]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: remove buffer_uninit handling
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 #ifdef ES_AGGRESSIVE_TEST
427 static void ext4_map_blocks_es_recheck(handle_t *handle,
428                                        struct inode *inode,
429                                        struct ext4_map_blocks *es_map,
430                                        struct ext4_map_blocks *map,
431                                        int flags)
432 {
433         int retval;
434
435         map->m_flags = 0;
436         /*
437          * There is a race window that the result is not the same.
438          * e.g. xfstests #223 when dioread_nolock enables.  The reason
439          * is that we lookup a block mapping in extent status tree with
440          * out taking i_data_sem.  So at the time the unwritten extent
441          * could be converted.
442          */
443         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
444                 down_read((&EXT4_I(inode)->i_data_sem));
445         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
446                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
447                                              EXT4_GET_BLOCKS_KEEP_SIZE);
448         } else {
449                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
450                                              EXT4_GET_BLOCKS_KEEP_SIZE);
451         }
452         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
453                 up_read((&EXT4_I(inode)->i_data_sem));
454         /*
455          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
456          * because it shouldn't be marked in es_map->m_flags.
457          */
458         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
459
460         /*
461          * We don't check m_len because extent will be collpased in status
462          * tree.  So the m_len might not equal.
463          */
464         if (es_map->m_lblk != map->m_lblk ||
465             es_map->m_flags != map->m_flags ||
466             es_map->m_pblk != map->m_pblk) {
467                 printk("ES cache assertation failed for inode: %lu "
468                        "es_cached ex [%d/%d/%llu/%x] != "
469                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470                        inode->i_ino, es_map->m_lblk, es_map->m_len,
471                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
472                        map->m_len, map->m_pblk, map->m_flags,
473                        retval, flags);
474         }
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477
478 /*
479  * The ext4_map_blocks() function tries to look up the requested blocks,
480  * and returns if the blocks are already mapped.
481  *
482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483  * and store the allocated blocks in the result buffer head and mark it
484  * mapped.
485  *
486  * If file type is extents based, it will call ext4_ext_map_blocks(),
487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488  * based files
489  *
490  * On success, it returns the number of blocks being mapped or allocate.
491  * if create==0 and the blocks are pre-allocated and uninitialized block,
492  * the result buffer head is unmapped. If the create ==1, it will make sure
493  * the buffer head is mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, buffer head is unmapped
497  *
498  * It returns the error in case of allocation failure.
499  */
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501                     struct ext4_map_blocks *map, int flags)
502 {
503         struct extent_status es;
504         int retval;
505 #ifdef ES_AGGRESSIVE_TEST
506         struct ext4_map_blocks orig_map;
507
508         memcpy(&orig_map, map, sizeof(*map));
509 #endif
510
511         map->m_flags = 0;
512         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
513                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
514                   (unsigned long) map->m_lblk);
515
516         /* Lookup extent status tree firstly */
517         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
518                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519                         map->m_pblk = ext4_es_pblock(&es) +
520                                         map->m_lblk - es.es_lblk;
521                         map->m_flags |= ext4_es_is_written(&es) ?
522                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523                         retval = es.es_len - (map->m_lblk - es.es_lblk);
524                         if (retval > map->m_len)
525                                 retval = map->m_len;
526                         map->m_len = retval;
527                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528                         retval = 0;
529                 } else {
530                         BUG_ON(1);
531                 }
532 #ifdef ES_AGGRESSIVE_TEST
533                 ext4_map_blocks_es_recheck(handle, inode, map,
534                                            &orig_map, flags);
535 #endif
536                 goto found;
537         }
538
539         /*
540          * Try to see if we can get the block without requesting a new
541          * file system block.
542          */
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 down_read((&EXT4_I(inode)->i_data_sem));
545         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
546                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
547                                              EXT4_GET_BLOCKS_KEEP_SIZE);
548         } else {
549                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         }
552         if (retval > 0) {
553                 int ret;
554                 unsigned long long status;
555
556 #ifdef ES_AGGRESSIVE_TEST
557                 if (retval != map->m_len) {
558                         printk("ES len assertation failed for inode: %lu "
559                                "retval %d != map->m_len %d "
560                                "in %s (lookup)\n", inode->i_ino, retval,
561                                map->m_len, __func__);
562                 }
563 #endif
564
565                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568                     ext4_find_delalloc_range(inode, map->m_lblk,
569                                              map->m_lblk + map->m_len - 1))
570                         status |= EXTENT_STATUS_DELAYED;
571                 ret = ext4_es_insert_extent(inode, map->m_lblk,
572                                             map->m_len, map->m_pblk, status);
573                 if (ret < 0)
574                         retval = ret;
575         }
576         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
577                 up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581                 int ret = check_block_validity(inode, map);
582                 if (ret != 0)
583                         return ret;
584         }
585
586         /* If it is only a block(s) look up */
587         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588                 return retval;
589
590         /*
591          * Returns if the blocks have already allocated
592          *
593          * Note that if blocks have been preallocated
594          * ext4_ext_get_block() returns the create = 0
595          * with buffer head unmapped.
596          */
597         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598                 return retval;
599
600         /*
601          * Here we clear m_flags because after allocating an new extent,
602          * it will be set again.
603          */
604         map->m_flags &= ~EXT4_MAP_FLAGS;
605
606         /*
607          * New blocks allocate and/or writing to uninitialized extent
608          * will possibly result in updating i_data, so we take
609          * the write lock of i_data_sem, and call get_blocks()
610          * with create == 1 flag.
611          */
612         down_write((&EXT4_I(inode)->i_data_sem));
613
614         /*
615          * if the caller is from delayed allocation writeout path
616          * we have already reserved fs blocks for allocation
617          * let the underlying get_block() function know to
618          * avoid double accounting
619          */
620         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
621                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
622         /*
623          * We need to check for EXT4 here because migrate
624          * could have changed the inode type in between
625          */
626         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
627                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
628         } else {
629                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
630
631                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
632                         /*
633                          * We allocated new blocks which will result in
634                          * i_data's format changing.  Force the migrate
635                          * to fail by clearing migrate flags
636                          */
637                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
638                 }
639
640                 /*
641                  * Update reserved blocks/metadata blocks after successful
642                  * block allocation which had been deferred till now. We don't
643                  * support fallocate for non extent files. So we can update
644                  * reserve space here.
645                  */
646                 if ((retval > 0) &&
647                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
648                         ext4_da_update_reserve_space(inode, retval, 1);
649         }
650         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
651                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
652
653         if (retval > 0) {
654                 int ret;
655                 unsigned long long status;
656
657 #ifdef ES_AGGRESSIVE_TEST
658                 if (retval != map->m_len) {
659                         printk("ES len assertation failed for inode: %lu "
660                                "retval %d != map->m_len %d "
661                                "in %s (allocation)\n", inode->i_ino, retval,
662                                map->m_len, __func__);
663                 }
664 #endif
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 map_bh(bh, inode->i_sb, map.m_pblk);
731                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
733                 ret = 0;
734         }
735         if (started)
736                 ext4_journal_stop(handle);
737         return ret;
738 }
739
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741                    struct buffer_head *bh, int create)
742 {
743         return _ext4_get_block(inode, iblock, bh,
744                                create ? EXT4_GET_BLOCKS_CREATE : 0);
745 }
746
747 /*
748  * `handle' can be NULL if create is zero
749  */
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751                                 ext4_lblk_t block, int create, int *errp)
752 {
753         struct ext4_map_blocks map;
754         struct buffer_head *bh;
755         int fatal = 0, err;
756
757         J_ASSERT(handle != NULL || create == 0);
758
759         map.m_lblk = block;
760         map.m_len = 1;
761         err = ext4_map_blocks(handle, inode, &map,
762                               create ? EXT4_GET_BLOCKS_CREATE : 0);
763
764         /* ensure we send some value back into *errp */
765         *errp = 0;
766
767         if (create && err == 0)
768                 err = -ENOSPC;  /* should never happen */
769         if (err < 0)
770                 *errp = err;
771         if (err <= 0)
772                 return NULL;
773
774         bh = sb_getblk(inode->i_sb, map.m_pblk);
775         if (unlikely(!bh)) {
776                 *errp = -ENOMEM;
777                 return NULL;
778         }
779         if (map.m_flags & EXT4_MAP_NEW) {
780                 J_ASSERT(create != 0);
781                 J_ASSERT(handle != NULL);
782
783                 /*
784                  * Now that we do not always journal data, we should
785                  * keep in mind whether this should always journal the
786                  * new buffer as metadata.  For now, regular file
787                  * writes use ext4_get_block instead, so it's not a
788                  * problem.
789                  */
790                 lock_buffer(bh);
791                 BUFFER_TRACE(bh, "call get_create_access");
792                 fatal = ext4_journal_get_create_access(handle, bh);
793                 if (!fatal && !buffer_uptodate(bh)) {
794                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795                         set_buffer_uptodate(bh);
796                 }
797                 unlock_buffer(bh);
798                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799                 err = ext4_handle_dirty_metadata(handle, inode, bh);
800                 if (!fatal)
801                         fatal = err;
802         } else {
803                 BUFFER_TRACE(bh, "not a new buffer");
804         }
805         if (fatal) {
806                 *errp = fatal;
807                 brelse(bh);
808                 bh = NULL;
809         }
810         return bh;
811 }
812
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814                                ext4_lblk_t block, int create, int *err)
815 {
816         struct buffer_head *bh;
817
818         bh = ext4_getblk(handle, inode, block, create, err);
819         if (!bh)
820                 return bh;
821         if (buffer_uptodate(bh))
822                 return bh;
823         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
824         wait_on_buffer(bh);
825         if (buffer_uptodate(bh))
826                 return bh;
827         put_bh(bh);
828         *err = -EIO;
829         return NULL;
830 }
831
832 int ext4_walk_page_buffers(handle_t *handle,
833                            struct buffer_head *head,
834                            unsigned from,
835                            unsigned to,
836                            int *partial,
837                            int (*fn)(handle_t *handle,
838                                      struct buffer_head *bh))
839 {
840         struct buffer_head *bh;
841         unsigned block_start, block_end;
842         unsigned blocksize = head->b_size;
843         int err, ret = 0;
844         struct buffer_head *next;
845
846         for (bh = head, block_start = 0;
847              ret == 0 && (bh != head || !block_start);
848              block_start = block_end, bh = next) {
849                 next = bh->b_this_page;
850                 block_end = block_start + blocksize;
851                 if (block_end <= from || block_start >= to) {
852                         if (partial && !buffer_uptodate(bh))
853                                 *partial = 1;
854                         continue;
855                 }
856                 err = (*fn)(handle, bh);
857                 if (!ret)
858                         ret = err;
859         }
860         return ret;
861 }
862
863 /*
864  * To preserve ordering, it is essential that the hole instantiation and
865  * the data write be encapsulated in a single transaction.  We cannot
866  * close off a transaction and start a new one between the ext4_get_block()
867  * and the commit_write().  So doing the jbd2_journal_start at the start of
868  * prepare_write() is the right place.
869  *
870  * Also, this function can nest inside ext4_writepage().  In that case, we
871  * *know* that ext4_writepage() has generated enough buffer credits to do the
872  * whole page.  So we won't block on the journal in that case, which is good,
873  * because the caller may be PF_MEMALLOC.
874  *
875  * By accident, ext4 can be reentered when a transaction is open via
876  * quota file writes.  If we were to commit the transaction while thus
877  * reentered, there can be a deadlock - we would be holding a quota
878  * lock, and the commit would never complete if another thread had a
879  * transaction open and was blocking on the quota lock - a ranking
880  * violation.
881  *
882  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883  * will _not_ run commit under these circumstances because handle->h_ref
884  * is elevated.  We'll still have enough credits for the tiny quotafile
885  * write.
886  */
887 int do_journal_get_write_access(handle_t *handle,
888                                 struct buffer_head *bh)
889 {
890         int dirty = buffer_dirty(bh);
891         int ret;
892
893         if (!buffer_mapped(bh) || buffer_freed(bh))
894                 return 0;
895         /*
896          * __block_write_begin() could have dirtied some buffers. Clean
897          * the dirty bit as jbd2_journal_get_write_access() could complain
898          * otherwise about fs integrity issues. Setting of the dirty bit
899          * by __block_write_begin() isn't a real problem here as we clear
900          * the bit before releasing a page lock and thus writeback cannot
901          * ever write the buffer.
902          */
903         if (dirty)
904                 clear_buffer_dirty(bh);
905         ret = ext4_journal_get_write_access(handle, bh);
906         if (!ret && dirty)
907                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908         return ret;
909 }
910
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912                    struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914                             loff_t pos, unsigned len, unsigned flags,
915                             struct page **pagep, void **fsdata)
916 {
917         struct inode *inode = mapping->host;
918         int ret, needed_blocks;
919         handle_t *handle;
920         int retries = 0;
921         struct page *page;
922         pgoff_t index;
923         unsigned from, to;
924
925         trace_ext4_write_begin(inode, pos, len, flags);
926         /*
927          * Reserve one block more for addition to orphan list in case
928          * we allocate blocks but write fails for some reason
929          */
930         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931         index = pos >> PAGE_CACHE_SHIFT;
932         from = pos & (PAGE_CACHE_SIZE - 1);
933         to = from + len;
934
935         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937                                                     flags, pagep);
938                 if (ret < 0)
939                         return ret;
940                 if (ret == 1)
941                         return 0;
942         }
943
944         /*
945          * grab_cache_page_write_begin() can take a long time if the
946          * system is thrashing due to memory pressure, or if the page
947          * is being written back.  So grab it first before we start
948          * the transaction handle.  This also allows us to allocate
949          * the page (if needed) without using GFP_NOFS.
950          */
951 retry_grab:
952         page = grab_cache_page_write_begin(mapping, index, flags);
953         if (!page)
954                 return -ENOMEM;
955         unlock_page(page);
956
957 retry_journal:
958         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959         if (IS_ERR(handle)) {
960                 page_cache_release(page);
961                 return PTR_ERR(handle);
962         }
963
964         lock_page(page);
965         if (page->mapping != mapping) {
966                 /* The page got truncated from under us */
967                 unlock_page(page);
968                 page_cache_release(page);
969                 ext4_journal_stop(handle);
970                 goto retry_grab;
971         }
972         wait_on_page_writeback(page);
973
974         if (ext4_should_dioread_nolock(inode))
975                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
976         else
977                 ret = __block_write_begin(page, pos, len, ext4_get_block);
978
979         if (!ret && ext4_should_journal_data(inode)) {
980                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
981                                              from, to, NULL,
982                                              do_journal_get_write_access);
983         }
984
985         if (ret) {
986                 unlock_page(page);
987                 /*
988                  * __block_write_begin may have instantiated a few blocks
989                  * outside i_size.  Trim these off again. Don't need
990                  * i_size_read because we hold i_mutex.
991                  *
992                  * Add inode to orphan list in case we crash before
993                  * truncate finishes
994                  */
995                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
996                         ext4_orphan_add(handle, inode);
997
998                 ext4_journal_stop(handle);
999                 if (pos + len > inode->i_size) {
1000                         ext4_truncate_failed_write(inode);
1001                         /*
1002                          * If truncate failed early the inode might
1003                          * still be on the orphan list; we need to
1004                          * make sure the inode is removed from the
1005                          * orphan list in that case.
1006                          */
1007                         if (inode->i_nlink)
1008                                 ext4_orphan_del(NULL, inode);
1009                 }
1010
1011                 if (ret == -ENOSPC &&
1012                     ext4_should_retry_alloc(inode->i_sb, &retries))
1013                         goto retry_journal;
1014                 page_cache_release(page);
1015                 return ret;
1016         }
1017         *pagep = page;
1018         return ret;
1019 }
1020
1021 /* For write_end() in data=journal mode */
1022 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1023 {
1024         int ret;
1025         if (!buffer_mapped(bh) || buffer_freed(bh))
1026                 return 0;
1027         set_buffer_uptodate(bh);
1028         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029         clear_buffer_meta(bh);
1030         clear_buffer_prio(bh);
1031         return ret;
1032 }
1033
1034 /*
1035  * We need to pick up the new inode size which generic_commit_write gave us
1036  * `file' can be NULL - eg, when called from page_symlink().
1037  *
1038  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1039  * buffers are managed internally.
1040  */
1041 static int ext4_write_end(struct file *file,
1042                           struct address_space *mapping,
1043                           loff_t pos, unsigned len, unsigned copied,
1044                           struct page *page, void *fsdata)
1045 {
1046         handle_t *handle = ext4_journal_current_handle();
1047         struct inode *inode = mapping->host;
1048         int ret = 0, ret2;
1049         int i_size_changed = 0;
1050
1051         trace_ext4_write_end(inode, pos, len, copied);
1052         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053                 ret = ext4_jbd2_file_inode(handle, inode);
1054                 if (ret) {
1055                         unlock_page(page);
1056                         page_cache_release(page);
1057                         goto errout;
1058                 }
1059         }
1060
1061         if (ext4_has_inline_data(inode))
1062                 copied = ext4_write_inline_data_end(inode, pos, len,
1063                                                     copied, page);
1064         else
1065                 copied = block_write_end(file, mapping, pos,
1066                                          len, copied, page, fsdata);
1067
1068         /*
1069          * No need to use i_size_read() here, the i_size
1070          * cannot change under us because we hole i_mutex.
1071          *
1072          * But it's important to update i_size while still holding page lock:
1073          * page writeout could otherwise come in and zero beyond i_size.
1074          */
1075         if (pos + copied > inode->i_size) {
1076                 i_size_write(inode, pos + copied);
1077                 i_size_changed = 1;
1078         }
1079
1080         if (pos + copied > EXT4_I(inode)->i_disksize) {
1081                 /* We need to mark inode dirty even if
1082                  * new_i_size is less that inode->i_size
1083                  * but greater than i_disksize. (hint delalloc)
1084                  */
1085                 ext4_update_i_disksize(inode, (pos + copied));
1086                 i_size_changed = 1;
1087         }
1088         unlock_page(page);
1089         page_cache_release(page);
1090
1091         /*
1092          * Don't mark the inode dirty under page lock. First, it unnecessarily
1093          * makes the holding time of page lock longer. Second, it forces lock
1094          * ordering of page lock and transaction start for journaling
1095          * filesystems.
1096          */
1097         if (i_size_changed)
1098                 ext4_mark_inode_dirty(handle, inode);
1099
1100         if (copied < 0)
1101                 ret = copied;
1102         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1103                 /* if we have allocated more blocks and copied
1104                  * less. We will have blocks allocated outside
1105                  * inode->i_size. So truncate them
1106                  */
1107                 ext4_orphan_add(handle, inode);
1108 errout:
1109         ret2 = ext4_journal_stop(handle);
1110         if (!ret)
1111                 ret = ret2;
1112
1113         if (pos + len > inode->i_size) {
1114                 ext4_truncate_failed_write(inode);
1115                 /*
1116                  * If truncate failed early the inode might still be
1117                  * on the orphan list; we need to make sure the inode
1118                  * is removed from the orphan list in that case.
1119                  */
1120                 if (inode->i_nlink)
1121                         ext4_orphan_del(NULL, inode);
1122         }
1123
1124         return ret ? ret : copied;
1125 }
1126
1127 static int ext4_journalled_write_end(struct file *file,
1128                                      struct address_space *mapping,
1129                                      loff_t pos, unsigned len, unsigned copied,
1130                                      struct page *page, void *fsdata)
1131 {
1132         handle_t *handle = ext4_journal_current_handle();
1133         struct inode *inode = mapping->host;
1134         int ret = 0, ret2;
1135         int partial = 0;
1136         unsigned from, to;
1137         loff_t new_i_size;
1138
1139         trace_ext4_journalled_write_end(inode, pos, len, copied);
1140         from = pos & (PAGE_CACHE_SIZE - 1);
1141         to = from + len;
1142
1143         BUG_ON(!ext4_handle_valid(handle));
1144
1145         if (ext4_has_inline_data(inode))
1146                 copied = ext4_write_inline_data_end(inode, pos, len,
1147                                                     copied, page);
1148         else {
1149                 if (copied < len) {
1150                         if (!PageUptodate(page))
1151                                 copied = 0;
1152                         page_zero_new_buffers(page, from+copied, to);
1153                 }
1154
1155                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1156                                              to, &partial, write_end_fn);
1157                 if (!partial)
1158                         SetPageUptodate(page);
1159         }
1160         new_i_size = pos + copied;
1161         if (new_i_size > inode->i_size)
1162                 i_size_write(inode, pos+copied);
1163         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1164         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1165         if (new_i_size > EXT4_I(inode)->i_disksize) {
1166                 ext4_update_i_disksize(inode, new_i_size);
1167                 ret2 = ext4_mark_inode_dirty(handle, inode);
1168                 if (!ret)
1169                         ret = ret2;
1170         }
1171
1172         unlock_page(page);
1173         page_cache_release(page);
1174         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1175                 /* if we have allocated more blocks and copied
1176                  * less. We will have blocks allocated outside
1177                  * inode->i_size. So truncate them
1178                  */
1179                 ext4_orphan_add(handle, inode);
1180
1181         ret2 = ext4_journal_stop(handle);
1182         if (!ret)
1183                 ret = ret2;
1184         if (pos + len > inode->i_size) {
1185                 ext4_truncate_failed_write(inode);
1186                 /*
1187                  * If truncate failed early the inode might still be
1188                  * on the orphan list; we need to make sure the inode
1189                  * is removed from the orphan list in that case.
1190                  */
1191                 if (inode->i_nlink)
1192                         ext4_orphan_del(NULL, inode);
1193         }
1194
1195         return ret ? ret : copied;
1196 }
1197
1198 /*
1199  * Reserve a metadata for a single block located at lblock
1200  */
1201 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1202 {
1203         int retries = 0;
1204         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205         struct ext4_inode_info *ei = EXT4_I(inode);
1206         unsigned int md_needed;
1207         ext4_lblk_t save_last_lblock;
1208         int save_len;
1209
1210         /*
1211          * recalculate the amount of metadata blocks to reserve
1212          * in order to allocate nrblocks
1213          * worse case is one extent per block
1214          */
1215 repeat:
1216         spin_lock(&ei->i_block_reservation_lock);
1217         /*
1218          * ext4_calc_metadata_amount() has side effects, which we have
1219          * to be prepared undo if we fail to claim space.
1220          */
1221         save_len = ei->i_da_metadata_calc_len;
1222         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1223         md_needed = EXT4_NUM_B2C(sbi,
1224                                  ext4_calc_metadata_amount(inode, lblock));
1225         trace_ext4_da_reserve_space(inode, md_needed);
1226
1227         /*
1228          * We do still charge estimated metadata to the sb though;
1229          * we cannot afford to run out of free blocks.
1230          */
1231         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1232                 ei->i_da_metadata_calc_len = save_len;
1233                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1234                 spin_unlock(&ei->i_block_reservation_lock);
1235                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1236                         cond_resched();
1237                         goto repeat;
1238                 }
1239                 return -ENOSPC;
1240         }
1241         ei->i_reserved_meta_blocks += md_needed;
1242         spin_unlock(&ei->i_block_reservation_lock);
1243
1244         return 0;       /* success */
1245 }
1246
1247 /*
1248  * Reserve a single cluster located at lblock
1249  */
1250 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1251 {
1252         int retries = 0;
1253         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1254         struct ext4_inode_info *ei = EXT4_I(inode);
1255         unsigned int md_needed;
1256         int ret;
1257         ext4_lblk_t save_last_lblock;
1258         int save_len;
1259
1260         /*
1261          * We will charge metadata quota at writeout time; this saves
1262          * us from metadata over-estimation, though we may go over by
1263          * a small amount in the end.  Here we just reserve for data.
1264          */
1265         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1266         if (ret)
1267                 return ret;
1268
1269         /*
1270          * recalculate the amount of metadata blocks to reserve
1271          * in order to allocate nrblocks
1272          * worse case is one extent per block
1273          */
1274 repeat:
1275         spin_lock(&ei->i_block_reservation_lock);
1276         /*
1277          * ext4_calc_metadata_amount() has side effects, which we have
1278          * to be prepared undo if we fail to claim space.
1279          */
1280         save_len = ei->i_da_metadata_calc_len;
1281         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1282         md_needed = EXT4_NUM_B2C(sbi,
1283                                  ext4_calc_metadata_amount(inode, lblock));
1284         trace_ext4_da_reserve_space(inode, md_needed);
1285
1286         /*
1287          * We do still charge estimated metadata to the sb though;
1288          * we cannot afford to run out of free blocks.
1289          */
1290         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1291                 ei->i_da_metadata_calc_len = save_len;
1292                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293                 spin_unlock(&ei->i_block_reservation_lock);
1294                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1295                         cond_resched();
1296                         goto repeat;
1297                 }
1298                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1299                 return -ENOSPC;
1300         }
1301         ei->i_reserved_data_blocks++;
1302         ei->i_reserved_meta_blocks += md_needed;
1303         spin_unlock(&ei->i_block_reservation_lock);
1304
1305         return 0;       /* success */
1306 }
1307
1308 static void ext4_da_release_space(struct inode *inode, int to_free)
1309 {
1310         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311         struct ext4_inode_info *ei = EXT4_I(inode);
1312
1313         if (!to_free)
1314                 return;         /* Nothing to release, exit */
1315
1316         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1317
1318         trace_ext4_da_release_space(inode, to_free);
1319         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1320                 /*
1321                  * if there aren't enough reserved blocks, then the
1322                  * counter is messed up somewhere.  Since this
1323                  * function is called from invalidate page, it's
1324                  * harmless to return without any action.
1325                  */
1326                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1327                          "ino %lu, to_free %d with only %d reserved "
1328                          "data blocks", inode->i_ino, to_free,
1329                          ei->i_reserved_data_blocks);
1330                 WARN_ON(1);
1331                 to_free = ei->i_reserved_data_blocks;
1332         }
1333         ei->i_reserved_data_blocks -= to_free;
1334
1335         if (ei->i_reserved_data_blocks == 0) {
1336                 /*
1337                  * We can release all of the reserved metadata blocks
1338                  * only when we have written all of the delayed
1339                  * allocation blocks.
1340                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1341                  * i_reserved_data_blocks, etc. refer to number of clusters.
1342                  */
1343                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1344                                    ei->i_reserved_meta_blocks);
1345                 ei->i_reserved_meta_blocks = 0;
1346                 ei->i_da_metadata_calc_len = 0;
1347         }
1348
1349         /* update fs dirty data blocks counter */
1350         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1351
1352         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1353
1354         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1355 }
1356
1357 static void ext4_da_page_release_reservation(struct page *page,
1358                                              unsigned int offset,
1359                                              unsigned int length)
1360 {
1361         int to_release = 0;
1362         struct buffer_head *head, *bh;
1363         unsigned int curr_off = 0;
1364         struct inode *inode = page->mapping->host;
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         unsigned int stop = offset + length;
1367         int num_clusters;
1368         ext4_fsblk_t lblk;
1369
1370         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1371
1372         head = page_buffers(page);
1373         bh = head;
1374         do {
1375                 unsigned int next_off = curr_off + bh->b_size;
1376
1377                 if (next_off > stop)
1378                         break;
1379
1380                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1381                         to_release++;
1382                         clear_buffer_delay(bh);
1383                 }
1384                 curr_off = next_off;
1385         } while ((bh = bh->b_this_page) != head);
1386
1387         if (to_release) {
1388                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1389                 ext4_es_remove_extent(inode, lblk, to_release);
1390         }
1391
1392         /* If we have released all the blocks belonging to a cluster, then we
1393          * need to release the reserved space for that cluster. */
1394         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1395         while (num_clusters > 0) {
1396                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1397                         ((num_clusters - 1) << sbi->s_cluster_bits);
1398                 if (sbi->s_cluster_ratio == 1 ||
1399                     !ext4_find_delalloc_cluster(inode, lblk))
1400                         ext4_da_release_space(inode, 1);
1401
1402                 num_clusters--;
1403         }
1404 }
1405
1406 /*
1407  * Delayed allocation stuff
1408  */
1409
1410 struct mpage_da_data {
1411         struct inode *inode;
1412         struct writeback_control *wbc;
1413         pgoff_t first_page;     /* The first page to write */
1414         pgoff_t next_page;      /* Current page to examine */
1415         pgoff_t last_page;      /* Last page to examine */
1416         /*
1417          * Extent to map - this can be after first_page because that can be
1418          * fully mapped. We somewhat abuse m_flags to store whether the extent
1419          * is delalloc or unwritten.
1420          */
1421         struct ext4_map_blocks map;
1422         struct ext4_io_submit io_submit;        /* IO submission data */
1423 };
1424
1425 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1426                                        bool invalidate)
1427 {
1428         int nr_pages, i;
1429         pgoff_t index, end;
1430         struct pagevec pvec;
1431         struct inode *inode = mpd->inode;
1432         struct address_space *mapping = inode->i_mapping;
1433
1434         /* This is necessary when next_page == 0. */
1435         if (mpd->first_page >= mpd->next_page)
1436                 return;
1437
1438         index = mpd->first_page;
1439         end   = mpd->next_page - 1;
1440         if (invalidate) {
1441                 ext4_lblk_t start, last;
1442                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1443                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1444                 ext4_es_remove_extent(inode, start, last - start + 1);
1445         }
1446
1447         pagevec_init(&pvec, 0);
1448         while (index <= end) {
1449                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1450                 if (nr_pages == 0)
1451                         break;
1452                 for (i = 0; i < nr_pages; i++) {
1453                         struct page *page = pvec.pages[i];
1454                         if (page->index > end)
1455                                 break;
1456                         BUG_ON(!PageLocked(page));
1457                         BUG_ON(PageWriteback(page));
1458                         if (invalidate) {
1459                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1460                                 ClearPageUptodate(page);
1461                         }
1462                         unlock_page(page);
1463                 }
1464                 index = pvec.pages[nr_pages - 1]->index + 1;
1465                 pagevec_release(&pvec);
1466         }
1467 }
1468
1469 static void ext4_print_free_blocks(struct inode *inode)
1470 {
1471         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1472         struct super_block *sb = inode->i_sb;
1473         struct ext4_inode_info *ei = EXT4_I(inode);
1474
1475         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1476                EXT4_C2B(EXT4_SB(inode->i_sb),
1477                         ext4_count_free_clusters(sb)));
1478         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1479         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1480                (long long) EXT4_C2B(EXT4_SB(sb),
1481                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1482         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1483                (long long) EXT4_C2B(EXT4_SB(sb),
1484                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1485         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1486         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1487                  ei->i_reserved_data_blocks);
1488         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1489                ei->i_reserved_meta_blocks);
1490         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1491                ei->i_allocated_meta_blocks);
1492         return;
1493 }
1494
1495 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1496 {
1497         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1498 }
1499
1500 /*
1501  * This function is grabs code from the very beginning of
1502  * ext4_map_blocks, but assumes that the caller is from delayed write
1503  * time. This function looks up the requested blocks and sets the
1504  * buffer delay bit under the protection of i_data_sem.
1505  */
1506 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1507                               struct ext4_map_blocks *map,
1508                               struct buffer_head *bh)
1509 {
1510         struct extent_status es;
1511         int retval;
1512         sector_t invalid_block = ~((sector_t) 0xffff);
1513 #ifdef ES_AGGRESSIVE_TEST
1514         struct ext4_map_blocks orig_map;
1515
1516         memcpy(&orig_map, map, sizeof(*map));
1517 #endif
1518
1519         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1520                 invalid_block = ~0;
1521
1522         map->m_flags = 0;
1523         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1524                   "logical block %lu\n", inode->i_ino, map->m_len,
1525                   (unsigned long) map->m_lblk);
1526
1527         /* Lookup extent status tree firstly */
1528         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1529
1530                 if (ext4_es_is_hole(&es)) {
1531                         retval = 0;
1532                         down_read((&EXT4_I(inode)->i_data_sem));
1533                         goto add_delayed;
1534                 }
1535
1536                 /*
1537                  * Delayed extent could be allocated by fallocate.
1538                  * So we need to check it.
1539                  */
1540                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1541                         map_bh(bh, inode->i_sb, invalid_block);
1542                         set_buffer_new(bh);
1543                         set_buffer_delay(bh);
1544                         return 0;
1545                 }
1546
1547                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1548                 retval = es.es_len - (iblock - es.es_lblk);
1549                 if (retval > map->m_len)
1550                         retval = map->m_len;
1551                 map->m_len = retval;
1552                 if (ext4_es_is_written(&es))
1553                         map->m_flags |= EXT4_MAP_MAPPED;
1554                 else if (ext4_es_is_unwritten(&es))
1555                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1556                 else
1557                         BUG_ON(1);
1558
1559 #ifdef ES_AGGRESSIVE_TEST
1560                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1561 #endif
1562                 return retval;
1563         }
1564
1565         /*
1566          * Try to see if we can get the block without requesting a new
1567          * file system block.
1568          */
1569         down_read((&EXT4_I(inode)->i_data_sem));
1570         if (ext4_has_inline_data(inode)) {
1571                 /*
1572                  * We will soon create blocks for this page, and let
1573                  * us pretend as if the blocks aren't allocated yet.
1574                  * In case of clusters, we have to handle the work
1575                  * of mapping from cluster so that the reserved space
1576                  * is calculated properly.
1577                  */
1578                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1579                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1580                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1581                 retval = 0;
1582         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1583                 retval = ext4_ext_map_blocks(NULL, inode, map,
1584                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1585         else
1586                 retval = ext4_ind_map_blocks(NULL, inode, map,
1587                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1588
1589 add_delayed:
1590         if (retval == 0) {
1591                 int ret;
1592                 /*
1593                  * XXX: __block_prepare_write() unmaps passed block,
1594                  * is it OK?
1595                  */
1596                 /*
1597                  * If the block was allocated from previously allocated cluster,
1598                  * then we don't need to reserve it again. However we still need
1599                  * to reserve metadata for every block we're going to write.
1600                  */
1601                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1602                         ret = ext4_da_reserve_space(inode, iblock);
1603                         if (ret) {
1604                                 /* not enough space to reserve */
1605                                 retval = ret;
1606                                 goto out_unlock;
1607                         }
1608                 } else {
1609                         ret = ext4_da_reserve_metadata(inode, iblock);
1610                         if (ret) {
1611                                 /* not enough space to reserve */
1612                                 retval = ret;
1613                                 goto out_unlock;
1614                         }
1615                 }
1616
1617                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1618                                             ~0, EXTENT_STATUS_DELAYED);
1619                 if (ret) {
1620                         retval = ret;
1621                         goto out_unlock;
1622                 }
1623
1624                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1625                  * and it should not appear on the bh->b_state.
1626                  */
1627                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1628
1629                 map_bh(bh, inode->i_sb, invalid_block);
1630                 set_buffer_new(bh);
1631                 set_buffer_delay(bh);
1632         } else if (retval > 0) {
1633                 int ret;
1634                 unsigned long long status;
1635
1636 #ifdef ES_AGGRESSIVE_TEST
1637                 if (retval != map->m_len) {
1638                         printk("ES len assertation failed for inode: %lu "
1639                                "retval %d != map->m_len %d "
1640                                "in %s (lookup)\n", inode->i_ino, retval,
1641                                map->m_len, __func__);
1642                 }
1643 #endif
1644
1645                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1646                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1647                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1648                                             map->m_pblk, status);
1649                 if (ret != 0)
1650                         retval = ret;
1651         }
1652
1653 out_unlock:
1654         up_read((&EXT4_I(inode)->i_data_sem));
1655
1656         return retval;
1657 }
1658
1659 /*
1660  * This is a special get_blocks_t callback which is used by
1661  * ext4_da_write_begin().  It will either return mapped block or
1662  * reserve space for a single block.
1663  *
1664  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1665  * We also have b_blocknr = -1 and b_bdev initialized properly
1666  *
1667  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1668  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1669  * initialized properly.
1670  */
1671 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1672                            struct buffer_head *bh, int create)
1673 {
1674         struct ext4_map_blocks map;
1675         int ret = 0;
1676
1677         BUG_ON(create == 0);
1678         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1679
1680         map.m_lblk = iblock;
1681         map.m_len = 1;
1682
1683         /*
1684          * first, we need to know whether the block is allocated already
1685          * preallocated blocks are unmapped but should treated
1686          * the same as allocated blocks.
1687          */
1688         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1689         if (ret <= 0)
1690                 return ret;
1691
1692         map_bh(bh, inode->i_sb, map.m_pblk);
1693         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1694
1695         if (buffer_unwritten(bh)) {
1696                 /* A delayed write to unwritten bh should be marked
1697                  * new and mapped.  Mapped ensures that we don't do
1698                  * get_block multiple times when we write to the same
1699                  * offset and new ensures that we do proper zero out
1700                  * for partial write.
1701                  */
1702                 set_buffer_new(bh);
1703                 set_buffer_mapped(bh);
1704         }
1705         return 0;
1706 }
1707
1708 static int bget_one(handle_t *handle, struct buffer_head *bh)
1709 {
1710         get_bh(bh);
1711         return 0;
1712 }
1713
1714 static int bput_one(handle_t *handle, struct buffer_head *bh)
1715 {
1716         put_bh(bh);
1717         return 0;
1718 }
1719
1720 static int __ext4_journalled_writepage(struct page *page,
1721                                        unsigned int len)
1722 {
1723         struct address_space *mapping = page->mapping;
1724         struct inode *inode = mapping->host;
1725         struct buffer_head *page_bufs = NULL;
1726         handle_t *handle = NULL;
1727         int ret = 0, err = 0;
1728         int inline_data = ext4_has_inline_data(inode);
1729         struct buffer_head *inode_bh = NULL;
1730
1731         ClearPageChecked(page);
1732
1733         if (inline_data) {
1734                 BUG_ON(page->index != 0);
1735                 BUG_ON(len > ext4_get_max_inline_size(inode));
1736                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1737                 if (inode_bh == NULL)
1738                         goto out;
1739         } else {
1740                 page_bufs = page_buffers(page);
1741                 if (!page_bufs) {
1742                         BUG();
1743                         goto out;
1744                 }
1745                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1746                                        NULL, bget_one);
1747         }
1748         /* As soon as we unlock the page, it can go away, but we have
1749          * references to buffers so we are safe */
1750         unlock_page(page);
1751
1752         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1753                                     ext4_writepage_trans_blocks(inode));
1754         if (IS_ERR(handle)) {
1755                 ret = PTR_ERR(handle);
1756                 goto out;
1757         }
1758
1759         BUG_ON(!ext4_handle_valid(handle));
1760
1761         if (inline_data) {
1762                 ret = ext4_journal_get_write_access(handle, inode_bh);
1763
1764                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1765
1766         } else {
1767                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1768                                              do_journal_get_write_access);
1769
1770                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1771                                              write_end_fn);
1772         }
1773         if (ret == 0)
1774                 ret = err;
1775         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1776         err = ext4_journal_stop(handle);
1777         if (!ret)
1778                 ret = err;
1779
1780         if (!ext4_has_inline_data(inode))
1781                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1782                                        NULL, bput_one);
1783         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1784 out:
1785         brelse(inode_bh);
1786         return ret;
1787 }
1788
1789 /*
1790  * Note that we don't need to start a transaction unless we're journaling data
1791  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1792  * need to file the inode to the transaction's list in ordered mode because if
1793  * we are writing back data added by write(), the inode is already there and if
1794  * we are writing back data modified via mmap(), no one guarantees in which
1795  * transaction the data will hit the disk. In case we are journaling data, we
1796  * cannot start transaction directly because transaction start ranks above page
1797  * lock so we have to do some magic.
1798  *
1799  * This function can get called via...
1800  *   - ext4_da_writepages after taking page lock (have journal handle)
1801  *   - journal_submit_inode_data_buffers (no journal handle)
1802  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1803  *   - grab_page_cache when doing write_begin (have journal handle)
1804  *
1805  * We don't do any block allocation in this function. If we have page with
1806  * multiple blocks we need to write those buffer_heads that are mapped. This
1807  * is important for mmaped based write. So if we do with blocksize 1K
1808  * truncate(f, 1024);
1809  * a = mmap(f, 0, 4096);
1810  * a[0] = 'a';
1811  * truncate(f, 4096);
1812  * we have in the page first buffer_head mapped via page_mkwrite call back
1813  * but other buffer_heads would be unmapped but dirty (dirty done via the
1814  * do_wp_page). So writepage should write the first block. If we modify
1815  * the mmap area beyond 1024 we will again get a page_fault and the
1816  * page_mkwrite callback will do the block allocation and mark the
1817  * buffer_heads mapped.
1818  *
1819  * We redirty the page if we have any buffer_heads that is either delay or
1820  * unwritten in the page.
1821  *
1822  * We can get recursively called as show below.
1823  *
1824  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1825  *              ext4_writepage()
1826  *
1827  * But since we don't do any block allocation we should not deadlock.
1828  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1829  */
1830 static int ext4_writepage(struct page *page,
1831                           struct writeback_control *wbc)
1832 {
1833         int ret = 0;
1834         loff_t size;
1835         unsigned int len;
1836         struct buffer_head *page_bufs = NULL;
1837         struct inode *inode = page->mapping->host;
1838         struct ext4_io_submit io_submit;
1839
1840         trace_ext4_writepage(page);
1841         size = i_size_read(inode);
1842         if (page->index == size >> PAGE_CACHE_SHIFT)
1843                 len = size & ~PAGE_CACHE_MASK;
1844         else
1845                 len = PAGE_CACHE_SIZE;
1846
1847         page_bufs = page_buffers(page);
1848         /*
1849          * We cannot do block allocation or other extent handling in this
1850          * function. If there are buffers needing that, we have to redirty
1851          * the page. But we may reach here when we do a journal commit via
1852          * journal_submit_inode_data_buffers() and in that case we must write
1853          * allocated buffers to achieve data=ordered mode guarantees.
1854          */
1855         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1856                                    ext4_bh_delay_or_unwritten)) {
1857                 redirty_page_for_writepage(wbc, page);
1858                 if (current->flags & PF_MEMALLOC) {
1859                         /*
1860                          * For memory cleaning there's no point in writing only
1861                          * some buffers. So just bail out. Warn if we came here
1862                          * from direct reclaim.
1863                          */
1864                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1865                                                         == PF_MEMALLOC);
1866                         unlock_page(page);
1867                         return 0;
1868                 }
1869         }
1870
1871         if (PageChecked(page) && ext4_should_journal_data(inode))
1872                 /*
1873                  * It's mmapped pagecache.  Add buffers and journal it.  There
1874                  * doesn't seem much point in redirtying the page here.
1875                  */
1876                 return __ext4_journalled_writepage(page, len);
1877
1878         ext4_io_submit_init(&io_submit, wbc);
1879         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1880         if (!io_submit.io_end) {
1881                 redirty_page_for_writepage(wbc, page);
1882                 unlock_page(page);
1883                 return -ENOMEM;
1884         }
1885         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1886         ext4_io_submit(&io_submit);
1887         /* Drop io_end reference we got from init */
1888         ext4_put_io_end_defer(io_submit.io_end);
1889         return ret;
1890 }
1891
1892 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1893
1894 /*
1895  * mballoc gives us at most this number of blocks...
1896  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1897  * The rest of mballoc seems to handle chunks upto full group size.
1898  */
1899 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1900
1901 /*
1902  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1903  *
1904  * @mpd - extent of blocks
1905  * @lblk - logical number of the block in the file
1906  * @b_state - b_state of the buffer head added
1907  *
1908  * the function is used to collect contig. blocks in same state
1909  */
1910 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1911                                   unsigned long b_state)
1912 {
1913         struct ext4_map_blocks *map = &mpd->map;
1914
1915         /* Don't go larger than mballoc is willing to allocate */
1916         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1917                 return 0;
1918
1919         /* First block in the extent? */
1920         if (map->m_len == 0) {
1921                 map->m_lblk = lblk;
1922                 map->m_len = 1;
1923                 map->m_flags = b_state & BH_FLAGS;
1924                 return 1;
1925         }
1926
1927         /* Can we merge the block to our big extent? */
1928         if (lblk == map->m_lblk + map->m_len &&
1929             (b_state & BH_FLAGS) == map->m_flags) {
1930                 map->m_len++;
1931                 return 1;
1932         }
1933         return 0;
1934 }
1935
1936 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1937                                     struct buffer_head *head,
1938                                     struct buffer_head *bh,
1939                                     ext4_lblk_t lblk)
1940 {
1941         struct inode *inode = mpd->inode;
1942         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1943                                                         >> inode->i_blkbits;
1944
1945         do {
1946                 BUG_ON(buffer_locked(bh));
1947
1948                 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1949                     (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1950                     lblk >= blocks) {
1951                         /* Found extent to map? */
1952                         if (mpd->map.m_len)
1953                                 return false;
1954                         if (lblk >= blocks)
1955                                 return true;
1956                         continue;
1957                 }
1958                 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1959                         return false;
1960         } while (lblk++, (bh = bh->b_this_page) != head);
1961         return true;
1962 }
1963
1964 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1965 {
1966         int len;
1967         loff_t size = i_size_read(mpd->inode);
1968         int err;
1969
1970         BUG_ON(page->index != mpd->first_page);
1971         if (page->index == size >> PAGE_CACHE_SHIFT)
1972                 len = size & ~PAGE_CACHE_MASK;
1973         else
1974                 len = PAGE_CACHE_SIZE;
1975         clear_page_dirty_for_io(page);
1976         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1977         if (!err)
1978                 mpd->wbc->nr_to_write--;
1979         mpd->first_page++;
1980
1981         return err;
1982 }
1983
1984 /*
1985  * mpage_map_buffers - update buffers corresponding to changed extent and
1986  *                     submit fully mapped pages for IO
1987  *
1988  * @mpd - description of extent to map, on return next extent to map
1989  *
1990  * Scan buffers corresponding to changed extent (we expect corresponding pages
1991  * to be already locked) and update buffer state according to new extent state.
1992  * We map delalloc buffers to their physical location, clear unwritten bits,
1993  * and mark buffers as uninit when we perform writes to uninitialized extents
1994  * and do extent conversion after IO is finished. If the last page is not fully
1995  * mapped, we update @map to the next extent in the last page that needs
1996  * mapping. Otherwise we submit the page for IO.
1997  */
1998 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1999 {
2000         struct pagevec pvec;
2001         int nr_pages, i;
2002         struct inode *inode = mpd->inode;
2003         struct buffer_head *head, *bh;
2004         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2005         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2006                                                         >> inode->i_blkbits;
2007         pgoff_t start, end;
2008         ext4_lblk_t lblk;
2009         sector_t pblock;
2010         int err;
2011
2012         start = mpd->map.m_lblk >> bpp_bits;
2013         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2014         lblk = start << bpp_bits;
2015         pblock = mpd->map.m_pblk;
2016
2017         pagevec_init(&pvec, 0);
2018         while (start <= end) {
2019                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2020                                           PAGEVEC_SIZE);
2021                 if (nr_pages == 0)
2022                         break;
2023                 for (i = 0; i < nr_pages; i++) {
2024                         struct page *page = pvec.pages[i];
2025
2026                         if (page->index > end)
2027                                 break;
2028                         /* Upto 'end' pages must be contiguous */
2029                         BUG_ON(page->index != start);
2030                         bh = head = page_buffers(page);
2031                         do {
2032                                 if (lblk < mpd->map.m_lblk)
2033                                         continue;
2034                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2035                                         /*
2036                                          * Buffer after end of mapped extent.
2037                                          * Find next buffer in the page to map.
2038                                          */
2039                                         mpd->map.m_len = 0;
2040                                         mpd->map.m_flags = 0;
2041                                         add_page_bufs_to_extent(mpd, head, bh,
2042                                                                 lblk);
2043                                         pagevec_release(&pvec);
2044                                         return 0;
2045                                 }
2046                                 if (buffer_delay(bh)) {
2047                                         clear_buffer_delay(bh);
2048                                         bh->b_blocknr = pblock++;
2049                                 }
2050                                 clear_buffer_unwritten(bh);
2051                         } while (++lblk < blocks &&
2052                                  (bh = bh->b_this_page) != head);
2053
2054                         /*
2055                          * FIXME: This is going to break if dioread_nolock
2056                          * supports blocksize < pagesize as we will try to
2057                          * convert potentially unmapped parts of inode.
2058                          */
2059                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2060                         /* Page fully mapped - let IO run! */
2061                         err = mpage_submit_page(mpd, page);
2062                         if (err < 0) {
2063                                 pagevec_release(&pvec);
2064                                 return err;
2065                         }
2066                         start++;
2067                 }
2068                 pagevec_release(&pvec);
2069         }
2070         /* Extent fully mapped and matches with page boundary. We are done. */
2071         mpd->map.m_len = 0;
2072         mpd->map.m_flags = 0;
2073         return 0;
2074 }
2075
2076 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2077 {
2078         struct inode *inode = mpd->inode;
2079         struct ext4_map_blocks *map = &mpd->map;
2080         int get_blocks_flags;
2081         int err;
2082
2083         trace_ext4_da_write_pages_extent(inode, map);
2084         /*
2085          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2086          * to convert an uninitialized extent to be initialized (in the case
2087          * where we have written into one or more preallocated blocks).  It is
2088          * possible that we're going to need more metadata blocks than
2089          * previously reserved. However we must not fail because we're in
2090          * writeback and there is nothing we can do about it so it might result
2091          * in data loss.  So use reserved blocks to allocate metadata if
2092          * possible.
2093          *
2094          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2095          * in question are delalloc blocks.  This affects functions in many
2096          * different parts of the allocation call path.  This flag exists
2097          * primarily because we don't want to change *many* call functions, so
2098          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2099          * once the inode's allocation semaphore is taken.
2100          */
2101         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2102                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2103         if (ext4_should_dioread_nolock(inode))
2104                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2105         if (map->m_flags & (1 << BH_Delay))
2106                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2107
2108         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2109         if (err < 0)
2110                 return err;
2111         if (map->m_flags & EXT4_MAP_UNINIT)
2112                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2113
2114         BUG_ON(map->m_len == 0);
2115         if (map->m_flags & EXT4_MAP_NEW) {
2116                 struct block_device *bdev = inode->i_sb->s_bdev;
2117                 int i;
2118
2119                 for (i = 0; i < map->m_len; i++)
2120                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2121         }
2122         return 0;
2123 }
2124
2125 /*
2126  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2127  *                               mpd->len and submit pages underlying it for IO
2128  *
2129  * @handle - handle for journal operations
2130  * @mpd - extent to map
2131  *
2132  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2133  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2134  * them to initialized or split the described range from larger unwritten
2135  * extent. Note that we need not map all the described range since allocation
2136  * can return less blocks or the range is covered by more unwritten extents. We
2137  * cannot map more because we are limited by reserved transaction credits. On
2138  * the other hand we always make sure that the last touched page is fully
2139  * mapped so that it can be written out (and thus forward progress is
2140  * guaranteed). After mapping we submit all mapped pages for IO.
2141  */
2142 static int mpage_map_and_submit_extent(handle_t *handle,
2143                                        struct mpage_da_data *mpd)
2144 {
2145         struct inode *inode = mpd->inode;
2146         struct ext4_map_blocks *map = &mpd->map;
2147         int err;
2148         loff_t disksize;
2149
2150         mpd->io_submit.io_end->offset =
2151                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2152         while (map->m_len) {
2153                 err = mpage_map_one_extent(handle, mpd);
2154                 if (err < 0) {
2155                         struct super_block *sb = inode->i_sb;
2156
2157                         /*
2158                          * Need to commit transaction to free blocks. Let upper
2159                          * layers sort it out.
2160                          */
2161                         if (err == -ENOSPC && ext4_count_free_clusters(sb))
2162                                 return -ENOSPC;
2163
2164                         if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2165                                 ext4_msg(sb, KERN_CRIT,
2166                                          "Delayed block allocation failed for "
2167                                          "inode %lu at logical offset %llu with"
2168                                          " max blocks %u with error %d",
2169                                          inode->i_ino,
2170                                          (unsigned long long)map->m_lblk,
2171                                          (unsigned)map->m_len, err);
2172                                 ext4_msg(sb, KERN_CRIT,
2173                                          "This should not happen!! Data will "
2174                                          "be lost\n");
2175                                 if (err == -ENOSPC)
2176                                         ext4_print_free_blocks(inode);
2177                         }
2178                         /* invalidate all the pages */
2179                         mpage_release_unused_pages(mpd, true);
2180                         return err;
2181                 }
2182                 /*
2183                  * Update buffer state, submit mapped pages, and get us new
2184                  * extent to map
2185                  */
2186                 err = mpage_map_and_submit_buffers(mpd);
2187                 if (err < 0)
2188                         return err;
2189         }
2190
2191         /* Update on-disk size after IO is submitted */
2192         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2193         if (disksize > i_size_read(inode))
2194                 disksize = i_size_read(inode);
2195         if (disksize > EXT4_I(inode)->i_disksize) {
2196                 int err2;
2197
2198                 ext4_update_i_disksize(inode, disksize);
2199                 err2 = ext4_mark_inode_dirty(handle, inode);
2200                 if (err2)
2201                         ext4_error(inode->i_sb,
2202                                    "Failed to mark inode %lu dirty",
2203                                    inode->i_ino);
2204                 if (!err)
2205                         err = err2;
2206         }
2207         return err;
2208 }
2209
2210 /*
2211  * Calculate the total number of credits to reserve for one writepages
2212  * iteration. This is called from ext4_da_writepages(). We map an extent of
2213  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2214  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2215  * bpp - 1 blocks in bpp different extents.
2216  */
2217 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2218 {
2219         int bpp = ext4_journal_blocks_per_page(inode);
2220
2221         return ext4_meta_trans_blocks(inode,
2222                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2223 }
2224
2225 /*
2226  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2227  *                               and underlying extent to map
2228  *
2229  * @mpd - where to look for pages
2230  *
2231  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2232  * IO immediately. When we find a page which isn't mapped we start accumulating
2233  * extent of buffers underlying these pages that needs mapping (formed by
2234  * either delayed or unwritten buffers). We also lock the pages containing
2235  * these buffers. The extent found is returned in @mpd structure (starting at
2236  * mpd->lblk with length mpd->len blocks).
2237  *
2238  * Note that this function can attach bios to one io_end structure which are
2239  * neither logically nor physically contiguous. Although it may seem as an
2240  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2241  * case as we need to track IO to all buffers underlying a page in one io_end.
2242  */
2243 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2244 {
2245         struct address_space *mapping = mpd->inode->i_mapping;
2246         struct pagevec pvec;
2247         unsigned int nr_pages;
2248         pgoff_t index = mpd->first_page;
2249         pgoff_t end = mpd->last_page;
2250         int tag;
2251         int i, err = 0;
2252         int blkbits = mpd->inode->i_blkbits;
2253         ext4_lblk_t lblk;
2254         struct buffer_head *head;
2255
2256         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2257                 tag = PAGECACHE_TAG_TOWRITE;
2258         else
2259                 tag = PAGECACHE_TAG_DIRTY;
2260
2261         pagevec_init(&pvec, 0);
2262         mpd->map.m_len = 0;
2263         mpd->next_page = index;
2264         while (index <= end) {
2265                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2266                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2267                 if (nr_pages == 0)
2268                         goto out;
2269
2270                 for (i = 0; i < nr_pages; i++) {
2271                         struct page *page = pvec.pages[i];
2272
2273                         /*
2274                          * At this point, the page may be truncated or
2275                          * invalidated (changing page->mapping to NULL), or
2276                          * even swizzled back from swapper_space to tmpfs file
2277                          * mapping. However, page->index will not change
2278                          * because we have a reference on the page.
2279                          */
2280                         if (page->index > end)
2281                                 goto out;
2282
2283                         /* If we can't merge this page, we are done. */
2284                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2285                                 goto out;
2286
2287                         lock_page(page);
2288                         /*
2289                          * If the page is no longer dirty, or its mapping no
2290                          * longer corresponds to inode we are writing (which
2291                          * means it has been truncated or invalidated), or the
2292                          * page is already under writeback and we are not doing
2293                          * a data integrity writeback, skip the page
2294                          */
2295                         if (!PageDirty(page) ||
2296                             (PageWriteback(page) &&
2297                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2298                             unlikely(page->mapping != mapping)) {
2299                                 unlock_page(page);
2300                                 continue;
2301                         }
2302
2303                         wait_on_page_writeback(page);
2304                         BUG_ON(PageWriteback(page));
2305
2306                         if (mpd->map.m_len == 0)
2307                                 mpd->first_page = page->index;
2308                         mpd->next_page = page->index + 1;
2309                         /* Add all dirty buffers to mpd */
2310                         lblk = ((ext4_lblk_t)page->index) <<
2311                                 (PAGE_CACHE_SHIFT - blkbits);
2312                         head = page_buffers(page);
2313                         if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2314                                 goto out;
2315                         /* So far everything mapped? Submit the page for IO. */
2316                         if (mpd->map.m_len == 0) {
2317                                 err = mpage_submit_page(mpd, page);
2318                                 if (err < 0)
2319                                         goto out;
2320                         }
2321
2322                         /*
2323                          * Accumulated enough dirty pages? This doesn't apply
2324                          * to WB_SYNC_ALL mode. For integrity sync we have to
2325                          * keep going because someone may be concurrently
2326                          * dirtying pages, and we might have synced a lot of
2327                          * newly appeared dirty pages, but have not synced all
2328                          * of the old dirty pages.
2329                          */
2330                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2331                             mpd->next_page - mpd->first_page >=
2332                                                         mpd->wbc->nr_to_write)
2333                                 goto out;
2334                 }
2335                 pagevec_release(&pvec);
2336                 cond_resched();
2337         }
2338         return 0;
2339 out:
2340         pagevec_release(&pvec);
2341         return err;
2342 }
2343
2344 static int ext4_da_writepages(struct address_space *mapping,
2345                               struct writeback_control *wbc)
2346 {
2347         pgoff_t writeback_index = 0;
2348         long nr_to_write = wbc->nr_to_write;
2349         int range_whole = 0;
2350         int cycled = 1;
2351         handle_t *handle = NULL;
2352         struct mpage_da_data mpd;
2353         struct inode *inode = mapping->host;
2354         int needed_blocks, ret = 0;
2355         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2356         bool done;
2357         struct blk_plug plug;
2358
2359         trace_ext4_da_writepages(inode, wbc);
2360
2361         /*
2362          * No pages to write? This is mainly a kludge to avoid starting
2363          * a transaction for special inodes like journal inode on last iput()
2364          * because that could violate lock ordering on umount
2365          */
2366         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2367                 return 0;
2368
2369         /*
2370          * If the filesystem has aborted, it is read-only, so return
2371          * right away instead of dumping stack traces later on that
2372          * will obscure the real source of the problem.  We test
2373          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2374          * the latter could be true if the filesystem is mounted
2375          * read-only, and in that case, ext4_da_writepages should
2376          * *never* be called, so if that ever happens, we would want
2377          * the stack trace.
2378          */
2379         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2380                 return -EROFS;
2381
2382         /*
2383          * If we have inline data and arrive here, it means that
2384          * we will soon create the block for the 1st page, so
2385          * we'd better clear the inline data here.
2386          */
2387         if (ext4_has_inline_data(inode)) {
2388                 /* Just inode will be modified... */
2389                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2390                 if (IS_ERR(handle)) {
2391                         ret = PTR_ERR(handle);
2392                         goto out_writepages;
2393                 }
2394                 BUG_ON(ext4_test_inode_state(inode,
2395                                 EXT4_STATE_MAY_INLINE_DATA));
2396                 ext4_destroy_inline_data(handle, inode);
2397                 ext4_journal_stop(handle);
2398         }
2399
2400         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2401                 range_whole = 1;
2402
2403         if (wbc->range_cyclic) {
2404                 writeback_index = mapping->writeback_index;
2405                 if (writeback_index)
2406                         cycled = 0;
2407                 mpd.first_page = writeback_index;
2408                 mpd.last_page = -1;
2409         } else {
2410                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2411                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2412         }
2413
2414         mpd.inode = inode;
2415         mpd.wbc = wbc;
2416         ext4_io_submit_init(&mpd.io_submit, wbc);
2417 retry:
2418         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2419                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2420         done = false;
2421         blk_start_plug(&plug);
2422         while (!done && mpd.first_page <= mpd.last_page) {
2423                 /* For each extent of pages we use new io_end */
2424                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2425                 if (!mpd.io_submit.io_end) {
2426                         ret = -ENOMEM;
2427                         break;
2428                 }
2429
2430                 /*
2431                  * We have two constraints: We find one extent to map and we
2432                  * must always write out whole page (makes a difference when
2433                  * blocksize < pagesize) so that we don't block on IO when we
2434                  * try to write out the rest of the page. Journalled mode is
2435                  * not supported by delalloc.
2436                  */
2437                 BUG_ON(ext4_should_journal_data(inode));
2438                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2439
2440                 /* start a new transaction */
2441                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2442                                             needed_blocks);
2443                 if (IS_ERR(handle)) {
2444                         ret = PTR_ERR(handle);
2445                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2446                                "%ld pages, ino %lu; err %d", __func__,
2447                                 wbc->nr_to_write, inode->i_ino, ret);
2448                         /* Release allocated io_end */
2449                         ext4_put_io_end(mpd.io_submit.io_end);
2450                         break;
2451                 }
2452
2453                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2454                 ret = mpage_prepare_extent_to_map(&mpd);
2455                 if (!ret) {
2456                         if (mpd.map.m_len)
2457                                 ret = mpage_map_and_submit_extent(handle, &mpd);
2458                         else {
2459                                 /*
2460                                  * We scanned the whole range (or exhausted
2461                                  * nr_to_write), submitted what was mapped and
2462                                  * didn't find anything needing mapping. We are
2463                                  * done.
2464                                  */
2465                                 done = true;
2466                         }
2467                 }
2468                 ext4_journal_stop(handle);
2469                 /* Submit prepared bio */
2470                 ext4_io_submit(&mpd.io_submit);
2471                 /* Unlock pages we didn't use */
2472                 mpage_release_unused_pages(&mpd, false);
2473                 /* Drop our io_end reference we got from init */
2474                 ext4_put_io_end(mpd.io_submit.io_end);
2475
2476                 if (ret == -ENOSPC && sbi->s_journal) {
2477                         /*
2478                          * Commit the transaction which would
2479                          * free blocks released in the transaction
2480                          * and try again
2481                          */
2482                         jbd2_journal_force_commit_nested(sbi->s_journal);
2483                         ret = 0;
2484                         continue;
2485                 }
2486                 /* Fatal error - ENOMEM, EIO... */
2487                 if (ret)
2488                         break;
2489         }
2490         blk_finish_plug(&plug);
2491         if (!ret && !cycled) {
2492                 cycled = 1;
2493                 mpd.last_page = writeback_index - 1;
2494                 mpd.first_page = 0;
2495                 goto retry;
2496         }
2497
2498         /* Update index */
2499         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2500                 /*
2501                  * Set the writeback_index so that range_cyclic
2502                  * mode will write it back later
2503                  */
2504                 mapping->writeback_index = mpd.first_page;
2505
2506 out_writepages:
2507         trace_ext4_da_writepages_result(inode, wbc, ret,
2508                                         nr_to_write - wbc->nr_to_write);
2509         return ret;
2510 }
2511
2512 static int ext4_nonda_switch(struct super_block *sb)
2513 {
2514         s64 free_clusters, dirty_clusters;
2515         struct ext4_sb_info *sbi = EXT4_SB(sb);
2516
2517         /*
2518          * switch to non delalloc mode if we are running low
2519          * on free block. The free block accounting via percpu
2520          * counters can get slightly wrong with percpu_counter_batch getting
2521          * accumulated on each CPU without updating global counters
2522          * Delalloc need an accurate free block accounting. So switch
2523          * to non delalloc when we are near to error range.
2524          */
2525         free_clusters =
2526                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2527         dirty_clusters =
2528                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2529         /*
2530          * Start pushing delalloc when 1/2 of free blocks are dirty.
2531          */
2532         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2533                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2534
2535         if (2 * free_clusters < 3 * dirty_clusters ||
2536             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2537                 /*
2538                  * free block count is less than 150% of dirty blocks
2539                  * or free blocks is less than watermark
2540                  */
2541                 return 1;
2542         }
2543         return 0;
2544 }
2545
2546 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2547                                loff_t pos, unsigned len, unsigned flags,
2548                                struct page **pagep, void **fsdata)
2549 {
2550         int ret, retries = 0;
2551         struct page *page;
2552         pgoff_t index;
2553         struct inode *inode = mapping->host;
2554         handle_t *handle;
2555
2556         index = pos >> PAGE_CACHE_SHIFT;
2557
2558         if (ext4_nonda_switch(inode->i_sb)) {
2559                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2560                 return ext4_write_begin(file, mapping, pos,
2561                                         len, flags, pagep, fsdata);
2562         }
2563         *fsdata = (void *)0;
2564         trace_ext4_da_write_begin(inode, pos, len, flags);
2565
2566         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2567                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2568                                                       pos, len, flags,
2569                                                       pagep, fsdata);
2570                 if (ret < 0)
2571                         return ret;
2572                 if (ret == 1)
2573                         return 0;
2574         }
2575
2576         /*
2577          * grab_cache_page_write_begin() can take a long time if the
2578          * system is thrashing due to memory pressure, or if the page
2579          * is being written back.  So grab it first before we start
2580          * the transaction handle.  This also allows us to allocate
2581          * the page (if needed) without using GFP_NOFS.
2582          */
2583 retry_grab:
2584         page = grab_cache_page_write_begin(mapping, index, flags);
2585         if (!page)
2586                 return -ENOMEM;
2587         unlock_page(page);
2588
2589         /*
2590          * With delayed allocation, we don't log the i_disksize update
2591          * if there is delayed block allocation. But we still need
2592          * to journalling the i_disksize update if writes to the end
2593          * of file which has an already mapped buffer.
2594          */
2595 retry_journal:
2596         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2597         if (IS_ERR(handle)) {
2598                 page_cache_release(page);
2599                 return PTR_ERR(handle);
2600         }
2601
2602         lock_page(page);
2603         if (page->mapping != mapping) {
2604                 /* The page got truncated from under us */
2605                 unlock_page(page);
2606                 page_cache_release(page);
2607                 ext4_journal_stop(handle);
2608                 goto retry_grab;
2609         }
2610         /* In case writeback began while the page was unlocked */
2611         wait_on_page_writeback(page);
2612
2613         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2614         if (ret < 0) {
2615                 unlock_page(page);
2616                 ext4_journal_stop(handle);
2617                 /*
2618                  * block_write_begin may have instantiated a few blocks
2619                  * outside i_size.  Trim these off again. Don't need
2620                  * i_size_read because we hold i_mutex.
2621                  */
2622                 if (pos + len > inode->i_size)
2623                         ext4_truncate_failed_write(inode);
2624
2625                 if (ret == -ENOSPC &&
2626                     ext4_should_retry_alloc(inode->i_sb, &retries))
2627                         goto retry_journal;
2628
2629                 page_cache_release(page);
2630                 return ret;
2631         }
2632
2633         *pagep = page;
2634         return ret;
2635 }
2636
2637 /*
2638  * Check if we should update i_disksize
2639  * when write to the end of file but not require block allocation
2640  */
2641 static int ext4_da_should_update_i_disksize(struct page *page,
2642                                             unsigned long offset)
2643 {
2644         struct buffer_head *bh;
2645         struct inode *inode = page->mapping->host;
2646         unsigned int idx;
2647         int i;
2648
2649         bh = page_buffers(page);
2650         idx = offset >> inode->i_blkbits;
2651
2652         for (i = 0; i < idx; i++)
2653                 bh = bh->b_this_page;
2654
2655         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2656                 return 0;
2657         return 1;
2658 }
2659
2660 static int ext4_da_write_end(struct file *file,
2661                              struct address_space *mapping,
2662                              loff_t pos, unsigned len, unsigned copied,
2663                              struct page *page, void *fsdata)
2664 {
2665         struct inode *inode = mapping->host;
2666         int ret = 0, ret2;
2667         handle_t *handle = ext4_journal_current_handle();
2668         loff_t new_i_size;
2669         unsigned long start, end;
2670         int write_mode = (int)(unsigned long)fsdata;
2671
2672         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2673                 return ext4_write_end(file, mapping, pos,
2674                                       len, copied, page, fsdata);
2675
2676         trace_ext4_da_write_end(inode, pos, len, copied);
2677         start = pos & (PAGE_CACHE_SIZE - 1);
2678         end = start + copied - 1;
2679
2680         /*
2681          * generic_write_end() will run mark_inode_dirty() if i_size
2682          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2683          * into that.
2684          */
2685         new_i_size = pos + copied;
2686         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2687                 if (ext4_has_inline_data(inode) ||
2688                     ext4_da_should_update_i_disksize(page, end)) {
2689                         down_write(&EXT4_I(inode)->i_data_sem);
2690                         if (new_i_size > EXT4_I(inode)->i_disksize)
2691                                 EXT4_I(inode)->i_disksize = new_i_size;
2692                         up_write(&EXT4_I(inode)->i_data_sem);
2693                         /* We need to mark inode dirty even if
2694                          * new_i_size is less that inode->i_size
2695                          * bu greater than i_disksize.(hint delalloc)
2696                          */
2697                         ext4_mark_inode_dirty(handle, inode);
2698                 }
2699         }
2700
2701         if (write_mode != CONVERT_INLINE_DATA &&
2702             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2703             ext4_has_inline_data(inode))
2704                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2705                                                      page);
2706         else
2707                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2708                                                         page, fsdata);
2709
2710         copied = ret2;
2711         if (ret2 < 0)
2712                 ret = ret2;
2713         ret2 = ext4_journal_stop(handle);
2714         if (!ret)
2715                 ret = ret2;
2716
2717         return ret ? ret : copied;
2718 }
2719
2720 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2721                                    unsigned int length)
2722 {
2723         /*
2724          * Drop reserved blocks
2725          */
2726         BUG_ON(!PageLocked(page));
2727         if (!page_has_buffers(page))
2728                 goto out;
2729
2730         ext4_da_page_release_reservation(page, offset, length);
2731
2732 out:
2733         ext4_invalidatepage(page, offset, length);
2734
2735         return;
2736 }
2737
2738 /*
2739  * Force all delayed allocation blocks to be allocated for a given inode.
2740  */
2741 int ext4_alloc_da_blocks(struct inode *inode)
2742 {
2743         trace_ext4_alloc_da_blocks(inode);
2744
2745         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2746             !EXT4_I(inode)->i_reserved_meta_blocks)
2747                 return 0;
2748
2749         /*
2750          * We do something simple for now.  The filemap_flush() will
2751          * also start triggering a write of the data blocks, which is
2752          * not strictly speaking necessary (and for users of
2753          * laptop_mode, not even desirable).  However, to do otherwise
2754          * would require replicating code paths in:
2755          *
2756          * ext4_da_writepages() ->
2757          *    write_cache_pages() ---> (via passed in callback function)
2758          *        __mpage_da_writepage() -->
2759          *           mpage_add_bh_to_extent()
2760          *           mpage_da_map_blocks()
2761          *
2762          * The problem is that write_cache_pages(), located in
2763          * mm/page-writeback.c, marks pages clean in preparation for
2764          * doing I/O, which is not desirable if we're not planning on
2765          * doing I/O at all.
2766          *
2767          * We could call write_cache_pages(), and then redirty all of
2768          * the pages by calling redirty_page_for_writepage() but that
2769          * would be ugly in the extreme.  So instead we would need to
2770          * replicate parts of the code in the above functions,
2771          * simplifying them because we wouldn't actually intend to
2772          * write out the pages, but rather only collect contiguous
2773          * logical block extents, call the multi-block allocator, and
2774          * then update the buffer heads with the block allocations.
2775          *
2776          * For now, though, we'll cheat by calling filemap_flush(),
2777          * which will map the blocks, and start the I/O, but not
2778          * actually wait for the I/O to complete.
2779          */
2780         return filemap_flush(inode->i_mapping);
2781 }
2782
2783 /*
2784  * bmap() is special.  It gets used by applications such as lilo and by
2785  * the swapper to find the on-disk block of a specific piece of data.
2786  *
2787  * Naturally, this is dangerous if the block concerned is still in the
2788  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2789  * filesystem and enables swap, then they may get a nasty shock when the
2790  * data getting swapped to that swapfile suddenly gets overwritten by
2791  * the original zero's written out previously to the journal and
2792  * awaiting writeback in the kernel's buffer cache.
2793  *
2794  * So, if we see any bmap calls here on a modified, data-journaled file,
2795  * take extra steps to flush any blocks which might be in the cache.
2796  */
2797 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2798 {
2799         struct inode *inode = mapping->host;
2800         journal_t *journal;
2801         int err;
2802
2803         /*
2804          * We can get here for an inline file via the FIBMAP ioctl
2805          */
2806         if (ext4_has_inline_data(inode))
2807                 return 0;
2808
2809         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2810                         test_opt(inode->i_sb, DELALLOC)) {
2811                 /*
2812                  * With delalloc we want to sync the file
2813                  * so that we can make sure we allocate
2814                  * blocks for file
2815                  */
2816                 filemap_write_and_wait(mapping);
2817         }
2818
2819         if (EXT4_JOURNAL(inode) &&
2820             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2821                 /*
2822                  * This is a REALLY heavyweight approach, but the use of
2823                  * bmap on dirty files is expected to be extremely rare:
2824                  * only if we run lilo or swapon on a freshly made file
2825                  * do we expect this to happen.
2826                  *
2827                  * (bmap requires CAP_SYS_RAWIO so this does not
2828                  * represent an unprivileged user DOS attack --- we'd be
2829                  * in trouble if mortal users could trigger this path at
2830                  * will.)
2831                  *
2832                  * NB. EXT4_STATE_JDATA is not set on files other than
2833                  * regular files.  If somebody wants to bmap a directory
2834                  * or symlink and gets confused because the buffer
2835                  * hasn't yet been flushed to disk, they deserve
2836                  * everything they get.
2837                  */
2838
2839                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2840                 journal = EXT4_JOURNAL(inode);
2841                 jbd2_journal_lock_updates(journal);
2842                 err = jbd2_journal_flush(journal);
2843                 jbd2_journal_unlock_updates(journal);
2844
2845                 if (err)
2846                         return 0;
2847         }
2848
2849         return generic_block_bmap(mapping, block, ext4_get_block);
2850 }
2851
2852 static int ext4_readpage(struct file *file, struct page *page)
2853 {
2854         int ret = -EAGAIN;
2855         struct inode *inode = page->mapping->host;
2856
2857         trace_ext4_readpage(page);
2858
2859         if (ext4_has_inline_data(inode))
2860                 ret = ext4_readpage_inline(inode, page);
2861
2862         if (ret == -EAGAIN)
2863                 return mpage_readpage(page, ext4_get_block);
2864
2865         return ret;
2866 }
2867
2868 static int
2869 ext4_readpages(struct file *file, struct address_space *mapping,
2870                 struct list_head *pages, unsigned nr_pages)
2871 {
2872         struct inode *inode = mapping->host;
2873
2874         /* If the file has inline data, no need to do readpages. */
2875         if (ext4_has_inline_data(inode))
2876                 return 0;
2877
2878         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2879 }
2880
2881 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2882                                 unsigned int length)
2883 {
2884         trace_ext4_invalidatepage(page, offset, length);
2885
2886         /* No journalling happens on data buffers when this function is used */
2887         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2888
2889         block_invalidatepage(page, offset, length);
2890 }
2891
2892 static int __ext4_journalled_invalidatepage(struct page *page,
2893                                             unsigned int offset,
2894                                             unsigned int length)
2895 {
2896         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2897
2898         trace_ext4_journalled_invalidatepage(page, offset, length);
2899
2900         /*
2901          * If it's a full truncate we just forget about the pending dirtying
2902          */
2903         if (offset == 0 && length == PAGE_CACHE_SIZE)
2904                 ClearPageChecked(page);
2905
2906         return jbd2_journal_invalidatepage(journal, page, offset, length);
2907 }
2908
2909 /* Wrapper for aops... */
2910 static void ext4_journalled_invalidatepage(struct page *page,
2911                                            unsigned int offset,
2912                                            unsigned int length)
2913 {
2914         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2915 }
2916
2917 static int ext4_releasepage(struct page *page, gfp_t wait)
2918 {
2919         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2920
2921         trace_ext4_releasepage(page);
2922
2923         /* Page has dirty journalled data -> cannot release */
2924         if (PageChecked(page))
2925                 return 0;
2926         if (journal)
2927                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2928         else
2929                 return try_to_free_buffers(page);
2930 }
2931
2932 /*
2933  * ext4_get_block used when preparing for a DIO write or buffer write.
2934  * We allocate an uinitialized extent if blocks haven't been allocated.
2935  * The extent will be converted to initialized after the IO is complete.
2936  */
2937 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2938                    struct buffer_head *bh_result, int create)
2939 {
2940         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2941                    inode->i_ino, create);
2942         return _ext4_get_block(inode, iblock, bh_result,
2943                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2944 }
2945
2946 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2947                    struct buffer_head *bh_result, int create)
2948 {
2949         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2950                    inode->i_ino, create);
2951         return _ext4_get_block(inode, iblock, bh_result,
2952                                EXT4_GET_BLOCKS_NO_LOCK);
2953 }
2954
2955 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2956                             ssize_t size, void *private, int ret,
2957                             bool is_async)
2958 {
2959         struct inode *inode = file_inode(iocb->ki_filp);
2960         ext4_io_end_t *io_end = iocb->private;
2961
2962         /* if not async direct IO just return */
2963         if (!io_end) {
2964                 inode_dio_done(inode);
2965                 if (is_async)
2966                         aio_complete(iocb, ret, 0);
2967                 return;
2968         }
2969
2970         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2971                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2972                   iocb->private, io_end->inode->i_ino, iocb, offset,
2973                   size);
2974
2975         iocb->private = NULL;
2976         io_end->offset = offset;
2977         io_end->size = size;
2978         if (is_async) {
2979                 io_end->iocb = iocb;
2980                 io_end->result = ret;
2981         }
2982         ext4_put_io_end_defer(io_end);
2983 }
2984
2985 /*
2986  * For ext4 extent files, ext4 will do direct-io write to holes,
2987  * preallocated extents, and those write extend the file, no need to
2988  * fall back to buffered IO.
2989  *
2990  * For holes, we fallocate those blocks, mark them as uninitialized
2991  * If those blocks were preallocated, we mark sure they are split, but
2992  * still keep the range to write as uninitialized.
2993  *
2994  * The unwritten extents will be converted to written when DIO is completed.
2995  * For async direct IO, since the IO may still pending when return, we
2996  * set up an end_io call back function, which will do the conversion
2997  * when async direct IO completed.
2998  *
2999  * If the O_DIRECT write will extend the file then add this inode to the
3000  * orphan list.  So recovery will truncate it back to the original size
3001  * if the machine crashes during the write.
3002  *
3003  */
3004 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3005                               const struct iovec *iov, loff_t offset,
3006                               unsigned long nr_segs)
3007 {
3008         struct file *file = iocb->ki_filp;
3009         struct inode *inode = file->f_mapping->host;
3010         ssize_t ret;
3011         size_t count = iov_length(iov, nr_segs);
3012         int overwrite = 0;
3013         get_block_t *get_block_func = NULL;
3014         int dio_flags = 0;
3015         loff_t final_size = offset + count;
3016         ext4_io_end_t *io_end = NULL;
3017
3018         /* Use the old path for reads and writes beyond i_size. */
3019         if (rw != WRITE || final_size > inode->i_size)
3020                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3021
3022         BUG_ON(iocb->private == NULL);
3023
3024         /* If we do a overwrite dio, i_mutex locking can be released */
3025         overwrite = *((int *)iocb->private);
3026
3027         if (overwrite) {
3028                 atomic_inc(&inode->i_dio_count);
3029                 down_read(&EXT4_I(inode)->i_data_sem);
3030                 mutex_unlock(&inode->i_mutex);
3031         }
3032
3033         /*
3034          * We could direct write to holes and fallocate.
3035          *
3036          * Allocated blocks to fill the hole are marked as
3037          * uninitialized to prevent parallel buffered read to expose
3038          * the stale data before DIO complete the data IO.
3039          *
3040          * As to previously fallocated extents, ext4 get_block will
3041          * just simply mark the buffer mapped but still keep the
3042          * extents uninitialized.
3043          *
3044          * For non AIO case, we will convert those unwritten extents
3045          * to written after return back from blockdev_direct_IO.
3046          *
3047          * For async DIO, the conversion needs to be deferred when the
3048          * IO is completed. The ext4 end_io callback function will be
3049          * called to take care of the conversion work.  Here for async
3050          * case, we allocate an io_end structure to hook to the iocb.
3051          */
3052         iocb->private = NULL;
3053         ext4_inode_aio_set(inode, NULL);
3054         if (!is_sync_kiocb(iocb)) {
3055                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3056                 if (!io_end) {
3057                         ret = -ENOMEM;
3058                         goto retake_lock;
3059                 }
3060                 io_end->flag |= EXT4_IO_END_DIRECT;
3061                 /*
3062                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3063                  */
3064                 iocb->private = ext4_get_io_end(io_end);
3065                 /*
3066                  * we save the io structure for current async direct
3067                  * IO, so that later ext4_map_blocks() could flag the
3068                  * io structure whether there is a unwritten extents
3069                  * needs to be converted when IO is completed.
3070                  */
3071                 ext4_inode_aio_set(inode, io_end);
3072         }
3073
3074         if (overwrite) {
3075                 get_block_func = ext4_get_block_write_nolock;
3076         } else {
3077                 get_block_func = ext4_get_block_write;
3078                 dio_flags = DIO_LOCKING;
3079         }
3080         ret = __blockdev_direct_IO(rw, iocb, inode,
3081                                    inode->i_sb->s_bdev, iov,
3082                                    offset, nr_segs,
3083                                    get_block_func,
3084                                    ext4_end_io_dio,
3085                                    NULL,
3086                                    dio_flags);
3087
3088         /*
3089          * Put our reference to io_end. This can free the io_end structure e.g.
3090          * in sync IO case or in case of error. It can even perform extent
3091          * conversion if all bios we submitted finished before we got here.
3092          * Note that in that case iocb->private can be already set to NULL
3093          * here.
3094          */
3095         if (io_end) {
3096                 ext4_inode_aio_set(inode, NULL);
3097                 ext4_put_io_end(io_end);
3098                 /*
3099                  * When no IO was submitted ext4_end_io_dio() was not
3100                  * called so we have to put iocb's reference.
3101                  */
3102                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3103                         WARN_ON(iocb->private != io_end);
3104                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3105                         WARN_ON(io_end->iocb);
3106                         /*
3107                          * Generic code already did inode_dio_done() so we
3108                          * have to clear EXT4_IO_END_DIRECT to not do it for
3109                          * the second time.
3110                          */
3111                         io_end->flag = 0;
3112                         ext4_put_io_end(io_end);
3113                         iocb->private = NULL;
3114                 }
3115         }
3116         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3117                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3118                 int err;
3119                 /*
3120                  * for non AIO case, since the IO is already
3121                  * completed, we could do the conversion right here
3122                  */
3123                 err = ext4_convert_unwritten_extents(inode,
3124                                                      offset, ret);
3125                 if (err < 0)
3126                         ret = err;
3127                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3128         }
3129
3130 retake_lock:
3131         /* take i_mutex locking again if we do a ovewrite dio */
3132         if (overwrite) {
3133                 inode_dio_done(inode);
3134                 up_read(&EXT4_I(inode)->i_data_sem);
3135                 mutex_lock(&inode->i_mutex);
3136         }
3137
3138         return ret;
3139 }
3140
3141 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3142                               const struct iovec *iov, loff_t offset,
3143                               unsigned long nr_segs)
3144 {
3145         struct file *file = iocb->ki_filp;
3146         struct inode *inode = file->f_mapping->host;
3147         ssize_t ret;
3148
3149         /*
3150          * If we are doing data journalling we don't support O_DIRECT
3151          */
3152         if (ext4_should_journal_data(inode))
3153                 return 0;
3154
3155         /* Let buffer I/O handle the inline data case. */
3156         if (ext4_has_inline_data(inode))
3157                 return 0;
3158
3159         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3160         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3161                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3162         else
3163                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3164         trace_ext4_direct_IO_exit(inode, offset,
3165                                 iov_length(iov, nr_segs), rw, ret);
3166         return ret;
3167 }
3168
3169 /*
3170  * Pages can be marked dirty completely asynchronously from ext4's journalling
3171  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3172  * much here because ->set_page_dirty is called under VFS locks.  The page is
3173  * not necessarily locked.
3174  *
3175  * We cannot just dirty the page and leave attached buffers clean, because the
3176  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3177  * or jbddirty because all the journalling code will explode.
3178  *
3179  * So what we do is to mark the page "pending dirty" and next time writepage
3180  * is called, propagate that into the buffers appropriately.
3181  */
3182 static int ext4_journalled_set_page_dirty(struct page *page)
3183 {
3184         SetPageChecked(page);
3185         return __set_page_dirty_nobuffers(page);
3186 }
3187
3188 static const struct address_space_operations ext4_aops = {
3189         .readpage               = ext4_readpage,
3190         .readpages              = ext4_readpages,
3191         .writepage              = ext4_writepage,
3192         .write_begin            = ext4_write_begin,
3193         .write_end              = ext4_write_end,
3194         .bmap                   = ext4_bmap,
3195         .invalidatepage         = ext4_invalidatepage,
3196         .releasepage            = ext4_releasepage,
3197         .direct_IO              = ext4_direct_IO,
3198         .migratepage            = buffer_migrate_page,
3199         .is_partially_uptodate  = block_is_partially_uptodate,
3200         .error_remove_page      = generic_error_remove_page,
3201 };
3202
3203 static const struct address_space_operations ext4_journalled_aops = {
3204         .readpage               = ext4_readpage,
3205         .readpages              = ext4_readpages,
3206         .writepage              = ext4_writepage,
3207         .write_begin            = ext4_write_begin,
3208         .write_end              = ext4_journalled_write_end,
3209         .set_page_dirty         = ext4_journalled_set_page_dirty,
3210         .bmap                   = ext4_bmap,
3211         .invalidatepage         = ext4_journalled_invalidatepage,
3212         .releasepage            = ext4_releasepage,
3213         .direct_IO              = ext4_direct_IO,
3214         .is_partially_uptodate  = block_is_partially_uptodate,
3215         .error_remove_page      = generic_error_remove_page,
3216 };
3217
3218 static const struct address_space_operations ext4_da_aops = {
3219         .readpage               = ext4_readpage,
3220         .readpages              = ext4_readpages,
3221         .writepage              = ext4_writepage,
3222         .writepages             = ext4_da_writepages,
3223         .write_begin            = ext4_da_write_begin,
3224         .write_end              = ext4_da_write_end,
3225         .bmap                   = ext4_bmap,
3226         .invalidatepage         = ext4_da_invalidatepage,
3227         .releasepage            = ext4_releasepage,
3228         .direct_IO              = ext4_direct_IO,
3229         .migratepage            = buffer_migrate_page,
3230         .is_partially_uptodate  = block_is_partially_uptodate,
3231         .error_remove_page      = generic_error_remove_page,
3232 };
3233
3234 void ext4_set_aops(struct inode *inode)
3235 {
3236         switch (ext4_inode_journal_mode(inode)) {
3237         case EXT4_INODE_ORDERED_DATA_MODE:
3238                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3239                 break;
3240         case EXT4_INODE_WRITEBACK_DATA_MODE:
3241                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3242                 break;
3243         case EXT4_INODE_JOURNAL_DATA_MODE:
3244                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3245                 return;
3246         default:
3247                 BUG();
3248         }
3249         if (test_opt(inode->i_sb, DELALLOC))
3250                 inode->i_mapping->a_ops = &ext4_da_aops;
3251         else
3252                 inode->i_mapping->a_ops = &ext4_aops;
3253 }
3254
3255 /*
3256  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3257  * up to the end of the block which corresponds to `from'.
3258  * This required during truncate. We need to physically zero the tail end
3259  * of that block so it doesn't yield old data if the file is later grown.
3260  */
3261 int ext4_block_truncate_page(handle_t *handle,
3262                 struct address_space *mapping, loff_t from)
3263 {
3264         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3265         unsigned length;
3266         unsigned blocksize;
3267         struct inode *inode = mapping->host;
3268
3269         blocksize = inode->i_sb->s_blocksize;
3270         length = blocksize - (offset & (blocksize - 1));
3271
3272         return ext4_block_zero_page_range(handle, mapping, from, length);
3273 }
3274
3275 /*
3276  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3277  * starting from file offset 'from'.  The range to be zero'd must
3278  * be contained with in one block.  If the specified range exceeds
3279  * the end of the block it will be shortened to end of the block
3280  * that cooresponds to 'from'
3281  */
3282 int ext4_block_zero_page_range(handle_t *handle,
3283                 struct address_space *mapping, loff_t from, loff_t length)
3284 {
3285         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3286         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3287         unsigned blocksize, max, pos;
3288         ext4_lblk_t iblock;
3289         struct inode *inode = mapping->host;
3290         struct buffer_head *bh;
3291         struct page *page;
3292         int err = 0;
3293
3294         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3295                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3296         if (!page)
3297                 return -ENOMEM;
3298
3299         blocksize = inode->i_sb->s_blocksize;
3300         max = blocksize - (offset & (blocksize - 1));
3301
3302         /*
3303          * correct length if it does not fall between
3304          * 'from' and the end of the block
3305          */
3306         if (length > max || length < 0)
3307                 length = max;
3308
3309         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3310
3311         if (!page_has_buffers(page))
3312                 create_empty_buffers(page, blocksize, 0);
3313
3314         /* Find the buffer that contains "offset" */
3315         bh = page_buffers(page);
3316         pos = blocksize;
3317         while (offset >= pos) {
3318                 bh = bh->b_this_page;
3319                 iblock++;
3320                 pos += blocksize;
3321         }
3322
3323         err = 0;
3324         if (buffer_freed(bh)) {
3325                 BUFFER_TRACE(bh, "freed: skip");
3326                 goto unlock;
3327         }
3328
3329         if (!buffer_mapped(bh)) {
3330                 BUFFER_TRACE(bh, "unmapped");
3331                 ext4_get_block(inode, iblock, bh, 0);
3332                 /* unmapped? It's a hole - nothing to do */
3333                 if (!buffer_mapped(bh)) {
3334                         BUFFER_TRACE(bh, "still unmapped");
3335                         goto unlock;
3336                 }
3337         }
3338
3339         /* Ok, it's mapped. Make sure it's up-to-date */
3340         if (PageUptodate(page))
3341                 set_buffer_uptodate(bh);
3342
3343         if (!buffer_uptodate(bh)) {
3344                 err = -EIO;
3345                 ll_rw_block(READ, 1, &bh);
3346                 wait_on_buffer(bh);
3347                 /* Uhhuh. Read error. Complain and punt. */
3348                 if (!buffer_uptodate(bh))
3349                         goto unlock;
3350         }
3351
3352         if (ext4_should_journal_data(inode)) {
3353                 BUFFER_TRACE(bh, "get write access");
3354                 err = ext4_journal_get_write_access(handle, bh);
3355                 if (err)
3356                         goto unlock;
3357         }
3358
3359         zero_user(page, offset, length);
3360
3361         BUFFER_TRACE(bh, "zeroed end of block");
3362
3363         err = 0;
3364         if (ext4_should_journal_data(inode)) {
3365                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3366         } else {
3367                 mark_buffer_dirty(bh);
3368                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3369                         err = ext4_jbd2_file_inode(handle, inode);
3370         }
3371
3372 unlock:
3373         unlock_page(page);
3374         page_cache_release(page);
3375         return err;
3376 }
3377
3378 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3379                              loff_t lstart, loff_t length)
3380 {
3381         struct super_block *sb = inode->i_sb;
3382         struct address_space *mapping = inode->i_mapping;
3383         unsigned partial = lstart & (sb->s_blocksize - 1);
3384         ext4_fsblk_t start, end;
3385         loff_t byte_end = (lstart + length - 1);
3386         int err = 0;
3387
3388         start = lstart >> sb->s_blocksize_bits;
3389         end = byte_end >> sb->s_blocksize_bits;
3390
3391         /* Handle partial zero within the single block */
3392         if (start == end) {
3393                 err = ext4_block_zero_page_range(handle, mapping,
3394                                                  lstart, length);
3395                 return err;
3396         }
3397         /* Handle partial zero out on the start of the range */
3398         if (partial) {
3399                 err = ext4_block_zero_page_range(handle, mapping,
3400                                                  lstart, sb->s_blocksize);
3401                 if (err)
3402                         return err;
3403         }
3404         /* Handle partial zero out on the end of the range */
3405         partial = byte_end & (sb->s_blocksize - 1);
3406         if (partial != sb->s_blocksize - 1)
3407                 err = ext4_block_zero_page_range(handle, mapping,
3408                                                  byte_end - partial,
3409                                                  partial + 1);
3410         return err;
3411 }
3412
3413 int ext4_can_truncate(struct inode *inode)
3414 {
3415         if (S_ISREG(inode->i_mode))
3416                 return 1;
3417         if (S_ISDIR(inode->i_mode))
3418                 return 1;
3419         if (S_ISLNK(inode->i_mode))
3420                 return !ext4_inode_is_fast_symlink(inode);
3421         return 0;
3422 }
3423
3424 /*
3425  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3426  * associated with the given offset and length
3427  *
3428  * @inode:  File inode
3429  * @offset: The offset where the hole will begin
3430  * @len:    The length of the hole
3431  *
3432  * Returns: 0 on success or negative on failure
3433  */
3434
3435 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3436 {
3437         struct inode *inode = file_inode(file);
3438         struct super_block *sb = inode->i_sb;
3439         ext4_lblk_t first_block, stop_block;
3440         struct address_space *mapping = inode->i_mapping;
3441         loff_t first_block_offset, last_block_offset;
3442         handle_t *handle;
3443         unsigned int credits;
3444         int ret = 0;
3445
3446         if (!S_ISREG(inode->i_mode))
3447                 return -EOPNOTSUPP;
3448
3449         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3450                 /* TODO: Add support for bigalloc file systems */
3451                 return -EOPNOTSUPP;
3452         }
3453
3454         trace_ext4_punch_hole(inode, offset, length);
3455
3456         /*
3457          * Write out all dirty pages to avoid race conditions
3458          * Then release them.
3459          */
3460         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3461                 ret = filemap_write_and_wait_range(mapping, offset,
3462                                                    offset + length - 1);
3463                 if (ret)
3464                         return ret;
3465         }
3466
3467         mutex_lock(&inode->i_mutex);
3468         /* It's not possible punch hole on append only file */
3469         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3470                 ret = -EPERM;
3471                 goto out_mutex;
3472         }
3473         if (IS_SWAPFILE(inode)) {
3474                 ret = -ETXTBSY;
3475                 goto out_mutex;
3476         }
3477
3478         /* No need to punch hole beyond i_size */
3479         if (offset >= inode->i_size)
3480                 goto out_mutex;
3481
3482         /*
3483          * If the hole extends beyond i_size, set the hole
3484          * to end after the page that contains i_size
3485          */
3486         if (offset + length > inode->i_size) {
3487                 length = inode->i_size +
3488                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3489                    offset;
3490         }
3491
3492         first_block_offset = round_up(offset, sb->s_blocksize);
3493         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3494
3495         /* Now release the pages and zero block aligned part of pages*/
3496         if (last_block_offset > first_block_offset)
3497                 truncate_pagecache_range(inode, first_block_offset,
3498                                          last_block_offset);
3499
3500         /* Wait all existing dio workers, newcomers will block on i_mutex */
3501         ext4_inode_block_unlocked_dio(inode);
3502         ret = ext4_flush_unwritten_io(inode);
3503         if (ret)
3504                 goto out_dio;
3505         inode_dio_wait(inode);
3506
3507         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3508                 credits = ext4_writepage_trans_blocks(inode);
3509         else
3510                 credits = ext4_blocks_for_truncate(inode);
3511         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3512         if (IS_ERR(handle)) {
3513                 ret = PTR_ERR(handle);
3514                 ext4_std_error(sb, ret);
3515                 goto out_dio;
3516         }
3517
3518         ret = ext4_zero_partial_blocks(handle, inode, offset,
3519                                        length);
3520         if (ret)
3521                 goto out_stop;
3522
3523         first_block = (offset + sb->s_blocksize - 1) >>
3524                 EXT4_BLOCK_SIZE_BITS(sb);
3525         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3526
3527         /* If there are no blocks to remove, return now */
3528         if (first_block >= stop_block)
3529                 goto out_stop;
3530
3531         down_write(&EXT4_I(inode)->i_data_sem);
3532         ext4_discard_preallocations(inode);
3533
3534         ret = ext4_es_remove_extent(inode, first_block,
3535                                     stop_block - first_block);
3536         if (ret) {
3537                 up_write(&EXT4_I(inode)->i_data_sem);
3538                 goto out_stop;
3539         }
3540
3541         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3542                 ret = ext4_ext_remove_space(inode, first_block,
3543                                             stop_block - 1);
3544         else
3545                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3546                                             stop_block);
3547
3548         ext4_discard_preallocations(inode);
3549         up_write(&EXT4_I(inode)->i_data_sem);
3550         if (IS_SYNC(inode))
3551                 ext4_handle_sync(handle);
3552         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3553         ext4_mark_inode_dirty(handle, inode);
3554 out_stop:
3555         ext4_journal_stop(handle);
3556 out_dio:
3557         ext4_inode_resume_unlocked_dio(inode);
3558 out_mutex:
3559         mutex_unlock(&inode->i_mutex);
3560         return ret;
3561 }
3562
3563 /*
3564  * ext4_truncate()
3565  *
3566  * We block out ext4_get_block() block instantiations across the entire
3567  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3568  * simultaneously on behalf of the same inode.
3569  *
3570  * As we work through the truncate and commit bits of it to the journal there
3571  * is one core, guiding principle: the file's tree must always be consistent on
3572  * disk.  We must be able to restart the truncate after a crash.
3573  *
3574  * The file's tree may be transiently inconsistent in memory (although it
3575  * probably isn't), but whenever we close off and commit a journal transaction,
3576  * the contents of (the filesystem + the journal) must be consistent and
3577  * restartable.  It's pretty simple, really: bottom up, right to left (although
3578  * left-to-right works OK too).
3579  *
3580  * Note that at recovery time, journal replay occurs *before* the restart of
3581  * truncate against the orphan inode list.
3582  *
3583  * The committed inode has the new, desired i_size (which is the same as
3584  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3585  * that this inode's truncate did not complete and it will again call
3586  * ext4_truncate() to have another go.  So there will be instantiated blocks
3587  * to the right of the truncation point in a crashed ext4 filesystem.  But
3588  * that's fine - as long as they are linked from the inode, the post-crash
3589  * ext4_truncate() run will find them and release them.
3590  */
3591 void ext4_truncate(struct inode *inode)
3592 {
3593         struct ext4_inode_info *ei = EXT4_I(inode);
3594         unsigned int credits;
3595         handle_t *handle;
3596         struct address_space *mapping = inode->i_mapping;
3597
3598         /*
3599          * There is a possibility that we're either freeing the inode
3600          * or it completely new indode. In those cases we might not
3601          * have i_mutex locked because it's not necessary.
3602          */
3603         if (!(inode->i_state & (I_NEW|I_FREEING)))
3604                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3605         trace_ext4_truncate_enter(inode);
3606
3607         if (!ext4_can_truncate(inode))
3608                 return;
3609
3610         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3611
3612         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3613                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3614
3615         if (ext4_has_inline_data(inode)) {
3616                 int has_inline = 1;
3617
3618                 ext4_inline_data_truncate(inode, &has_inline);
3619                 if (has_inline)
3620                         return;
3621         }
3622
3623         /*
3624          * finish any pending end_io work so we won't run the risk of
3625          * converting any truncated blocks to initialized later
3626          */
3627         ext4_flush_unwritten_io(inode);
3628
3629         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3630                 credits = ext4_writepage_trans_blocks(inode);
3631         else
3632                 credits = ext4_blocks_for_truncate(inode);
3633
3634         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3635         if (IS_ERR(handle)) {
3636                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3637                 return;
3638         }
3639
3640         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3641                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3642
3643         /*
3644          * We add the inode to the orphan list, so that if this
3645          * truncate spans multiple transactions, and we crash, we will
3646          * resume the truncate when the filesystem recovers.  It also
3647          * marks the inode dirty, to catch the new size.
3648          *
3649          * Implication: the file must always be in a sane, consistent
3650          * truncatable state while each transaction commits.
3651          */
3652         if (ext4_orphan_add(handle, inode))
3653                 goto out_stop;
3654
3655         down_write(&EXT4_I(inode)->i_data_sem);
3656
3657         ext4_discard_preallocations(inode);
3658
3659         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3660                 ext4_ext_truncate(handle, inode);
3661         else
3662                 ext4_ind_truncate(handle, inode);
3663
3664         up_write(&ei->i_data_sem);
3665
3666         if (IS_SYNC(inode))
3667                 ext4_handle_sync(handle);
3668
3669 out_stop:
3670         /*
3671          * If this was a simple ftruncate() and the file will remain alive,
3672          * then we need to clear up the orphan record which we created above.
3673          * However, if this was a real unlink then we were called by
3674          * ext4_delete_inode(), and we allow that function to clean up the
3675          * orphan info for us.
3676          */
3677         if (inode->i_nlink)
3678                 ext4_orphan_del(handle, inode);
3679
3680         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3681         ext4_mark_inode_dirty(handle, inode);
3682         ext4_journal_stop(handle);
3683
3684         trace_ext4_truncate_exit(inode);
3685 }
3686
3687 /*
3688  * ext4_get_inode_loc returns with an extra refcount against the inode's
3689  * underlying buffer_head on success. If 'in_mem' is true, we have all
3690  * data in memory that is needed to recreate the on-disk version of this
3691  * inode.
3692  */
3693 static int __ext4_get_inode_loc(struct inode *inode,
3694                                 struct ext4_iloc *iloc, int in_mem)
3695 {
3696         struct ext4_group_desc  *gdp;
3697         struct buffer_head      *bh;
3698         struct super_block      *sb = inode->i_sb;
3699         ext4_fsblk_t            block;
3700         int                     inodes_per_block, inode_offset;
3701
3702         iloc->bh = NULL;
3703         if (!ext4_valid_inum(sb, inode->i_ino))
3704                 return -EIO;
3705
3706         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3707         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3708         if (!gdp)
3709                 return -EIO;
3710
3711         /*
3712          * Figure out the offset within the block group inode table
3713          */
3714         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3715         inode_offset = ((inode->i_ino - 1) %
3716                         EXT4_INODES_PER_GROUP(sb));
3717         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3718         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3719
3720         bh = sb_getblk(sb, block);
3721         if (unlikely(!bh))
3722                 return -ENOMEM;
3723         if (!buffer_uptodate(bh)) {
3724                 lock_buffer(bh);
3725
3726                 /*
3727                  * If the buffer has the write error flag, we have failed
3728                  * to write out another inode in the same block.  In this
3729                  * case, we don't have to read the block because we may
3730                  * read the old inode data successfully.
3731                  */
3732                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3733                         set_buffer_uptodate(bh);
3734
3735                 if (buffer_uptodate(bh)) {
3736                         /* someone brought it uptodate while we waited */
3737                         unlock_buffer(bh);
3738                         goto has_buffer;
3739                 }
3740
3741                 /*
3742                  * If we have all information of the inode in memory and this
3743                  * is the only valid inode in the block, we need not read the
3744                  * block.
3745                  */
3746                 if (in_mem) {
3747                         struct buffer_head *bitmap_bh;
3748                         int i, start;
3749
3750                         start = inode_offset & ~(inodes_per_block - 1);
3751
3752                         /* Is the inode bitmap in cache? */
3753                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3754                         if (unlikely(!bitmap_bh))
3755                                 goto make_io;
3756
3757                         /*
3758                          * If the inode bitmap isn't in cache then the
3759                          * optimisation may end up performing two reads instead
3760                          * of one, so skip it.
3761                          */
3762                         if (!buffer_uptodate(bitmap_bh)) {
3763                                 brelse(bitmap_bh);
3764                                 goto make_io;
3765                         }
3766                         for (i = start; i < start + inodes_per_block; i++) {
3767                                 if (i == inode_offset)
3768                                         continue;
3769                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3770                                         break;
3771                         }
3772                         brelse(bitmap_bh);
3773                         if (i == start + inodes_per_block) {
3774                                 /* all other inodes are free, so skip I/O */
3775                                 memset(bh->b_data, 0, bh->b_size);
3776                                 set_buffer_uptodate(bh);
3777                                 unlock_buffer(bh);
3778                                 goto has_buffer;
3779                         }
3780                 }
3781
3782 make_io:
3783                 /*
3784                  * If we need to do any I/O, try to pre-readahead extra
3785                  * blocks from the inode table.
3786                  */
3787                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3788                         ext4_fsblk_t b, end, table;
3789                         unsigned num;
3790                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3791
3792                         table = ext4_inode_table(sb, gdp);
3793                         /* s_inode_readahead_blks is always a power of 2 */
3794                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3795                         if (table > b)
3796                                 b = table;
3797                         end = b + ra_blks;
3798                         num = EXT4_INODES_PER_GROUP(sb);
3799                         if (ext4_has_group_desc_csum(sb))
3800                                 num -= ext4_itable_unused_count(sb, gdp);
3801                         table += num / inodes_per_block;
3802                         if (end > table)
3803                                 end = table;
3804                         while (b <= end)
3805                                 sb_breadahead(sb, b++);
3806                 }
3807
3808                 /*
3809                  * There are other valid inodes in the buffer, this inode
3810                  * has in-inode xattrs, or we don't have this inode in memory.
3811                  * Read the block from disk.
3812                  */
3813                 trace_ext4_load_inode(inode);
3814                 get_bh(bh);
3815                 bh->b_end_io = end_buffer_read_sync;
3816                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3817                 wait_on_buffer(bh);
3818                 if (!buffer_uptodate(bh)) {
3819                         EXT4_ERROR_INODE_BLOCK(inode, block,
3820                                                "unable to read itable block");
3821                         brelse(bh);
3822                         return -EIO;
3823                 }
3824         }
3825 has_buffer:
3826         iloc->bh = bh;
3827         return 0;
3828 }
3829
3830 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3831 {
3832         /* We have all inode data except xattrs in memory here. */
3833         return __ext4_get_inode_loc(inode, iloc,
3834                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3835 }
3836
3837 void ext4_set_inode_flags(struct inode *inode)
3838 {
3839         unsigned int flags = EXT4_I(inode)->i_flags;
3840
3841         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3842         if (flags & EXT4_SYNC_FL)
3843                 inode->i_flags |= S_SYNC;
3844         if (flags & EXT4_APPEND_FL)
3845                 inode->i_flags |= S_APPEND;
3846         if (flags & EXT4_IMMUTABLE_FL)
3847                 inode->i_flags |= S_IMMUTABLE;
3848         if (flags & EXT4_NOATIME_FL)
3849                 inode->i_flags |= S_NOATIME;
3850         if (flags & EXT4_DIRSYNC_FL)
3851                 inode->i_flags |= S_DIRSYNC;
3852 }
3853
3854 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3855 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3856 {
3857         unsigned int vfs_fl;
3858         unsigned long old_fl, new_fl;
3859
3860         do {
3861                 vfs_fl = ei->vfs_inode.i_flags;
3862                 old_fl = ei->i_flags;
3863                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3864                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3865                                 EXT4_DIRSYNC_FL);
3866                 if (vfs_fl & S_SYNC)
3867                         new_fl |= EXT4_SYNC_FL;
3868                 if (vfs_fl & S_APPEND)
3869                         new_fl |= EXT4_APPEND_FL;
3870                 if (vfs_fl & S_IMMUTABLE)
3871                         new_fl |= EXT4_IMMUTABLE_FL;
3872                 if (vfs_fl & S_NOATIME)
3873                         new_fl |= EXT4_NOATIME_FL;
3874                 if (vfs_fl & S_DIRSYNC)
3875                         new_fl |= EXT4_DIRSYNC_FL;
3876         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3877 }
3878
3879 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3880                                   struct ext4_inode_info *ei)
3881 {
3882         blkcnt_t i_blocks ;
3883         struct inode *inode = &(ei->vfs_inode);
3884         struct super_block *sb = inode->i_sb;
3885
3886         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3887                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3888                 /* we are using combined 48 bit field */
3889                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3890                                         le32_to_cpu(raw_inode->i_blocks_lo);
3891                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3892                         /* i_blocks represent file system block size */
3893                         return i_blocks  << (inode->i_blkbits - 9);
3894                 } else {
3895                         return i_blocks;
3896                 }
3897         } else {
3898                 return le32_to_cpu(raw_inode->i_blocks_lo);
3899         }
3900 }
3901
3902 static inline void ext4_iget_extra_inode(struct inode *inode,
3903                                          struct ext4_inode *raw_inode,
3904                                          struct ext4_inode_info *ei)
3905 {
3906         __le32 *magic = (void *)raw_inode +
3907                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3908         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3909                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3910                 ext4_find_inline_data_nolock(inode);
3911         } else
3912                 EXT4_I(inode)->i_inline_off = 0;
3913 }
3914
3915 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3916 {
3917         struct ext4_iloc iloc;
3918         struct ext4_inode *raw_inode;
3919         struct ext4_inode_info *ei;
3920         struct inode *inode;
3921         journal_t *journal = EXT4_SB(sb)->s_journal;
3922         long ret;
3923         int block;
3924         uid_t i_uid;
3925         gid_t i_gid;
3926
3927         inode = iget_locked(sb, ino);
3928         if (!inode)
3929                 return ERR_PTR(-ENOMEM);
3930         if (!(inode->i_state & I_NEW))
3931                 return inode;
3932
3933         ei = EXT4_I(inode);
3934         iloc.bh = NULL;
3935
3936         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3937         if (ret < 0)
3938                 goto bad_inode;
3939         raw_inode = ext4_raw_inode(&iloc);
3940
3941         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3942                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3943                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3944                     EXT4_INODE_SIZE(inode->i_sb)) {
3945                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3946                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3947                                 EXT4_INODE_SIZE(inode->i_sb));
3948                         ret = -EIO;
3949                         goto bad_inode;
3950                 }
3951         } else
3952                 ei->i_extra_isize = 0;
3953
3954         /* Precompute checksum seed for inode metadata */
3955         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3956                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3957                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3958                 __u32 csum;
3959                 __le32 inum = cpu_to_le32(inode->i_ino);
3960                 __le32 gen = raw_inode->i_generation;
3961                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3962                                    sizeof(inum));
3963                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3964                                               sizeof(gen));
3965         }
3966
3967         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3968                 EXT4_ERROR_INODE(inode, "checksum invalid");
3969                 ret = -EIO;
3970                 goto bad_inode;
3971         }
3972
3973         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3974         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3975         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3976         if (!(test_opt(inode->i_sb, NO_UID32))) {
3977                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3978                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3979         }
3980         i_uid_write(inode, i_uid);
3981         i_gid_write(inode, i_gid);
3982         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3983
3984         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3985         ei->i_inline_off = 0;
3986         ei->i_dir_start_lookup = 0;
3987         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3988         /* We now have enough fields to check if the inode was active or not.
3989          * This is needed because nfsd might try to access dead inodes
3990          * the test is that same one that e2fsck uses
3991          * NeilBrown 1999oct15
3992          */
3993         if (inode->i_nlink == 0) {
3994                 if ((inode->i_mode == 0 ||
3995                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3996                     ino != EXT4_BOOT_LOADER_INO) {
3997                         /* this inode is deleted */
3998                         ret = -ESTALE;
3999                         goto bad_inode;
4000                 }
4001                 /* The only unlinked inodes we let through here have
4002                  * valid i_mode and are being read by the orphan
4003                  * recovery code: that's fine, we're about to complete
4004                  * the process of deleting those.
4005                  * OR it is the EXT4_BOOT_LOADER_INO which is
4006                  * not initialized on a new filesystem. */
4007         }
4008         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4009         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4010         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4011         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4012                 ei->i_file_acl |=
4013                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4014         inode->i_size = ext4_isize(raw_inode);
4015         ei->i_disksize = inode->i_size;
4016 #ifdef CONFIG_QUOTA
4017         ei->i_reserved_quota = 0;
4018 #endif
4019         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4020         ei->i_block_group = iloc.block_group;
4021         ei->i_last_alloc_group = ~0;
4022         /*
4023          * NOTE! The in-memory inode i_data array is in little-endian order
4024          * even on big-endian machines: we do NOT byteswap the block numbers!
4025          */
4026         for (block = 0; block < EXT4_N_BLOCKS; block++)
4027                 ei->i_data[block] = raw_inode->i_block[block];
4028         INIT_LIST_HEAD(&ei->i_orphan);
4029
4030         /*
4031          * Set transaction id's of transactions that have to be committed
4032          * to finish f[data]sync. We set them to currently running transaction
4033          * as we cannot be sure that the inode or some of its metadata isn't
4034          * part of the transaction - the inode could have been reclaimed and
4035          * now it is reread from disk.
4036          */
4037         if (journal) {
4038                 transaction_t *transaction;
4039                 tid_t tid;
4040
4041                 read_lock(&journal->j_state_lock);
4042                 if (journal->j_running_transaction)
4043                         transaction = journal->j_running_transaction;
4044                 else
4045                         transaction = journal->j_committing_transaction;
4046                 if (transaction)
4047                         tid = transaction->t_tid;
4048                 else
4049                         tid = journal->j_commit_sequence;
4050                 read_unlock(&journal->j_state_lock);
4051                 ei->i_sync_tid = tid;
4052                 ei->i_datasync_tid = tid;
4053         }
4054
4055         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4056                 if (ei->i_extra_isize == 0) {
4057                         /* The extra space is currently unused. Use it. */
4058                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4059                                             EXT4_GOOD_OLD_INODE_SIZE;
4060                 } else {
4061                         ext4_iget_extra_inode(inode, raw_inode, ei);
4062                 }
4063         }
4064
4065         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4066         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4067         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4068         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4069
4070         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4071         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4072                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4073                         inode->i_version |=
4074                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4075         }
4076
4077         ret = 0;
4078         if (ei->i_file_acl &&
4079             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4080                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4081                                  ei->i_file_acl);
4082                 ret = -EIO;
4083                 goto bad_inode;
4084         } else if (!ext4_has_inline_data(inode)) {
4085                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4086                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4087                             (S_ISLNK(inode->i_mode) &&
4088                              !ext4_inode_is_fast_symlink(inode))))
4089                                 /* Validate extent which is part of inode */
4090                                 ret = ext4_ext_check_inode(inode);
4091                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4092                            (S_ISLNK(inode->i_mode) &&
4093                             !ext4_inode_is_fast_symlink(inode))) {
4094                         /* Validate block references which are part of inode */
4095                         ret = ext4_ind_check_inode(inode);
4096                 }
4097         }
4098         if (ret)
4099                 goto bad_inode;
4100
4101         if (S_ISREG(inode->i_mode)) {
4102                 inode->i_op = &ext4_file_inode_operations;
4103                 inode->i_fop = &ext4_file_operations;
4104                 ext4_set_aops(inode);
4105         } else if (S_ISDIR(inode->i_mode)) {
4106                 inode->i_op = &ext4_dir_inode_operations;
4107                 inode->i_fop = &ext4_dir_operations;
4108         } else if (S_ISLNK(inode->i_mode)) {
4109                 if (ext4_inode_is_fast_symlink(inode)) {
4110                         inode->i_op = &ext4_fast_symlink_inode_operations;
4111                         nd_terminate_link(ei->i_data, inode->i_size,
4112                                 sizeof(ei->i_data) - 1);
4113                 } else {
4114                         inode->i_op = &ext4_symlink_inode_operations;
4115                         ext4_set_aops(inode);
4116                 }
4117         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4118               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4119                 inode->i_op = &ext4_special_inode_operations;
4120                 if (raw_inode->i_block[0])
4121                         init_special_inode(inode, inode->i_mode,
4122                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4123                 else
4124                         init_special_inode(inode, inode->i_mode,
4125                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4126         } else if (ino == EXT4_BOOT_LOADER_INO) {
4127                 make_bad_inode(inode);
4128         } else {
4129                 ret = -EIO;
4130                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4131                 goto bad_inode;
4132         }
4133         brelse(iloc.bh);
4134         ext4_set_inode_flags(inode);
4135         unlock_new_inode(inode);
4136         return inode;
4137
4138 bad_inode:
4139         brelse(iloc.bh);
4140         iget_failed(inode);
4141         return ERR_PTR(ret);
4142 }
4143
4144 static int ext4_inode_blocks_set(handle_t *handle,
4145                                 struct ext4_inode *raw_inode,
4146                                 struct ext4_inode_info *ei)
4147 {
4148         struct inode *inode = &(ei->vfs_inode);
4149         u64 i_blocks = inode->i_blocks;
4150         struct super_block *sb = inode->i_sb;
4151
4152         if (i_blocks <= ~0U) {
4153                 /*
4154                  * i_blocks can be represented in a 32 bit variable
4155                  * as multiple of 512 bytes
4156                  */
4157                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4158                 raw_inode->i_blocks_high = 0;
4159                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4160                 return 0;
4161         }
4162         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4163                 return -EFBIG;
4164
4165         if (i_blocks <= 0xffffffffffffULL) {
4166                 /*
4167                  * i_blocks can be represented in a 48 bit variable
4168                  * as multiple of 512 bytes
4169                  */
4170                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4171                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4172                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4173         } else {
4174                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4175                 /* i_block is stored in file system block size */
4176                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4177                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4178                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4179         }
4180         return 0;
4181 }
4182
4183 /*
4184  * Post the struct inode info into an on-disk inode location in the
4185  * buffer-cache.  This gobbles the caller's reference to the
4186  * buffer_head in the inode location struct.
4187  *
4188  * The caller must have write access to iloc->bh.
4189  */
4190 static int ext4_do_update_inode(handle_t *handle,
4191                                 struct inode *inode,
4192                                 struct ext4_iloc *iloc)
4193 {
4194         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4195         struct ext4_inode_info *ei = EXT4_I(inode);
4196         struct buffer_head *bh = iloc->bh;
4197         int err = 0, rc, block;
4198         int need_datasync = 0;
4199         uid_t i_uid;
4200         gid_t i_gid;
4201
4202         /* For fields not not tracking in the in-memory inode,
4203          * initialise them to zero for new inodes. */
4204         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4205                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4206
4207         ext4_get_inode_flags(ei);
4208         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4209         i_uid = i_uid_read(inode);
4210         i_gid = i_gid_read(inode);
4211         if (!(test_opt(inode->i_sb, NO_UID32))) {
4212                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4213                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4214 /*
4215  * Fix up interoperability with old kernels. Otherwise, old inodes get
4216  * re-used with the upper 16 bits of the uid/gid intact
4217  */
4218                 if (!ei->i_dtime) {
4219                         raw_inode->i_uid_high =
4220                                 cpu_to_le16(high_16_bits(i_uid));
4221                         raw_inode->i_gid_high =
4222                                 cpu_to_le16(high_16_bits(i_gid));
4223                 } else {
4224                         raw_inode->i_uid_high = 0;
4225                         raw_inode->i_gid_high = 0;
4226                 }
4227         } else {
4228                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4229                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4230                 raw_inode->i_uid_high = 0;
4231                 raw_inode->i_gid_high = 0;
4232         }
4233         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4234
4235         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4236         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4237         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4238         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4239
4240         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4241                 goto out_brelse;
4242         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4243         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4244         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4245             cpu_to_le32(EXT4_OS_HURD))
4246                 raw_inode->i_file_acl_high =
4247                         cpu_to_le16(ei->i_file_acl >> 32);
4248         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4249         if (ei->i_disksize != ext4_isize(raw_inode)) {
4250                 ext4_isize_set(raw_inode, ei->i_disksize);
4251                 need_datasync = 1;
4252         }
4253         if (ei->i_disksize > 0x7fffffffULL) {
4254                 struct super_block *sb = inode->i_sb;
4255                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4256                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4257                                 EXT4_SB(sb)->s_es->s_rev_level ==
4258                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4259                         /* If this is the first large file
4260                          * created, add a flag to the superblock.
4261                          */
4262                         err = ext4_journal_get_write_access(handle,
4263                                         EXT4_SB(sb)->s_sbh);
4264                         if (err)
4265                                 goto out_brelse;
4266                         ext4_update_dynamic_rev(sb);
4267                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4268                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4269                         ext4_handle_sync(handle);
4270                         err = ext4_handle_dirty_super(handle, sb);
4271                 }
4272         }
4273         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4274         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4275                 if (old_valid_dev(inode->i_rdev)) {
4276                         raw_inode->i_block[0] =
4277                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4278                         raw_inode->i_block[1] = 0;
4279                 } else {
4280                         raw_inode->i_block[0] = 0;
4281                         raw_inode->i_block[1] =
4282                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4283                         raw_inode->i_block[2] = 0;
4284                 }
4285         } else if (!ext4_has_inline_data(inode)) {
4286                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4287                         raw_inode->i_block[block] = ei->i_data[block];
4288         }
4289
4290         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4291         if (ei->i_extra_isize) {
4292                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4293                         raw_inode->i_version_hi =
4294                         cpu_to_le32(inode->i_version >> 32);
4295                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4296         }
4297
4298         ext4_inode_csum_set(inode, raw_inode, ei);
4299
4300         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4301         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4302         if (!err)
4303                 err = rc;
4304         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4305
4306         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4307 out_brelse:
4308         brelse(bh);
4309         ext4_std_error(inode->i_sb, err);
4310         return err;
4311 }
4312
4313 /*
4314  * ext4_write_inode()
4315  *
4316  * We are called from a few places:
4317  *
4318  * - Within generic_file_write() for O_SYNC files.
4319  *   Here, there will be no transaction running. We wait for any running
4320  *   transaction to commit.
4321  *
4322  * - Within sys_sync(), kupdate and such.
4323  *   We wait on commit, if tol to.
4324  *
4325  * - Within prune_icache() (PF_MEMALLOC == true)
4326  *   Here we simply return.  We can't afford to block kswapd on the
4327  *   journal commit.
4328  *
4329  * In all cases it is actually safe for us to return without doing anything,
4330  * because the inode has been copied into a raw inode buffer in
4331  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4332  * knfsd.
4333  *
4334  * Note that we are absolutely dependent upon all inode dirtiers doing the
4335  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4336  * which we are interested.
4337  *
4338  * It would be a bug for them to not do this.  The code:
4339  *
4340  *      mark_inode_dirty(inode)
4341  *      stuff();
4342  *      inode->i_size = expr;
4343  *
4344  * is in error because a kswapd-driven write_inode() could occur while
4345  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4346  * will no longer be on the superblock's dirty inode list.
4347  */
4348 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4349 {
4350         int err;
4351
4352         if (current->flags & PF_MEMALLOC)
4353                 return 0;
4354
4355         if (EXT4_SB(inode->i_sb)->s_journal) {
4356                 if (ext4_journal_current_handle()) {
4357                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4358                         dump_stack();
4359                         return -EIO;
4360                 }
4361
4362                 if (wbc->sync_mode != WB_SYNC_ALL)
4363                         return 0;
4364
4365                 err = ext4_force_commit(inode->i_sb);
4366         } else {
4367                 struct ext4_iloc iloc;
4368
4369                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4370                 if (err)
4371                         return err;
4372                 if (wbc->sync_mode == WB_SYNC_ALL)
4373                         sync_dirty_buffer(iloc.bh);
4374                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4375                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376                                          "IO error syncing inode");
4377                         err = -EIO;
4378                 }
4379                 brelse(iloc.bh);
4380         }
4381         return err;
4382 }
4383
4384 /*
4385  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386  * buffers that are attached to a page stradding i_size and are undergoing
4387  * commit. In that case we have to wait for commit to finish and try again.
4388  */
4389 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4390 {
4391         struct page *page;
4392         unsigned offset;
4393         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394         tid_t commit_tid = 0;
4395         int ret;
4396
4397         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4398         /*
4399          * All buffers in the last page remain valid? Then there's nothing to
4400          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4401          * blocksize case
4402          */
4403         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4404                 return;
4405         while (1) {
4406                 page = find_lock_page(inode->i_mapping,
4407                                       inode->i_size >> PAGE_CACHE_SHIFT);
4408                 if (!page)
4409                         return;
4410                 ret = __ext4_journalled_invalidatepage(page, offset,
4411                                                 PAGE_CACHE_SIZE - offset);
4412                 unlock_page(page);
4413                 page_cache_release(page);
4414                 if (ret != -EBUSY)
4415                         return;
4416                 commit_tid = 0;
4417                 read_lock(&journal->j_state_lock);
4418                 if (journal->j_committing_transaction)
4419                         commit_tid = journal->j_committing_transaction->t_tid;
4420                 read_unlock(&journal->j_state_lock);
4421                 if (commit_tid)
4422                         jbd2_log_wait_commit(journal, commit_tid);
4423         }
4424 }
4425
4426 /*
4427  * ext4_setattr()
4428  *
4429  * Called from notify_change.
4430  *
4431  * We want to trap VFS attempts to truncate the file as soon as
4432  * possible.  In particular, we want to make sure that when the VFS
4433  * shrinks i_size, we put the inode on the orphan list and modify
4434  * i_disksize immediately, so that during the subsequent flushing of
4435  * dirty pages and freeing of disk blocks, we can guarantee that any
4436  * commit will leave the blocks being flushed in an unused state on
4437  * disk.  (On recovery, the inode will get truncated and the blocks will
4438  * be freed, so we have a strong guarantee that no future commit will
4439  * leave these blocks visible to the user.)
4440  *
4441  * Another thing we have to assure is that if we are in ordered mode
4442  * and inode is still attached to the committing transaction, we must
4443  * we start writeout of all the dirty pages which are being truncated.
4444  * This way we are sure that all the data written in the previous
4445  * transaction are already on disk (truncate waits for pages under
4446  * writeback).
4447  *
4448  * Called with inode->i_mutex down.
4449  */
4450 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4451 {
4452         struct inode *inode = dentry->d_inode;
4453         int error, rc = 0;
4454         int orphan = 0;
4455         const unsigned int ia_valid = attr->ia_valid;
4456
4457         error = inode_change_ok(inode, attr);
4458         if (error)
4459                 return error;
4460
4461         if (is_quota_modification(inode, attr))
4462                 dquot_initialize(inode);
4463         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4465                 handle_t *handle;
4466
4467                 /* (user+group)*(old+new) structure, inode write (sb,
4468                  * inode block, ? - but truncate inode update has it) */
4469                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4472                 if (IS_ERR(handle)) {
4473                         error = PTR_ERR(handle);
4474                         goto err_out;
4475                 }
4476                 error = dquot_transfer(inode, attr);
4477                 if (error) {
4478                         ext4_journal_stop(handle);
4479                         return error;
4480                 }
4481                 /* Update corresponding info in inode so that everything is in
4482                  * one transaction */
4483                 if (attr->ia_valid & ATTR_UID)
4484                         inode->i_uid = attr->ia_uid;
4485                 if (attr->ia_valid & ATTR_GID)
4486                         inode->i_gid = attr->ia_gid;
4487                 error = ext4_mark_inode_dirty(handle, inode);
4488                 ext4_journal_stop(handle);
4489         }
4490
4491         if (attr->ia_valid & ATTR_SIZE) {
4492
4493                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4494                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4495
4496                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4497                                 return -EFBIG;
4498                 }
4499         }
4500
4501         if (S_ISREG(inode->i_mode) &&
4502             attr->ia_valid & ATTR_SIZE &&
4503             (attr->ia_size < inode->i_size)) {
4504                 handle_t *handle;
4505
4506                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4507                 if (IS_ERR(handle)) {
4508                         error = PTR_ERR(handle);
4509                         goto err_out;
4510                 }
4511                 if (ext4_handle_valid(handle)) {
4512                         error = ext4_orphan_add(handle, inode);
4513                         orphan = 1;
4514                 }
4515                 EXT4_I(inode)->i_disksize = attr->ia_size;
4516                 rc = ext4_mark_inode_dirty(handle, inode);
4517                 if (!error)
4518                         error = rc;
4519                 ext4_journal_stop(handle);
4520
4521                 if (ext4_should_order_data(inode)) {
4522                         error = ext4_begin_ordered_truncate(inode,
4523                                                             attr->ia_size);
4524                         if (error) {
4525                                 /* Do as much error cleanup as possible */
4526                                 handle = ext4_journal_start(inode,
4527                                                             EXT4_HT_INODE, 3);
4528                                 if (IS_ERR(handle)) {
4529                                         ext4_orphan_del(NULL, inode);
4530                                         goto err_out;
4531                                 }
4532                                 ext4_orphan_del(handle, inode);
4533                                 orphan = 0;
4534                                 ext4_journal_stop(handle);
4535                                 goto err_out;
4536                         }
4537                 }
4538         }
4539
4540         if (attr->ia_valid & ATTR_SIZE) {
4541                 if (attr->ia_size != inode->i_size) {
4542                         loff_t oldsize = inode->i_size;
4543
4544                         i_size_write(inode, attr->ia_size);
4545                         /*
4546                          * Blocks are going to be removed from the inode. Wait
4547                          * for dio in flight.  Temporarily disable
4548                          * dioread_nolock to prevent livelock.
4549                          */
4550                         if (orphan) {
4551                                 if (!ext4_should_journal_data(inode)) {
4552                                         ext4_inode_block_unlocked_dio(inode);
4553                                         inode_dio_wait(inode);
4554                                         ext4_inode_resume_unlocked_dio(inode);
4555                                 } else
4556                                         ext4_wait_for_tail_page_commit(inode);
4557                         }
4558                         /*
4559                          * Truncate pagecache after we've waited for commit
4560                          * in data=journal mode to make pages freeable.
4561                          */
4562                         truncate_pagecache(inode, oldsize, inode->i_size);
4563                 }
4564                 ext4_truncate(inode);
4565         }
4566
4567         if (!rc) {
4568                 setattr_copy(inode, attr);
4569                 mark_inode_dirty(inode);
4570         }
4571
4572         /*
4573          * If the call to ext4_truncate failed to get a transaction handle at
4574          * all, we need to clean up the in-core orphan list manually.
4575          */
4576         if (orphan && inode->i_nlink)
4577                 ext4_orphan_del(NULL, inode);
4578
4579         if (!rc && (ia_valid & ATTR_MODE))
4580                 rc = ext4_acl_chmod(inode);
4581
4582 err_out:
4583         ext4_std_error(inode->i_sb, error);
4584         if (!error)
4585                 error = rc;
4586         return error;
4587 }
4588
4589 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4590                  struct kstat *stat)
4591 {
4592         struct inode *inode;
4593         unsigned long long delalloc_blocks;
4594
4595         inode = dentry->d_inode;
4596         generic_fillattr(inode, stat);
4597
4598         /*
4599          * We can't update i_blocks if the block allocation is delayed
4600          * otherwise in the case of system crash before the real block
4601          * allocation is done, we will have i_blocks inconsistent with
4602          * on-disk file blocks.
4603          * We always keep i_blocks updated together with real
4604          * allocation. But to not confuse with user, stat
4605          * will return the blocks that include the delayed allocation
4606          * blocks for this file.
4607          */
4608         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4609                                 EXT4_I(inode)->i_reserved_data_blocks);
4610
4611         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4612         return 0;
4613 }
4614
4615 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4616                                    int pextents)
4617 {
4618         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4619                 return ext4_ind_trans_blocks(inode, lblocks);
4620         return ext4_ext_index_trans_blocks(inode, pextents);
4621 }
4622
4623 /*
4624  * Account for index blocks, block groups bitmaps and block group
4625  * descriptor blocks if modify datablocks and index blocks
4626  * worse case, the indexs blocks spread over different block groups
4627  *
4628  * If datablocks are discontiguous, they are possible to spread over
4629  * different block groups too. If they are contiguous, with flexbg,
4630  * they could still across block group boundary.
4631  *
4632  * Also account for superblock, inode, quota and xattr blocks
4633  */
4634 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4635                                   int pextents)
4636 {
4637         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4638         int gdpblocks;
4639         int idxblocks;
4640         int ret = 0;
4641
4642         /*
4643          * How many index blocks need to touch to map @lblocks logical blocks
4644          * to @pextents physical extents?
4645          */
4646         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4647
4648         ret = idxblocks;
4649
4650         /*
4651          * Now let's see how many group bitmaps and group descriptors need
4652          * to account
4653          */
4654         groups = idxblocks + pextents;
4655         gdpblocks = groups;
4656         if (groups > ngroups)
4657                 groups = ngroups;
4658         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4659                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4660
4661         /* bitmaps and block group descriptor blocks */
4662         ret += groups + gdpblocks;
4663
4664         /* Blocks for super block, inode, quota and xattr blocks */
4665         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4666
4667         return ret;
4668 }
4669
4670 /*
4671  * Calculate the total number of credits to reserve to fit
4672  * the modification of a single pages into a single transaction,
4673  * which may include multiple chunks of block allocations.
4674  *
4675  * This could be called via ext4_write_begin()
4676  *
4677  * We need to consider the worse case, when
4678  * one new block per extent.
4679  */
4680 int ext4_writepage_trans_blocks(struct inode *inode)
4681 {
4682         int bpp = ext4_journal_blocks_per_page(inode);
4683         int ret;
4684
4685         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4686
4687         /* Account for data blocks for journalled mode */
4688         if (ext4_should_journal_data(inode))
4689                 ret += bpp;
4690         return ret;
4691 }
4692
4693 /*
4694  * Calculate the journal credits for a chunk of data modification.
4695  *
4696  * This is called from DIO, fallocate or whoever calling
4697  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4698  *
4699  * journal buffers for data blocks are not included here, as DIO
4700  * and fallocate do no need to journal data buffers.
4701  */
4702 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4703 {
4704         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4705 }
4706
4707 /*
4708  * The caller must have previously called ext4_reserve_inode_write().
4709  * Give this, we know that the caller already has write access to iloc->bh.
4710  */
4711 int ext4_mark_iloc_dirty(handle_t *handle,
4712                          struct inode *inode, struct ext4_iloc *iloc)
4713 {
4714         int err = 0;
4715
4716         if (IS_I_VERSION(inode))
4717                 inode_inc_iversion(inode);
4718
4719         /* the do_update_inode consumes one bh->b_count */
4720         get_bh(iloc->bh);
4721
4722         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4723         err = ext4_do_update_inode(handle, inode, iloc);
4724         put_bh(iloc->bh);
4725         return err;
4726 }
4727
4728 /*
4729  * On success, We end up with an outstanding reference count against
4730  * iloc->bh.  This _must_ be cleaned up later.
4731  */
4732
4733 int
4734 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4735                          struct ext4_iloc *iloc)
4736 {
4737         int err;
4738
4739         err = ext4_get_inode_loc(inode, iloc);
4740         if (!err) {
4741                 BUFFER_TRACE(iloc->bh, "get_write_access");
4742                 err = ext4_journal_get_write_access(handle, iloc->bh);
4743                 if (err) {
4744                         brelse(iloc->bh);
4745                         iloc->bh = NULL;
4746                 }
4747         }
4748         ext4_std_error(inode->i_sb, err);
4749         return err;
4750 }
4751
4752 /*
4753  * Expand an inode by new_extra_isize bytes.
4754  * Returns 0 on success or negative error number on failure.
4755  */
4756 static int ext4_expand_extra_isize(struct inode *inode,
4757                                    unsigned int new_extra_isize,
4758                                    struct ext4_iloc iloc,
4759                                    handle_t *handle)
4760 {
4761         struct ext4_inode *raw_inode;
4762         struct ext4_xattr_ibody_header *header;
4763
4764         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4765                 return 0;
4766
4767         raw_inode = ext4_raw_inode(&iloc);
4768
4769         header = IHDR(inode, raw_inode);
4770
4771         /* No extended attributes present */
4772         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4773             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4774                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4775                         new_extra_isize);
4776                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4777                 return 0;
4778         }
4779
4780         /* try to expand with EAs present */
4781         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4782                                           raw_inode, handle);
4783 }
4784
4785 /*
4786  * What we do here is to mark the in-core inode as clean with respect to inode
4787  * dirtiness (it may still be data-dirty).
4788  * This means that the in-core inode may be reaped by prune_icache
4789  * without having to perform any I/O.  This is a very good thing,
4790  * because *any* task may call prune_icache - even ones which
4791  * have a transaction open against a different journal.
4792  *
4793  * Is this cheating?  Not really.  Sure, we haven't written the
4794  * inode out, but prune_icache isn't a user-visible syncing function.
4795  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4796  * we start and wait on commits.
4797  */
4798 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4799 {
4800         struct ext4_iloc iloc;
4801         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4802         static unsigned int mnt_count;
4803         int err, ret;
4804
4805         might_sleep();
4806         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4807         err = ext4_reserve_inode_write(handle, inode, &iloc);
4808         if (ext4_handle_valid(handle) &&
4809             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4810             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4811                 /*
4812                  * We need extra buffer credits since we may write into EA block
4813                  * with this same handle. If journal_extend fails, then it will
4814                  * only result in a minor loss of functionality for that inode.
4815                  * If this is felt to be critical, then e2fsck should be run to
4816                  * force a large enough s_min_extra_isize.
4817                  */
4818                 if ((jbd2_journal_extend(handle,
4819                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4820                         ret = ext4_expand_extra_isize(inode,
4821                                                       sbi->s_want_extra_isize,
4822                                                       iloc, handle);
4823                         if (ret) {
4824                                 ext4_set_inode_state(inode,
4825                                                      EXT4_STATE_NO_EXPAND);
4826                                 if (mnt_count !=
4827                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4828                                         ext4_warning(inode->i_sb,
4829                                         "Unable to expand inode %lu. Delete"
4830                                         " some EAs or run e2fsck.",
4831                                         inode->i_ino);
4832                                         mnt_count =
4833                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4834                                 }
4835                         }
4836                 }
4837         }
4838         if (!err)
4839                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4840         return err;
4841 }
4842
4843 /*
4844  * ext4_dirty_inode() is called from __mark_inode_dirty()
4845  *
4846  * We're really interested in the case where a file is being extended.
4847  * i_size has been changed by generic_commit_write() and we thus need
4848  * to include the updated inode in the current transaction.
4849  *
4850  * Also, dquot_alloc_block() will always dirty the inode when blocks
4851  * are allocated to the file.
4852  *
4853  * If the inode is marked synchronous, we don't honour that here - doing
4854  * so would cause a commit on atime updates, which we don't bother doing.
4855  * We handle synchronous inodes at the highest possible level.
4856  */
4857 void ext4_dirty_inode(struct inode *inode, int flags)
4858 {
4859         handle_t *handle;
4860
4861         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4862         if (IS_ERR(handle))
4863                 goto out;
4864
4865         ext4_mark_inode_dirty(handle, inode);
4866
4867         ext4_journal_stop(handle);
4868 out:
4869         return;
4870 }
4871
4872 #if 0
4873 /*
4874  * Bind an inode's backing buffer_head into this transaction, to prevent
4875  * it from being flushed to disk early.  Unlike
4876  * ext4_reserve_inode_write, this leaves behind no bh reference and
4877  * returns no iloc structure, so the caller needs to repeat the iloc
4878  * lookup to mark the inode dirty later.
4879  */
4880 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4881 {
4882         struct ext4_iloc iloc;
4883
4884         int err = 0;
4885         if (handle) {
4886                 err = ext4_get_inode_loc(inode, &iloc);
4887                 if (!err) {
4888                         BUFFER_TRACE(iloc.bh, "get_write_access");
4889                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4890                         if (!err)
4891                                 err = ext4_handle_dirty_metadata(handle,
4892                                                                  NULL,
4893                                                                  iloc.bh);
4894                         brelse(iloc.bh);
4895                 }
4896         }
4897         ext4_std_error(inode->i_sb, err);
4898         return err;
4899 }
4900 #endif
4901
4902 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4903 {
4904         journal_t *journal;
4905         handle_t *handle;
4906         int err;
4907
4908         /*
4909          * We have to be very careful here: changing a data block's
4910          * journaling status dynamically is dangerous.  If we write a
4911          * data block to the journal, change the status and then delete
4912          * that block, we risk forgetting to revoke the old log record
4913          * from the journal and so a subsequent replay can corrupt data.
4914          * So, first we make sure that the journal is empty and that
4915          * nobody is changing anything.
4916          */
4917
4918         journal = EXT4_JOURNAL(inode);
4919         if (!journal)
4920                 return 0;
4921         if (is_journal_aborted(journal))
4922                 return -EROFS;
4923         /* We have to allocate physical blocks for delalloc blocks
4924          * before flushing journal. otherwise delalloc blocks can not
4925          * be allocated any more. even more truncate on delalloc blocks
4926          * could trigger BUG by flushing delalloc blocks in journal.
4927          * There is no delalloc block in non-journal data mode.
4928          */
4929         if (val && test_opt(inode->i_sb, DELALLOC)) {
4930                 err = ext4_alloc_da_blocks(inode);
4931                 if (err < 0)
4932                         return err;
4933         }
4934
4935         /* Wait for all existing dio workers */
4936         ext4_inode_block_unlocked_dio(inode);
4937         inode_dio_wait(inode);
4938
4939         jbd2_journal_lock_updates(journal);
4940
4941         /*
4942          * OK, there are no updates running now, and all cached data is
4943          * synced to disk.  We are now in a completely consistent state
4944          * which doesn't have anything in the journal, and we know that
4945          * no filesystem updates are running, so it is safe to modify
4946          * the inode's in-core data-journaling state flag now.
4947          */
4948
4949         if (val)
4950                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4951         else {
4952                 jbd2_journal_flush(journal);
4953                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4954         }
4955         ext4_set_aops(inode);
4956
4957         jbd2_journal_unlock_updates(journal);
4958         ext4_inode_resume_unlocked_dio(inode);
4959
4960         /* Finally we can mark the inode as dirty. */
4961
4962         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4963         if (IS_ERR(handle))
4964                 return PTR_ERR(handle);
4965
4966         err = ext4_mark_inode_dirty(handle, inode);
4967         ext4_handle_sync(handle);
4968         ext4_journal_stop(handle);
4969         ext4_std_error(inode->i_sb, err);
4970
4971         return err;
4972 }
4973
4974 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4975 {
4976         return !buffer_mapped(bh);
4977 }
4978
4979 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4980 {
4981         struct page *page = vmf->page;
4982         loff_t size;
4983         unsigned long len;
4984         int ret;
4985         struct file *file = vma->vm_file;
4986         struct inode *inode = file_inode(file);
4987         struct address_space *mapping = inode->i_mapping;
4988         handle_t *handle;
4989         get_block_t *get_block;
4990         int retries = 0;
4991
4992         sb_start_pagefault(inode->i_sb);
4993         file_update_time(vma->vm_file);
4994         /* Delalloc case is easy... */
4995         if (test_opt(inode->i_sb, DELALLOC) &&
4996             !ext4_should_journal_data(inode) &&
4997             !ext4_nonda_switch(inode->i_sb)) {
4998                 do {
4999                         ret = __block_page_mkwrite(vma, vmf,
5000                                                    ext4_da_get_block_prep);
5001                 } while (ret == -ENOSPC &&
5002                        ext4_should_retry_alloc(inode->i_sb, &retries));
5003                 goto out_ret;
5004         }
5005
5006         lock_page(page);
5007         size = i_size_read(inode);
5008         /* Page got truncated from under us? */
5009         if (page->mapping != mapping || page_offset(page) > size) {
5010                 unlock_page(page);
5011                 ret = VM_FAULT_NOPAGE;
5012                 goto out;
5013         }
5014
5015         if (page->index == size >> PAGE_CACHE_SHIFT)
5016                 len = size & ~PAGE_CACHE_MASK;
5017         else
5018                 len = PAGE_CACHE_SIZE;
5019         /*
5020          * Return if we have all the buffers mapped. This avoids the need to do
5021          * journal_start/journal_stop which can block and take a long time
5022          */
5023         if (page_has_buffers(page)) {
5024                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5025                                             0, len, NULL,
5026                                             ext4_bh_unmapped)) {
5027                         /* Wait so that we don't change page under IO */
5028                         wait_for_stable_page(page);
5029                         ret = VM_FAULT_LOCKED;
5030                         goto out;
5031                 }
5032         }
5033         unlock_page(page);
5034         /* OK, we need to fill the hole... */
5035         if (ext4_should_dioread_nolock(inode))
5036                 get_block = ext4_get_block_write;
5037         else
5038                 get_block = ext4_get_block;
5039 retry_alloc:
5040         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5041                                     ext4_writepage_trans_blocks(inode));
5042         if (IS_ERR(handle)) {
5043                 ret = VM_FAULT_SIGBUS;
5044                 goto out;
5045         }
5046         ret = __block_page_mkwrite(vma, vmf, get_block);
5047         if (!ret && ext4_should_journal_data(inode)) {
5048                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5049                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5050                         unlock_page(page);
5051                         ret = VM_FAULT_SIGBUS;
5052                         ext4_journal_stop(handle);
5053                         goto out;
5054                 }
5055                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5056         }
5057         ext4_journal_stop(handle);
5058         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5059                 goto retry_alloc;
5060 out_ret:
5061         ret = block_page_mkwrite_return(ret);
5062 out:
5063         sb_end_pagefault(inode->i_sb);
5064         return ret;
5065 }