879         if (!bh)
880                 return bh;
881         if (buffer_uptodate(bh))
882                 return bh;
883         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884         wait_on_buffer(bh);
885         if (buffer_uptodate(bh))
886                 return bh;
887         put_bh(bh);
888         *err = -EIO;
889         return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893                            struct buffer_head *head,
894                            unsigned from,
895                            unsigned to,
896                            int *partial,
897                            int (*fn)(handle_t *handle,
898                                      struct buffer_head *bh))
899 {
900         struct buffer_head *bh;
901         unsigned block_start, block_end;
902         unsigned blocksize = head->b_size;
903         int err, ret = 0;
904         struct buffer_head *next;
905
906         for (bh = head, block_start = 0;
907              ret == 0 && (bh != head || !block_start);
908              block_start = block_end, bh = next) {
909                 next = bh->b_this_page;
910                 block_end = block_start + blocksize;
911                 if (block_end <= from || block_start >= to) {
912                         if (partial && !buffer_uptodate(bh))
913                                 *partial = 1;
914                         continue;
915                 }
916                 err = (*fn)(handle, bh);
917                 if (!ret)
918                         ret = err;
919         }
920         return ret;
921 }
922
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948                                 struct buffer_head *bh)
949 {
950         int dirty = buffer_dirty(bh);
951         int ret;
952
953         if (!buffer_mapped(bh) || buffer_freed(bh))
954                 return 0;
955         /*
956          * __block_write_begin() could have dirtied some buffers. Clean
957          * the dirty bit as jbd2_journal_get_write_access() could complain
958          * otherwise about fs integrity issues. Setting of the dirty bit
959          * by __block_write_begin() isn't a real problem here as we clear
960          * the bit before releasing a page lock and thus writeback cannot
961          * ever write the buffer.
962          */
963         if (dirty)
964                 clear_buffer_dirty(bh);
965         ret = ext4_journal_get_write_access(handle, bh);
966         if (!ret && dirty)
967                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968         return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972                    struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974                             loff_t pos, unsigned len, unsigned flags,
975                             struct page **pagep, void **fsdata)
976 {
977         struct inode *inode = mapping->host;
978         int ret, needed_blocks;
979         handle_t *handle;
980         int retries = 0;
981         struct page *page;
982         pgoff_t index;
983         unsigned from, to;
984
985         trace_ext4_write_begin(inode, pos, len, flags);
986         /*
987          * Reserve one block more for addition to orphan list in case
988          * we allocate blocks but write fails for some reason
989          */
990         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991         index = pos >> PAGE_CACHE_SHIFT;
992         from = pos & (PAGE_CACHE_SIZE - 1);
993         to = from + len;
994
995         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997                                                     flags, pagep);
998                 if (ret < 0)
999                         return ret;
1000                 if (ret == 1)
1001                         return 0;
1002         }
1003
1004         /*
1005          * grab_cache_page_write_begin() can take a long time if the
1006          * system is thrashing due to memory pressure, or if the page
1007          * is being written back.  So grab it first before we start
1008          * the transaction handle.  This also allows us to allocate
1009          * the page (if needed) without using GFP_NOFS.
1010          */
1011 retry_grab:
1012         page = grab_cache_page_write_begin(mapping, index, flags);
1013         if (!page)
1014                 return -ENOMEM;
1015         unlock_page(page);
1016
1017 retry_journal:
1018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019         if (IS_ERR(handle)) {
1020                 page_cache_release(page);
1021                 return PTR_ERR(handle);
1022         }
1023
1024         lock_page(page);
1025         if (page->mapping != mapping) {
1026                 /* The page got truncated from under us */
1027                 unlock_page(page);
1028                 page_cache_release(page);
1029                 ext4_journal_stop(handle);
1030                 goto retry_grab;
1031         }
1032         wait_on_page_writeback(page);
1033
1034         if (ext4_should_dioread_nolock(inode))
1035                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036         else
1037                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039         if (!ret && ext4_should_journal_data(inode)) {
1040                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041                                              from, to, NULL,
1042                                              do_journal_get_write_access);
1043         }
1044
1045         if (ret) {
1046                 unlock_page(page);
1047                 /*
1048                  * __block_write_begin may have instantiated a few blocks
1049                  * outside i_size.  Trim these off again. Don't need
1050                  * i_size_read because we hold i_mutex.
1051                  *
1052                  * Add inode to orphan list in case we crash before
1053                  * truncate finishes
1054                  */
1055                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056                         ext4_orphan_add(handle, inode);
1057
1058                 ext4_journal_stop(handle);
1059                 if (pos + len > inode->i_size) {
1060                         ext4_truncate_failed_write(inode);
1061                         /*
1062                          * If truncate failed early the inode might
1063                          * still be on the orphan list; we need to
1064                          * make sure the inode is removed from the
1065                          * orphan list in that case.
1066                          */
1067                         if (inode->i_nlink)
1068                                 ext4_orphan_del(NULL, inode);
1069                 }
1070
1071                 if (ret == -ENOSPC &&
1072                     ext4_should_retry_alloc(inode->i_sb, &retries))
1073                         goto retry_journal;
1074                 page_cache_release(page);
1075                 return ret;
1076         }
1077         *pagep = page;
1078         return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084         int ret;
1085         if (!buffer_mapped(bh) || buffer_freed(bh))
1086                 return 0;
1087         set_buffer_uptodate(bh);
1088         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         clear_buffer_meta(bh);
1090         clear_buffer_prio(bh);
1091         return ret;
1092 }
1093
1094 /*
1095  * We need to pick up the new inode size which generic_commit_write gave us
1096  * `file' can be NULL - eg, when called from page_symlink().
1097  *
1098  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1099  * buffers are managed internally.
1100  */
1101 static int ext4_write_end(struct file *file,
1102                           struct address_space *mapping,
1103                           loff_t pos, unsigned len, unsigned copied,
1104                           struct page *page, void *fsdata)
1105 {
1106         handle_t *handle = ext4_journal_current_handle();
1107         struct inode *inode = mapping->host;
1108         int ret = 0, ret2;
1109         int i_size_changed = 0;
1110
1111         trace_ext4_write_end(inode, pos, len, copied);
1112         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113                 ret = ext4_jbd2_file_inode(handle, inode);
1114                 if (ret) {
1115                         unlock_page(page);
1116                         page_cache_release(page);
1117                         goto errout;
1118                 }
1119         }
1120
1121         if (ext4_has_inline_data(inode))
1122                 copied = ext4_write_inline_data_end(inode, pos, len,
1123                                                     copied, page);
1124         else
1125                 copied = block_write_end(file, mapping, pos,
1126                                          len, copied, page, fsdata);
1127
1128         /*
1129          * No need to use i_size_read() here, the i_size
1130          * cannot change under us because we hole i_mutex.
1131          *
1132          * But it's important to update i_size while still holding page lock:
1133          * page writeout could otherwise come in and zero beyond i_size.
1134          */
1135         if (pos + copied > inode->i_size) {
1136                 i_size_write(inode, pos + copied);
1137                 i_size_changed = 1;
1138         }
1139
1140         if (pos + copied > EXT4_I(inode)->i_disksize) {
1141                 /* We need to mark inode dirty even if
1142                  * new_i_size is less that inode->i_size
1143                  * but greater than i_disksize. (hint delalloc)
1144                  */
1145                 ext4_update_i_disksize(inode, (pos + copied));
1146                 i_size_changed = 1;
1147         }
1148         unlock_page(page);
1149         page_cache_release(page);
1150
1151         /*
1152          * Don't mark the inode dirty under page lock. First, it unnecessarily
1153          * makes the holding time of page lock longer. Second, it forces lock
1154          * ordering of page lock and transaction start for journaling
1155          * filesystems.
1156          */
1157         if (i_size_changed)
1158                 ext4_mark_inode_dirty(handle, inode);
1159
1160         if (copied < 0)
1161                 ret = copied;
1162         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1163                 /* if we have allocated more blocks and copied
1164                  * less. We will have blocks allocated outside
1165                  * inode->i_size. So truncate them
1166                  */
1167                 ext4_orphan_add(handle, inode);
1168 errout:
1169         ret2 = ext4_journal_stop(handle);
1170         if (!ret)
1171                 ret = ret2;
1172
1173         if (pos + len > inode->i_size) {
1174                 ext4_truncate_failed_write(inode);
1175                 /*
1176                  * If truncate failed early the inode might still be
1177                  * on the orphan list; we need to make sure the inode
1178                  * is removed from the orphan list in that case.
1179                  */
1180                 if (inode->i_nlink)
1181                         ext4_orphan_del(NULL, inode);
1182         }
1183
1184         return ret ? ret : copied;
1185 }
1186
1187 static int ext4_journalled_write_end(struct file *file,
1188                                      struct address_space *mapping,
1189                                      loff_t pos, unsigned len, unsigned copied,
1190                                      struct page *page, void *fsdata)
1191 {
1192         handle_t *handle = ext4_journal_current_handle();
1193         struct inode *inode = mapping->host;
1194         int ret = 0, ret2;
1195         int partial = 0;
1196         unsigned from, to;
1197         loff_t new_i_size;
1198
1199         trace_ext4_journalled_write_end(inode, pos, len, copied);
1200         from = pos & (PAGE_CACHE_SIZE - 1);
1201         to = from + len;
1202
1203         BUG_ON(!ext4_handle_valid(handle));
1204
1205         if (ext4_has_inline_data(inode))
1206                 copied = ext4_write_inline_data_end(inode, pos, len,
1207                                                     copied, page);
1208         else {
1209                 if (copied < len) {
1210                         if (!PageUptodate(page))
1211                                 copied = 0;
1212                         page_zero_new_buffers(page, from+copied, to);
1213                 }
1214
1215                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1216                                              to, &partial, write_end_fn);
1217                 if (!partial)
1218                         SetPageUptodate(page);
1219         }
1220         new_i_size = pos + copied;
1221         if (new_i_size > inode->i_size)
1222                 i_size_write(inode, pos+copied);
1223         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1224         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1225         if (new_i_size > EXT4_I(inode)->i_disksize) {
1226                 ext4_update_i_disksize(inode, new_i_size);
1227                 ret2 = ext4_mark_inode_dirty(handle, inode);
1228                 if (!ret)
1229                         ret = ret2;
1230         }
1231
1232         unlock_page(page);
1233         page_cache_release(page);
1234         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235                 /* if we have allocated more blocks and copied
1236                  * less. We will have blocks allocated outside
1237                  * inode->i_size. So truncate them
1238                  */
1239                 ext4_orphan_add(handle, inode);
1240
1241         ret2 = ext4_journal_stop(handle);
1242         if (!ret)
1243                 ret = ret2;
1244         if (pos + len > inode->i_size) {
1245                 ext4_truncate_failed_write(inode);
1246                 /*
1247                  * If truncate failed early the inode might still be
1248                  * on the orphan list; we need to make sure the inode
1249                  * is removed from the orphan list in that case.
1250                  */
1251                 if (inode->i_nlink)
1252                         ext4_orphan_del(NULL, inode);
1253         }
1254
1255         return ret ? ret : copied;
1256 }
1257
1258 /*
1259  * Reserve a metadata for a single block located at lblock
1260  */
1261 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1262 {
1263         int retries = 0;
1264         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1265         struct ext4_inode_info *ei = EXT4_I(inode);
1266         unsigned int md_needed;
1267         ext4_lblk_t save_last_lblock;
1268         int save_len;
1269
1270         /*
1271          * recalculate the amount of metadata blocks to reserve
1272          * in order to allocate nrblocks
1273          * worse case is one extent per block
1274          */
1275 repeat:
1276         spin_lock(&ei->i_block_reservation_lock);
1277         /*
1278          * ext4_calc_metadata_amount() has side effects, which we have
1279          * to be prepared undo if we fail to claim space.
1280          */
1281         save_len = ei->i_da_metadata_calc_len;
1282         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283         md_needed = EXT4_NUM_B2C(sbi,
1284                                  ext4_calc_metadata_amount(inode, lblock));
1285         trace_ext4_da_reserve_space(inode, md_needed);
1286
1287         /*
1288          * We do still charge estimated metadata to the sb though;
1289          * we cannot afford to run out of free blocks.
1290          */
1291         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1292                 ei->i_da_metadata_calc_len = save_len;
1293                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294                 spin_unlock(&ei->i_block_reservation_lock);
1295                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296                         cond_resched();
1297                         goto repeat;
1298                 }
1299                 return -ENOSPC;
1300         }
1301         ei->i_reserved_meta_blocks += md_needed;
1302         spin_unlock(&ei->i_block_reservation_lock);
1303
1304         return 0;       /* success */
1305 }
1306
1307 /*
1308  * Reserve a single cluster located at lblock
1309  */
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312         int retries = 0;
1313         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314         struct ext4_inode_info *ei = EXT4_I(inode);
1315         unsigned int md_needed;
1316         int ret;
1317         ext4_lblk_t save_last_lblock;
1318         int save_len;
1319
1320         /*
1321          * We will charge metadata quota at writeout time; this saves
1322          * us from metadata over-estimation, though we may go over by
1323          * a small amount in the end.  Here we just reserve for data.
1324          */
1325         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326         if (ret)
1327                 return ret;
1328
1329         /*
1330          * recalculate the amount of metadata blocks to reserve
1331          * in order to allocate nrblocks
1332          * worse case is one extent per block
1333          */
1334 repeat:
1335         spin_lock(&ei->i_block_reservation_lock);
1336         /*
1337          * ext4_calc_metadata_amount() has side effects, which we have
1338          * to be prepared undo if we fail to claim space.
1339          */
1340         save_len = ei->i_da_metadata_calc_len;
1341         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342         md_needed = EXT4_NUM_B2C(sbi,
1343                                  ext4_calc_metadata_amount(inode, lblock));
1344         trace_ext4_da_reserve_space(inode, md_needed);
1345
1346         /*
1347          * We do still charge estimated metadata to the sb though;
1348          * we cannot afford to run out of free blocks.
1349          */
1350         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351                 ei->i_da_metadata_calc_len = save_len;
1352                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353                 spin_unlock(&ei->i_block_reservation_lock);
1354                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1355                         cond_resched();
1356                         goto repeat;
1357                 }
1358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359                 return -ENOSPC;
1360         }
1361         ei->i_reserved_data_blocks++;
1362         ei->i_reserved_meta_blocks += md_needed;
1363         spin_unlock(&ei->i_block_reservation_lock);
1364
1365         return 0;       /* success */
1366 }
1367
1368 static void ext4_da_release_space(struct inode *inode, int to_free)
1369 {
1370         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371         struct ext4_inode_info *ei = EXT4_I(inode);
1372
1373         if (!to_free)
1374                 return;         /* Nothing to release, exit */
1375
1376         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1377
1378         trace_ext4_da_release_space(inode, to_free);
1379         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1380                 /*
1381                  * if there aren't enough reserved blocks, then the
1382                  * counter is messed up somewhere.  Since this
1383                  * function is called from invalidate page, it's
1384                  * harmless to return without any action.
1385                  */
1386                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387                          "ino %lu, to_free %d with only %d reserved "
1388                          "data blocks", inode->i_ino, to_free,
1389                          ei->i_reserved_data_blocks);
1390                 WARN_ON(1);
1391                 to_free = ei->i_reserved_data_blocks;
1392         }
1393         ei->i_reserved_data_blocks -= to_free;
1394
1395         if (ei->i_reserved_data_blocks == 0) {
1396                 /*
1397                  * We can release all of the reserved metadata blocks
1398                  * only when we have written all of the delayed
1399                  * allocation blocks.
1400                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1401                  * i_reserved_data_blocks, etc. refer to number of clusters.
1402                  */
1403                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404                                    ei->i_reserved_meta_blocks);
1405                 ei->i_reserved_meta_blocks = 0;
1406                 ei->i_da_metadata_calc_len = 0;
1407         }
1408
1409         /* update fs dirty data blocks counter */
1410         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1411
1412         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1413
1414         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1415 }
1416
1417 static void ext4_da_page_release_reservation(struct page *page,
1418                                              unsigned long offset)
1419 {
1420         int to_release = 0;
1421         struct buffer_head *head, *bh;
1422         unsigned int curr_off = 0;
1423         struct inode *inode = page->mapping->host;
1424         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425         int num_clusters;
1426         ext4_fsblk_t lblk;
1427
1428         head = page_buffers(page);
1429         bh = head;
1430         do {
1431                 unsigned int next_off = curr_off + bh->b_size;
1432
1433                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1434                         to_release++;
1435                         clear_buffer_delay(bh);
1436                 }
1437                 curr_off = next_off;
1438         } while ((bh = bh->b_this_page) != head);
1439
1440         if (to_release) {
1441                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442                 ext4_es_remove_extent(inode, lblk, to_release);
1443         }
1444
1445         /* If we have released all the blocks belonging to a cluster, then we
1446          * need to release the reserved space for that cluster. */
1447         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448         while (num_clusters > 0) {
1449                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450                         ((num_clusters - 1) << sbi->s_cluster_bits);
1451                 if (sbi->s_cluster_ratio == 1 ||
1452                     !ext4_find_delalloc_cluster(inode, lblk))
1453                         ext4_da_release_space(inode, 1);
1454
1455                 num_clusters--;
1456         }
1457 }
1458
1459 /*
1460  * Delayed allocation stuff
1461  */
1462
1463 /*
1464  * mpage_da_submit_io - walks through extent of pages and try to write
1465  * them with writepage() call back
1466  *
1467  * @mpd->inode: inode
1468  * @mpd->first_page: first page of the extent
1469  * @mpd->next_page: page after the last page of the extent
1470  *
1471  * By the time mpage_da_submit_io() is called we expect all blocks
1472  * to be allocated. this may be wrong if allocation failed.
1473  *
1474  * As pages are already locked by write_cache_pages(), we can't use it
1475  */
1476 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477                               struct ext4_map_blocks *map)
1478 {
1479         struct pagevec pvec;
1480         unsigned long index, end;
1481         int ret = 0, err, nr_pages, i;
1482         struct inode *inode = mpd->inode;
1483         struct address_space *mapping = inode->i_mapping;
1484         loff_t size = i_size_read(inode);
1485         unsigned int len, block_start;
1486         struct buffer_head *bh, *page_bufs = NULL;
1487         sector_t pblock = 0, cur_logical = 0;
1488         struct ext4_io_submit io_submit;
1489
1490         BUG_ON(mpd->next_page <= mpd->first_page);
1491         ext4_io_submit_init(&io_submit, mpd->wbc);
1492         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1493         if (!io_submit.io_end)
1494                 return -ENOMEM;
1495         /*
1496          * We need to start from the first_page to the next_page - 1
1497          * to make sure we also write the mapped dirty buffer_heads.
1498          * If we look at mpd->b_blocknr we would only be looking
1499          * at the currently mapped buffer_heads.
1500          */
1501         index = mpd->first_page;
1502         end = mpd->next_page - 1;
1503
1504         pagevec_init(&pvec, 0);
1505         while (index <= end) {
1506                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1507                 if (nr_pages == 0)
1508                         break;
1509                 for (i = 0; i < nr_pages; i++) {
1510                         int skip_page = 0;
1511                         struct page *page = pvec.pages[i];
1512
1513                         index = page->index;
1514                         if (index > end)
1515                                 break;
1516
1517                         if (index == size >> PAGE_CACHE_SHIFT)
1518                                 len = size & ~PAGE_CACHE_MASK;
1519                         else
1520                                 len = PAGE_CACHE_SIZE;
1521                         if (map) {
1522                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1523                                                         inode->i_blkbits);
1524                                 pblock = map->m_pblk + (cur_logical -
1525                                                         map->m_lblk);
1526                         }
1527                         index++;
1528
1529                         BUG_ON(!PageLocked(page));
1530                         BUG_ON(PageWriteback(page));
1531
1532                         bh = page_bufs = page_buffers(page);
1533                         block_start = 0;
1534                         do {
1535                                 if (map && (cur_logical >= map->m_lblk) &&
1536                                     (cur_logical <= (map->m_lblk +
1537                                                      (map->m_len - 1)))) {
1538                                         if (buffer_delay(bh)) {
1539                                                 clear_buffer_delay(bh);
1540                                                 bh->b_blocknr = pblock;
1541                                         }
1542                                         if (buffer_unwritten(bh) ||
1543                                             buffer_mapped(bh))
1544                                                 BUG_ON(bh->b_blocknr != pblock);
1545                                         if (map->m_flags & EXT4_MAP_UNINIT)
1546                                                 set_buffer_uninit(bh);
1547                                         clear_buffer_unwritten(bh);
1548                                 }
1549
1550                                 /*
1551                                  * skip page if block allocation undone and
1552                                  * block is dirty
1553                                  */
1554                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1555                                         skip_page = 1;
1556                                 bh = bh->b_this_page;
1557                                 block_start += bh->b_size;
1558                                 cur_logical++;
1559                                 pblock++;
1560                         } while (bh != page_bufs);
1561
1562                         if (skip_page) {
1563                                 unlock_page(page);
1564                                 continue;
1565                         }
1566
1567                         clear_page_dirty_for_io(page);
1568                         err = ext4_bio_write_page(&io_submit, page, len,
1569                                                   mpd->wbc);
1570                         if (!err)
1571                                 mpd->pages_written++;
1572                         /*
1573                          * In error case, we have to continue because
1574                          * remaining pages are still locked
1575                          */
1576                         if (ret == 0)
1577                                 ret = err;
1578                 }
1579                 pagevec_release(&pvec);
1580         }
1581         ext4_io_submit(&io_submit);
1582         /* Drop io_end reference we got from init */
1583         ext4_put_io_end_defer(io_submit.io_end);
1584         return ret;
1585 }
1586
1587 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1588 {
1589         int nr_pages, i;
1590         pgoff_t index, end;
1591         struct pagevec pvec;
1592         struct inode *inode = mpd->inode;
1593         struct address_space *mapping = inode->i_mapping;
1594         ext4_lblk_t start, last;
1595
1596         index = mpd->first_page;
1597         end   = mpd->next_page - 1;
1598
1599         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1601         ext4_es_remove_extent(inode, start, last - start + 1);
1602
1603         pagevec_init(&pvec, 0);
1604         while (index <= end) {
1605                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1606                 if (nr_pages == 0)
1607                         break;
1608                 for (i = 0; i < nr_pages; i++) {
1609                         struct page *page = pvec.pages[i];
1610                         if (page->index > end)
1611                                 break;
1612                         BUG_ON(!PageLocked(page));
1613                         BUG_ON(PageWriteback(page));
1614                         block_invalidatepage(page, 0);
1615                         ClearPageUptodate(page);
1616                         unlock_page(page);
1617                 }
1618                 index = pvec.pages[nr_pages - 1]->index + 1;
1619                 pagevec_release(&pvec);
1620         }
1621         return;
1622 }
1623
1624 static void ext4_print_free_blocks(struct inode *inode)
1625 {
1626         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627         struct super_block *sb = inode->i_sb;
1628         struct ext4_inode_info *ei = EXT4_I(inode);
1629
1630         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1631                EXT4_C2B(EXT4_SB(inode->i_sb),
1632                         ext4_count_free_clusters(sb)));
1633         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1634         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1635                (long long) EXT4_C2B(EXT4_SB(sb),
1636                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1637         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1638                (long long) EXT4_C2B(EXT4_SB(sb),
1639                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1640         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1641         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1642                  ei->i_reserved_data_blocks);
1643         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1644                ei->i_reserved_meta_blocks);
1645         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1646                ei->i_allocated_meta_blocks);
1647         return;
1648 }
1649
1650 /*
1651  * mpage_da_map_and_submit - go through given space, map them
1652  *       if necessary, and then submit them for I/O
1653  *
1654  * @mpd - bh describing space
1655  *
1656  * The function skips space we know is already mapped to disk blocks.
1657  *
1658  */
1659 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1660 {
1661         int err, blks, get_blocks_flags;
1662         struct ext4_map_blocks map, *mapp = NULL;
1663         sector_t next = mpd->b_blocknr;
1664         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1665         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1666         handle_t *handle = NULL;
1667
1668         /*
1669          * If the blocks are mapped already, or we couldn't accumulate
1670          * any blocks, then proceed immediately to the submission stage.
1671          */
1672         if ((mpd->b_size == 0) ||
1673             ((mpd->b_state  & (1 << BH_Mapped)) &&
1674              !(mpd->b_state & (1 << BH_Delay)) &&
1675              !(mpd->b_state & (1 << BH_Unwritten))))
1676                 goto submit_io;
1677
1678         handle = ext4_journal_current_handle();
1679         BUG_ON(!handle);
1680
1681         /*
1682          * Call ext4_map_blocks() to allocate any delayed allocation
1683          * blocks, or to convert an uninitialized extent to be
1684          * initialized (in the case where we have written into
1685          * one or more preallocated blocks).
1686          *
1687          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1688          * indicate that we are on the delayed allocation path.  This
1689          * affects functions in many different parts of the allocation
1690          * call path.  This flag exists primarily because we don't
1691          * want to change *many* call functions, so ext4_map_blocks()
1692          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1693          * inode's allocation semaphore is taken.
1694          *
1695          * If the blocks in questions were delalloc blocks, set
1696          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1697          * variables are updated after the blocks have been allocated.
1698          */
1699         map.m_lblk = next;
1700         map.m_len = max_blocks;
1701         /*
1702          * We're in delalloc path and it is possible that we're going to
1703          * need more metadata blocks than previously reserved. However
1704          * we must not fail because we're in writeback and there is
1705          * nothing we can do about it so it might result in data loss.
1706          * So use reserved blocks to allocate metadata if possible.
1707          */
1708         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1709                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1710         if (ext4_should_dioread_nolock(mpd->inode))
1711                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1712         if (mpd->b_state & (1 << BH_Delay))
1713                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1714
1715
1716         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1717         if (blks < 0) {
1718                 struct super_block *sb = mpd->inode->i_sb;
1719
1720                 err = blks;
1721                 /*
1722                  * If get block returns EAGAIN or ENOSPC and there
1723                  * appears to be free blocks we will just let
1724                  * mpage_da_submit_io() unlock all of the pages.
1725                  */
1726                 if (err == -EAGAIN)
1727                         goto submit_io;
1728
1729                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1730                         mpd->retval = err;
1731                         goto submit_io;
1732                 }
1733
1734                 /*
1735                  * get block failure will cause us to loop in
1736                  * writepages, because a_ops->writepage won't be able
1737                  * to make progress. The page will be redirtied by
1738                  * writepage and writepages will again try to write
1739                  * the same.
1740                  */
1741                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1742                         ext4_msg(sb, KERN_CRIT,
1743                                  "delayed block allocation failed for inode %lu "
1744                                  "at logical offset %llu with max blocks %zd "
1745                                  "with error %d", mpd->inode->i_ino,
1746                                  (unsigned long long) next,
1747                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1748                         ext4_msg(sb, KERN_CRIT,
1749                                 "This should not happen!! Data will be lost");
1750                         if (err == -ENOSPC)
1751                                 ext4_print_free_blocks(mpd->inode);
1752                 }
1753                 /* invalidate all the pages */
1754                 ext4_da_block_invalidatepages(mpd);
1755
1756                 /* Mark this page range as having been completed */
1757                 mpd->io_done = 1;
1758                 return;
1759         }
1760         BUG_ON(blks == 0);
1761
1762         mapp = &map;
1763         if (map.m_flags & EXT4_MAP_NEW) {
1764                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1765                 int i;
1766
1767                 for (i = 0; i < map.m_len; i++)
1768                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1769         }
1770
1771         /*
1772          * Update on-disk size along with block allocation.
1773          */
1774         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1775         if (disksize > i_size_read(mpd->inode))
1776                 disksize = i_size_read(mpd->inode);
1777         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1778                 ext4_update_i_disksize(mpd->inode, disksize);
1779                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1780                 if (err)
1781                         ext4_error(mpd->inode->i_sb,
1782                                    "Failed to mark inode %lu dirty",
1783                                    mpd->inode->i_ino);
1784         }
1785
1786 submit_io:
1787         mpage_da_submit_io(mpd, mapp);
1788         mpd->io_done = 1;
1789 }
1790
1791 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1792                 (1 << BH_Delay) | (1 << BH_Unwritten))
1793
1794 /*
1795  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1796  *
1797  * @mpd->lbh - extent of blocks
1798  * @logical - logical number of the block in the file
1799  * @b_state - b_state of the buffer head added
1800  *
1801  * the function is used to collect contig. blocks in same state
1802  */
1803 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1804                                    unsigned long b_state)
1805 {
1806         sector_t next;
1807         int blkbits = mpd->inode->i_blkbits;
1808         int nrblocks = mpd->b_size >> blkbits;
1809
1810         /*
1811          * XXX Don't go larger than mballoc is willing to allocate
1812          * This is a stopgap solution.  We eventually need to fold
1813          * mpage_da_submit_io() into this function and then call
1814          * ext4_map_blocks() multiple times in a loop
1815          */
1816         if (nrblocks >= (8*1024*1024 >> blkbits))
1817                 goto flush_it;
1818
1819         /* check if the reserved journal credits might overflow */
1820         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1821                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1822                         /*
1823                          * With non-extent format we are limited by the journal
1824                          * credit available.  Total credit needed to insert
1825                          * nrblocks contiguous blocks is dependent on the
1826                          * nrblocks.  So limit nrblocks.
1827                          */
1828                         goto flush_it;
1829                 }
1830         }
1831         /*
1832          * First block in the extent
1833          */
1834         if (mpd->b_size == 0) {
1835                 mpd->b_blocknr = logical;
1836                 mpd->b_size = 1 << blkbits;
1837                 mpd->b_state = b_state & BH_FLAGS;
1838                 return;
1839         }
1840
1841         next = mpd->b_blocknr + nrblocks;
1842         /*
1843          * Can we merge the block to our big extent?
1844          */
1845         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1846                 mpd->b_size += 1 << blkbits;
1847                 return;
1848         }
1849
1850 flush_it:
1851         /*
1852          * We couldn't merge the block to our extent, so we
1853          * need to flush current  extent and start new one
1854          */
1855         mpage_da_map_and_submit(mpd);
1856         return;
1857 }
1858
1859 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1860 {
1861         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1862 }
1863
1864 /*
1865  * This function is grabs code from the very beginning of
1866  * ext4_map_blocks, but assumes that the caller is from delayed write
1867  * time. This function looks up the requested blocks and sets the
1868  * buffer delay bit under the protection of i_data_sem.
1869  */
1870 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1871                               struct ext4_map_blocks *map,
1872                               struct buffer_head *bh)
1873 {
1874         struct extent_status es;
1875         int retval;
1876         sector_t invalid_block = ~((sector_t) 0xffff);
1877 #ifdef ES_AGGRESSIVE_TEST
1878         struct ext4_map_blocks orig_map;
1879
1880         memcpy(&orig_map, map, sizeof(*map));
1881 #endif
1882
1883         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1884                 invalid_block = ~0;
1885
1886         map->m_flags = 0;
1887         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1888                   "logical block %lu\n", inode->i_ino, map->m_len,
1889                   (unsigned long) map->m_lblk);
1890
1891         /* Lookup extent status tree firstly */
1892         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1893
1894                 if (ext4_es_is_hole(&es)) {
1895                         retval = 0;
1896                         down_read((&EXT4_I(inode)->i_data_sem));
1897                         goto add_delayed;
1898                 }
1899
1900                 /*
1901                  * Delayed extent could be allocated by fallocate.
1902                  * So we need to check it.
1903                  */
1904                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1905                         map_bh(bh, inode->i_sb, invalid_block);
1906                         set_buffer_new(bh);
1907                         set_buffer_delay(bh);
1908                         return 0;
1909                 }
1910
1911                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1912                 retval = es.es_len - (iblock - es.es_lblk);
1913                 if (retval > map->m_len)
1914                         retval = map->m_len;
1915                 map->m_len = retval;
1916                 if (ext4_es_is_written(&es))
1917                         map->m_flags |= EXT4_MAP_MAPPED;
1918                 else if (ext4_es_is_unwritten(&es))
1919                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1920                 else
1921                         BUG_ON(1);
1922
1923 #ifdef ES_AGGRESSIVE_TEST
1924                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1925 #endif
1926                 return retval;
1927         }
1928
1929         /*
1930          * Try to see if we can get the block without requesting a new
1931          * file system block.
1932          */
1933         down_read((&EXT4_I(inode)->i_data_sem));
1934         if (ext4_has_inline_data(inode)) {
1935                 /*
1936                  * We will soon create blocks for this page, and let
1937                  * us pretend as if the blocks aren't allocated yet.
1938                  * In case of clusters, we have to handle the work
1939                  * of mapping from cluster so that the reserved space
1940                  * is calculated properly.
1941                  */
1942                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1943                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1944                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1945                 retval = 0;
1946         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1947                 retval = ext4_ext_map_blocks(NULL, inode, map,
1948                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1949         else
1950                 retval = ext4_ind_map_blocks(NULL, inode, map,
1951                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1952
1953 add_delayed:
1954         if (retval == 0) {
1955                 int ret;
1956                 /*
1957                  * XXX: __block_prepare_write() unmaps passed block,
1958                  * is it OK?
1959                  */
1960                 /*
1961                  * If the block was allocated from previously allocated cluster,
1962                  * then we don't need to reserve it again. However we still need
1963                  * to reserve metadata for every block we're going to write.
1964                  */
1965                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1966                         ret = ext4_da_reserve_space(inode, iblock);
1967                         if (ret) {
1968                                 /* not enough space to reserve */
1969                                 retval = ret;
1970                                 goto out_unlock;
1971                         }
1972                 } else {
1973                         ret = ext4_da_reserve_metadata(inode, iblock);
1974                         if (ret) {
1975                                 /* not enough space to reserve */
1976                                 retval = ret;
1977                                 goto out_unlock;
1978                         }
1979                 }
1980
1981                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1982                                             ~0, EXTENT_STATUS_DELAYED);
1983                 if (ret) {
1984                         retval = ret;
1985                         goto out_unlock;
1986                 }
1987
1988                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1989                  * and it should not appear on the bh->b_state.
1990                  */
1991                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1992
1993                 map_bh(bh, inode->i_sb, invalid_block);
1994                 set_buffer_new(bh);
1995                 set_buffer_delay(bh);
1996         } else if (retval > 0) {
1997                 int ret;
1998                 unsigned long long status;
1999
2000 #ifdef ES_AGGRESSIVE_TEST
2001                 if (retval != map->m_len) {
2002                         printk("ES len assertation failed for inode: %lu "
2003                                "retval %d != map->m_len %d "
2004                                "in %s (lookup)\n", inode->i_ino, retval,
2005                                map->m_len, __func__);
2006                 }
2007 #endif
2008
2009                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2010                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2011                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2012                                             map->m_pblk, status);
2013                 if (ret != 0)
2014                         retval = ret;
2015         }
2016
2017 out_unlock:
2018         up_read((&EXT4_I(inode)->i_data_sem));
2019
2020         return retval;
2021 }
2022
2023 /*
2024  * This is a special get_blocks_t callback which is used by
2025  * ext4_da_write_begin().  It will either return mapped block or
2026  * reserve space for a single block.
2027  *
2028  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2029  * We also have b_blocknr = -1 and b_bdev initialized properly
2030  *
2031  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2032  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2033  * initialized properly.
2034  */
2035 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2036                            struct buffer_head *bh, int create)
2037 {
2038         struct ext4_map_blocks map;
2039         int ret = 0;
2040
2041         BUG_ON(create == 0);
2042         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2043
2044         map.m_lblk = iblock;
2045         map.m_len = 1;
2046
2047         /*
2048          * first, we need to know whether the block is allocated already
2049          * preallocated blocks are unmapped but should treated
2050          * the same as allocated blocks.
2051          */
2052         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2053         if (ret <= 0)
2054                 return ret;
2055
2056         map_bh(bh, inode->i_sb, map.m_pblk);
2057         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2058
2059         if (buffer_unwritten(bh)) {
2060                 /* A delayed write to unwritten bh should be marked
2061                  * new and mapped.  Mapped ensures that we don't do
2062                  * get_block multiple times when we write to the same
2063                  * offset and new ensures that we do proper zero out
2064                  * for partial write.
2065                  */
2066                 set_buffer_new(bh);
2067                 set_buffer_mapped(bh);
2068         }
2069         return 0;
2070 }
2071
2072 static int bget_one(handle_t *handle, struct buffer_head *bh)
2073 {
2074         get_bh(bh);
2075         return 0;
2076 }
2077
2078 static int bput_one(handle_t *handle, struct buffer_head *bh)
2079 {
2080         put_bh(bh);
2081         return 0;
2082 }
2083
2084 static int __ext4_journalled_writepage(struct page *page,
2085                                        unsigned int len)
2086 {
2087         struct address_space *mapping = page->mapping;
2088         struct inode *inode = mapping->host;
2089         struct buffer_head *page_bufs = NULL;
2090         handle_t *handle = NULL;
2091         int ret = 0, err = 0;
2092         int inline_data = ext4_has_inline_data(inode);
2093         struct buffer_head *inode_bh = NULL;
2094
2095         ClearPageChecked(page);
2096
2097         if (inline_data) {
2098                 BUG_ON(page->index != 0);
2099                 BUG_ON(len > ext4_get_max_inline_size(inode));
2100                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2101                 if (inode_bh == NULL)
2102                         goto out;
2103         } else {
2104                 page_bufs = page_buffers(page);
2105                 if (!page_bufs) {
2106                         BUG();
2107                         goto out;
2108                 }
2109                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2110                                        NULL, bget_one);
2111         }
2112         /* As soon as we unlock the page, it can go away, but we have
2113          * references to buffers so we are safe */
2114         unlock_page(page);
2115
2116         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2117                                     ext4_writepage_trans_blocks(inode));
2118         if (IS_ERR(handle)) {
2119                 ret = PTR_ERR(handle);
2120                 goto out;
2121         }
2122
2123         BUG_ON(!ext4_handle_valid(handle));
2124
2125         if (inline_data) {
2126                 ret = ext4_journal_get_write_access(handle, inode_bh);
2127
2128                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2129
2130         } else {
2131                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2132                                              do_journal_get_write_access);
2133
2134                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2135                                              write_end_fn);
2136         }
2137         if (ret == 0)
2138                 ret = err;
2139         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2140         err = ext4_journal_stop(handle);
2141         if (!ret)
2142                 ret = err;
2143
2144         if (!ext4_has_inline_data(inode))
2145                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2146                                        NULL, bput_one);
2147         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2148 out:
2149         brelse(inode_bh);
2150         return ret;
2151 }
2152
2153 /*
2154  * Note that we don't need to start a transaction unless we're journaling data
2155  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2156  * need to file the inode to the transaction's list in ordered mode because if
2157  * we are writing back data added by write(), the inode is already there and if
2158  * we are writing back data modified via mmap(), no one guarantees in which
2159  * transaction the data will hit the disk. In case we are journaling data, we
2160  * cannot start transaction directly because transaction start ranks above page
2161  * lock so we have to do some magic.
2162  *
2163  * This function can get called via...
2164  *   - ext4_da_writepages after taking page lock (have journal handle)
2165  *   - journal_submit_inode_data_buffers (no journal handle)
2166  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2167  *   - grab_page_cache when doing write_begin (have journal handle)
2168  *
2169  * We don't do any block allocation in this function. If we have page with
2170  * multiple blocks we need to write those buffer_heads that are mapped. This
2171  * is important for mmaped based write. So if we do with blocksize 1K
2172  * truncate(f, 1024);
2173  * a = mmap(f, 0, 4096);
2174  * a[0] = 'a';
2175  * truncate(f, 4096);
2176  * we have in the page first buffer_head mapped via page_mkwrite call back
2177  * but other buffer_heads would be unmapped but dirty (dirty done via the
2178  * do_wp_page). So writepage should write the first block. If we modify
2179  * the mmap area beyond 1024 we will again get a page_fault and the
2180  * page_mkwrite callback will do the block allocation and mark the
2181  * buffer_heads mapped.
2182  *
2183  * We redirty the page if we have any buffer_heads that is either delay or
2184  * unwritten in the page.
2185  *
2186  * We can get recursively called as show below.
2187  *
2188  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2189  *              ext4_writepage()
2190  *
2191  * But since we don't do any block allocation we should not deadlock.
2192  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2193  */
2194 static int ext4_writepage(struct page *page,
2195                           struct writeback_control *wbc)
2196 {
2197         int ret = 0;
2198         loff_t size;
2199         unsigned int len;
2200         struct buffer_head *page_bufs = NULL;
2201         struct inode *inode = page->mapping->host;
2202         struct ext4_io_submit io_submit;
2203
2204         trace_ext4_writepage(page);
2205         size = i_size_read(inode);
2206         if (page->index == size >> PAGE_CACHE_SHIFT)
2207                 len = size & ~PAGE_CACHE_MASK;
2208         else
2209                 len = PAGE_CACHE_SIZE;
2210
2211         page_bufs = page_buffers(page);
2212         /*
2213          * We cannot do block allocation or other extent handling in this
2214          * function. If there are buffers needing that, we have to redirty
2215          * the page. But we may reach here when we do a journal commit via
2216          * journal_submit_inode_data_buffers() and in that case we must write
2217          * allocated buffers to achieve data=ordered mode guarantees.
2218          */
2219         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2220                                    ext4_bh_delay_or_unwritten)) {
2221                 redirty_page_for_writepage(wbc, page);
2222                 if (current->flags & PF_MEMALLOC) {
2223                         /*
2224                          * For memory cleaning there's no point in writing only
2225                          * some buffers. So just bail out. Warn if we came here
2226                          * from direct reclaim.
2227                          */
2228                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2229                                                         == PF_MEMALLOC);
2230                         unlock_page(page);
2231                         return 0;
2232                 }
2233         }
2234
2235         if (PageChecked(page) && ext4_should_journal_data(inode))
2236                 /*
2237                  * It's mmapped pagecache.  Add buffers and journal it.  There
2238                  * doesn't seem much point in redirtying the page here.
2239                  */
2240                 return __ext4_journalled_writepage(page, len);
2241
2242         ext4_io_submit_init(&io_submit, wbc);
2243         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2244         if (!io_submit.io_end) {
2245                 redirty_page_for_writepage(wbc, page);
2246                 return -ENOMEM;
2247         }
2248         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2249         ext4_io_submit(&io_submit);
2250         /* Drop io_end reference we got from init */
2251         ext4_put_io_end_defer(io_submit.io_end);
2252         return ret;
2253 }
2254
2255 /*
2256  * This is called via ext4_da_writepages() to
2257  * calculate the total number of credits to reserve to fit
2258  * a single extent allocation into a single transaction,
2259  * ext4_da_writpeages() will loop calling this before
2260  * the block allocation.
2261  */
2262
2263 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2264 {
2265         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2266
2267         /*
2268          * With non-extent format the journal credit needed to
2269          * insert nrblocks contiguous block is dependent on
2270          * number of contiguous block. So we will limit
2271          * number of contiguous block to a sane value
2272          */
2273         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2274             (max_blocks > EXT4_MAX_TRANS_DATA))
2275                 max_blocks = EXT4_MAX_TRANS_DATA;
2276
2277         return ext4_chunk_trans_blocks(inode, max_blocks);
2278 }
2279
2280 /*
2281  * write_cache_pages_da - walk the list of dirty pages of the given
2282  * address space and accumulate pages that need writing, and call
2283  * mpage_da_map_and_submit to map a single contiguous memory region
2284  * and then write them.
2285  */
2286 static int write_cache_pages_da(handle_t *handle,
2287                                 struct address_space *mapping,
2288                                 struct writeback_control *wbc,
2289                                 struct mpage_da_data *mpd,
2290                                 pgoff_t *done_index)
2291 {
2292         struct buffer_head      *bh, *head;
2293         struct inode            *inode = mapping->host;
2294         struct pagevec          pvec;
2295         unsigned int            nr_pages;
2296         sector_t                logical;
2297         pgoff_t                 index, end;
2298         long                    nr_to_write = wbc->nr_to_write;
2299         int                     i, tag, ret = 0;
2300
2301         memset(mpd, 0, sizeof(struct mpage_da_data));
2302         mpd->wbc = wbc;
2303         mpd->inode = inode;
2304         pagevec_init(&pvec, 0);
2305         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2306         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2307
2308         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2309                 tag = PAGECACHE_TAG_TOWRITE;
2310         else
2311                 tag = PAGECACHE_TAG_DIRTY;
2312
2313         *done_index = index;
2314         while (index <= end) {
2315                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2316                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2317                 if (nr_pages == 0)
2318                         return 0;
2319
2320                 for (i = 0; i < nr_pages; i++) {
2321                         struct page *page = pvec.pages[i];
2322
2323                         /*
2324                          * At this point, the page may be truncated or
2325                          * invalidated (changing page->mapping to NULL), or
2326                          * even swizzled back from swapper_space to tmpfs file
2327                          * mapping. However, page->index will not change
2328                          * because we have a reference on the page.
2329                          */
2330                         if (page->index > end)
2331                                 goto out;
2332
2333                         *done_index = page->index + 1;
2334
2335                         /*
2336                          * If we can't merge this page, and we have
2337                          * accumulated an contiguous region, write it
2338                          */
2339                         if ((mpd->next_page != page->index) &&
2340                             (mpd->next_page != mpd->first_page)) {
2341                                 mpage_da_map_and_submit(mpd);
2342                                 goto ret_extent_tail;
2343                         }
2344
2345                         lock_page(page);
2346
2347                         /*
2348                          * If the page is no longer dirty, or its
2349                          * mapping no longer corresponds to inode we
2350                          * are writing (which means it has been
2351                          * truncated or invalidated), or the page is
2352                          * already under writeback and we are not
2353                          * doing a data integrity writeback, skip the page
2354                          */
2355                         if (!PageDirty(page) ||
2356                             (PageWriteback(page) &&
2357                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2358                             unlikely(page->mapping != mapping)) {
2359                                 unlock_page(page);
2360                                 continue;
2361                         }
2362
2363                         wait_on_page_writeback(page);
2364                         BUG_ON(PageWriteback(page));
2365
2366                         /*
2367                          * If we have inline data and arrive here, it means that
2368                          * we will soon create the block for the 1st page, so
2369                          * we'd better clear the inline data here.
2370                          */
2371                         if (ext4_has_inline_data(inode)) {
2372                                 BUG_ON(ext4_test_inode_state(inode,
2373                                                 EXT4_STATE_MAY_INLINE_DATA));
2374                                 ext4_destroy_inline_data(handle, inode);
2375                         }
2376
2377                         if (mpd->next_page != page->index)
2378                                 mpd->first_page = page->index;
2379                         mpd->next_page = page->index + 1;
2380                         logical = (sector_t) page->index <<
2381                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2382
2383                         /* Add all dirty buffers to mpd */
2384                         head = page_buffers(page);
2385                         bh = head;
2386                         do {
2387                                 BUG_ON(buffer_locked(bh));
2388                                 /*
2389                                  * We need to try to allocate unmapped blocks
2390                                  * in the same page.  Otherwise we won't make
2391                                  * progress with the page in ext4_writepage
2392                                  */
2393                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2394                                         mpage_add_bh_to_extent(mpd, logical,
2395                                                                bh->b_state);
2396                                         if (mpd->io_done)
2397                                                 goto ret_extent_tail;
2398                                 } else if (buffer_dirty(bh) &&
2399                                            buffer_mapped(bh)) {
2400                                         /*
2401                                          * mapped dirty buffer. We need to
2402                                          * update the b_state because we look
2403                                          * at b_state in mpage_da_map_blocks.
2404                                          * We don't update b_size because if we
2405                                          * find an unmapped buffer_head later
2406                                          * we need to use the b_state flag of
2407                                          * that buffer_head.
2408                                          */
2409                                         if (mpd->b_size == 0)
2410                                                 mpd->b_state =
2411                                                         bh->b_state & BH_FLAGS;
2412                                 }
2413                                 logical++;
2414                         } while ((bh = bh->b_this_page) != head);
2415
2416                         if (nr_to_write > 0) {
2417                                 nr_to_write--;
2418                                 if (nr_to_write == 0 &&
2419                                     wbc->sync_mode == WB_SYNC_NONE)
2420                                         /*
2421                                          * We stop writing back only if we are
2422                                          * not doing integrity sync. In case of
2423                                          * integrity sync we have to keep going
2424                                          * because someone may be concurrently
2425                                          * dirtying pages, and we might have
2426                                          * synced a lot of newly appeared dirty
2427                                          * pages, but have not synced all of the
2428                                          * old dirty pages.
2429                                          */
2430                                         goto out;
2431                         }
2432                 }
2433                 pagevec_release(&pvec);
2434                 cond_resched();
2435         }
2436         return 0;
2437 ret_extent_tail:
2438         ret = MPAGE_DA_EXTENT_TAIL;
2439 out:
2440         pagevec_release(&pvec);
2441         cond_resched();
2442         return ret;
2443 }
2444
2445
2446 static int ext4_da_writepages(struct address_space *mapping,
2447                               struct writeback_control *wbc)
2448 {
2449         pgoff_t index;
2450         int range_whole = 0;
2451         handle_t *handle = NULL;
2452         struct mpage_da_data mpd;
2453         struct inode *inode = mapping->host;
2454         int pages_written = 0;
2455         unsigned int max_pages;
2456         int range_cyclic, cycled = 1, io_done = 0;
2457         int needed_blocks, ret = 0;
2458         long desired_nr_to_write, nr_to_writebump = 0;
2459         loff_t range_start = wbc->range_start;
2460         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2461         pgoff_t done_index = 0;
2462         pgoff_t end;
2463         struct blk_plug plug;
2464
2465         trace_ext4_da_writepages(inode, wbc);
2466
2467         /*
2468          * No pages to write? This is mainly a kludge to avoid starting
2469          * a transaction for special inodes like journal inode on last iput()
2470          * because that could violate lock ordering on umount
2471          */
2472         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2473                 return 0;
2474
2475         /*
2476          * If the filesystem has aborted, it is read-only, so return
2477          * right away instead of dumping stack traces later on that
2478          * will obscure the real source of the problem.  We test
2479          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2480          * the latter could be true if the filesystem is mounted
2481          * read-only, and in that case, ext4_da_writepages should
2482          * *never* be called, so if that ever happens, we would want
2483          * the stack trace.
2484          */
2485         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2486                 return -EROFS;
2487
2488         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2489                 range_whole = 1;
2490
2491         range_cyclic = wbc->range_cyclic;
2492         if (wbc->range_cyclic) {
2493                 index = mapping->writeback_index;
2494                 if (index)
2495                         cycled = 0;
2496                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2497                 wbc->range_end  = LLONG_MAX;
2498                 wbc->range_cyclic = 0;
2499                 end = -1;
2500         } else {
2501                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2502                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2503         }
2504
2505         /*
2506          * This works around two forms of stupidity.  The first is in
2507          * the writeback code, which caps the maximum number of pages
2508          * written to be 1024 pages.  This is wrong on multiple
2509          * levels; different architectues have a different page size,
2510          * which changes the maximum amount of data which gets
2511          * written.  Secondly, 4 megabytes is way too small.  XFS
2512          * forces this value to be 16 megabytes by multiplying
2513          * nr_to_write parameter by four, and then relies on its
2514          * allocator to allocate larger extents to make them
2515          * contiguous.  Unfortunately this brings us to the second
2516          * stupidity, which is that ext4's mballoc code only allocates
2517          * at most 2048 blocks.  So we force contiguous writes up to
2518          * the number of dirty blocks in the inode, or
2519          * sbi->max_writeback_mb_bump whichever is smaller.
2520          */
2521         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2522         if (!range_cyclic && range_whole) {
2523                 if (wbc->nr_to_write == LONG_MAX)
2524                         desired_nr_to_write = wbc->nr_to_write;
2525                 else
2526                         desired_nr_to_write = wbc->nr_to_write * 8;
2527         } else
2528                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2529                                                            max_pages);
2530         if (desired_nr_to_write > max_pages)
2531                 desired_nr_to_write = max_pages;
2532
2533         if (wbc->nr_to_write < desired_nr_to_write) {
2534                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2535                 wbc->nr_to_write = desired_nr_to_write;
2536         }
2537
2538 retry:
2539         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2540                 tag_pages_for_writeback(mapping, index, end);
2541
2542         blk_start_plug(&plug);
2543         while (!ret && wbc->nr_to_write > 0) {
2544
2545                 /*
2546                  * we  insert one extent at a time. So we need
2547                  * credit needed for single extent allocation.
2548                  * journalled mode is currently not supported
2549                  * by delalloc
2550                  */
2551                 BUG_ON(ext4_should_journal_data(inode));
2552                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2553
2554                 /* start a new transaction*/
2555                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2556                                             needed_blocks);
2557                 if (IS_ERR(handle)) {
2558                         ret = PTR_ERR(handle);
2559                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2560                                "%ld pages, ino %lu; err %d", __func__,
2561                                 wbc->nr_to_write, inode->i_ino, ret);
2562                         blk_finish_plug(&plug);
2563                         goto out_writepages;
2564                 }
2565
2566                 /*
2567                  * Now call write_cache_pages_da() to find the next
2568                  * contiguous region of logical blocks that need
2569                  * blocks to be allocated by ext4 and submit them.
2570                  */
2571                 ret = write_cache_pages_da(handle, mapping,
2572                                            wbc, &mpd, &done_index);
2573                 /*
2574                  * If we have a contiguous extent of pages and we
2575                  * haven't done the I/O yet, map the blocks and submit
2576                  * them for I/O.
2577                  */
2578                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2579                         mpage_da_map_and_submit(&mpd);
2580                         ret = MPAGE_DA_EXTENT_TAIL;
2581                 }
2582                 trace_ext4_da_write_pages(inode, &mpd);
2583                 wbc->nr_to_write -= mpd.pages_written;
2584
2585                 ext4_journal_stop(handle);
2586
2587                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2588                         /* commit the transaction which would
2589                          * free blocks released in the transaction
2590                          * and try again
2591                          */
2592                         jbd2_journal_force_commit_nested(sbi->s_journal);
2593                         ret = 0;
2594                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2595                         /*
2596                          * Got one extent now try with rest of the pages.
2597                          * If mpd.retval is set -EIO, journal is aborted.
2598                          * So we don't need to write any more.
2599                          */
2600                         pages_written += mpd.pages_written;
2601                         ret = mpd.retval;
2602                         io_done = 1;
2603                 } else if (wbc->nr_to_write)
2604                         /*
2605                          * There is no more writeout needed
2606                          * or we requested for a noblocking writeout
2607                          * and we found the device congested
2608                          */
2609                         break;
2610         }
2611         blk_finish_plug(&plug);
2612         if (!io_done && !cycled) {
2613                 cycled = 1;
2614                 index = 0;
2615                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2616                 wbc->range_end  = mapping->writeback_index - 1;
2617                 goto retry;
2618         }
2619
2620         /* Update index */
2621         wbc->range_cyclic = range_cyclic;
2622         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2623                 /*
2624                  * set the writeback_index so that range_cyclic
2625                  * mode will write it back later
2626                  */
2627                 mapping->writeback_index = done_index;
2628
2629 out_writepages:
2630         wbc->nr_to_write -= nr_to_writebump;
2631         wbc->range_start = range_start;
2632         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2633         return ret;
2634 }
2635
2636 static int ext4_nonda_switch(struct super_block *sb)
2637 {
2638         s64 free_clusters, dirty_clusters;
2639         struct ext4_sb_info *sbi = EXT4_SB(sb);
2640
2641         /*
2642          * switch to non delalloc mode if we are running low
2643          * on free block. The free block accounting via percpu
2644          * counters can get slightly wrong with percpu_counter_batch getting
2645          * accumulated on each CPU without updating global counters
2646          * Delalloc need an accurate free block accounting. So switch
2647          * to non delalloc when we are near to error range.
2648          */
2649         free_clusters =
2650                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2651         dirty_clusters =
2652                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2653         /*
2654          * Start pushing delalloc when 1/2 of free blocks are dirty.
2655          */
2656         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2657                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2658
2659         if (2 * free_clusters < 3 * dirty_clusters ||
2660             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2661                 /*
2662                  * free block count is less than 150% of dirty blocks
2663                  * or free blocks is less than watermark
2664                  */
2665                 return 1;
2666         }
2667         return 0;
2668 }
2669
2670 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2671                                loff_t pos, unsigned len, unsigned flags,
2672                                struct page **pagep, void **fsdata)
2673 {
2674         int ret, retries = 0;
2675         struct page *page;
2676         pgoff_t index;
2677         struct inode *inode = mapping->host;
2678         handle_t *handle;
2679
2680         index = pos >> PAGE_CACHE_SHIFT;
2681
2682         if (ext4_nonda_switch(inode->i_sb)) {
2683                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2684                 return ext4_write_begin(file, mapping, pos,
2685                                         len, flags, pagep, fsdata);
2686         }
2687         *fsdata = (void *)0;
2688         trace_ext4_da_write_begin(inode, pos, len, flags);
2689
2690         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2691                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2692                                                       pos, len, flags,
2693                                                       pagep, fsdata);
2694                 if (ret < 0)
2695                         return ret;
2696                 if (ret == 1)
2697                         return 0;
2698         }
2699
2700         /*
2701          * grab_cache_page_write_begin() can take a long time if the
2702          * system is thrashing due to memory pressure, or if the page
2703          * is being written back.  So grab it first before we start
2704          * the transaction handle.  This also allows us to allocate
2705          * the page (if needed) without using GFP_NOFS.
2706          */
2707 retry_grab:
2708         page = grab_cache_page_write_begin(mapping, index, flags);
2709         if (!page)
2710                 return -ENOMEM;
2711         unlock_page(page);
2712
2713         /*
2714          * With delayed allocation, we don't log the i_disksize update
2715          * if there is delayed block allocation. But we still need
2716          * to journalling the i_disksize update if writes to the end
2717          * of file which has an already mapped buffer.
2718          */
2719 retry_journal:
2720         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2721         if (IS_ERR(handle)) {
2722                 page_cache_release(page);
2723                 return PTR_ERR(handle);
2724         }
2725
2726         lock_page(page);
2727         if (page->mapping != mapping) {
2728                 /* The page got truncated from under us */
2729                 unlock_page(page);
2730                 page_cache_release(page);
2731                 ext4_journal_stop(handle);
2732                 goto retry_grab;
2733         }
2734         /* In case writeback began while the page was unlocked */
2735         wait_on_page_writeback(page);
2736
2737         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2738         if (ret < 0) {
2739                 unlock_page(page);
2740                 ext4_journal_stop(handle);
2741                 /*
2742                  * block_write_begin may have instantiated a few blocks
2743                  * outside i_size.  Trim these off again. Don't need
2744                  * i_size_read because we hold i_mutex.
2745                  */
2746                 if (pos + len > inode->i_size)
2747                         ext4_truncate_failed_write(inode);
2748
2749                 if (ret == -ENOSPC &&
2750                     ext4_should_retry_alloc(inode->i_sb, &retries))
2751                         goto retry_journal;
2752
2753                 page_cache_release(page);
2754                 return ret;
2755         }
2756
2757         *pagep = page;
2758         return ret;
2759 }
2760
2761 /*
2762  * Check if we should update i_disksize
2763  * when write to the end of file but not require block allocation
2764  */
2765 static int ext4_da_should_update_i_disksize(struct page *page,
2766                                             unsigned long offset)
2767 {
2768         struct buffer_head *bh;
2769         struct inode *inode = page->mapping->host;
2770         unsigned int idx;
2771         int i;
2772
2773         bh = page_buffers(page);
2774         idx = offset >> inode->i_blkbits;
2775
2776         for (i = 0; i < idx; i++)
2777                 bh = bh->b_this_page;
2778
2779         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2780                 return 0;
2781         return 1;
2782 }
2783
2784 static int ext4_da_write_end(struct file *file,
2785                              struct address_space *mapping,
2786                              loff_t pos, unsigned len, unsigned copied,
2787                              struct page *page, void *fsdata)
2788 {
2789         struct inode *inode = mapping->host;
2790         int ret = 0, ret2;
2791         handle_t *handle = ext4_journal_current_handle();
2792         loff_t new_i_size;
2793         unsigned long start, end;
2794         int write_mode = (int)(unsigned long)fsdata;
2795
2796         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2797                 return ext4_write_end(file, mapping, pos,
2798                                       len, copied, page, fsdata);
2799
2800         trace_ext4_da_write_end(inode, pos, len, copied);
2801         start = pos & (PAGE_CACHE_SIZE - 1);
2802         end = start + copied - 1;
2803
2804         /*
2805          * generic_write_end() will run mark_inode_dirty() if i_size
2806          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2807          * into that.
2808          */
2809         new_i_size = pos + copied;
2810         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2811                 if (ext4_has_inline_data(inode) ||
2812                     ext4_da_should_update_i_disksize(page, end)) {
2813                         down_write(&EXT4_I(inode)->i_data_sem);
2814                         if (new_i_size > EXT4_I(inode)->i_disksize)
2815                                 EXT4_I(inode)->i_disksize = new_i_size;
2816                         up_write(&EXT4_I(inode)->i_data_sem);
2817                         /* We need to mark inode dirty even if
2818                          * new_i_size is less that inode->i_size
2819                          * bu greater than i_disksize.(hint delalloc)
2820                          */
2821                         ext4_mark_inode_dirty(handle, inode);
2822                 }
2823         }
2824
2825         if (write_mode != CONVERT_INLINE_DATA &&
2826             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2827             ext4_has_inline_data(inode))
2828                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2829                                                      page);
2830         else
2831                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2832                                                         page, fsdata);
2833
2834         copied = ret2;
2835         if (ret2 < 0)
2836                 ret = ret2;
2837         ret2 = ext4_journal_stop(handle);
2838         if (!ret)
2839                 ret = ret2;
2840
2841         return ret ? ret : copied;
2842 }
2843
2844 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2845 {
2846         /*
2847          * Drop reserved blocks
2848          */
2849         BUG_ON(!PageLocked(page));
2850         if (!page_has_buffers(page))
2851                 goto out;
2852
2853         ext4_da_page_release_reservation(page, offset);
2854
2855 out:
2856         ext4_invalidatepage(page, offset);
2857
2858         return;
2859 }
2860
2861 /*
2862  * Force all delayed allocation blocks to be allocated for a given inode.
2863  */
2864 int ext4_alloc_da_blocks(struct inode *inode)
2865 {
2866         trace_ext4_alloc_da_blocks(inode);
2867
2868         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2869             !EXT4_I(inode)->i_reserved_meta_blocks)
2870                 return 0;
2871
2872         /*
2873          * We do something simple for now.  The filemap_flush() will
2874          * also start triggering a write of the data blocks, which is
2875          * not strictly speaking necessary (and for users of
2876          * laptop_mode, not even desirable).  However, to do otherwise
2877          * would require replicating code paths in:
2878          *
2879          * ext4_da_writepages() ->
2880          *    write_cache_pages() ---> (via passed in callback function)
2881          *        __mpage_da_writepage() -->
2882          *           mpage_add_bh_to_extent()
2883          *           mpage_da_map_blocks()
2884          *
2885          * The problem is that write_cache_pages(), located in
2886          * mm/page-writeback.c, marks pages clean in preparation for
2887          * doing I/O, which is not desirable if we're not planning on
2888          * doing I/O at all.
2889          *
2890          * We could call write_cache_pages(), and then redirty all of
2891          * the pages by calling redirty_page_for_writepage() but that
2892          * would be ugly in the extreme.  So instead we would need to
2893          * replicate parts of the code in the above functions,
2894          * simplifying them because we wouldn't actually intend to
2895          * write out the pages, but rather only collect contiguous
2896          * logical block extents, call the multi-block allocator, and
2897          * then update the buffer heads with the block allocations.
2898          *
2899          * For now, though, we'll cheat by calling filemap_flush(),
2900          * which will map the blocks, and start the I/O, but not
2901          * actually wait for the I/O to complete.
2902          */
2903         return filemap_flush(inode->i_mapping);
2904 }
2905
2906 /*
2907  * bmap() is special.  It gets used by applications such as lilo and by
2908  * the swapper to find the on-disk block of a specific piece of data.
2909  *
2910  * Naturally, this is dangerous if the block concerned is still in the
2911  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2912  * filesystem and enables swap, then they may get a nasty shock when the
2913  * data getting swapped to that swapfile suddenly gets overwritten by
2914  * the original zero's written out previously to the journal and
2915  * awaiting writeback in the kernel's buffer cache.
2916  *
2917  * So, if we see any bmap calls here on a modified, data-journaled file,
2918  * take extra steps to flush any blocks which might be in the cache.
2919  */
2920 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2921 {
2922         struct inode *inode = mapping->host;
2923         journal_t *journal;
2924         int err;
2925
2926         /*
2927          * We can get here for an inline file via the FIBMAP ioctl
2928          */
2929         if (ext4_has_inline_data(inode))
2930                 return 0;
2931
2932         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2933                         test_opt(inode->i_sb, DELALLOC)) {
2934                 /*
2935                  * With delalloc we want to sync the file
2936                  * so that we can make sure we allocate
2937                  * blocks for file
2938                  */
2939                 filemap_write_and_wait(mapping);
2940         }
2941
2942         if (EXT4_JOURNAL(inode) &&
2943             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2944                 /*
2945                  * This is a REALLY heavyweight approach, but the use of
2946                  * bmap on dirty files is expected to be extremely rare:
2947                  * only if we run lilo or swapon on a freshly made file
2948                  * do we expect this to happen.
2949                  *
2950                  * (bmap requires CAP_SYS_RAWIO so this does not
2951                  * represent an unprivileged user DOS attack --- we'd be
2952                  * in trouble if mortal users could trigger this path at
2953                  * will.)
2954                  *
2955                  * NB. EXT4_STATE_JDATA is not set on files other than
2956                  * regular files.  If somebody wants to bmap a directory
2957                  * or symlink and gets confused because the buffer
2958                  * hasn't yet been flushed to disk, they deserve
2959                  * everything they get.
2960                  */
2961
2962                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2963                 journal = EXT4_JOURNAL(inode);
2964                 jbd2_journal_lock_updates(journal);
2965                 err = jbd2_journal_flush(journal);
2966                 jbd2_journal_unlock_updates(journal);
2967
2968                 if (err)
2969                         return 0;
2970         }
2971
2972         return generic_block_bmap(mapping, block, ext4_get_block);
2973 }
2974
2975 static int ext4_readpage(struct file *file, struct page *page)
2976 {
2977         int ret = -EAGAIN;
2978         struct inode *inode = page->mapping->host;
2979
2980         trace_ext4_readpage(page);
2981
2982         if (ext4_has_inline_data(inode))
2983                 ret = ext4_readpage_inline(inode, page);
2984
2985         if (ret == -EAGAIN)
2986                 return mpage_readpage(page, ext4_get_block);
2987
2988         return ret;
2989 }
2990
2991 static int
2992 ext4_readpages(struct file *file, struct address_space *mapping,
2993                 struct list_head *pages, unsigned nr_pages)
2994 {
2995         struct inode *inode = mapping->host;
2996
2997         /* If the file has inline data, no need to do readpages. */
2998         if (ext4_has_inline_data(inode))
2999                 return 0;
3000
3001         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3002 }
3003
3004 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3005 {
3006         trace_ext4_invalidatepage(page, offset);
3007
3008         /* No journalling happens on data buffers when this function is used */
3009         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3010
3011         block_invalidatepage(page, offset);
3012 }
3013
3014 static int __ext4_journalled_invalidatepage(struct page *page,
3015                                             unsigned long offset)
3016 {
3017         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3018
3019         trace_ext4_journalled_invalidatepage(page, offset);
3020
3021         /*
3022          * If it's a full truncate we just forget about the pending dirtying
3023          */
3024         if (offset == 0)
3025                 ClearPageChecked(page);
3026
3027         return jbd2_journal_invalidatepage(journal, page, offset);
3028 }
3029
3030 /* Wrapper for aops... */
3031 static void ext4_journalled_invalidatepage(struct page *page,
3032                                            unsigned long offset)
3033 {
3034         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3035 }
3036
3037 static int ext4_releasepage(struct page *page, gfp_t wait)
3038 {
3039         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040
3041         trace_ext4_releasepage(page);
3042
3043         /* Page has dirty journalled data -> cannot release */
3044         if (PageChecked(page))
3045                 return 0;
3046         if (journal)
3047                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3048         else
3049                 return try_to_free_buffers(page);
3050 }
3051
3052 /*
3053  * ext4_get_block used when preparing for a DIO write or buffer write.
3054  * We allocate an uinitialized extent if blocks haven't been allocated.
3055  * The extent will be converted to initialized after the IO is complete.
3056  */
3057 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3058                    struct buffer_head *bh_result, int create)
3059 {
3060         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3061                    inode->i_ino, create);
3062         return _ext4_get_block(inode, iblock, bh_result,
3063                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3064 }
3065
3066 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3067                    struct buffer_head *bh_result, int create)
3068 {
3069         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3070                    inode->i_ino, create);
3071         return _ext4_get_block(inode, iblock, bh_result,
3072                                EXT4_GET_BLOCKS_NO_LOCK);
3073 }
3074
3075 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3076                             ssize_t size, void *private, int ret,
3077                             bool is_async)
3078 {
3079         struct inode *inode = file_inode(iocb->ki_filp);
3080         ext4_io_end_t *io_end = iocb->private;
3081
3082         /* if not async direct IO just return */
3083         if (!io_end) {
3084                 inode_dio_done(inode);
3085                 if (is_async)
3086                         aio_complete(iocb, ret, 0);
3087                 return;
3088         }
3089
3090         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3091                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3092                   iocb->private, io_end->inode->i_ino, iocb, offset,
3093                   size);
3094
3095         iocb->private = NULL;
3096         io_end->offset = offset;
3097         io_end->size = size;
3098         if (is_async) {
3099                 io_end->iocb = iocb;
3100                 io_end->result = ret;
3101         }
3102         ext4_put_io_end_defer(io_end);
3103 }
3104
3105 /*
3106  * For ext4 extent files, ext4 will do direct-io write to holes,
3107  * preallocated extents, and those write extend the file, no need to
3108  * fall back to buffered IO.
3109  *
3110  * For holes, we fallocate those blocks, mark them as uninitialized
3111  * If those blocks were preallocated, we mark sure they are split, but
3112  * still keep the range to write as uninitialized.
3113  *
3114  * The unwritten extents will be converted to written when DIO is completed.
3115  * For async direct IO, since the IO may still pending when return, we
3116  * set up an end_io call back function, which will do the conversion
3117  * when async direct IO completed.
3118  *
3119  * If the O_DIRECT write will extend the file then add this inode to the
3120  * orphan list.  So recovery will truncate it back to the original size
3121  * if the machine crashes during the write.
3122  *
3123  */
3124 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3125                               const struct iovec *iov, loff_t offset,
3126                               unsigned long nr_segs)
3127 {
3128         struct file *file = iocb->ki_filp;
3129         struct inode *inode = file->f_mapping->host;
3130         ssize_t ret;
3131         size_t count = iov_length(iov, nr_segs);
3132         int overwrite = 0;
3133         get_block_t *get_block_func = NULL;
3134         int dio_flags = 0;
3135         loff_t final_size = offset + count;
3136         ext4_io_end_t *io_end = NULL;
3137
3138         /* Use the old path for reads and writes beyond i_size. */
3139         if (rw != WRITE || final_size > inode->i_size)
3140                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3141
3142         BUG_ON(iocb->private == NULL);
3143
3144         /* If we do a overwrite dio, i_mutex locking can be released */
3145         overwrite = *((int *)iocb->private);
3146
3147         if (overwrite) {
3148                 atomic_inc(&inode->i_dio_count);
3149                 down_read(&EXT4_I(inode)->i_data_sem);
3150                 mutex_unlock(&inode->i_mutex);
3151         }
3152
3153         /*
3154          * We could direct write to holes and fallocate.
3155          *
3156          * Allocated blocks to fill the hole are marked as
3157          * uninitialized to prevent parallel buffered read to expose
3158          * the stale data before DIO complete the data IO.
3159          *
3160          * As to previously fallocated extents, ext4 get_block will
3161          * just simply mark the buffer mapped but still keep the
3162          * extents uninitialized.
3163          *
3164          * For non AIO case, we will convert those unwritten extents
3165          * to written after return back from blockdev_direct_IO.
3166          *
3167          * For async DIO, the conversion needs to be deferred when the
3168          * IO is completed. The ext4 end_io callback function will be
3169          * called to take care of the conversion work.  Here for async
3170          * case, we allocate an io_end structure to hook to the iocb.
3171          */
3172         iocb->private = NULL;
3173         ext4_inode_aio_set(inode, NULL);
3174         if (!is_sync_kiocb(iocb)) {
3175                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3176                 if (!io_end) {
3177                         ret = -ENOMEM;
3178                         goto retake_lock;
3179                 }
3180                 io_end->flag |= EXT4_IO_END_DIRECT;
3181                 /*
3182                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3183                  */
3184                 iocb->private = ext4_get_io_end(io_end);
3185                 /*
3186                  * we save the io structure for current async direct
3187                  * IO, so that later ext4_map_blocks() could flag the
3188                  * io structure whether there is a unwritten extents
3189                  * needs to be converted when IO is completed.
3190                  */
3191                 ext4_inode_aio_set(inode, io_end);
3192         }
3193
3194         if (overwrite) {
3195                 get_block_func = ext4_get_block_write_nolock;
3196         } else {
3197                 get_block_func = ext4_get_block_write;
3198                 dio_flags = DIO_LOCKING;
3199         }
3200         ret = __blockdev_direct_IO(rw, iocb, inode,
3201                                    inode->i_sb->s_bdev, iov,
3202                                    offset, nr_segs,
3203                                    get_block_func,
3204                                    ext4_end_io_dio,
3205                                    NULL,
3206                                    dio_flags);
3207
3208         /*
3209          * Put our reference to io_end. This can free the io_end structure e.g.
3210          * in sync IO case or in case of error. It can even perform extent
3211          * conversion if all bios we submitted finished before we got here.
3212          * Note that in that case iocb->private can be already set to NULL
3213          * here.
3214          */
3215         if (io_end) {
3216                 ext4_inode_aio_set(inode, NULL);
3217                 ext4_put_io_end(io_end);
3218                 /*
3219                  * In case of error or no write ext4_end_io_dio() was not
3220                  * called so we have to put iocb's reference.
3221                  */
3222                 if (ret <= 0 && ret != -EIOCBQUEUED) {
3223                         WARN_ON(iocb->private != io_end);
3224                         ext4_put_io_end(io_end);
3225                         iocb->private = NULL;
3226                 }
3227         }
3228         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3229                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3230                 int err;
3231                 /*
3232                  * for non AIO case, since the IO is already
3233                  * completed, we could do the conversion right here
3234                  */
3235                 err = ext4_convert_unwritten_extents(inode,
3236                                                      offset, ret);
3237                 if (err < 0)
3238                         ret = err;
3239                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3240         }
3241
3242 retake_lock:
3243         /* take i_mutex locking again if we do a ovewrite dio */
3244         if (overwrite) {
3245                 inode_dio_done(inode);
3246                 up_read(&EXT4_I(inode)->i_data_sem);
3247                 mutex_lock(&inode->i_mutex);
3248         }
3249
3250         return ret;
3251 }
3252
3253 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3254                               const struct iovec *iov, loff_t offset,
3255                               unsigned long nr_segs)
3256 {
3257         struct file *file = iocb->ki_filp;
3258         struct inode *inode = file->f_mapping->host;
3259         ssize_t ret;
3260
3261         /*
3262          * If we are doing data journalling we don't support O_DIRECT
3263          */
3264         if (ext4_should_journal_data(inode))
3265                 return 0;
3266
3267         /* Let buffer I/O handle the inline data case. */
3268         if (ext4_has_inline_data(inode))
3269                 return 0;
3270
3271         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3272         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3273                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3274         else
3275                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3276         trace_ext4_direct_IO_exit(inode, offset,
3277                                 iov_length(iov, nr_segs), rw, ret);
3278         return ret;
3279 }
3280
3281 /*
3282  * Pages can be marked dirty completely asynchronously from ext4's journalling
3283  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3284  * much here because ->set_page_dirty is called under VFS locks.  The page is
3285  * not necessarily locked.
3286  *
3287  * We cannot just dirty the page and leave attached buffers clean, because the
3288  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3289  * or jbddirty because all the journalling code will explode.
3290  *
3291  * So what we do is to mark the page "pending dirty" and next time writepage
3292  * is called, propagate that into the buffers appropriately.
3293  */
3294 static int ext4_journalled_set_page_dirty(struct page *page)
3295 {
3296         SetPageChecked(page);
3297         return __set_page_dirty_nobuffers(page);
3298 }
3299
3300 static const struct address_space_operations ext4_aops = {
3301         .readpage               = ext4_readpage,
3302         .readpages              = ext4_readpages,
3303         .writepage              = ext4_writepage,
3304         .write_begin            = ext4_write_begin,
3305         .write_end              = ext4_write_end,
3306         .bmap                   = ext4_bmap,
3307         .invalidatepage         = ext4_invalidatepage,
3308         .releasepage            = ext4_releasepage,
3309         .direct_IO              = ext4_direct_IO,
3310         .migratepage            = buffer_migrate_page,
3311         .is_partially_uptodate  = block_is_partially_uptodate,
3312         .error_remove_page      = generic_error_remove_page,
3313 };
3314
3315 static const struct address_space_operations ext4_journalled_aops = {
3316         .readpage               = ext4_readpage,
3317         .readpages              = ext4_readpages,
3318         .writepage              = ext4_writepage,
3319         .write_begin            = ext4_write_begin,
3320         .write_end              = ext4_journalled_write_end,
3321         .set_page_dirty         = ext4_journalled_set_page_dirty,
3322         .bmap                   = ext4_bmap,
3323         .invalidatepage         = ext4_journalled_invalidatepage,
3324         .releasepage            = ext4_releasepage,
3325         .direct_IO              = ext4_direct_IO,
3326         .is_partially_uptodate  = block_is_partially_uptodate,
3327         .error_remove_page      = generic_error_remove_page,
3328 };
3329
3330 static const struct address_space_operations ext4_da_aops = {
3331         .readpage               = ext4_readpage,
3332         .readpages              = ext4_readpages,
3333         .writepage              = ext4_writepage,
3334         .writepages             = ext4_da_writepages,
3335         .write_begin            = ext4_da_write_begin,
3336         .write_end              = ext4_da_write_end,
3337         .bmap                   = ext4_bmap,
3338         .invalidatepage         = ext4_da_invalidatepage,
3339         .releasepage            = ext4_releasepage,
3340         .direct_IO              = ext4_direct_IO,
3341         .migratepage            = buffer_migrate_page,
3342         .is_partially_uptodate  = block_is_partially_uptodate,
3343         .error_remove_page      = generic_error_remove_page,
3344 };
3345
3346 void ext4_set_aops(struct inode *inode)
3347 {
3348         switch (ext4_inode_journal_mode(inode)) {
3349         case EXT4_INODE_ORDERED_DATA_MODE:
3350                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3351                 break;
3352         case EXT4_INODE_WRITEBACK_DATA_MODE:
3353                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3354                 break;
3355         case EXT4_INODE_JOURNAL_DATA_MODE:
3356                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3357                 return;
3358         default:
3359                 BUG();
3360         }
3361         if (test_opt(inode->i_sb, DELALLOC))
3362                 inode->i_mapping->a_ops = &ext4_da_aops;
3363         else
3364                 inode->i_mapping->a_ops = &ext4_aops;
3365 }
3366
3367
3368 /*
3369  * ext4_discard_partial_page_buffers()
3370  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3371  * This function finds and locks the page containing the offset
3372  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3373  * Calling functions that already have the page locked should call
3374  * ext4_discard_partial_page_buffers_no_lock directly.
3375  */
3376 int ext4_discard_partial_page_buffers(handle_t *handle,
3377                 struct address_space *mapping, loff_t from,
3378                 loff_t length, int flags)
3379 {
3380         struct inode *inode = mapping->host;
3381         struct page *page;
3382         int err = 0;
3383
3384         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3385                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3386         if (!page)
3387                 return -ENOMEM;
3388
3389         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3390                 from, length, flags);
3391
3392         unlock_page(page);
3393         page_cache_release(page);
3394         return err;
3395 }
3396
3397 /*
3398  * ext4_discard_partial_page_buffers_no_lock()
3399  * Zeros a page range of length 'length' starting from offset 'from'.
3400  * Buffer heads that correspond to the block aligned regions of the
3401  * zeroed range will be unmapped.  Unblock aligned regions
3402  * will have the corresponding buffer head mapped if needed so that
3403  * that region of the page can be updated with the partial zero out.
3404  *
3405  * This function assumes that the page has already been  locked.  The
3406  * The range to be discarded must be contained with in the given page.
3407  * If the specified range exceeds the end of the page it will be shortened
3408  * to the end of the page that corresponds to 'from'.  This function is
3409  * appropriate for updating a page and it buffer heads to be unmapped and
3410  * zeroed for blocks that have been either released, or are going to be
3411  * released.
3412  *
3413  * handle: The journal handle
3414  * inode:  The files inode
3415  * page:   A locked page that contains the offset "from"
3416  * from:   The starting byte offset (from the beginning of the file)
3417  *         to begin discarding
3418  * len:    The length of bytes to discard
3419  * flags:  Optional flags that may be used:
3420  *
3421  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3422  *         Only zero the regions of the page whose buffer heads
3423  *         have already been unmapped.  This flag is appropriate
3424  *         for updating the contents of a page whose blocks may
3425  *         have already been released, and we only want to zero
3426  *         out the regions that correspond to those released blocks.
3427  *
3428  * Returns zero on success or negative on failure.
3429  */
3430 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3431                 struct inode *inode, struct page *page, loff_t from,
3432                 loff_t length, int flags)
3433 {
3434         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3435         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3436         unsigned int blocksize, max, pos;
3437         ext4_lblk_t iblock;
3438         struct buffer_head *bh;
3439         int err = 0;
3440
3441         blocksize = inode->i_sb->s_blocksize;
3442         max = PAGE_CACHE_SIZE - offset;
3443
3444         if (index != page->index)
3445                 return -EINVAL;
3446
3447         /*
3448          * correct length if it does not fall between
3449          * 'from' and the end of the page
3450          */
3451         if (length > max || length < 0)
3452                 length = max;
3453
3454         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3455
3456         if (!page_has_buffers(page))
3457                 create_empty_buffers(page, blocksize, 0);
3458
3459         /* Find the buffer that contains "offset" */
3460         bh = page_buffers(page);
3461         pos = blocksize;
3462         while (offset >= pos) {
3463                 bh = bh->b_this_page;
3464                 iblock++;
3465                 pos += blocksize;
3466         }
3467
3468         pos = offset;
3469         while (pos < offset + length) {
3470                 unsigned int end_of_block, range_to_discard;
3471
3472                 err = 0;
3473
3474                 /* The length of space left to zero and unmap */
3475                 range_to_discard = offset + length - pos;
3476
3477                 /* The length of space until the end of the block */
3478                 end_of_block = blocksize - (pos & (blocksize-1));
3479
3480                 /*
3481                  * Do not unmap or zero past end of block
3482                  * for this buffer head
3483                  */
3484                 if (range_to_discard > end_of_block)
3485                         range_to_discard = end_of_block;
3486
3487
3488                 /*
3489                  * Skip this buffer head if we are only zeroing unampped
3490                  * regions of the page
3491                  */
3492                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3493                         buffer_mapped(bh))
3494                                 goto next;
3495
3496                 /* If the range is block aligned, unmap */
3497                 if (range_to_discard == blocksize) {
3498                         clear_buffer_dirty(bh);
3499                         bh->b_bdev = NULL;
3500                         clear_buffer_mapped(bh);
3501                         clear_buffer_req(bh);
3502                         clear_buffer_new(bh);
3503                         clear_buffer_delay(bh);
3504                         clear_buffer_unwritten(bh);
3505                         clear_buffer_uptodate(bh);
3506                         zero_user(page, pos, range_to_discard);
3507                         BUFFER_TRACE(bh, "Buffer discarded");
3508                         goto next;
3509                 }
3510
3511                 /*
3512                  * If this block is not completely contained in the range
3513                  * to be discarded, then it is not going to be released. Because
3514                  * we need to keep this block, we need to make sure this part
3515                  * of the page is uptodate before we modify it by writeing
3516                  * partial zeros on it.
3517                  */
3518                 if (!buffer_mapped(bh)) {
3519                         /*
3520                          * Buffer head must be mapped before we can read
3521                          * from the block
3522                          */
3523                         BUFFER_TRACE(bh, "unmapped");
3524                         ext4_get_block(inode, iblock, bh, 0);
3525                         /* unmapped? It's a hole - nothing to do */
3526                         if (!buffer_mapped(bh)) {
3527                                 BUFFER_TRACE(bh, "still unmapped");
3528                                 goto next;
3529                         }
3530                 }
3531
3532                 /* Ok, it's mapped. Make sure it's up-to-date */
3533                 if (PageUptodate(page))
3534                         set_buffer_uptodate(bh);
3535
3536                 if (!buffer_uptodate(bh)) {
3537                         err = -EIO;
3538                         ll_rw_block(READ, 1, &bh);
3539                         wait_on_buffer(bh);
3540                         /* Uhhuh. Read error. Complain and punt.*/
3541                         if (!buffer_uptodate(bh))
3542                                 goto next;
3543                 }
3544
3545                 if (ext4_should_journal_data(inode)) {
3546                         BUFFER_TRACE(bh, "get write access");
3547                         err = ext4_journal_get_write_access(handle, bh);
3548                         if (err)
3549                                 goto next;
3550                 }
3551
3552                 zero_user(page, pos, range_to_discard);
3553
3554                 err = 0;
3555                 if (ext4_should_journal_data(inode)) {
3556                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3557                 } else
3558                         mark_buffer_dirty(bh);
3559
3560                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3561 next:
3562                 bh = bh->b_this_page;
3563                 iblock++;
3564                 pos += range_to_discard;
3565         }
3566
3567         return err;
3568 }
3569
3570 int ext4_can_truncate(struct inode *inode)
3571 {
3572         if (S_ISREG(inode->i_mode))
3573                 return 1;
3574         if (S_ISDIR(inode->i_mode))
3575                 return 1;
3576         if (S_ISLNK(inode->i_mode))
3577                 return !ext4_inode_is_fast_symlink(inode);
3578         return 0;
3579 }
3580
3581 /*
3582  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3583  * associated with the given offset and length
3584  *
3585  * @inode:  File inode
3586  * @offset: The offset where the hole will begin
3587  * @len:    The length of the hole
3588  *
3589  * Returns: 0 on success or negative on failure
3590  */
3591
3592 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3593 {
3594         struct inode *inode = file_inode(file);
3595         struct super_block *sb = inode->i_sb;
3596         ext4_lblk_t first_block, stop_block;
3597         struct address_space *mapping = inode->i_mapping;
3598         loff_t first_page, last_page, page_len;
3599         loff_t first_page_offset, last_page_offset;
3600         handle_t *handle;
3601         unsigned int credits;
3602         int ret = 0;
3603
3604         if (!S_ISREG(inode->i_mode))
3605                 return -EOPNOTSUPP;
3606
3607         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3608                 /* TODO: Add support for bigalloc file systems */
3609                 return -EOPNOTSUPP;
3610         }
3611
3612         trace_ext4_punch_hole(inode, offset, length);
3613
3614         /*
3615          * Write out all dirty pages to avoid race conditions
3616          * Then release them.
3617          */
3618         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3619                 ret = filemap_write_and_wait_range(mapping, offset,
3620                                                    offset + length - 1);
3621                 if (ret)
3622                         return ret;
3623         }
3624
3625         mutex_lock(&inode->i_mutex);
3626         /* It's not possible punch hole on append only file */
3627         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3628                 ret = -EPERM;
3629                 goto out_mutex;
3630         }
3631         if (IS_SWAPFILE(inode)) {
3632                 ret = -ETXTBSY;
3633                 goto out_mutex;
3634         }
3635
3636         /* No need to punch hole beyond i_size */
3637         if (offset >= inode->i_size)
3638                 goto out_mutex;
3639
3640         /*
3641          * If the hole extends beyond i_size, set the hole
3642          * to end after the page that contains i_size
3643          */
3644         if (offset + length > inode->i_size) {
3645                 length = inode->i_size +
3646                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3647                    offset;
3648         }
3649
3650         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3651         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3652
3653         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3654         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3655
3656         /* Now release the pages */
3657         if (last_page_offset > first_page_offset) {
3658                 truncate_pagecache_range(inode, first_page_offset,
3659                                          last_page_offset - 1);
3660         }
3661
3662         /* Wait all existing dio workers, newcomers will block on i_mutex */
3663         ext4_inode_block_unlocked_dio(inode);
3664         ret = ext4_flush_unwritten_io(inode);
3665         if (ret)
3666                 goto out_dio;
3667         inode_dio_wait(inode);
3668
3669         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3670                 credits = ext4_writepage_trans_blocks(inode);
3671         else
3672                 credits = ext4_blocks_for_truncate(inode);
3673         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3674         if (IS_ERR(handle)) {
3675                 ret = PTR_ERR(handle);
3676                 ext4_std_error(sb, ret);
3677                 goto out_dio;
3678         }
3679
3680         /*
3681          * Now we need to zero out the non-page-aligned data in the
3682          * pages at the start and tail of the hole, and unmap the
3683          * buffer heads for the block aligned regions of the page that
3684          * were completely zeroed.
3685          */
3686         if (first_page > last_page) {
3687                 /*
3688                  * If the file space being truncated is contained
3689                  * within a page just zero out and unmap the middle of
3690                  * that page
3691                  */
3692                 ret = ext4_discard_partial_page_buffers(handle,
3693                         mapping, offset, length, 0);
3694
3695                 if (ret)
3696                         goto out_stop;
3697         } else {
3698                 /*
3699                  * zero out and unmap the partial page that contains
3700                  * the start of the hole
3701                  */
3702                 page_len = first_page_offset - offset;
3703                 if (page_len > 0) {
3704                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3705                                                 offset, page_len, 0);
3706                         if (ret)
3707                                 goto out_stop;
3708                 }
3709
3710                 /*
3711                  * zero out and unmap the partial page that contains
3712                  * the end of the hole
3713                  */
3714                 page_len = offset + length - last_page_offset;
3715                 if (page_len > 0) {
3716                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3717                                         last_page_offset, page_len, 0);
3718                         if (ret)
3719                                 goto out_stop;
3720                 }
3721         }
3722
3723         /*
3724          * If i_size is contained in the last page, we need to
3725          * unmap and zero the partial page after i_size
3726          */
3727         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3728            inode->i_size % PAGE_CACHE_SIZE != 0) {
3729                 page_len = PAGE_CACHE_SIZE -
3730                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3731
3732                 if (page_len > 0) {
3733                         ret = ext4_discard_partial_page_buffers(handle,
3734                                         mapping, inode->i_size, page_len, 0);
3735
3736                         if (ret)
3737                                 goto out_stop;
3738                 }
3739         }
3740
3741         first_block = (offset + sb->s_blocksize - 1) >>
3742                 EXT4_BLOCK_SIZE_BITS(sb);
3743         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3744
3745         /* If there are no blocks to remove, return now */
3746         if (first_block >= stop_block)
3747                 goto out_stop;
3748
3749         down_write(&EXT4_I(inode)->i_data_sem);
3750         ext4_discard_preallocations(inode);
3751
3752         ret = ext4_es_remove_extent(inode, first_block,
3753                                     stop_block - first_block);
3754         if (ret) {
3755                 up_write(&EXT4_I(inode)->i_data_sem);
3756                 goto out_stop;
3757         }
3758
3759         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760                 ret = ext4_ext_remove_space(inode, first_block,
3761                                             stop_block - 1);
3762         else
3763                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3764                                             stop_block);
3765
3766         ext4_discard_preallocations(inode);
3767         up_write(&EXT4_I(inode)->i_data_sem);
3768         if (IS_SYNC(inode))
3769                 ext4_handle_sync(handle);
3770         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3771         ext4_mark_inode_dirty(handle, inode);
3772 out_stop:
3773         ext4_journal_stop(handle);
3774 out_dio:
3775         ext4_inode_resume_unlocked_dio(inode);
3776 out_mutex:
3777         mutex_unlock(&inode->i_mutex);
3778         return ret;
3779 }
3780
3781 /*
3782  * ext4_truncate()
3783  *
3784  * We block out ext4_get_block() block instantiations across the entire
3785  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3786  * simultaneously on behalf of the same inode.
3787  *
3788  * As we work through the truncate and commit bits of it to the journal there
3789  * is one core, guiding principle: the file's tree must always be consistent on
3790  * disk.  We must be able to restart the truncate after a crash.
3791  *
3792  * The file's tree may be transiently inconsistent in memory (although it
3793  * probably isn't), but whenever we close off and commit a journal transaction,
3794  * the contents of (the filesystem + the journal) must be consistent and
3795  * restartable.  It's pretty simple, really: bottom up, right to left (although
3796  * left-to-right works OK too).
3797  *
3798  * Note that at recovery time, journal replay occurs *before* the restart of
3799  * truncate against the orphan inode list.
3800  *
3801  * The committed inode has the new, desired i_size (which is the same as
3802  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3803  * that this inode's truncate did not complete and it will again call
3804  * ext4_truncate() to have another go.  So there will be instantiated blocks
3805  * to the right of the truncation point in a crashed ext4 filesystem.  But
3806  * that's fine - as long as they are linked from the inode, the post-crash
3807  * ext4_truncate() run will find them and release them.
3808  */
3809 void ext4_truncate(struct inode *inode)
3810 {
3811         struct ext4_inode_info *ei = EXT4_I(inode);
3812         unsigned int credits;
3813         handle_t *handle;
3814         struct address_space *mapping = inode->i_mapping;
3815         loff_t page_len;
3816
3817         /*
3818          * There is a possibility that we're either freeing the inode
3819          * or it completely new indode. In those cases we might not
3820          * have i_mutex locked because it's not necessary.
3821          */
3822         if (!(inode->i_state & (I_NEW|I_FREEING)))
3823                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3824         trace_ext4_truncate_enter(inode);
3825
3826         if (!ext4_can_truncate(inode))
3827                 return;
3828
3829         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830
3831         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3832                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3833
3834         if (ext4_has_inline_data(inode)) {
3835                 int has_inline = 1;
3836
3837                 ext4_inline_data_truncate(inode, &has_inline);
3838                 if (has_inline)
3839                         return;
3840         }
3841
3842         /*
3843          * finish any pending end_io work so we won't run the risk of
3844          * converting any truncated blocks to initialized later
3845          */
3846         ext4_flush_unwritten_io(inode);
3847
3848         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3849                 credits = ext4_writepage_trans_blocks(inode);
3850         else
3851                 credits = ext4_blocks_for_truncate(inode);
3852
3853         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3854         if (IS_ERR(handle)) {
3855                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3856                 return;
3857         }
3858
3859         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3860                 page_len = PAGE_CACHE_SIZE -
3861                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3862
3863                 if (ext4_discard_partial_page_buffers(handle,
3864                                 mapping, inode->i_size, page_len, 0))
3865                         goto out_stop;
3866         }
3867
3868         /*
3869          * We add the inode to the orphan list, so that if this
3870          * truncate spans multiple transactions, and we crash, we will
3871          * resume the truncate when the filesystem recovers.  It also
3872          * marks the inode dirty, to catch the new size.
3873          *
3874          * Implication: the file must always be in a sane, consistent
3875          * truncatable state while each transaction commits.
3876          */
3877         if (ext4_orphan_add(handle, inode))
3878                 goto out_stop;
3879
3880         down_write(&EXT4_I(inode)->i_data_sem);
3881
3882         ext4_discard_preallocations(inode);
3883
3884         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3885                 ext4_ext_truncate(handle, inode);
3886         else
3887                 ext4_ind_truncate(handle, inode);
3888
3889         up_write(&ei->i_data_sem);
3890
3891         if (IS_SYNC(inode))
3892                 ext4_handle_sync(handle);
3893
3894 out_stop:
3895         /*
3896          * If this was a simple ftruncate() and the file will remain alive,
3897          * then we need to clear up the orphan record which we created above.
3898          * However, if this was a real unlink then we were called by
3899          * ext4_delete_inode(), and we allow that function to clean up the
3900          * orphan info for us.
3901          */
3902         if (inode->i_nlink)
3903                 ext4_orphan_del(handle, inode);
3904
3905         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3906         ext4_mark_inode_dirty(handle, inode);
3907         ext4_journal_stop(handle);
3908
3909         trace_ext4_truncate_exit(inode);
3910 }
3911
3912 /*
3913  * ext4_get_inode_loc returns with an extra refcount against the inode's
3914  * underlying buffer_head on success. If 'in_mem' is true, we have all
3915  * data in memory that is needed to recreate the on-disk version of this
3916  * inode.
3917  */
3918 static int __ext4_get_inode_loc(struct inode *inode,
3919                                 struct ext4_iloc *iloc, int in_mem)
3920 {
3921         struct ext4_group_desc  *gdp;
3922         struct buffer_head      *bh;
3923         struct super_block      *sb = inode->i_sb;
3924         ext4_fsblk_t            block;
3925         int                     inodes_per_block, inode_offset;
3926
3927         iloc->bh = NULL;
3928         if (!ext4_valid_inum(sb, inode->i_ino))
3929                 return -EIO;
3930
3931         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3932         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3933         if (!gdp)
3934                 return -EIO;
3935
3936         /*
3937          * Figure out the offset within the block group inode table
3938          */
3939         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3940         inode_offset = ((inode->i_ino - 1) %
3941                         EXT4_INODES_PER_GROUP(sb));
3942         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3943         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3944
3945         bh = sb_getblk(sb, block);
3946         if (unlikely(!bh))
3947                 return -ENOMEM;
3948         if (!buffer_uptodate(bh)) {
3949                 lock_buffer(bh);
3950
3951                 /*
3952                  * If the buffer has the write error flag, we have failed
3953                  * to write out another inode in the same block.  In this
3954                  * case, we don't have to read the block because we may
3955                  * read the old inode data successfully.
3956                  */
3957                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3958                         set_buffer_uptodate(bh);
3959
3960                 if (buffer_uptodate(bh)) {
3961                         /* someone brought it uptodate while we waited */
3962                         unlock_buffer(bh);
3963                         goto has_buffer;
3964                 }
3965
3966                 /*
3967                  * If we have all information of the inode in memory and this
3968                  * is the only valid inode in the block, we need not read the
3969                  * block.
3970                  */
3971                 if (in_mem) {
3972                         struct buffer_head *bitmap_bh;
3973                         int i, start;
3974
3975                         start = inode_offset & ~(inodes_per_block - 1);
3976
3977                         /* Is the inode bitmap in cache? */
3978                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3979                         if (unlikely(!bitmap_bh))
3980                                 goto make_io;
3981
3982                         /*
3983                          * If the inode bitmap isn't in cache then the
3984                          * optimisation may end up performing two reads instead
3985                          * of one, so skip it.
3986                          */
3987                         if (!buffer_uptodate(bitmap_bh)) {
3988                                 brelse(bitmap_bh);
3989                                 goto make_io;
3990                         }
3991                         for (i = start; i < start + inodes_per_block; i++) {
3992                                 if (i == inode_offset)
3993                                         continue;
3994                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3995                                         break;
3996                         }
3997                         brelse(bitmap_bh);
3998                         if (i == start + inodes_per_block) {
3999                                 /* all other inodes are free, so skip I/O */
4000                                 memset(bh->b_data, 0, bh->b_size);
4001                                 set_buffer_uptodate(bh);
4002                                 unlock_buffer(bh);
4003                                 goto has_buffer;
4004                         }
4005                 }
4006
4007 make_io:
4008                 /*
4009                  * If we need to do any I/O, try to pre-readahead extra
4010                  * blocks from the inode table.
4011                  */
4012                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4013                         ext4_fsblk_t b, end, table;
4014                         unsigned num;
4015                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4016
4017                         table = ext4_inode_table(sb, gdp);
4018                         /* s_inode_readahead_blks is always a power of 2 */
4019                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4020                         if (table > b)
4021                                 b = table;
4022                         end = b + ra_blks;
4023                         num = EXT4_INODES_PER_GROUP(sb);
4024                         if (ext4_has_group_desc_csum(sb))
4025                                 num -= ext4_itable_unused_count(sb, gdp);
4026                         table += num / inodes_per_block;
4027                         if (end > table)
4028                                 end = table;
4029                         while (b <= end)
4030                                 sb_breadahead(sb, b++);
4031                 }
4032
4033                 /*
4034                  * There are other valid inodes in the buffer, this inode
4035                  * has in-inode xattrs, or we don't have this inode in memory.
4036                  * Read the block from disk.
4037                  */
4038                 trace_ext4_load_inode(inode);
4039                 get_bh(bh);
4040                 bh->b_end_io = end_buffer_read_sync;
4041                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4042                 wait_on_buffer(bh);
4043                 if (!buffer_uptodate(bh)) {
4044                         EXT4_ERROR_INODE_BLOCK(inode, block,
4045                                                "unable to read itable block");
4046                         brelse(bh);
4047                         return -EIO;
4048                 }
4049         }
4050 has_buffer:
4051         iloc->bh = bh;
4052         return 0;
4053 }
4054
4055 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4056 {
4057         /* We have all inode data except xattrs in memory here. */
4058         return __ext4_get_inode_loc(inode, iloc,
4059                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4060 }
4061
4062 void ext4_set_inode_flags(struct inode *inode)
4063 {
4064         unsigned int flags = EXT4_I(inode)->i_flags;
4065
4066         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4067         if (flags & EXT4_SYNC_FL)
4068                 inode->i_flags |= S_SYNC;
4069         if (flags & EXT4_APPEND_FL)
4070                 inode->i_flags |= S_APPEND;
4071         if (flags & EXT4_IMMUTABLE_FL)
4072                 inode->i_flags |= S_IMMUTABLE;
4073         if (flags & EXT4_NOATIME_FL)
4074                 inode->i_flags |= S_NOATIME;
4075         if (flags & EXT4_DIRSYNC_FL)
4076                 inode->i_flags |= S_DIRSYNC;
4077 }
4078
4079 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4080 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4081 {
4082         unsigned int vfs_fl;
4083         unsigned long old_fl, new_fl;
4084
4085         do {
4086                 vfs_fl = ei->vfs_inode.i_flags;
4087                 old_fl = ei->i_flags;
4088                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4089                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4090                                 EXT4_DIRSYNC_FL);
4091                 if (vfs_fl & S_SYNC)
4092                         new_fl |= EXT4_SYNC_FL;
4093                 if (vfs_fl & S_APPEND)
4094                         new_fl |= EXT4_APPEND_FL;
4095                 if (vfs_fl & S_IMMUTABLE)
4096                         new_fl |= EXT4_IMMUTABLE_FL;
4097                 if (vfs_fl & S_NOATIME)
4098                         new_fl |= EXT4_NOATIME_FL;
4099                 if (vfs_fl & S_DIRSYNC)
4100                         new_fl |= EXT4_DIRSYNC_FL;
4101         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4102 }
4103
4104 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4105                                   struct ext4_inode_info *ei)
4106 {
4107         blkcnt_t i_blocks ;
4108         struct inode *inode = &(ei->vfs_inode);
4109         struct super_block *sb = inode->i_sb;
4110
4111         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4112                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4113                 /* we are using combined 48 bit field */
4114                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4115                                         le32_to_cpu(raw_inode->i_blocks_lo);
4116                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4117                         /* i_blocks represent file system block size */
4118                         return i_blocks  << (inode->i_blkbits - 9);
4119                 } else {
4120                         return i_blocks;
4121                 }
4122         } else {
4123                 return le32_to_cpu(raw_inode->i_blocks_lo);
4124         }
4125 }
4126
4127 static inline void ext4_iget_extra_inode(struct inode *inode,
4128                                          struct ext4_inode *raw_inode,
4129                                          struct ext4_inode_info *ei)
4130 {
4131         __le32 *magic = (void *)raw_inode +
4132                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4133         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4134                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4135                 ext4_find_inline_data_nolock(inode);
4136         } else
4137                 EXT4_I(inode)->i_inline_off = 0;
4138 }
4139
4140 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4141 {
4142         struct ext4_iloc iloc;
4143         struct ext4_inode *raw_inode;
4144         struct ext4_inode_info *ei;
4145         struct inode *inode;
4146         journal_t *journal = EXT4_SB(sb)->s_journal;
4147         long ret;
4148         int block;
4149         uid_t i_uid;
4150         gid_t i_gid;
4151
4152         inode = iget_locked(sb, ino);
4153         if (!inode)
4154                 return ERR_PTR(-ENOMEM);
4155         if (!(inode->i_state & I_NEW))
4156                 return inode;
4157
4158         ei = EXT4_I(inode);
4159         iloc.bh = NULL;
4160
4161         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4162         if (ret < 0)
4163                 goto bad_inode;
4164         raw_inode = ext4_raw_inode(&iloc);
4165
4166         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4167                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4168                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4169                     EXT4_INODE_SIZE(inode->i_sb)) {
4170                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4171                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4172                                 EXT4_INODE_SIZE(inode->i_sb));
4173                         ret = -EIO;
4174                         goto bad_inode;
4175                 }
4176         } else
4177                 ei->i_extra_isize = 0;
4178
4179         /* Precompute checksum seed for inode metadata */
4180         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4181                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4182                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183                 __u32 csum;
4184                 __le32 inum = cpu_to_le32(inode->i_ino);
4185                 __le32 gen = raw_inode->i_generation;
4186                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4187                                    sizeof(inum));
4188                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4189                                               sizeof(gen));
4190         }
4191
4192         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4193                 EXT4_ERROR_INODE(inode, "checksum invalid");
4194                 ret = -EIO;
4195                 goto bad_inode;
4196         }
4197
4198         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4199         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4200         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4201         if (!(test_opt(inode->i_sb, NO_UID32))) {
4202                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4203                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4204         }
4205         i_uid_write(inode, i_uid);
4206         i_gid_write(inode, i_gid);
4207         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4208
4209         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4210         ei->i_inline_off = 0;
4211         ei->i_dir_start_lookup = 0;
4212         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4213         /* We now have enough fields to check if the inode was active or not.
4214          * This is needed because nfsd might try to access dead inodes
4215          * the test is that same one that e2fsck uses
4216          * NeilBrown 1999oct15
4217          */
4218         if (inode->i_nlink == 0) {
4219                 if ((inode->i_mode == 0 ||
4220                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4221                     ino != EXT4_BOOT_LOADER_INO) {
4222                         /* this inode is deleted */
4223                         ret = -ESTALE;
4224                         goto bad_inode;
4225                 }
4226                 /* The only unlinked inodes we let through here have
4227                  * valid i_mode and are being read by the orphan
4228                  * recovery code: that's fine, we're about to complete
4229                  * the process of deleting those.
4230                  * OR it is the EXT4_BOOT_LOADER_INO which is
4231                  * not initialized on a new filesystem. */
4232         }
4233         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4234         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4235         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4236         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4237                 ei->i_file_acl |=
4238                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4239         inode->i_size = ext4_isize(raw_inode);
4240         ei->i_disksize = inode->i_size;
4241 #ifdef CONFIG_QUOTA
4242         ei->i_reserved_quota = 0;
4243 #endif
4244         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4245         ei->i_block_group = iloc.block_group;
4246         ei->i_last_alloc_group = ~0;
4247         /*
4248          * NOTE! The in-memory inode i_data array is in little-endian order
4249          * even on big-endian machines: we do NOT byteswap the block numbers!
4250          */
4251         for (block = 0; block < EXT4_N_BLOCKS; block++)
4252                 ei->i_data[block] = raw_inode->i_block[block];
4253         INIT_LIST_HEAD(&ei->i_orphan);
4254
4255         /*
4256          * Set transaction id's of transactions that have to be committed
4257          * to finish f[data]sync. We set them to currently running transaction
4258          * as we cannot be sure that the inode or some of its metadata isn't
4259          * part of the transaction - the inode could have been reclaimed and
4260          * now it is reread from disk.
4261          */
4262         if (journal) {
4263                 transaction_t *transaction;
4264                 tid_t tid;
4265
4266                 read_lock(&journal->j_state_lock);
4267                 if (journal->j_running_transaction)
4268                         transaction = journal->j_running_transaction;
4269                 else
4270                         transaction = journal->j_committing_transaction;
4271                 if (transaction)
4272                         tid = transaction->t_tid;
4273                 else
4274                         tid = journal->j_commit_sequence;
4275                 read_unlock(&journal->j_state_lock);
4276                 ei->i_sync_tid = tid;
4277                 ei->i_datasync_tid = tid;
4278         }
4279
4280         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4281                 if (ei->i_extra_isize == 0) {
4282                         /* The extra space is currently unused. Use it. */
4283                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4284                                             EXT4_GOOD_OLD_INODE_SIZE;
4285                 } else {
4286                         ext4_iget_extra_inode(inode, raw_inode, ei);
4287                 }
4288         }
4289
4290         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4291         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4292         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4293         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4294
4295         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4296         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4297                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4298                         inode->i_version |=
4299                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4300         }
4301
4302         ret = 0;
4303         if (ei->i_file_acl &&
4304             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4305                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4306                                  ei->i_file_acl);
4307                 ret = -EIO;
4308                 goto bad_inode;
4309         } else if (!ext4_has_inline_data(inode)) {
4310                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4311                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4312                             (S_ISLNK(inode->i_mode) &&
4313                              !ext4_inode_is_fast_symlink(inode))))
4314                                 /* Validate extent which is part of inode */
4315                                 ret = ext4_ext_check_inode(inode);
4316                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4317                            (S_ISLNK(inode->i_mode) &&
4318                             !ext4_inode_is_fast_symlink(inode))) {
4319                         /* Validate block references which are part of inode */
4320                         ret = ext4_ind_check_inode(inode);
4321                 }
4322         }
4323         if (ret)
4324                 goto bad_inode;
4325
4326         if (S_ISREG(inode->i_mode)) {
4327                 inode->i_op = &ext4_file_inode_operations;
4328                 inode->i_fop = &ext4_file_operations;
4329                 ext4_set_aops(inode);
4330         } else if (S_ISDIR(inode->i_mode)) {
4331                 inode->i_op = &ext4_dir_inode_operations;
4332                 inode->i_fop = &ext4_dir_operations;
4333         } else if (S_ISLNK(inode->i_mode)) {
4334                 if (ext4_inode_is_fast_symlink(inode)) {
4335                         inode->i_op = &ext4_fast_symlink_inode_operations;
4336                         nd_terminate_link(ei->i_data, inode->i_size,
4337                                 sizeof(ei->i_data) - 1);
4338                 } else {
4339                         inode->i_op = &ext4_symlink_inode_operations;
4340                         ext4_set_aops(inode);
4341                 }
4342         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4343               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4344                 inode->i_op = &ext4_special_inode_operations;
4345                 if (raw_inode->i_block[0])
4346                         init_special_inode(inode, inode->i_mode,
4347                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4348                 else
4349                         init_special_inode(inode, inode->i_mode,
4350                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4351         } else if (ino == EXT4_BOOT_LOADER_INO) {
4352                 make_bad_inode(inode);
4353         } else {
4354                 ret = -EIO;
4355                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4356                 goto bad_inode;
4357         }
4358         brelse(iloc.bh);
4359         ext4_set_inode_flags(inode);
4360         unlock_new_inode(inode);
4361         return inode;
4362
4363 bad_inode:
4364         brelse(iloc.bh);
4365         iget_failed(inode);
4366         return ERR_PTR(ret);
4367 }
4368
4369 static int ext4_inode_blocks_set(handle_t *handle,
4370                                 struct ext4_inode *raw_inode,
4371                                 struct ext4_inode_info *ei)
4372 {
4373         struct inode *inode = &(ei->vfs_inode);
4374         u64 i_blocks = inode->i_blocks;
4375         struct super_block *sb = inode->i_sb;
4376
4377         if (i_blocks <= ~0U) {
4378                 /*
4379                  * i_blocks can be represented in a 32 bit variable
4380                  * as multiple of 512 bytes
4381                  */
4382                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4383                 raw_inode->i_blocks_high = 0;
4384                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4385                 return 0;
4386         }
4387         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4388                 return -EFBIG;
4389
4390         if (i_blocks <= 0xffffffffffffULL) {
4391                 /*
4392                  * i_blocks can be represented in a 48 bit variable
4393                  * as multiple of 512 bytes
4394                  */
4395                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4396                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4397                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398         } else {
4399                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4400                 /* i_block is stored in file system block size */
4401                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4402                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4403                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4404         }
4405         return 0;
4406 }
4407
4408 /*
4409  * Post the struct inode info into an on-disk inode location in the
4410  * buffer-cache.  This gobbles the caller's reference to the
4411  * buffer_head in the inode location struct.
4412  *
4413  * The caller must have write access to iloc->bh.
4414  */
4415 static int ext4_do_update_inode(handle_t *handle,
4416                                 struct inode *inode,
4417                                 struct ext4_iloc *iloc)
4418 {
4419         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4420         struct ext4_inode_info *ei = EXT4_I(inode);
4421         struct buffer_head *bh = iloc->bh;
4422         int err = 0, rc, block;
4423         int need_datasync = 0;
4424         uid_t i_uid;
4425         gid_t i_gid;
4426
4427         /* For fields not not tracking in the in-memory inode,
4428          * initialise them to zero for new inodes. */
4429         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4430                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4431
4432         ext4_get_inode_flags(ei);
4433         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4434         i_uid = i_uid_read(inode);
4435         i_gid = i_gid_read(inode);
4436         if (!(test_opt(inode->i_sb, NO_UID32))) {
4437                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4438                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4439 /*
4440  * Fix up interoperability with old kernels. Otherwise, old inodes get
4441  * re-used with the upper 16 bits of the uid/gid intact
4442  */
4443                 if (!ei->i_dtime) {
4444                         raw_inode->i_uid_high =
4445                                 cpu_to_le16(high_16_bits(i_uid));
4446                         raw_inode->i_gid_high =
4447                                 cpu_to_le16(high_16_bits(i_gid));
4448                 } else {
4449                         raw_inode->i_uid_high = 0;
4450                         raw_inode->i_gid_high = 0;
4451                 }
4452         } else {
4453                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4454                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4455                 raw_inode->i_uid_high = 0;
4456                 raw_inode->i_gid_high = 0;
4457         }
4458         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4459
4460         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4461         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4462         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4463         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4464
4465         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4466                 goto out_brelse;
4467         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4468         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4469         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4470             cpu_to_le32(EXT4_OS_HURD))
4471                 raw_inode->i_file_acl_high =
4472                         cpu_to_le16(ei->i_file_acl >> 32);
4473         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4474         if (ei->i_disksize != ext4_isize(raw_inode)) {
4475                 ext4_isize_set(raw_inode, ei->i_disksize);
4476                 need_datasync = 1;
4477         }
4478         if (ei->i_disksize > 0x7fffffffULL) {
4479                 struct super_block *sb = inode->i_sb;
4480                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4481                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4482                                 EXT4_SB(sb)->s_es->s_rev_level ==
4483                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4484                         /* If this is the first large file
4485                          * created, add a flag to the superblock.
4486                          */
4487                         err = ext4_journal_get_write_access(handle,
4488                                         EXT4_SB(sb)->s_sbh);
4489                         if (err)
4490                                 goto out_brelse;
4491                         ext4_update_dynamic_rev(sb);
4492                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4493                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4494                         ext4_handle_sync(handle);
4495                         err = ext4_handle_dirty_super(handle, sb);
4496                 }
4497         }
4498         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4499         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4500                 if (old_valid_dev(inode->i_rdev)) {
4501                         raw_inode->i_block[0] =
4502                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4503                         raw_inode->i_block[1] = 0;
4504                 } else {
4505                         raw_inode->i_block[0] = 0;
4506                         raw_inode->i_block[1] =
4507                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4508                         raw_inode->i_block[2] = 0;
4509                 }
4510         } else if (!ext4_has_inline_data(inode)) {
4511                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4512                         raw_inode->i_block[block] = ei->i_data[block];
4513         }
4514
4515         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4516         if (ei->i_extra_isize) {
4517                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4518                         raw_inode->i_version_hi =
4519                         cpu_to_le32(inode->i_version >> 32);
4520                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4521         }
4522
4523         ext4_inode_csum_set(inode, raw_inode, ei);
4524
4525         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4526         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4527         if (!err)
4528                 err = rc;
4529         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4530
4531         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4532 out_brelse:
4533         brelse(bh);
4534         ext4_std_error(inode->i_sb, err);
4535         return err;
4536 }
4537
4538 /*
4539  * ext4_write_inode()
4540  *
4541  * We are called from a few places:
4542  *
4543  * - Within generic_file_write() for O_SYNC files.
4544  *   Here, there will be no transaction running. We wait for any running
4545  *   transaction to commit.
4546  *
4547  * - Within sys_sync(), kupdate and such.
4548  *   We wait on commit, if tol to.
4549  *
4550  * - Within prune_icache() (PF_MEMALLOC == true)
4551  *   Here we simply return.  We can't afford to block kswapd on the
4552  *   journal commit.
4553  *
4554  * In all cases it is actually safe for us to return without doing anything,
4555  * because the inode has been copied into a raw inode buffer in
4556  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4557  * knfsd.
4558  *
4559  * Note that we are absolutely dependent upon all inode dirtiers doing the
4560  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4561  * which we are interested.
4562  *
4563  * It would be a bug for them to not do this.  The code:
4564  *
4565  *      mark_inode_dirty(inode)
4566  *      stuff();
4567  *      inode->i_size = expr;
4568  *
4569  * is in error because a kswapd-driven write_inode() could occur while
4570  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4571  * will no longer be on the superblock's dirty inode list.
4572  */
4573 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4574 {
4575         int err;
4576
4577         if (current->flags & PF_MEMALLOC)
4578                 return 0;
4579
4580         if (EXT4_SB(inode->i_sb)->s_journal) {
4581                 if (ext4_journal_current_handle()) {
4582                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4583                         dump_stack();
4584                         return -EIO;
4585                 }
4586
4587                 if (wbc->sync_mode != WB_SYNC_ALL)
4588                         return 0;
4589
4590                 err = ext4_force_commit(inode->i_sb);
4591         } else {
4592                 struct ext4_iloc iloc;
4593
4594                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4595                 if (err)
4596                         return err;
4597                 if (wbc->sync_mode == WB_SYNC_ALL)
4598                         sync_dirty_buffer(iloc.bh);
4599                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4600                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4601                                          "IO error syncing inode");
4602                         err = -EIO;
4603                 }
4604                 brelse(iloc.bh);
4605         }
4606         return err;
4607 }
4608
4609 /*
4610  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4611  * buffers that are attached to a page stradding i_size and are undergoing
4612  * commit. In that case we have to wait for commit to finish and try again.
4613  */
4614 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4615 {
4616         struct page *page;
4617         unsigned offset;
4618         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4619         tid_t commit_tid = 0;
4620         int ret;
4621
4622         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4623         /*
4624          * All buffers in the last page remain valid? Then there's nothing to
4625          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4626          * blocksize case
4627          */
4628         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4629                 return;
4630         while (1) {
4631                 page = find_lock_page(inode->i_mapping,
4632                                       inode->i_size >> PAGE_CACHE_SHIFT);
4633                 if (!page)
4634                         return;
4635                 ret = __ext4_journalled_invalidatepage(page, offset);
4636                 unlock_page(page);
4637                 page_cache_release(page);
4638                 if (ret != -EBUSY)
4639                         return;
4640                 commit_tid = 0;
4641                 read_lock(&journal->j_state_lock);
4642                 if (journal->j_committing_transaction)
4643                         commit_tid = journal->j_committing_transaction->t_tid;
4644                 read_unlock(&journal->j_state_lock);
4645                 if (commit_tid)
4646                         jbd2_log_wait_commit(journal, commit_tid);
4647         }
4648 }
4649
4650 /*
4651  * ext4_setattr()
4652  *
4653  * Called from notify_change.
4654  *
4655  * We want to trap VFS attempts to truncate the file as soon as
4656  * possible.  In particular, we want to make sure that when the VFS
4657  * shrinks i_size, we put the inode on the orphan list and modify
4658  * i_disksize immediately, so that during the subsequent flushing of
4659  * dirty pages and freeing of disk blocks, we can guarantee that any
4660  * commit will leave the blocks being flushed in an unused state on
4661  * disk.  (On recovery, the inode will get truncated and the blocks will
4662  * be freed, so we have a strong guarantee that no future commit will
4663  * leave these blocks visible to the user.)
4664  *
4665  * Another thing we have to assure is that if we are in ordered mode
4666  * and inode is still attached to the committing transaction, we must
4667  * we start writeout of all the dirty pages which are being truncated.
4668  * This way we are sure that all the data written in the previous
4669  * transaction are already on disk (truncate waits for pages under
4670  * writeback).
4671  *
4672  * Called with inode->i_mutex down.
4673  */
4674 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4675 {
4676         struct inode *inode = dentry->d_inode;
4677         int error, rc = 0;
4678         int orphan = 0;
4679         const unsigned int ia_valid = attr->ia_valid;
4680
4681         error = inode_change_ok(inode, attr);
4682         if (error)
4683                 return error;
4684
4685         if (is_quota_modification(inode, attr))
4686                 dquot_initialize(inode);
4687         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4688             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4689                 handle_t *handle;
4690
4691                 /* (user+group)*(old+new) structure, inode write (sb,
4692                  * inode block, ? - but truncate inode update has it) */
4693                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4694                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4695                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4696                 if (IS_ERR(handle)) {
4697                         error = PTR_ERR(handle);
4698                         goto err_out;
4699                 }
4700                 error = dquot_transfer(inode, attr);
4701                 if (error) {
4702                         ext4_journal_stop(handle);
4703                         return error;
4704                 }
4705                 /* Update corresponding info in inode so that everything is in
4706                  * one transaction */
4707                 if (attr->ia_valid & ATTR_UID)
4708                         inode->i_uid = attr->ia_uid;
4709                 if (attr->ia_valid & ATTR_GID)
4710                         inode->i_gid = attr->ia_gid;
4711                 error = ext4_mark_inode_dirty(handle, inode);
4712                 ext4_journal_stop(handle);
4713         }
4714
4715         if (attr->ia_valid & ATTR_SIZE) {
4716
4717                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4718                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4719
4720                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4721                                 return -EFBIG;
4722                 }
4723         }
4724
4725         if (S_ISREG(inode->i_mode) &&
4726             attr->ia_valid & ATTR_SIZE &&
4727             (attr->ia_size < inode->i_size)) {
4728                 handle_t *handle;
4729
4730                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4731                 if (IS_ERR(handle)) {
4732                         error = PTR_ERR(handle);
4733                         goto err_out;
4734                 }
4735                 if (ext4_handle_valid(handle)) {
4736                         error = ext4_orphan_add(handle, inode);
4737                         orphan = 1;
4738                 }
4739                 EXT4_I(inode)->i_disksize = attr->ia_size;
4740                 rc = ext4_mark_inode_dirty(handle, inode);
4741                 if (!error)
4742                         error = rc;
4743                 ext4_journal_stop(handle);
4744
4745                 if (ext4_should_order_data(inode)) {
4746                         error = ext4_begin_ordered_truncate(inode,
4747                                                             attr->ia_size);
4748                         if (error) {
4749                                 /* Do as much error cleanup as possible */
4750                                 handle = ext4_journal_start(inode,
4751                                                             EXT4_HT_INODE, 3);
4752                                 if (IS_ERR(handle)) {
4753                                         ext4_orphan_del(NULL, inode);
4754                                         goto err_out;
4755                                 }
4756                                 ext4_orphan_del(handle, inode);
4757                                 orphan = 0;
4758                                 ext4_journal_stop(handle);
4759                                 goto err_out;
4760                         }
4761                 }
4762         }
4763
4764         if (attr->ia_valid & ATTR_SIZE) {
4765                 if (attr->ia_size != inode->i_size) {
4766                         loff_t oldsize = inode->i_size;
4767
4768                         i_size_write(inode, attr->ia_size);
4769                         /*
4770                          * Blocks are going to be removed from the inode. Wait
4771                          * for dio in flight.  Temporarily disable
4772                          * dioread_nolock to prevent livelock.
4773                          */
4774                         if (orphan) {
4775                                 if (!ext4_should_journal_data(inode)) {
4776                                         ext4_inode_block_unlocked_dio(inode);
4777                                         inode_dio_wait(inode);
4778                                         ext4_inode_resume_unlocked_dio(inode);
4779                                 } else
4780                                         ext4_wait_for_tail_page_commit(inode);
4781                         }
4782                         /*
4783                          * Truncate pagecache after we've waited for commit
4784                          * in data=journal mode to make pages freeable.
4785                          */
4786                         truncate_pagecache(inode, oldsize, inode->i_size);
4787                 }
4788                 ext4_truncate(inode);
4789         }
4790
4791         if (!rc) {
4792                 setattr_copy(inode, attr);
4793                 mark_inode_dirty(inode);
4794         }
4795
4796         /*
4797          * If the call to ext4_truncate failed to get a transaction handle at
4798          * all, we need to clean up the in-core orphan list manually.
4799          */
4800         if (orphan && inode->i_nlink)
4801                 ext4_orphan_del(NULL, inode);
4802
4803         if (!rc && (ia_valid & ATTR_MODE))
4804                 rc = ext4_acl_chmod(inode);
4805
4806 err_out:
4807         ext4_std_error(inode->i_sb, error);
4808         if (!error)
4809                 error = rc;
4810         return error;
4811 }
4812
4813 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4814                  struct kstat *stat)
4815 {
4816         struct inode *inode;
4817         unsigned long delalloc_blocks;
4818
4819         inode = dentry->d_inode;
4820         generic_fillattr(inode, stat);
4821
4822         /*
4823          * We can't update i_blocks if the block allocation is delayed
4824          * otherwise in the case of system crash before the real block
4825          * allocation is done, we will have i_blocks inconsistent with
4826          * on-disk file blocks.
4827          * We always keep i_blocks updated together with real
4828          * allocation. But to not confuse with user, stat
4829          * will return the blocks that include the delayed allocation
4830          * blocks for this file.
4831          */
4832         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4833                                 EXT4_I(inode)->i_reserved_data_blocks);
4834
4835         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4836         return 0;
4837 }
4838
4839 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4840 {
4841         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4842                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4843         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4844 }
4845
4846 /*
4847  * Account for index blocks, block groups bitmaps and block group
4848  * descriptor blocks if modify datablocks and index blocks
4849  * worse case, the indexs blocks spread over different block groups
4850  *
4851  * If datablocks are discontiguous, they are possible to spread over
4852  * different block groups too. If they are contiguous, with flexbg,
4853  * they could still across block group boundary.
4854  *
4855  * Also account for superblock, inode, quota and xattr blocks
4856  */
4857 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4858 {
4859         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4860         int gdpblocks;
4861         int idxblocks;
4862         int ret = 0;
4863
4864         /*
4865          * How many index blocks need to touch to modify nrblocks?
4866          * The "Chunk" flag indicating whether the nrblocks is
4867          * physically contiguous on disk
4868          *
4869          * For Direct IO and fallocate, they calls get_block to allocate
4870          * one single extent at a time, so they could set the "Chunk" flag
4871          */
4872         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4873
4874         ret = idxblocks;
4875
4876         /*
4877          * Now let's see how many group bitmaps and group descriptors need
4878          * to account
4879          */
4880         groups = idxblocks;
4881         if (chunk)
4882                 groups += 1;
4883         else
4884                 groups += nrblocks;
4885
4886         gdpblocks = groups;
4887         if (groups > ngroups)
4888                 groups = ngroups;
4889         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4890                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4891
4892         /* bitmaps and block group descriptor blocks */
4893         ret += groups + gdpblocks;
4894
4895         /* Blocks for super block, inode, quota and xattr blocks */
4896         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4897
4898         return ret;
4899 }
4900
4901 /*
4902  * Calculate the total number of credits to reserve to fit
4903  * the modification of a single pages into a single transaction,
4904  * which may include multiple chunks of block allocations.
4905  *
4906  * This could be called via ext4_write_begin()
4907  *
4908  * We need to consider the worse case, when
4909  * one new block per extent.
4910  */
4911 int ext4_writepage_trans_blocks(struct inode *inode)
4912 {
4913         int bpp = ext4_journal_blocks_per_page(inode);
4914         int ret;
4915
4916         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4917
4918         /* Account for data blocks for journalled mode */
4919         if (ext4_should_journal_data(inode))
4920                 ret += bpp;
4921         return ret;
4922 }
4923
4924 /*
4925  * Calculate the journal credits for a chunk of data modification.
4926  *
4927  * This is called from DIO, fallocate or whoever calling
4928  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4929  *
4930  * journal buffers for data blocks are not included here, as DIO
4931  * and fallocate do no need to journal data buffers.
4932  */
4933 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4934 {
4935         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4936 }
4937
4938 /*
4939  * The caller must have previously called ext4_reserve_inode_write().
4940  * Give this, we know that the caller already has write access to iloc->bh.
4941  */
4942 int ext4_mark_iloc_dirty(handle_t *handle,
4943                          struct inode *inode, struct ext4_iloc *iloc)
4944 {
4945         int err = 0;
4946
4947         if (IS_I_VERSION(inode))
4948                 inode_inc_iversion(inode);
4949
4950         /* the do_update_inode consumes one bh->b_count */
4951         get_bh(iloc->bh);
4952
4953         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4954         err = ext4_do_update_inode(handle, inode, iloc);
4955         put_bh(iloc->bh);
4956         return err;
4957 }
4958
4959 /*
4960  * On success, We end up with an outstanding reference count against
4961  * iloc->bh.  This _must_ be cleaned up later.
4962  */
4963
4964 int
4965 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4966                          struct ext4_iloc *iloc)
4967 {
4968         int err;
4969
4970         err = ext4_get_inode_loc(inode, iloc);
4971         if (!err) {
4972                 BUFFER_TRACE(iloc->bh, "get_write_access");
4973                 err = ext4_journal_get_write_access(handle, iloc->bh);
4974                 if (err) {
4975                         brelse(iloc->bh);
4976                         iloc->bh = NULL;
4977                 }
4978         }
4979         ext4_std_error(inode->i_sb, err);
4980         return err;
4981 }
4982
4983 /*
4984  * Expand an inode by new_extra_isize bytes.
4985  * Returns 0 on success or negative error number on failure.
4986  */
4987 static int ext4_expand_extra_isize(struct inode *inode,
4988                                    unsigned int new_extra_isize,
4989                                    struct ext4_iloc iloc,
4990                                    handle_t *handle)
4991 {
4992         struct ext4_inode *raw_inode;
4993         struct ext4_xattr_ibody_header *header;
4994
4995         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4996                 return 0;
4997
4998         raw_inode = ext4_raw_inode(&iloc);
4999
5000         header = IHDR(inode, raw_inode);
5001
5002         /* No extended attributes present */
5003         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5004             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5005                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5006                         new_extra_isize);
5007                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5008                 return 0;
5009         }
5010
5011         /* try to expand with EAs present */
5012         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5013                                           raw_inode, handle);
5014 }
5015
5016 /*
5017  * What we do here is to mark the in-core inode as clean with respect to inode
5018  * dirtiness (it may still be data-dirty).
5019  * This means that the in-core inode may be reaped by prune_icache
5020  * without having to perform any I/O.  This is a very good thing,
5021  * because *any* task may call prune_icache - even ones which
5022  * have a transaction open against a different journal.
5023  *
5024  * Is this cheating?  Not really.  Sure, we haven't written the
5025  * inode out, but prune_icache isn't a user-visible syncing function.
5026  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5027  * we start and wait on commits.
5028  */
5029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5030 {
5031         struct ext4_iloc iloc;
5032         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5033         static unsigned int mnt_count;
5034         int err, ret;
5035
5036         might_sleep();
5037         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5038         err = ext4_reserve_inode_write(handle, inode, &iloc);
5039         if (ext4_handle_valid(handle) &&
5040             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5041             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5042                 /*
5043                  * We need extra buffer credits since we may write into EA block
5044                  * with this same handle. If journal_extend fails, then it will
5045                  * only result in a minor loss of functionality for that inode.
5046                  * If this is felt to be critical, then e2fsck should be run to
5047                  * force a large enough s_min_extra_isize.
5048                  */
5049                 if ((jbd2_journal_extend(handle,
5050                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5051                         ret = ext4_expand_extra_isize(inode,
5052                                                       sbi->s_want_extra_isize,
5053                                                       iloc, handle);
5054                         if (ret) {
5055                                 ext4_set_inode_state(inode,
5056                                                      EXT4_STATE_NO_EXPAND);
5057                                 if (mnt_count !=
5058                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5059                                         ext4_warning(inode->i_sb,
5060                                         "Unable to expand inode %lu. Delete"
5061                                         " some EAs or run e2fsck.",
5062                                         inode->i_ino);
5063                                         mnt_count =
5064                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5065                                 }
5066                         }
5067                 }
5068         }
5069         if (!err)
5070                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5071         return err;
5072 }
5073
5074 /*
5075  * ext4_dirty_inode() is called from __mark_inode_dirty()
5076  *
5077  * We're really interested in the case where a file is being extended.
5078  * i_size has been changed by generic_commit_write() and we thus need
5079  * to include the updated inode in the current transaction.
5080  *
5081  * Also, dquot_alloc_block() will always dirty the inode when blocks
5082  * are allocated to the file.
5083  *
5084  * If the inode is marked synchronous, we don't honour that here - doing
5085  * so would cause a commit on atime updates, which we don't bother doing.
5086  * We handle synchronous inodes at the highest possible level.
5087  */
5088 void ext4_dirty_inode(struct inode *inode, int flags)
5089 {
5090         handle_t *handle;
5091
5092         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5093         if (IS_ERR(handle))
5094                 goto out;
5095
5096         ext4_mark_inode_dirty(handle, inode);
5097
5098         ext4_journal_stop(handle);
5099 out:
5100         return;
5101 }
5102
5103 #if 0
5104 /*
5105  * Bind an inode's backing buffer_head into this transaction, to prevent
5106  * it from being flushed to disk early.  Unlike
5107  * ext4_reserve_inode_write, this leaves behind no bh reference and
5108  * returns no iloc structure, so the caller needs to repeat the iloc
5109  * lookup to mark the inode dirty later.
5110  */
5111 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5112 {
5113         struct ext4_iloc iloc;
5114
5115         int err = 0;
5116         if (handle) {
5117                 err = ext4_get_inode_loc(inode, &iloc);
5118                 if (!err) {
5119                         BUFFER_TRACE(iloc.bh, "get_write_access");
5120                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5121                         if (!err)
5122                                 err = ext4_handle_dirty_metadata(handle,
5123                                                                  NULL,
5124                                                                  iloc.bh);
5125                         brelse(iloc.bh);
5126                 }
5127         }
5128         ext4_std_error(inode->i_sb, err);
5129         return err;
5130 }
5131 #endif
5132
5133 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5134 {
5135         journal_t *journal;
5136         handle_t *handle;
5137         int err;
5138
5139         /*
5140          * We have to be very careful here: changing a data block's
5141          * journaling status dynamically is dangerous.  If we write a
5142          * data block to the journal, change the status and then delete
5143          * that block, we risk forgetting to revoke the old log record
5144          * from the journal and so a subsequent replay can corrupt data.
5145          * So, first we make sure that the journal is empty and that
5146          * nobody is changing anything.
5147          */
5148
5149         journal = EXT4_JOURNAL(inode);
5150         if (!journal)
5151                 return 0;
5152         if (is_journal_aborted(journal))
5153                 return -EROFS;
5154         /* We have to allocate physical blocks for delalloc blocks
5155          * before flushing journal. otherwise delalloc blocks can not
5156          * be allocated any more. even more truncate on delalloc blocks
5157          * could trigger BUG by flushing delalloc blocks in journal.
5158          * There is no delalloc block in non-journal data mode.
5159          */
5160         if (val && test_opt(inode->i_sb, DELALLOC)) {
5161                 err = ext4_alloc_da_blocks(inode);
5162                 if (err < 0)
5163                         return err;
5164         }
5165
5166         /* Wait for all existing dio workers */
5167         ext4_inode_block_unlocked_dio(inode);
5168         inode_dio_wait(inode);
5169
5170         jbd2_journal_lock_updates(journal);
5171
5172         /*
5173          * OK, there are no updates running now, and all cached data is
5174          * synced to disk.  We are now in a completely consistent state
5175          * which doesn't have anything in the journal, and we know that
5176          * no filesystem updates are running, so it is safe to modify
5177          * the inode's in-core data-journaling state flag now.
5178          */
5179
5180         if (val)
5181                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5182         else {
5183                 jbd2_journal_flush(journal);
5184                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5185         }
5186         ext4_set_aops(inode);
5187
5188         jbd2_journal_unlock_updates(journal);
5189         ext4_inode_resume_unlocked_dio(inode);
5190
5191         /* Finally we can mark the inode as dirty. */
5192
5193         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5194         if (IS_ERR(handle))
5195                 return PTR_ERR(handle);
5196
5197         err = ext4_mark_inode_dirty(handle, inode);
5198         ext4_handle_sync(handle);
5199         ext4_journal_stop(handle);
5200         ext4_std_error(inode->i_sb, err);
5201
5202         return err;
5203 }
5204
5205 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5206 {
5207         return !buffer_mapped(bh);
5208 }
5209
5210 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5211 {
5212         struct page *page = vmf->page;
5213         loff_t size;
5214         unsigned long len;
5215         int ret;
5216         struct file *file = vma->vm_file;
5217         struct inode *inode = file_inode(file);
5218         struct address_space *mapping = inode->i_mapping;
5219         handle_t *handle;
5220         get_block_t *get_block;
5221         int retries = 0;
5222
5223         sb_start_pagefault(inode->i_sb);
5224         file_update_time(vma->vm_file);
5225         /* Delalloc case is easy... */
5226         if (test_opt(inode->i_sb, DELALLOC) &&
5227             !ext4_should_journal_data(inode) &&
5228             !ext4_nonda_switch(inode->i_sb)) {
5229                 do {
5230                         ret = __block_page_mkwrite(vma, vmf,
5231                                                    ext4_da_get_block_prep);
5232                 } while (ret == -ENOSPC &&
5233                        ext4_should_retry_alloc(inode->i_sb, &retries));
5234                 goto out_ret;
5235         }
5236
5237         lock_page(page);
5238         size = i_size_read(inode);
5239         /* Page got truncated from under us? */
5240         if (page->mapping != mapping || page_offset(page) > size) {
5241                 unlock_page(page);
5242                 ret = VM_FAULT_NOPAGE;
5243                 goto out;
5244         }
5245
5246         if (page->index == size >> PAGE_CACHE_SHIFT)
5247                 len = size & ~PAGE_CACHE_MASK;
5248         else
5249                 len = PAGE_CACHE_SIZE;
5250         /*
5251          * Return if we have all the buffers mapped. This avoids the need to do
5252          * journal_start/journal_stop which can block and take a long time
5253          */
5254         if (page_has_buffers(page)) {
5255                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5256                                             0, len, NULL,
5257                                             ext4_bh_unmapped)) {
5258                         /* Wait so that we don't change page under IO */
5259                         wait_for_stable_page(page);
5260                         ret = VM_FAULT_LOCKED;
5261                         goto out;
5262                 }
5263         }
5264         unlock_page(page);
5265         /* OK, we need to fill the hole... */
5266         if (ext4_should_dioread_nolock(inode))
5267                 get_block = ext4_get_block_write;
5268         else
5269                 get_block = ext4_get_block;
5270 retry_alloc:
5271         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5272                                     ext4_writepage_trans_blocks(inode));
5273         if (IS_ERR(handle)) {
5274                 ret = VM_FAULT_SIGBUS;
5275                 goto out;
5276         }
5277         ret = __block_page_mkwrite(vma, vmf, get_block);
5278         if (!ret && ext4_should_journal_data(inode)) {
5279                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5280                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5281                         unlock_page(page);
5282                         ret = VM_FAULT_SIGBUS;
5283                         ext4_journal_stop(handle);
5284                         goto out;
5285                 }
5286                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5287         }
5288         ext4_journal_stop(handle);
5289         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5290                 goto retry_alloc;
5291 out_ret:
5292         ret = block_page_mkwrite_return(ret);
5293 out:
5294         sb_end_pagefault(inode->i_sb);
5295         return ret;
5296 }