]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: use ext4_da_writepages() for all modes
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertation failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
520                         map->m_pblk = ext4_es_pblock(&es) +
521                                         map->m_lblk - es.es_lblk;
522                         map->m_flags |= ext4_es_is_written(&es) ?
523                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
524                         retval = es.es_len - (map->m_lblk - es.es_lblk);
525                         if (retval > map->m_len)
526                                 retval = map->m_len;
527                         map->m_len = retval;
528                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
529                         retval = 0;
530                 } else {
531                         BUG_ON(1);
532                 }
533 #ifdef ES_AGGRESSIVE_TEST
534                 ext4_map_blocks_es_recheck(handle, inode, map,
535                                            &orig_map, flags);
536 #endif
537                 goto found;
538         }
539
540         /*
541          * Try to see if we can get the block without requesting a new
542          * file system block.
543          */
544         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545                 down_read((&EXT4_I(inode)->i_data_sem));
546         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
547                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
548                                              EXT4_GET_BLOCKS_KEEP_SIZE);
549         } else {
550                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
551                                              EXT4_GET_BLOCKS_KEEP_SIZE);
552         }
553         if (retval > 0) {
554                 int ret;
555                 unsigned long long status;
556
557 #ifdef ES_AGGRESSIVE_TEST
558                 if (retval != map->m_len) {
559                         printk("ES len assertation failed for inode: %lu "
560                                "retval %d != map->m_len %d "
561                                "in %s (lookup)\n", inode->i_ino, retval,
562                                map->m_len, __func__);
563                 }
564 #endif
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578                 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 int ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 return retval;
600
601         /*
602          * Here we clear m_flags because after allocating an new extent,
603          * it will be set again.
604          */
605         map->m_flags &= ~EXT4_MAP_FLAGS;
606
607         /*
608          * New blocks allocate and/or writing to uninitialized extent
609          * will possibly result in updating i_data, so we take
610          * the write lock of i_data_sem, and call get_blocks()
611          * with create == 1 flag.
612          */
613         down_write((&EXT4_I(inode)->i_data_sem));
614
615         /*
616          * if the caller is from delayed allocation writeout path
617          * we have already reserved fs blocks for allocation
618          * let the underlying get_block() function know to
619          * avoid double accounting
620          */
621         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654         if (retval > 0) {
655                 int ret;
656                 unsigned long long status;
657
658 #ifdef ES_AGGRESSIVE_TEST
659                 if (retval != map->m_len) {
660                         printk("ES len assertation failed for inode: %lu "
661                                "retval %d != map->m_len %d "
662                                "in %s (allocation)\n", inode->i_ino, retval,
663                                map->m_len, __func__);
664                 }
665 #endif
666
667                 /*
668                  * If the extent has been zeroed out, we don't need to update
669                  * extent status tree.
670                  */
671                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
672                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
673                         if (ext4_es_is_written(&es))
674                                 goto has_zeroout;
675                 }
676                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
677                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
678                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
679                     ext4_find_delalloc_range(inode, map->m_lblk,
680                                              map->m_lblk + map->m_len - 1))
681                         status |= EXTENT_STATUS_DELAYED;
682                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683                                             map->m_pblk, status);
684                 if (ret < 0)
685                         retval = ret;
686         }
687
688 has_zeroout:
689         up_write((&EXT4_I(inode)->i_data_sem));
690         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
691                 int ret = check_block_validity(inode, map);
692                 if (ret != 0)
693                         return ret;
694         }
695         return retval;
696 }
697
698 /* Maximum number of blocks we map for direct IO at once. */
699 #define DIO_MAX_BLOCKS 4096
700
701 static int _ext4_get_block(struct inode *inode, sector_t iblock,
702                            struct buffer_head *bh, int flags)
703 {
704         handle_t *handle = ext4_journal_current_handle();
705         struct ext4_map_blocks map;
706         int ret = 0, started = 0;
707         int dio_credits;
708
709         if (ext4_has_inline_data(inode))
710                 return -ERANGE;
711
712         map.m_lblk = iblock;
713         map.m_len = bh->b_size >> inode->i_blkbits;
714
715         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
716                 /* Direct IO write... */
717                 if (map.m_len > DIO_MAX_BLOCKS)
718                         map.m_len = DIO_MAX_BLOCKS;
719                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
720                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
721                                             dio_credits);
722                 if (IS_ERR(handle)) {
723                         ret = PTR_ERR(handle);
724                         return ret;
725                 }
726                 started = 1;
727         }
728
729         ret = ext4_map_blocks(handle, inode, &map, flags);
730         if (ret > 0) {
731                 map_bh(bh, inode->i_sb, map.m_pblk);
732                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
733                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
734                 ret = 0;
735         }
736         if (started)
737                 ext4_journal_stop(handle);
738         return ret;
739 }
740
741 int ext4_get_block(struct inode *inode, sector_t iblock,
742                    struct buffer_head *bh, int create)
743 {
744         return _ext4_get_block(inode, iblock, bh,
745                                create ? EXT4_GET_BLOCKS_CREATE : 0);
746 }
747
748 /*
749  * `handle' can be NULL if create is zero
750  */
751 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
752                                 ext4_lblk_t block, int create, int *errp)
753 {
754         struct ext4_map_blocks map;
755         struct buffer_head *bh;
756         int fatal = 0, err;
757
758         J_ASSERT(handle != NULL || create == 0);
759
760         map.m_lblk = block;
761         map.m_len = 1;
762         err = ext4_map_blocks(handle, inode, &map,
763                               create ? EXT4_GET_BLOCKS_CREATE : 0);
764
765         /* ensure we send some value back into *errp */
766         *errp = 0;
767
768         if (create && err == 0)
769                 err = -ENOSPC;  /* should never happen */
770         if (err < 0)
771                 *errp = err;
772         if (err <= 0)
773                 return NULL;
774
775         bh = sb_getblk(inode->i_sb, map.m_pblk);
776         if (unlikely(!bh)) {
777                 *errp = -ENOMEM;
778                 return NULL;
779         }
780         if (map.m_flags & EXT4_MAP_NEW) {
781                 J_ASSERT(create != 0);
782                 J_ASSERT(handle != NULL);
783
784                 /*
785                  * Now that we do not always journal data, we should
786                  * keep in mind whether this should always journal the
787                  * new buffer as metadata.  For now, regular file
788                  * writes use ext4_get_block instead, so it's not a
789                  * problem.
790                  */
791                 lock_buffer(bh);
792                 BUFFER_TRACE(bh, "call get_create_access");
793                 fatal = ext4_journal_get_create_access(handle, bh);
794                 if (!fatal && !buffer_uptodate(bh)) {
795                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
796                         set_buffer_uptodate(bh);
797                 }
798                 unlock_buffer(bh);
799                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
800                 err = ext4_handle_dirty_metadata(handle, inode, bh);
801                 if (!fatal)
802                         fatal = err;
803         } else {
804                 BUFFER_TRACE(bh, "not a new buffer");
805         }
806         if (fatal) {
807                 *errp = fatal;
808                 brelse(bh);
809                 bh = NULL;
810         }
811         return bh;
812 }
813
814 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
815                                ext4_lblk_t block, int create, int *err)
816 {
817         struct buffer_head *bh;
818
819         bh = ext4_getblk(handle, inode, block, create, err);
820         if (!bh)
821                 return bh;
822         if (buffer_uptodate(bh))
823                 return bh;
824         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
825         wait_on_buffer(bh);
826         if (buffer_uptodate(bh))
827                 return bh;
828         put_bh(bh);
829         *err = -EIO;
830         return NULL;
831 }
832
833 int ext4_walk_page_buffers(handle_t *handle,
834                            struct buffer_head *head,
835                            unsigned from,
836                            unsigned to,
837                            int *partial,
838                            int (*fn)(handle_t *handle,
839                                      struct buffer_head *bh))
840 {
841         struct buffer_head *bh;
842         unsigned block_start, block_end;
843         unsigned blocksize = head->b_size;
844         int err, ret = 0;
845         struct buffer_head *next;
846
847         for (bh = head, block_start = 0;
848              ret == 0 && (bh != head || !block_start);
849              block_start = block_end, bh = next) {
850                 next = bh->b_this_page;
851                 block_end = block_start + blocksize;
852                 if (block_end <= from || block_start >= to) {
853                         if (partial && !buffer_uptodate(bh))
854                                 *partial = 1;
855                         continue;
856                 }
857                 err = (*fn)(handle, bh);
858                 if (!ret)
859                         ret = err;
860         }
861         return ret;
862 }
863
864 /*
865  * To preserve ordering, it is essential that the hole instantiation and
866  * the data write be encapsulated in a single transaction.  We cannot
867  * close off a transaction and start a new one between the ext4_get_block()
868  * and the commit_write().  So doing the jbd2_journal_start at the start of
869  * prepare_write() is the right place.
870  *
871  * Also, this function can nest inside ext4_writepage().  In that case, we
872  * *know* that ext4_writepage() has generated enough buffer credits to do the
873  * whole page.  So we won't block on the journal in that case, which is good,
874  * because the caller may be PF_MEMALLOC.
875  *
876  * By accident, ext4 can be reentered when a transaction is open via
877  * quota file writes.  If we were to commit the transaction while thus
878  * reentered, there can be a deadlock - we would be holding a quota
879  * lock, and the commit would never complete if another thread had a
880  * transaction open and was blocking on the quota lock - a ranking
881  * violation.
882  *
883  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
884  * will _not_ run commit under these circumstances because handle->h_ref
885  * is elevated.  We'll still have enough credits for the tiny quotafile
886  * write.
887  */
888 int do_journal_get_write_access(handle_t *handle,
889                                 struct buffer_head *bh)
890 {
891         int dirty = buffer_dirty(bh);
892         int ret;
893
894         if (!buffer_mapped(bh) || buffer_freed(bh))
895                 return 0;
896         /*
897          * __block_write_begin() could have dirtied some buffers. Clean
898          * the dirty bit as jbd2_journal_get_write_access() could complain
899          * otherwise about fs integrity issues. Setting of the dirty bit
900          * by __block_write_begin() isn't a real problem here as we clear
901          * the bit before releasing a page lock and thus writeback cannot
902          * ever write the buffer.
903          */
904         if (dirty)
905                 clear_buffer_dirty(bh);
906         ret = ext4_journal_get_write_access(handle, bh);
907         if (!ret && dirty)
908                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
909         return ret;
910 }
911
912 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
913                    struct buffer_head *bh_result, int create);
914 static int ext4_write_begin(struct file *file, struct address_space *mapping,
915                             loff_t pos, unsigned len, unsigned flags,
916                             struct page **pagep, void **fsdata)
917 {
918         struct inode *inode = mapping->host;
919         int ret, needed_blocks;
920         handle_t *handle;
921         int retries = 0;
922         struct page *page;
923         pgoff_t index;
924         unsigned from, to;
925
926         trace_ext4_write_begin(inode, pos, len, flags);
927         /*
928          * Reserve one block more for addition to orphan list in case
929          * we allocate blocks but write fails for some reason
930          */
931         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
932         index = pos >> PAGE_CACHE_SHIFT;
933         from = pos & (PAGE_CACHE_SIZE - 1);
934         to = from + len;
935
936         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
937                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
938                                                     flags, pagep);
939                 if (ret < 0)
940                         return ret;
941                 if (ret == 1)
942                         return 0;
943         }
944
945         /*
946          * grab_cache_page_write_begin() can take a long time if the
947          * system is thrashing due to memory pressure, or if the page
948          * is being written back.  So grab it first before we start
949          * the transaction handle.  This also allows us to allocate
950          * the page (if needed) without using GFP_NOFS.
951          */
952 retry_grab:
953         page = grab_cache_page_write_begin(mapping, index, flags);
954         if (!page)
955                 return -ENOMEM;
956         unlock_page(page);
957
958 retry_journal:
959         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
960         if (IS_ERR(handle)) {
961                 page_cache_release(page);
962                 return PTR_ERR(handle);
963         }
964
965         lock_page(page);
966         if (page->mapping != mapping) {
967                 /* The page got truncated from under us */
968                 unlock_page(page);
969                 page_cache_release(page);
970                 ext4_journal_stop(handle);
971                 goto retry_grab;
972         }
973         wait_on_page_writeback(page);
974
975         if (ext4_should_dioread_nolock(inode))
976                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
977         else
978                 ret = __block_write_begin(page, pos, len, ext4_get_block);
979
980         if (!ret && ext4_should_journal_data(inode)) {
981                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
982                                              from, to, NULL,
983                                              do_journal_get_write_access);
984         }
985
986         if (ret) {
987                 unlock_page(page);
988                 /*
989                  * __block_write_begin may have instantiated a few blocks
990                  * outside i_size.  Trim these off again. Don't need
991                  * i_size_read because we hold i_mutex.
992                  *
993                  * Add inode to orphan list in case we crash before
994                  * truncate finishes
995                  */
996                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
997                         ext4_orphan_add(handle, inode);
998
999                 ext4_journal_stop(handle);
1000                 if (pos + len > inode->i_size) {
1001                         ext4_truncate_failed_write(inode);
1002                         /*
1003                          * If truncate failed early the inode might
1004                          * still be on the orphan list; we need to
1005                          * make sure the inode is removed from the
1006                          * orphan list in that case.
1007                          */
1008                         if (inode->i_nlink)
1009                                 ext4_orphan_del(NULL, inode);
1010                 }
1011
1012                 if (ret == -ENOSPC &&
1013                     ext4_should_retry_alloc(inode->i_sb, &retries))
1014                         goto retry_journal;
1015                 page_cache_release(page);
1016                 return ret;
1017         }
1018         *pagep = page;
1019         return ret;
1020 }
1021
1022 /* For write_end() in data=journal mode */
1023 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1024 {
1025         int ret;
1026         if (!buffer_mapped(bh) || buffer_freed(bh))
1027                 return 0;
1028         set_buffer_uptodate(bh);
1029         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1030         clear_buffer_meta(bh);
1031         clear_buffer_prio(bh);
1032         return ret;
1033 }
1034
1035 /*
1036  * We need to pick up the new inode size which generic_commit_write gave us
1037  * `file' can be NULL - eg, when called from page_symlink().
1038  *
1039  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1040  * buffers are managed internally.
1041  */
1042 static int ext4_write_end(struct file *file,
1043                           struct address_space *mapping,
1044                           loff_t pos, unsigned len, unsigned copied,
1045                           struct page *page, void *fsdata)
1046 {
1047         handle_t *handle = ext4_journal_current_handle();
1048         struct inode *inode = mapping->host;
1049         int ret = 0, ret2;
1050         int i_size_changed = 0;
1051
1052         trace_ext4_write_end(inode, pos, len, copied);
1053         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1054                 ret = ext4_jbd2_file_inode(handle, inode);
1055                 if (ret) {
1056                         unlock_page(page);
1057                         page_cache_release(page);
1058                         goto errout;
1059                 }
1060         }
1061
1062         if (ext4_has_inline_data(inode))
1063                 copied = ext4_write_inline_data_end(inode, pos, len,
1064                                                     copied, page);
1065         else
1066                 copied = block_write_end(file, mapping, pos,
1067                                          len, copied, page, fsdata);
1068
1069         /*
1070          * No need to use i_size_read() here, the i_size
1071          * cannot change under us because we hole i_mutex.
1072          *
1073          * But it's important to update i_size while still holding page lock:
1074          * page writeout could otherwise come in and zero beyond i_size.
1075          */
1076         if (pos + copied > inode->i_size) {
1077                 i_size_write(inode, pos + copied);
1078                 i_size_changed = 1;
1079         }
1080
1081         if (pos + copied > EXT4_I(inode)->i_disksize) {
1082                 /* We need to mark inode dirty even if
1083                  * new_i_size is less that inode->i_size
1084                  * but greater than i_disksize. (hint delalloc)
1085                  */
1086                 ext4_update_i_disksize(inode, (pos + copied));
1087                 i_size_changed = 1;
1088         }
1089         unlock_page(page);
1090         page_cache_release(page);
1091
1092         /*
1093          * Don't mark the inode dirty under page lock. First, it unnecessarily
1094          * makes the holding time of page lock longer. Second, it forces lock
1095          * ordering of page lock and transaction start for journaling
1096          * filesystems.
1097          */
1098         if (i_size_changed)
1099                 ext4_mark_inode_dirty(handle, inode);
1100
1101         if (copied < 0)
1102                 ret = copied;
1103         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1104                 /* if we have allocated more blocks and copied
1105                  * less. We will have blocks allocated outside
1106                  * inode->i_size. So truncate them
1107                  */
1108                 ext4_orphan_add(handle, inode);
1109 errout:
1110         ret2 = ext4_journal_stop(handle);
1111         if (!ret)
1112                 ret = ret2;
1113
1114         if (pos + len > inode->i_size) {
1115                 ext4_truncate_failed_write(inode);
1116                 /*
1117                  * If truncate failed early the inode might still be
1118                  * on the orphan list; we need to make sure the inode
1119                  * is removed from the orphan list in that case.
1120                  */
1121                 if (inode->i_nlink)
1122                         ext4_orphan_del(NULL, inode);
1123         }
1124
1125         return ret ? ret : copied;
1126 }
1127
1128 static int ext4_journalled_write_end(struct file *file,
1129                                      struct address_space *mapping,
1130                                      loff_t pos, unsigned len, unsigned copied,
1131                                      struct page *page, void *fsdata)
1132 {
1133         handle_t *handle = ext4_journal_current_handle();
1134         struct inode *inode = mapping->host;
1135         int ret = 0, ret2;
1136         int partial = 0;
1137         unsigned from, to;
1138         loff_t new_i_size;
1139
1140         trace_ext4_journalled_write_end(inode, pos, len, copied);
1141         from = pos & (PAGE_CACHE_SIZE - 1);
1142         to = from + len;
1143
1144         BUG_ON(!ext4_handle_valid(handle));
1145
1146         if (ext4_has_inline_data(inode))
1147                 copied = ext4_write_inline_data_end(inode, pos, len,
1148                                                     copied, page);
1149         else {
1150                 if (copied < len) {
1151                         if (!PageUptodate(page))
1152                                 copied = 0;
1153                         page_zero_new_buffers(page, from+copied, to);
1154                 }
1155
1156                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157                                              to, &partial, write_end_fn);
1158                 if (!partial)
1159                         SetPageUptodate(page);
1160         }
1161         new_i_size = pos + copied;
1162         if (new_i_size > inode->i_size)
1163                 i_size_write(inode, pos+copied);
1164         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1165         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1166         if (new_i_size > EXT4_I(inode)->i_disksize) {
1167                 ext4_update_i_disksize(inode, new_i_size);
1168                 ret2 = ext4_mark_inode_dirty(handle, inode);
1169                 if (!ret)
1170                         ret = ret2;
1171         }
1172
1173         unlock_page(page);
1174         page_cache_release(page);
1175         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176                 /* if we have allocated more blocks and copied
1177                  * less. We will have blocks allocated outside
1178                  * inode->i_size. So truncate them
1179                  */
1180                 ext4_orphan_add(handle, inode);
1181
1182         ret2 = ext4_journal_stop(handle);
1183         if (!ret)
1184                 ret = ret2;
1185         if (pos + len > inode->i_size) {
1186                 ext4_truncate_failed_write(inode);
1187                 /*
1188                  * If truncate failed early the inode might still be
1189                  * on the orphan list; we need to make sure the inode
1190                  * is removed from the orphan list in that case.
1191                  */
1192                 if (inode->i_nlink)
1193                         ext4_orphan_del(NULL, inode);
1194         }
1195
1196         return ret ? ret : copied;
1197 }
1198
1199 /*
1200  * Reserve a metadata for a single block located at lblock
1201  */
1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203 {
1204         int retries = 0;
1205         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206         struct ext4_inode_info *ei = EXT4_I(inode);
1207         unsigned int md_needed;
1208         ext4_lblk_t save_last_lblock;
1209         int save_len;
1210
1211         /*
1212          * recalculate the amount of metadata blocks to reserve
1213          * in order to allocate nrblocks
1214          * worse case is one extent per block
1215          */
1216 repeat:
1217         spin_lock(&ei->i_block_reservation_lock);
1218         /*
1219          * ext4_calc_metadata_amount() has side effects, which we have
1220          * to be prepared undo if we fail to claim space.
1221          */
1222         save_len = ei->i_da_metadata_calc_len;
1223         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224         md_needed = EXT4_NUM_B2C(sbi,
1225                                  ext4_calc_metadata_amount(inode, lblock));
1226         trace_ext4_da_reserve_space(inode, md_needed);
1227
1228         /*
1229          * We do still charge estimated metadata to the sb though;
1230          * we cannot afford to run out of free blocks.
1231          */
1232         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233                 ei->i_da_metadata_calc_len = save_len;
1234                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235                 spin_unlock(&ei->i_block_reservation_lock);
1236                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237                         cond_resched();
1238                         goto repeat;
1239                 }
1240                 return -ENOSPC;
1241         }
1242         ei->i_reserved_meta_blocks += md_needed;
1243         spin_unlock(&ei->i_block_reservation_lock);
1244
1245         return 0;       /* success */
1246 }
1247
1248 /*
1249  * Reserve a single cluster located at lblock
1250  */
1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1252 {
1253         int retries = 0;
1254         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1255         struct ext4_inode_info *ei = EXT4_I(inode);
1256         unsigned int md_needed;
1257         int ret;
1258         ext4_lblk_t save_last_lblock;
1259         int save_len;
1260
1261         /*
1262          * We will charge metadata quota at writeout time; this saves
1263          * us from metadata over-estimation, though we may go over by
1264          * a small amount in the end.  Here we just reserve for data.
1265          */
1266         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267         if (ret)
1268                 return ret;
1269
1270         /*
1271          * recalculate the amount of metadata blocks to reserve
1272          * in order to allocate nrblocks
1273          * worse case is one extent per block
1274          */
1275 repeat:
1276         spin_lock(&ei->i_block_reservation_lock);
1277         /*
1278          * ext4_calc_metadata_amount() has side effects, which we have
1279          * to be prepared undo if we fail to claim space.
1280          */
1281         save_len = ei->i_da_metadata_calc_len;
1282         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283         md_needed = EXT4_NUM_B2C(sbi,
1284                                  ext4_calc_metadata_amount(inode, lblock));
1285         trace_ext4_da_reserve_space(inode, md_needed);
1286
1287         /*
1288          * We do still charge estimated metadata to the sb though;
1289          * we cannot afford to run out of free blocks.
1290          */
1291         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1292                 ei->i_da_metadata_calc_len = save_len;
1293                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294                 spin_unlock(&ei->i_block_reservation_lock);
1295                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296                         cond_resched();
1297                         goto repeat;
1298                 }
1299                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1300                 return -ENOSPC;
1301         }
1302         ei->i_reserved_data_blocks++;
1303         ei->i_reserved_meta_blocks += md_needed;
1304         spin_unlock(&ei->i_block_reservation_lock);
1305
1306         return 0;       /* success */
1307 }
1308
1309 static void ext4_da_release_space(struct inode *inode, int to_free)
1310 {
1311         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1312         struct ext4_inode_info *ei = EXT4_I(inode);
1313
1314         if (!to_free)
1315                 return;         /* Nothing to release, exit */
1316
1317         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1318
1319         trace_ext4_da_release_space(inode, to_free);
1320         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1321                 /*
1322                  * if there aren't enough reserved blocks, then the
1323                  * counter is messed up somewhere.  Since this
1324                  * function is called from invalidate page, it's
1325                  * harmless to return without any action.
1326                  */
1327                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1328                          "ino %lu, to_free %d with only %d reserved "
1329                          "data blocks", inode->i_ino, to_free,
1330                          ei->i_reserved_data_blocks);
1331                 WARN_ON(1);
1332                 to_free = ei->i_reserved_data_blocks;
1333         }
1334         ei->i_reserved_data_blocks -= to_free;
1335
1336         if (ei->i_reserved_data_blocks == 0) {
1337                 /*
1338                  * We can release all of the reserved metadata blocks
1339                  * only when we have written all of the delayed
1340                  * allocation blocks.
1341                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1342                  * i_reserved_data_blocks, etc. refer to number of clusters.
1343                  */
1344                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1345                                    ei->i_reserved_meta_blocks);
1346                 ei->i_reserved_meta_blocks = 0;
1347                 ei->i_da_metadata_calc_len = 0;
1348         }
1349
1350         /* update fs dirty data blocks counter */
1351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1352
1353         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1354
1355         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1356 }
1357
1358 static void ext4_da_page_release_reservation(struct page *page,
1359                                              unsigned int offset,
1360                                              unsigned int length)
1361 {
1362         int to_release = 0;
1363         struct buffer_head *head, *bh;
1364         unsigned int curr_off = 0;
1365         struct inode *inode = page->mapping->host;
1366         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367         unsigned int stop = offset + length;
1368         int num_clusters;
1369         ext4_fsblk_t lblk;
1370
1371         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372
1373         head = page_buffers(page);
1374         bh = head;
1375         do {
1376                 unsigned int next_off = curr_off + bh->b_size;
1377
1378                 if (next_off > stop)
1379                         break;
1380
1381                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1382                         to_release++;
1383                         clear_buffer_delay(bh);
1384                 }
1385                 curr_off = next_off;
1386         } while ((bh = bh->b_this_page) != head);
1387
1388         if (to_release) {
1389                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390                 ext4_es_remove_extent(inode, lblk, to_release);
1391         }
1392
1393         /* If we have released all the blocks belonging to a cluster, then we
1394          * need to release the reserved space for that cluster. */
1395         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396         while (num_clusters > 0) {
1397                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398                         ((num_clusters - 1) << sbi->s_cluster_bits);
1399                 if (sbi->s_cluster_ratio == 1 ||
1400                     !ext4_find_delalloc_cluster(inode, lblk))
1401                         ext4_da_release_space(inode, 1);
1402
1403                 num_clusters--;
1404         }
1405 }
1406
1407 /*
1408  * Delayed allocation stuff
1409  */
1410
1411 struct mpage_da_data {
1412         struct inode *inode;
1413         struct writeback_control *wbc;
1414
1415         pgoff_t first_page;     /* The first page to write */
1416         pgoff_t next_page;      /* Current page to examine */
1417         pgoff_t last_page;      /* Last page to examine */
1418         /*
1419          * Extent to map - this can be after first_page because that can be
1420          * fully mapped. We somewhat abuse m_flags to store whether the extent
1421          * is delalloc or unwritten.
1422          */
1423         struct ext4_map_blocks map;
1424         struct ext4_io_submit io_submit;        /* IO submission data */
1425 };
1426
1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428                                        bool invalidate)
1429 {
1430         int nr_pages, i;
1431         pgoff_t index, end;
1432         struct pagevec pvec;
1433         struct inode *inode = mpd->inode;
1434         struct address_space *mapping = inode->i_mapping;
1435
1436         /* This is necessary when next_page == 0. */
1437         if (mpd->first_page >= mpd->next_page)
1438                 return;
1439
1440         index = mpd->first_page;
1441         end   = mpd->next_page - 1;
1442         if (invalidate) {
1443                 ext4_lblk_t start, last;
1444                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446                 ext4_es_remove_extent(inode, start, last - start + 1);
1447         }
1448
1449         pagevec_init(&pvec, 0);
1450         while (index <= end) {
1451                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452                 if (nr_pages == 0)
1453                         break;
1454                 for (i = 0; i < nr_pages; i++) {
1455                         struct page *page = pvec.pages[i];
1456                         if (page->index > end)
1457                                 break;
1458                         BUG_ON(!PageLocked(page));
1459                         BUG_ON(PageWriteback(page));
1460                         if (invalidate) {
1461                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462                                 ClearPageUptodate(page);
1463                         }
1464                         unlock_page(page);
1465                 }
1466                 index = pvec.pages[nr_pages - 1]->index + 1;
1467                 pagevec_release(&pvec);
1468         }
1469 }
1470
1471 static void ext4_print_free_blocks(struct inode *inode)
1472 {
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         struct super_block *sb = inode->i_sb;
1475         struct ext4_inode_info *ei = EXT4_I(inode);
1476
1477         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1478                EXT4_C2B(EXT4_SB(inode->i_sb),
1479                         ext4_count_free_clusters(sb)));
1480         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1482                (long long) EXT4_C2B(EXT4_SB(sb),
1483                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1484         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1485                (long long) EXT4_C2B(EXT4_SB(sb),
1486                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1487         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1489                  ei->i_reserved_data_blocks);
1490         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1491                ei->i_reserved_meta_blocks);
1492         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493                ei->i_allocated_meta_blocks);
1494         return;
1495 }
1496
1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1498 {
1499         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1500 }
1501
1502 /*
1503  * This function is grabs code from the very beginning of
1504  * ext4_map_blocks, but assumes that the caller is from delayed write
1505  * time. This function looks up the requested blocks and sets the
1506  * buffer delay bit under the protection of i_data_sem.
1507  */
1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509                               struct ext4_map_blocks *map,
1510                               struct buffer_head *bh)
1511 {
1512         struct extent_status es;
1513         int retval;
1514         sector_t invalid_block = ~((sector_t) 0xffff);
1515 #ifdef ES_AGGRESSIVE_TEST
1516         struct ext4_map_blocks orig_map;
1517
1518         memcpy(&orig_map, map, sizeof(*map));
1519 #endif
1520
1521         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522                 invalid_block = ~0;
1523
1524         map->m_flags = 0;
1525         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526                   "logical block %lu\n", inode->i_ino, map->m_len,
1527                   (unsigned long) map->m_lblk);
1528
1529         /* Lookup extent status tree firstly */
1530         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1531
1532                 if (ext4_es_is_hole(&es)) {
1533                         retval = 0;
1534                         down_read((&EXT4_I(inode)->i_data_sem));
1535                         goto add_delayed;
1536                 }
1537
1538                 /*
1539                  * Delayed extent could be allocated by fallocate.
1540                  * So we need to check it.
1541                  */
1542                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543                         map_bh(bh, inode->i_sb, invalid_block);
1544                         set_buffer_new(bh);
1545                         set_buffer_delay(bh);
1546                         return 0;
1547                 }
1548
1549                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550                 retval = es.es_len - (iblock - es.es_lblk);
1551                 if (retval > map->m_len)
1552                         retval = map->m_len;
1553                 map->m_len = retval;
1554                 if (ext4_es_is_written(&es))
1555                         map->m_flags |= EXT4_MAP_MAPPED;
1556                 else if (ext4_es_is_unwritten(&es))
1557                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1558                 else
1559                         BUG_ON(1);
1560
1561 #ifdef ES_AGGRESSIVE_TEST
1562                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1563 #endif
1564                 return retval;
1565         }
1566
1567         /*
1568          * Try to see if we can get the block without requesting a new
1569          * file system block.
1570          */
1571         down_read((&EXT4_I(inode)->i_data_sem));
1572         if (ext4_has_inline_data(inode)) {
1573                 /*
1574                  * We will soon create blocks for this page, and let
1575                  * us pretend as if the blocks aren't allocated yet.
1576                  * In case of clusters, we have to handle the work
1577                  * of mapping from cluster so that the reserved space
1578                  * is calculated properly.
1579                  */
1580                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1582                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1583                 retval = 0;
1584         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1585                 retval = ext4_ext_map_blocks(NULL, inode, map,
1586                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1587         else
1588                 retval = ext4_ind_map_blocks(NULL, inode, map,
1589                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1590
1591 add_delayed:
1592         if (retval == 0) {
1593                 int ret;
1594                 /*
1595                  * XXX: __block_prepare_write() unmaps passed block,
1596                  * is it OK?
1597                  */
1598                 /*
1599                  * If the block was allocated from previously allocated cluster,
1600                  * then we don't need to reserve it again. However we still need
1601                  * to reserve metadata for every block we're going to write.
1602                  */
1603                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1604                         ret = ext4_da_reserve_space(inode, iblock);
1605                         if (ret) {
1606                                 /* not enough space to reserve */
1607                                 retval = ret;
1608                                 goto out_unlock;
1609                         }
1610                 } else {
1611                         ret = ext4_da_reserve_metadata(inode, iblock);
1612                         if (ret) {
1613                                 /* not enough space to reserve */
1614                                 retval = ret;
1615                                 goto out_unlock;
1616                         }
1617                 }
1618
1619                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620                                             ~0, EXTENT_STATUS_DELAYED);
1621                 if (ret) {
1622                         retval = ret;
1623                         goto out_unlock;
1624                 }
1625
1626                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627                  * and it should not appear on the bh->b_state.
1628                  */
1629                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1630
1631                 map_bh(bh, inode->i_sb, invalid_block);
1632                 set_buffer_new(bh);
1633                 set_buffer_delay(bh);
1634         } else if (retval > 0) {
1635                 int ret;
1636                 unsigned long long status;
1637
1638 #ifdef ES_AGGRESSIVE_TEST
1639                 if (retval != map->m_len) {
1640                         printk("ES len assertation failed for inode: %lu "
1641                                "retval %d != map->m_len %d "
1642                                "in %s (lookup)\n", inode->i_ino, retval,
1643                                map->m_len, __func__);
1644                 }
1645 #endif
1646
1647                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1648                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1649                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1650                                             map->m_pblk, status);
1651                 if (ret != 0)
1652                         retval = ret;
1653         }
1654
1655 out_unlock:
1656         up_read((&EXT4_I(inode)->i_data_sem));
1657
1658         return retval;
1659 }
1660
1661 /*
1662  * This is a special get_blocks_t callback which is used by
1663  * ext4_da_write_begin().  It will either return mapped block or
1664  * reserve space for a single block.
1665  *
1666  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1667  * We also have b_blocknr = -1 and b_bdev initialized properly
1668  *
1669  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1670  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1671  * initialized properly.
1672  */
1673 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1674                            struct buffer_head *bh, int create)
1675 {
1676         struct ext4_map_blocks map;
1677         int ret = 0;
1678
1679         BUG_ON(create == 0);
1680         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1681
1682         map.m_lblk = iblock;
1683         map.m_len = 1;
1684
1685         /*
1686          * first, we need to know whether the block is allocated already
1687          * preallocated blocks are unmapped but should treated
1688          * the same as allocated blocks.
1689          */
1690         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1691         if (ret <= 0)
1692                 return ret;
1693
1694         map_bh(bh, inode->i_sb, map.m_pblk);
1695         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1696
1697         if (buffer_unwritten(bh)) {
1698                 /* A delayed write to unwritten bh should be marked
1699                  * new and mapped.  Mapped ensures that we don't do
1700                  * get_block multiple times when we write to the same
1701                  * offset and new ensures that we do proper zero out
1702                  * for partial write.
1703                  */
1704                 set_buffer_new(bh);
1705                 set_buffer_mapped(bh);
1706         }
1707         return 0;
1708 }
1709
1710 static int bget_one(handle_t *handle, struct buffer_head *bh)
1711 {
1712         get_bh(bh);
1713         return 0;
1714 }
1715
1716 static int bput_one(handle_t *handle, struct buffer_head *bh)
1717 {
1718         put_bh(bh);
1719         return 0;
1720 }
1721
1722 static int __ext4_journalled_writepage(struct page *page,
1723                                        unsigned int len)
1724 {
1725         struct address_space *mapping = page->mapping;
1726         struct inode *inode = mapping->host;
1727         struct buffer_head *page_bufs = NULL;
1728         handle_t *handle = NULL;
1729         int ret = 0, err = 0;
1730         int inline_data = ext4_has_inline_data(inode);
1731         struct buffer_head *inode_bh = NULL;
1732
1733         ClearPageChecked(page);
1734
1735         if (inline_data) {
1736                 BUG_ON(page->index != 0);
1737                 BUG_ON(len > ext4_get_max_inline_size(inode));
1738                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1739                 if (inode_bh == NULL)
1740                         goto out;
1741         } else {
1742                 page_bufs = page_buffers(page);
1743                 if (!page_bufs) {
1744                         BUG();
1745                         goto out;
1746                 }
1747                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1748                                        NULL, bget_one);
1749         }
1750         /* As soon as we unlock the page, it can go away, but we have
1751          * references to buffers so we are safe */
1752         unlock_page(page);
1753
1754         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1755                                     ext4_writepage_trans_blocks(inode));
1756         if (IS_ERR(handle)) {
1757                 ret = PTR_ERR(handle);
1758                 goto out;
1759         }
1760
1761         BUG_ON(!ext4_handle_valid(handle));
1762
1763         if (inline_data) {
1764                 ret = ext4_journal_get_write_access(handle, inode_bh);
1765
1766                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1767
1768         } else {
1769                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1770                                              do_journal_get_write_access);
1771
1772                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773                                              write_end_fn);
1774         }
1775         if (ret == 0)
1776                 ret = err;
1777         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1778         err = ext4_journal_stop(handle);
1779         if (!ret)
1780                 ret = err;
1781
1782         if (!ext4_has_inline_data(inode))
1783                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1784                                        NULL, bput_one);
1785         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1786 out:
1787         brelse(inode_bh);
1788         return ret;
1789 }
1790
1791 /*
1792  * Note that we don't need to start a transaction unless we're journaling data
1793  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794  * need to file the inode to the transaction's list in ordered mode because if
1795  * we are writing back data added by write(), the inode is already there and if
1796  * we are writing back data modified via mmap(), no one guarantees in which
1797  * transaction the data will hit the disk. In case we are journaling data, we
1798  * cannot start transaction directly because transaction start ranks above page
1799  * lock so we have to do some magic.
1800  *
1801  * This function can get called via...
1802  *   - ext4_writepages after taking page lock (have journal handle)
1803  *   - journal_submit_inode_data_buffers (no journal handle)
1804  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1805  *   - grab_page_cache when doing write_begin (have journal handle)
1806  *
1807  * We don't do any block allocation in this function. If we have page with
1808  * multiple blocks we need to write those buffer_heads that are mapped. This
1809  * is important for mmaped based write. So if we do with blocksize 1K
1810  * truncate(f, 1024);
1811  * a = mmap(f, 0, 4096);
1812  * a[0] = 'a';
1813  * truncate(f, 4096);
1814  * we have in the page first buffer_head mapped via page_mkwrite call back
1815  * but other buffer_heads would be unmapped but dirty (dirty done via the
1816  * do_wp_page). So writepage should write the first block. If we modify
1817  * the mmap area beyond 1024 we will again get a page_fault and the
1818  * page_mkwrite callback will do the block allocation and mark the
1819  * buffer_heads mapped.
1820  *
1821  * We redirty the page if we have any buffer_heads that is either delay or
1822  * unwritten in the page.
1823  *
1824  * We can get recursively called as show below.
1825  *
1826  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1827  *              ext4_writepage()
1828  *
1829  * But since we don't do any block allocation we should not deadlock.
1830  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1831  */
1832 static int ext4_writepage(struct page *page,
1833                           struct writeback_control *wbc)
1834 {
1835         int ret = 0;
1836         loff_t size;
1837         unsigned int len;
1838         struct buffer_head *page_bufs = NULL;
1839         struct inode *inode = page->mapping->host;
1840         struct ext4_io_submit io_submit;
1841
1842         trace_ext4_writepage(page);
1843         size = i_size_read(inode);
1844         if (page->index == size >> PAGE_CACHE_SHIFT)
1845                 len = size & ~PAGE_CACHE_MASK;
1846         else
1847                 len = PAGE_CACHE_SIZE;
1848
1849         page_bufs = page_buffers(page);
1850         /*
1851          * We cannot do block allocation or other extent handling in this
1852          * function. If there are buffers needing that, we have to redirty
1853          * the page. But we may reach here when we do a journal commit via
1854          * journal_submit_inode_data_buffers() and in that case we must write
1855          * allocated buffers to achieve data=ordered mode guarantees.
1856          */
1857         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1858                                    ext4_bh_delay_or_unwritten)) {
1859                 redirty_page_for_writepage(wbc, page);
1860                 if (current->flags & PF_MEMALLOC) {
1861                         /*
1862                          * For memory cleaning there's no point in writing only
1863                          * some buffers. So just bail out. Warn if we came here
1864                          * from direct reclaim.
1865                          */
1866                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1867                                                         == PF_MEMALLOC);
1868                         unlock_page(page);
1869                         return 0;
1870                 }
1871         }
1872
1873         if (PageChecked(page) && ext4_should_journal_data(inode))
1874                 /*
1875                  * It's mmapped pagecache.  Add buffers and journal it.  There
1876                  * doesn't seem much point in redirtying the page here.
1877                  */
1878                 return __ext4_journalled_writepage(page, len);
1879
1880         ext4_io_submit_init(&io_submit, wbc);
1881         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1882         if (!io_submit.io_end) {
1883                 redirty_page_for_writepage(wbc, page);
1884                 unlock_page(page);
1885                 return -ENOMEM;
1886         }
1887         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1888         ext4_io_submit(&io_submit);
1889         /* Drop io_end reference we got from init */
1890         ext4_put_io_end_defer(io_submit.io_end);
1891         return ret;
1892 }
1893
1894 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1895
1896 /*
1897  * mballoc gives us at most this number of blocks...
1898  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1899  * The rest of mballoc seems to handle chunks upto full group size.
1900  */
1901 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1902
1903 /*
1904  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1905  *
1906  * @mpd - extent of blocks
1907  * @lblk - logical number of the block in the file
1908  * @b_state - b_state of the buffer head added
1909  *
1910  * the function is used to collect contig. blocks in same state
1911  */
1912 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1913                                   unsigned long b_state)
1914 {
1915         struct ext4_map_blocks *map = &mpd->map;
1916
1917         /* Don't go larger than mballoc is willing to allocate */
1918         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1919                 return 0;
1920
1921         /* First block in the extent? */
1922         if (map->m_len == 0) {
1923                 map->m_lblk = lblk;
1924                 map->m_len = 1;
1925                 map->m_flags = b_state & BH_FLAGS;
1926                 return 1;
1927         }
1928
1929         /* Can we merge the block to our big extent? */
1930         if (lblk == map->m_lblk + map->m_len &&
1931             (b_state & BH_FLAGS) == map->m_flags) {
1932                 map->m_len++;
1933                 return 1;
1934         }
1935         return 0;
1936 }
1937
1938 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1939                                     struct buffer_head *head,
1940                                     struct buffer_head *bh,
1941                                     ext4_lblk_t lblk)
1942 {
1943         struct inode *inode = mpd->inode;
1944         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1945                                                         >> inode->i_blkbits;
1946
1947         do {
1948                 BUG_ON(buffer_locked(bh));
1949
1950                 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1951                     (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1952                     lblk >= blocks) {
1953                         /* Found extent to map? */
1954                         if (mpd->map.m_len)
1955                                 return false;
1956                         if (lblk >= blocks)
1957                                 return true;
1958                         continue;
1959                 }
1960                 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1961                         return false;
1962         } while (lblk++, (bh = bh->b_this_page) != head);
1963         return true;
1964 }
1965
1966 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1967 {
1968         int len;
1969         loff_t size = i_size_read(mpd->inode);
1970         int err;
1971
1972         BUG_ON(page->index != mpd->first_page);
1973         if (page->index == size >> PAGE_CACHE_SHIFT)
1974                 len = size & ~PAGE_CACHE_MASK;
1975         else
1976                 len = PAGE_CACHE_SIZE;
1977         clear_page_dirty_for_io(page);
1978         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1979         if (!err)
1980                 mpd->wbc->nr_to_write--;
1981         mpd->first_page++;
1982
1983         return err;
1984 }
1985
1986 /*
1987  * mpage_map_buffers - update buffers corresponding to changed extent and
1988  *                     submit fully mapped pages for IO
1989  *
1990  * @mpd - description of extent to map, on return next extent to map
1991  *
1992  * Scan buffers corresponding to changed extent (we expect corresponding pages
1993  * to be already locked) and update buffer state according to new extent state.
1994  * We map delalloc buffers to their physical location, clear unwritten bits,
1995  * and mark buffers as uninit when we perform writes to uninitialized extents
1996  * and do extent conversion after IO is finished. If the last page is not fully
1997  * mapped, we update @map to the next extent in the last page that needs
1998  * mapping. Otherwise we submit the page for IO.
1999  */
2000 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2001 {
2002         struct pagevec pvec;
2003         int nr_pages, i;
2004         struct inode *inode = mpd->inode;
2005         struct buffer_head *head, *bh;
2006         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2007         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2008                                                         >> inode->i_blkbits;
2009         pgoff_t start, end;
2010         ext4_lblk_t lblk;
2011         sector_t pblock;
2012         int err;
2013
2014         start = mpd->map.m_lblk >> bpp_bits;
2015         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2016         lblk = start << bpp_bits;
2017         pblock = mpd->map.m_pblk;
2018
2019         pagevec_init(&pvec, 0);
2020         while (start <= end) {
2021                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2022                                           PAGEVEC_SIZE);
2023                 if (nr_pages == 0)
2024                         break;
2025                 for (i = 0; i < nr_pages; i++) {
2026                         struct page *page = pvec.pages[i];
2027
2028                         if (page->index > end)
2029                                 break;
2030                         /* Upto 'end' pages must be contiguous */
2031                         BUG_ON(page->index != start);
2032                         bh = head = page_buffers(page);
2033                         do {
2034                                 if (lblk < mpd->map.m_lblk)
2035                                         continue;
2036                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2037                                         /*
2038                                          * Buffer after end of mapped extent.
2039                                          * Find next buffer in the page to map.
2040                                          */
2041                                         mpd->map.m_len = 0;
2042                                         mpd->map.m_flags = 0;
2043                                         add_page_bufs_to_extent(mpd, head, bh,
2044                                                                 lblk);
2045                                         pagevec_release(&pvec);
2046                                         return 0;
2047                                 }
2048                                 if (buffer_delay(bh)) {
2049                                         clear_buffer_delay(bh);
2050                                         bh->b_blocknr = pblock++;
2051                                 }
2052                                 clear_buffer_unwritten(bh);
2053                         } while (++lblk < blocks &&
2054                                  (bh = bh->b_this_page) != head);
2055
2056                         /*
2057                          * FIXME: This is going to break if dioread_nolock
2058                          * supports blocksize < pagesize as we will try to
2059                          * convert potentially unmapped parts of inode.
2060                          */
2061                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062                         /* Page fully mapped - let IO run! */
2063                         err = mpage_submit_page(mpd, page);
2064                         if (err < 0) {
2065                                 pagevec_release(&pvec);
2066                                 return err;
2067                         }
2068                         start++;
2069                 }
2070                 pagevec_release(&pvec);
2071         }
2072         /* Extent fully mapped and matches with page boundary. We are done. */
2073         mpd->map.m_len = 0;
2074         mpd->map.m_flags = 0;
2075         return 0;
2076 }
2077
2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079 {
2080         struct inode *inode = mpd->inode;
2081         struct ext4_map_blocks *map = &mpd->map;
2082         int get_blocks_flags;
2083         int err;
2084
2085         trace_ext4_da_write_pages_extent(inode, map);
2086         /*
2087          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088          * to convert an uninitialized extent to be initialized (in the case
2089          * where we have written into one or more preallocated blocks).  It is
2090          * possible that we're going to need more metadata blocks than
2091          * previously reserved. However we must not fail because we're in
2092          * writeback and there is nothing we can do about it so it might result
2093          * in data loss.  So use reserved blocks to allocate metadata if
2094          * possible.
2095          *
2096          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2097          * in question are delalloc blocks.  This affects functions in many
2098          * different parts of the allocation call path.  This flag exists
2099          * primarily because we don't want to change *many* call functions, so
2100          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2101          * once the inode's allocation semaphore is taken.
2102          */
2103         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2104                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2105         if (ext4_should_dioread_nolock(inode))
2106                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2107         if (map->m_flags & (1 << BH_Delay))
2108                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109
2110         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2111         if (err < 0)
2112                 return err;
2113         if (map->m_flags & EXT4_MAP_UNINIT) {
2114                 if (!mpd->io_submit.io_end->handle &&
2115                     ext4_handle_valid(handle)) {
2116                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2117                         handle->h_rsv_handle = NULL;
2118                 }
2119                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2120         }
2121
2122         BUG_ON(map->m_len == 0);
2123         if (map->m_flags & EXT4_MAP_NEW) {
2124                 struct block_device *bdev = inode->i_sb->s_bdev;
2125                 int i;
2126
2127                 for (i = 0; i < map->m_len; i++)
2128                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2129         }
2130         return 0;
2131 }
2132
2133 /*
2134  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2135  *                               mpd->len and submit pages underlying it for IO
2136  *
2137  * @handle - handle for journal operations
2138  * @mpd - extent to map
2139  *
2140  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2141  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2142  * them to initialized or split the described range from larger unwritten
2143  * extent. Note that we need not map all the described range since allocation
2144  * can return less blocks or the range is covered by more unwritten extents. We
2145  * cannot map more because we are limited by reserved transaction credits. On
2146  * the other hand we always make sure that the last touched page is fully
2147  * mapped so that it can be written out (and thus forward progress is
2148  * guaranteed). After mapping we submit all mapped pages for IO.
2149  */
2150 static int mpage_map_and_submit_extent(handle_t *handle,
2151                                        struct mpage_da_data *mpd)
2152 {
2153         struct inode *inode = mpd->inode;
2154         struct ext4_map_blocks *map = &mpd->map;
2155         int err;
2156         loff_t disksize;
2157
2158         mpd->io_submit.io_end->offset =
2159                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2160         while (map->m_len) {
2161                 err = mpage_map_one_extent(handle, mpd);
2162                 if (err < 0) {
2163                         struct super_block *sb = inode->i_sb;
2164
2165                         /*
2166                          * Need to commit transaction to free blocks. Let upper
2167                          * layers sort it out.
2168                          */
2169                         if (err == -ENOSPC && ext4_count_free_clusters(sb))
2170                                 return -ENOSPC;
2171
2172                         if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2173                                 ext4_msg(sb, KERN_CRIT,
2174                                          "Delayed block allocation failed for "
2175                                          "inode %lu at logical offset %llu with"
2176                                          " max blocks %u with error %d",
2177                                          inode->i_ino,
2178                                          (unsigned long long)map->m_lblk,
2179                                          (unsigned)map->m_len, err);
2180                                 ext4_msg(sb, KERN_CRIT,
2181                                          "This should not happen!! Data will "
2182                                          "be lost\n");
2183                                 if (err == -ENOSPC)
2184                                         ext4_print_free_blocks(inode);
2185                         }
2186                         /* invalidate all the pages */
2187                         mpage_release_unused_pages(mpd, true);
2188                         return err;
2189                 }
2190                 /*
2191                  * Update buffer state, submit mapped pages, and get us new
2192                  * extent to map
2193                  */
2194                 err = mpage_map_and_submit_buffers(mpd);
2195                 if (err < 0)
2196                         return err;
2197         }
2198
2199         /* Update on-disk size after IO is submitted */
2200         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2201         if (disksize > i_size_read(inode))
2202                 disksize = i_size_read(inode);
2203         if (disksize > EXT4_I(inode)->i_disksize) {
2204                 int err2;
2205
2206                 ext4_update_i_disksize(inode, disksize);
2207                 err2 = ext4_mark_inode_dirty(handle, inode);
2208                 if (err2)
2209                         ext4_error(inode->i_sb,
2210                                    "Failed to mark inode %lu dirty",
2211                                    inode->i_ino);
2212                 if (!err)
2213                         err = err2;
2214         }
2215         return err;
2216 }
2217
2218 /*
2219  * Calculate the total number of credits to reserve for one writepages
2220  * iteration. This is called from ext4_writepages(). We map an extent of
2221  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2222  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2223  * bpp - 1 blocks in bpp different extents.
2224  */
2225 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2226 {
2227         int bpp = ext4_journal_blocks_per_page(inode);
2228
2229         return ext4_meta_trans_blocks(inode,
2230                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2231 }
2232
2233 /*
2234  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2235  *                               and underlying extent to map
2236  *
2237  * @mpd - where to look for pages
2238  *
2239  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2240  * IO immediately. When we find a page which isn't mapped we start accumulating
2241  * extent of buffers underlying these pages that needs mapping (formed by
2242  * either delayed or unwritten buffers). We also lock the pages containing
2243  * these buffers. The extent found is returned in @mpd structure (starting at
2244  * mpd->lblk with length mpd->len blocks).
2245  *
2246  * Note that this function can attach bios to one io_end structure which are
2247  * neither logically nor physically contiguous. Although it may seem as an
2248  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2249  * case as we need to track IO to all buffers underlying a page in one io_end.
2250  */
2251 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2252 {
2253         struct address_space *mapping = mpd->inode->i_mapping;
2254         struct pagevec pvec;
2255         unsigned int nr_pages;
2256         pgoff_t index = mpd->first_page;
2257         pgoff_t end = mpd->last_page;
2258         int tag;
2259         int i, err = 0;
2260         int blkbits = mpd->inode->i_blkbits;
2261         ext4_lblk_t lblk;
2262         struct buffer_head *head;
2263
2264         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2265                 tag = PAGECACHE_TAG_TOWRITE;
2266         else
2267                 tag = PAGECACHE_TAG_DIRTY;
2268
2269         pagevec_init(&pvec, 0);
2270         mpd->map.m_len = 0;
2271         mpd->next_page = index;
2272         while (index <= end) {
2273                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2274                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2275                 if (nr_pages == 0)
2276                         goto out;
2277
2278                 for (i = 0; i < nr_pages; i++) {
2279                         struct page *page = pvec.pages[i];
2280
2281                         /*
2282                          * At this point, the page may be truncated or
2283                          * invalidated (changing page->mapping to NULL), or
2284                          * even swizzled back from swapper_space to tmpfs file
2285                          * mapping. However, page->index will not change
2286                          * because we have a reference on the page.
2287                          */
2288                         if (page->index > end)
2289                                 goto out;
2290
2291                         /* If we can't merge this page, we are done. */
2292                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2293                                 goto out;
2294
2295                         lock_page(page);
2296                         /*
2297                          * If the page is no longer dirty, or its mapping no
2298                          * longer corresponds to inode we are writing (which
2299                          * means it has been truncated or invalidated), or the
2300                          * page is already under writeback and we are not doing
2301                          * a data integrity writeback, skip the page
2302                          */
2303                         if (!PageDirty(page) ||
2304                             (PageWriteback(page) &&
2305                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2306                             unlikely(page->mapping != mapping)) {
2307                                 unlock_page(page);
2308                                 continue;
2309                         }
2310
2311                         wait_on_page_writeback(page);
2312                         BUG_ON(PageWriteback(page));
2313
2314                         if (mpd->map.m_len == 0)
2315                                 mpd->first_page = page->index;
2316                         mpd->next_page = page->index + 1;
2317                         /* Add all dirty buffers to mpd */
2318                         lblk = ((ext4_lblk_t)page->index) <<
2319                                 (PAGE_CACHE_SHIFT - blkbits);
2320                         head = page_buffers(page);
2321                         if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2322                                 goto out;
2323                         /* So far everything mapped? Submit the page for IO. */
2324                         if (mpd->map.m_len == 0) {
2325                                 err = mpage_submit_page(mpd, page);
2326                                 if (err < 0)
2327                                         goto out;
2328                         }
2329
2330                         /*
2331                          * Accumulated enough dirty pages? This doesn't apply
2332                          * to WB_SYNC_ALL mode. For integrity sync we have to
2333                          * keep going because someone may be concurrently
2334                          * dirtying pages, and we might have synced a lot of
2335                          * newly appeared dirty pages, but have not synced all
2336                          * of the old dirty pages.
2337                          */
2338                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2339                             mpd->next_page - mpd->first_page >=
2340                                                         mpd->wbc->nr_to_write)
2341                                 goto out;
2342                 }
2343                 pagevec_release(&pvec);
2344                 cond_resched();
2345         }
2346         return 0;
2347 out:
2348         pagevec_release(&pvec);
2349         return err;
2350 }
2351
2352 static int __writepage(struct page *page, struct writeback_control *wbc,
2353                        void *data)
2354 {
2355         struct address_space *mapping = data;
2356         int ret = ext4_writepage(page, wbc);
2357         mapping_set_error(mapping, ret);
2358         return ret;
2359 }
2360
2361 static int ext4_writepages(struct address_space *mapping,
2362                            struct writeback_control *wbc)
2363 {
2364         pgoff_t writeback_index = 0;
2365         long nr_to_write = wbc->nr_to_write;
2366         int range_whole = 0;
2367         int cycled = 1;
2368         handle_t *handle = NULL;
2369         struct mpage_da_data mpd;
2370         struct inode *inode = mapping->host;
2371         int needed_blocks, rsv_blocks = 0, ret = 0;
2372         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2373         bool done;
2374         struct blk_plug plug;
2375
2376         trace_ext4_writepages(inode, wbc);
2377
2378         /*
2379          * No pages to write? This is mainly a kludge to avoid starting
2380          * a transaction for special inodes like journal inode on last iput()
2381          * because that could violate lock ordering on umount
2382          */
2383         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2384                 return 0;
2385
2386         if (ext4_should_journal_data(inode)) {
2387                 struct blk_plug plug;
2388                 int ret;
2389
2390                 blk_start_plug(&plug);
2391                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2392                 blk_finish_plug(&plug);
2393                 return ret;
2394         }
2395
2396         /*
2397          * If the filesystem has aborted, it is read-only, so return
2398          * right away instead of dumping stack traces later on that
2399          * will obscure the real source of the problem.  We test
2400          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2401          * the latter could be true if the filesystem is mounted
2402          * read-only, and in that case, ext4_writepages should
2403          * *never* be called, so if that ever happens, we would want
2404          * the stack trace.
2405          */
2406         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2407                 return -EROFS;
2408
2409         if (ext4_should_dioread_nolock(inode)) {
2410                 /*
2411                  * We may need to convert upto one extent per block in
2412                  * the page and we may dirty the inode.
2413                  */
2414                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2415         }
2416
2417         /*
2418          * If we have inline data and arrive here, it means that
2419          * we will soon create the block for the 1st page, so
2420          * we'd better clear the inline data here.
2421          */
2422         if (ext4_has_inline_data(inode)) {
2423                 /* Just inode will be modified... */
2424                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2425                 if (IS_ERR(handle)) {
2426                         ret = PTR_ERR(handle);
2427                         goto out_writepages;
2428                 }
2429                 BUG_ON(ext4_test_inode_state(inode,
2430                                 EXT4_STATE_MAY_INLINE_DATA));
2431                 ext4_destroy_inline_data(handle, inode);
2432                 ext4_journal_stop(handle);
2433         }
2434
2435         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2436                 range_whole = 1;
2437
2438         if (wbc->range_cyclic) {
2439                 writeback_index = mapping->writeback_index;
2440                 if (writeback_index)
2441                         cycled = 0;
2442                 mpd.first_page = writeback_index;
2443                 mpd.last_page = -1;
2444         } else {
2445                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2446                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2447         }
2448
2449         mpd.inode = inode;
2450         mpd.wbc = wbc;
2451         ext4_io_submit_init(&mpd.io_submit, wbc);
2452 retry:
2453         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2454                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2455         done = false;
2456         blk_start_plug(&plug);
2457         while (!done && mpd.first_page <= mpd.last_page) {
2458                 /* For each extent of pages we use new io_end */
2459                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2460                 if (!mpd.io_submit.io_end) {
2461                         ret = -ENOMEM;
2462                         break;
2463                 }
2464
2465                 /*
2466                  * We have two constraints: We find one extent to map and we
2467                  * must always write out whole page (makes a difference when
2468                  * blocksize < pagesize) so that we don't block on IO when we
2469                  * try to write out the rest of the page. Journalled mode is
2470                  * not supported by delalloc.
2471                  */
2472                 BUG_ON(ext4_should_journal_data(inode));
2473                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2474
2475                 /* start a new transaction */
2476                 handle = ext4_journal_start_with_reserve(inode,
2477                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2478                 if (IS_ERR(handle)) {
2479                         ret = PTR_ERR(handle);
2480                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2481                                "%ld pages, ino %lu; err %d", __func__,
2482                                 wbc->nr_to_write, inode->i_ino, ret);
2483                         /* Release allocated io_end */
2484                         ext4_put_io_end(mpd.io_submit.io_end);
2485                         break;
2486                 }
2487
2488                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2489                 ret = mpage_prepare_extent_to_map(&mpd);
2490                 if (!ret) {
2491                         if (mpd.map.m_len)
2492                                 ret = mpage_map_and_submit_extent(handle, &mpd);
2493                         else {
2494                                 /*
2495                                  * We scanned the whole range (or exhausted
2496                                  * nr_to_write), submitted what was mapped and
2497                                  * didn't find anything needing mapping. We are
2498                                  * done.
2499                                  */
2500                                 done = true;
2501                         }
2502                 }
2503                 ext4_journal_stop(handle);
2504                 /* Submit prepared bio */
2505                 ext4_io_submit(&mpd.io_submit);
2506                 /* Unlock pages we didn't use */
2507                 mpage_release_unused_pages(&mpd, false);
2508                 /* Drop our io_end reference we got from init */
2509                 ext4_put_io_end(mpd.io_submit.io_end);
2510
2511                 if (ret == -ENOSPC && sbi->s_journal) {
2512                         /*
2513                          * Commit the transaction which would
2514                          * free blocks released in the transaction
2515                          * and try again
2516                          */
2517                         jbd2_journal_force_commit_nested(sbi->s_journal);
2518                         ret = 0;
2519                         continue;
2520                 }
2521                 /* Fatal error - ENOMEM, EIO... */
2522                 if (ret)
2523                         break;
2524         }
2525         blk_finish_plug(&plug);
2526         if (!ret && !cycled) {
2527                 cycled = 1;
2528                 mpd.last_page = writeback_index - 1;
2529                 mpd.first_page = 0;
2530                 goto retry;
2531         }
2532
2533         /* Update index */
2534         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2535                 /*
2536                  * Set the writeback_index so that range_cyclic
2537                  * mode will write it back later
2538                  */
2539                 mapping->writeback_index = mpd.first_page;
2540
2541 out_writepages:
2542         trace_ext4_writepages_result(inode, wbc, ret,
2543                                      nr_to_write - wbc->nr_to_write);
2544         return ret;
2545 }
2546
2547 static int ext4_nonda_switch(struct super_block *sb)
2548 {
2549         s64 free_clusters, dirty_clusters;
2550         struct ext4_sb_info *sbi = EXT4_SB(sb);
2551
2552         /*
2553          * switch to non delalloc mode if we are running low
2554          * on free block. The free block accounting via percpu
2555          * counters can get slightly wrong with percpu_counter_batch getting
2556          * accumulated on each CPU without updating global counters
2557          * Delalloc need an accurate free block accounting. So switch
2558          * to non delalloc when we are near to error range.
2559          */
2560         free_clusters =
2561                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2562         dirty_clusters =
2563                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2564         /*
2565          * Start pushing delalloc when 1/2 of free blocks are dirty.
2566          */
2567         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2568                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2569
2570         if (2 * free_clusters < 3 * dirty_clusters ||
2571             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2572                 /*
2573                  * free block count is less than 150% of dirty blocks
2574                  * or free blocks is less than watermark
2575                  */
2576                 return 1;
2577         }
2578         return 0;
2579 }
2580
2581 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2582                                loff_t pos, unsigned len, unsigned flags,
2583                                struct page **pagep, void **fsdata)
2584 {
2585         int ret, retries = 0;
2586         struct page *page;
2587         pgoff_t index;
2588         struct inode *inode = mapping->host;
2589         handle_t *handle;
2590
2591         index = pos >> PAGE_CACHE_SHIFT;
2592
2593         if (ext4_nonda_switch(inode->i_sb)) {
2594                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2595                 return ext4_write_begin(file, mapping, pos,
2596                                         len, flags, pagep, fsdata);
2597         }
2598         *fsdata = (void *)0;
2599         trace_ext4_da_write_begin(inode, pos, len, flags);
2600
2601         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2602                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2603                                                       pos, len, flags,
2604                                                       pagep, fsdata);
2605                 if (ret < 0)
2606                         return ret;
2607                 if (ret == 1)
2608                         return 0;
2609         }
2610
2611         /*
2612          * grab_cache_page_write_begin() can take a long time if the
2613          * system is thrashing due to memory pressure, or if the page
2614          * is being written back.  So grab it first before we start
2615          * the transaction handle.  This also allows us to allocate
2616          * the page (if needed) without using GFP_NOFS.
2617          */
2618 retry_grab:
2619         page = grab_cache_page_write_begin(mapping, index, flags);
2620         if (!page)
2621                 return -ENOMEM;
2622         unlock_page(page);
2623
2624         /*
2625          * With delayed allocation, we don't log the i_disksize update
2626          * if there is delayed block allocation. But we still need
2627          * to journalling the i_disksize update if writes to the end
2628          * of file which has an already mapped buffer.
2629          */
2630 retry_journal:
2631         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2632         if (IS_ERR(handle)) {
2633                 page_cache_release(page);
2634                 return PTR_ERR(handle);
2635         }
2636
2637         lock_page(page);
2638         if (page->mapping != mapping) {
2639                 /* The page got truncated from under us */
2640                 unlock_page(page);
2641                 page_cache_release(page);
2642                 ext4_journal_stop(handle);
2643                 goto retry_grab;
2644         }
2645         /* In case writeback began while the page was unlocked */
2646         wait_on_page_writeback(page);
2647
2648         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2649         if (ret < 0) {
2650                 unlock_page(page);
2651                 ext4_journal_stop(handle);
2652                 /*
2653                  * block_write_begin may have instantiated a few blocks
2654                  * outside i_size.  Trim these off again. Don't need
2655                  * i_size_read because we hold i_mutex.
2656                  */
2657                 if (pos + len > inode->i_size)
2658                         ext4_truncate_failed_write(inode);
2659
2660                 if (ret == -ENOSPC &&
2661                     ext4_should_retry_alloc(inode->i_sb, &retries))
2662                         goto retry_journal;
2663
2664                 page_cache_release(page);
2665                 return ret;
2666         }
2667
2668         *pagep = page;
2669         return ret;
2670 }
2671
2672 /*
2673  * Check if we should update i_disksize
2674  * when write to the end of file but not require block allocation
2675  */
2676 static int ext4_da_should_update_i_disksize(struct page *page,
2677                                             unsigned long offset)
2678 {
2679         struct buffer_head *bh;
2680         struct inode *inode = page->mapping->host;
2681         unsigned int idx;
2682         int i;
2683
2684         bh = page_buffers(page);
2685         idx = offset >> inode->i_blkbits;
2686
2687         for (i = 0; i < idx; i++)
2688                 bh = bh->b_this_page;
2689
2690         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2691                 return 0;
2692         return 1;
2693 }
2694
2695 static int ext4_da_write_end(struct file *file,
2696                              struct address_space *mapping,
2697                              loff_t pos, unsigned len, unsigned copied,
2698                              struct page *page, void *fsdata)
2699 {
2700         struct inode *inode = mapping->host;
2701         int ret = 0, ret2;
2702         handle_t *handle = ext4_journal_current_handle();
2703         loff_t new_i_size;
2704         unsigned long start, end;
2705         int write_mode = (int)(unsigned long)fsdata;
2706
2707         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2708                 return ext4_write_end(file, mapping, pos,
2709                                       len, copied, page, fsdata);
2710
2711         trace_ext4_da_write_end(inode, pos, len, copied);
2712         start = pos & (PAGE_CACHE_SIZE - 1);
2713         end = start + copied - 1;
2714
2715         /*
2716          * generic_write_end() will run mark_inode_dirty() if i_size
2717          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2718          * into that.
2719          */
2720         new_i_size = pos + copied;
2721         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2722                 if (ext4_has_inline_data(inode) ||
2723                     ext4_da_should_update_i_disksize(page, end)) {
2724                         down_write(&EXT4_I(inode)->i_data_sem);
2725                         if (new_i_size > EXT4_I(inode)->i_disksize)
2726                                 EXT4_I(inode)->i_disksize = new_i_size;
2727                         up_write(&EXT4_I(inode)->i_data_sem);
2728                         /* We need to mark inode dirty even if
2729                          * new_i_size is less that inode->i_size
2730                          * bu greater than i_disksize.(hint delalloc)
2731                          */
2732                         ext4_mark_inode_dirty(handle, inode);
2733                 }
2734         }
2735
2736         if (write_mode != CONVERT_INLINE_DATA &&
2737             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2738             ext4_has_inline_data(inode))
2739                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2740                                                      page);
2741         else
2742                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2743                                                         page, fsdata);
2744
2745         copied = ret2;
2746         if (ret2 < 0)
2747                 ret = ret2;
2748         ret2 = ext4_journal_stop(handle);
2749         if (!ret)
2750                 ret = ret2;
2751
2752         return ret ? ret : copied;
2753 }
2754
2755 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2756                                    unsigned int length)
2757 {
2758         /*
2759          * Drop reserved blocks
2760          */
2761         BUG_ON(!PageLocked(page));
2762         if (!page_has_buffers(page))
2763                 goto out;
2764
2765         ext4_da_page_release_reservation(page, offset, length);
2766
2767 out:
2768         ext4_invalidatepage(page, offset, length);
2769
2770         return;
2771 }
2772
2773 /*
2774  * Force all delayed allocation blocks to be allocated for a given inode.
2775  */
2776 int ext4_alloc_da_blocks(struct inode *inode)
2777 {
2778         trace_ext4_alloc_da_blocks(inode);
2779
2780         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2781             !EXT4_I(inode)->i_reserved_meta_blocks)
2782                 return 0;
2783
2784         /*
2785          * We do something simple for now.  The filemap_flush() will
2786          * also start triggering a write of the data blocks, which is
2787          * not strictly speaking necessary (and for users of
2788          * laptop_mode, not even desirable).  However, to do otherwise
2789          * would require replicating code paths in:
2790          *
2791          * ext4_writepages() ->
2792          *    write_cache_pages() ---> (via passed in callback function)
2793          *        __mpage_da_writepage() -->
2794          *           mpage_add_bh_to_extent()
2795          *           mpage_da_map_blocks()
2796          *
2797          * The problem is that write_cache_pages(), located in
2798          * mm/page-writeback.c, marks pages clean in preparation for
2799          * doing I/O, which is not desirable if we're not planning on
2800          * doing I/O at all.
2801          *
2802          * We could call write_cache_pages(), and then redirty all of
2803          * the pages by calling redirty_page_for_writepage() but that
2804          * would be ugly in the extreme.  So instead we would need to
2805          * replicate parts of the code in the above functions,
2806          * simplifying them because we wouldn't actually intend to
2807          * write out the pages, but rather only collect contiguous
2808          * logical block extents, call the multi-block allocator, and
2809          * then update the buffer heads with the block allocations.
2810          *
2811          * For now, though, we'll cheat by calling filemap_flush(),
2812          * which will map the blocks, and start the I/O, but not
2813          * actually wait for the I/O to complete.
2814          */
2815         return filemap_flush(inode->i_mapping);
2816 }
2817
2818 /*
2819  * bmap() is special.  It gets used by applications such as lilo and by
2820  * the swapper to find the on-disk block of a specific piece of data.
2821  *
2822  * Naturally, this is dangerous if the block concerned is still in the
2823  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2824  * filesystem and enables swap, then they may get a nasty shock when the
2825  * data getting swapped to that swapfile suddenly gets overwritten by
2826  * the original zero's written out previously to the journal and
2827  * awaiting writeback in the kernel's buffer cache.
2828  *
2829  * So, if we see any bmap calls here on a modified, data-journaled file,
2830  * take extra steps to flush any blocks which might be in the cache.
2831  */
2832 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2833 {
2834         struct inode *inode = mapping->host;
2835         journal_t *journal;
2836         int err;
2837
2838         /*
2839          * We can get here for an inline file via the FIBMAP ioctl
2840          */
2841         if (ext4_has_inline_data(inode))
2842                 return 0;
2843
2844         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2845                         test_opt(inode->i_sb, DELALLOC)) {
2846                 /*
2847                  * With delalloc we want to sync the file
2848                  * so that we can make sure we allocate
2849                  * blocks for file
2850                  */
2851                 filemap_write_and_wait(mapping);
2852         }
2853
2854         if (EXT4_JOURNAL(inode) &&
2855             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2856                 /*
2857                  * This is a REALLY heavyweight approach, but the use of
2858                  * bmap on dirty files is expected to be extremely rare:
2859                  * only if we run lilo or swapon on a freshly made file
2860                  * do we expect this to happen.
2861                  *
2862                  * (bmap requires CAP_SYS_RAWIO so this does not
2863                  * represent an unprivileged user DOS attack --- we'd be
2864                  * in trouble if mortal users could trigger this path at
2865                  * will.)
2866                  *
2867                  * NB. EXT4_STATE_JDATA is not set on files other than
2868                  * regular files.  If somebody wants to bmap a directory
2869                  * or symlink and gets confused because the buffer
2870                  * hasn't yet been flushed to disk, they deserve
2871                  * everything they get.
2872                  */
2873
2874                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2875                 journal = EXT4_JOURNAL(inode);
2876                 jbd2_journal_lock_updates(journal);
2877                 err = jbd2_journal_flush(journal);
2878                 jbd2_journal_unlock_updates(journal);
2879
2880                 if (err)
2881                         return 0;
2882         }
2883
2884         return generic_block_bmap(mapping, block, ext4_get_block);
2885 }
2886
2887 static int ext4_readpage(struct file *file, struct page *page)
2888 {
2889         int ret = -EAGAIN;
2890         struct inode *inode = page->mapping->host;
2891
2892         trace_ext4_readpage(page);
2893
2894         if (ext4_has_inline_data(inode))
2895                 ret = ext4_readpage_inline(inode, page);
2896
2897         if (ret == -EAGAIN)
2898                 return mpage_readpage(page, ext4_get_block);
2899
2900         return ret;
2901 }
2902
2903 static int
2904 ext4_readpages(struct file *file, struct address_space *mapping,
2905                 struct list_head *pages, unsigned nr_pages)
2906 {
2907         struct inode *inode = mapping->host;
2908
2909         /* If the file has inline data, no need to do readpages. */
2910         if (ext4_has_inline_data(inode))
2911                 return 0;
2912
2913         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2914 }
2915
2916 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2917                                 unsigned int length)
2918 {
2919         trace_ext4_invalidatepage(page, offset, length);
2920
2921         /* No journalling happens on data buffers when this function is used */
2922         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2923
2924         block_invalidatepage(page, offset, length);
2925 }
2926
2927 static int __ext4_journalled_invalidatepage(struct page *page,
2928                                             unsigned int offset,
2929                                             unsigned int length)
2930 {
2931         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2932
2933         trace_ext4_journalled_invalidatepage(page, offset, length);
2934
2935         /*
2936          * If it's a full truncate we just forget about the pending dirtying
2937          */
2938         if (offset == 0 && length == PAGE_CACHE_SIZE)
2939                 ClearPageChecked(page);
2940
2941         return jbd2_journal_invalidatepage(journal, page, offset, length);
2942 }
2943
2944 /* Wrapper for aops... */
2945 static void ext4_journalled_invalidatepage(struct page *page,
2946                                            unsigned int offset,
2947                                            unsigned int length)
2948 {
2949         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2950 }
2951
2952 static int ext4_releasepage(struct page *page, gfp_t wait)
2953 {
2954         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2955
2956         trace_ext4_releasepage(page);
2957
2958         /* Page has dirty journalled data -> cannot release */
2959         if (PageChecked(page))
2960                 return 0;
2961         if (journal)
2962                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2963         else
2964                 return try_to_free_buffers(page);
2965 }
2966
2967 /*
2968  * ext4_get_block used when preparing for a DIO write or buffer write.
2969  * We allocate an uinitialized extent if blocks haven't been allocated.
2970  * The extent will be converted to initialized after the IO is complete.
2971  */
2972 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2973                    struct buffer_head *bh_result, int create)
2974 {
2975         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2976                    inode->i_ino, create);
2977         return _ext4_get_block(inode, iblock, bh_result,
2978                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2979 }
2980
2981 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2982                    struct buffer_head *bh_result, int create)
2983 {
2984         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2985                    inode->i_ino, create);
2986         return _ext4_get_block(inode, iblock, bh_result,
2987                                EXT4_GET_BLOCKS_NO_LOCK);
2988 }
2989
2990 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2991                             ssize_t size, void *private, int ret,
2992                             bool is_async)
2993 {
2994         struct inode *inode = file_inode(iocb->ki_filp);
2995         ext4_io_end_t *io_end = iocb->private;
2996
2997         /* if not async direct IO just return */
2998         if (!io_end) {
2999                 inode_dio_done(inode);
3000                 if (is_async)
3001                         aio_complete(iocb, ret, 0);
3002                 return;
3003         }
3004
3005         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3006                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3007                   iocb->private, io_end->inode->i_ino, iocb, offset,
3008                   size);
3009
3010         iocb->private = NULL;
3011         io_end->offset = offset;
3012         io_end->size = size;
3013         if (is_async) {
3014                 io_end->iocb = iocb;
3015                 io_end->result = ret;
3016         }
3017         ext4_put_io_end_defer(io_end);
3018 }
3019
3020 /*
3021  * For ext4 extent files, ext4 will do direct-io write to holes,
3022  * preallocated extents, and those write extend the file, no need to
3023  * fall back to buffered IO.
3024  *
3025  * For holes, we fallocate those blocks, mark them as uninitialized
3026  * If those blocks were preallocated, we mark sure they are split, but
3027  * still keep the range to write as uninitialized.
3028  *
3029  * The unwritten extents will be converted to written when DIO is completed.
3030  * For async direct IO, since the IO may still pending when return, we
3031  * set up an end_io call back function, which will do the conversion
3032  * when async direct IO completed.
3033  *
3034  * If the O_DIRECT write will extend the file then add this inode to the
3035  * orphan list.  So recovery will truncate it back to the original size
3036  * if the machine crashes during the write.
3037  *
3038  */
3039 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3040                               const struct iovec *iov, loff_t offset,
3041                               unsigned long nr_segs)
3042 {
3043         struct file *file = iocb->ki_filp;
3044         struct inode *inode = file->f_mapping->host;
3045         ssize_t ret;
3046         size_t count = iov_length(iov, nr_segs);
3047         int overwrite = 0;
3048         get_block_t *get_block_func = NULL;
3049         int dio_flags = 0;
3050         loff_t final_size = offset + count;
3051         ext4_io_end_t *io_end = NULL;
3052
3053         /* Use the old path for reads and writes beyond i_size. */
3054         if (rw != WRITE || final_size > inode->i_size)
3055                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3056
3057         BUG_ON(iocb->private == NULL);
3058
3059         /*
3060          * Make all waiters for direct IO properly wait also for extent
3061          * conversion. This also disallows race between truncate() and
3062          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3063          */
3064         if (rw == WRITE)
3065                 atomic_inc(&inode->i_dio_count);
3066
3067         /* If we do a overwrite dio, i_mutex locking can be released */
3068         overwrite = *((int *)iocb->private);
3069
3070         if (overwrite) {
3071                 down_read(&EXT4_I(inode)->i_data_sem);
3072                 mutex_unlock(&inode->i_mutex);
3073         }
3074
3075         /*
3076          * We could direct write to holes and fallocate.
3077          *
3078          * Allocated blocks to fill the hole are marked as
3079          * uninitialized to prevent parallel buffered read to expose
3080          * the stale data before DIO complete the data IO.
3081          *
3082          * As to previously fallocated extents, ext4 get_block will
3083          * just simply mark the buffer mapped but still keep the
3084          * extents uninitialized.
3085          *
3086          * For non AIO case, we will convert those unwritten extents
3087          * to written after return back from blockdev_direct_IO.
3088          *
3089          * For async DIO, the conversion needs to be deferred when the
3090          * IO is completed. The ext4 end_io callback function will be
3091          * called to take care of the conversion work.  Here for async
3092          * case, we allocate an io_end structure to hook to the iocb.
3093          */
3094         iocb->private = NULL;
3095         ext4_inode_aio_set(inode, NULL);
3096         if (!is_sync_kiocb(iocb)) {
3097                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3098                 if (!io_end) {
3099                         ret = -ENOMEM;
3100                         goto retake_lock;
3101                 }
3102                 io_end->flag |= EXT4_IO_END_DIRECT;
3103                 /*
3104                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3105                  */
3106                 iocb->private = ext4_get_io_end(io_end);
3107                 /*
3108                  * we save the io structure for current async direct
3109                  * IO, so that later ext4_map_blocks() could flag the
3110                  * io structure whether there is a unwritten extents
3111                  * needs to be converted when IO is completed.
3112                  */
3113                 ext4_inode_aio_set(inode, io_end);
3114         }
3115
3116         if (overwrite) {
3117                 get_block_func = ext4_get_block_write_nolock;
3118         } else {
3119                 get_block_func = ext4_get_block_write;
3120                 dio_flags = DIO_LOCKING;
3121         }
3122         ret = __blockdev_direct_IO(rw, iocb, inode,
3123                                    inode->i_sb->s_bdev, iov,
3124                                    offset, nr_segs,
3125                                    get_block_func,
3126                                    ext4_end_io_dio,
3127                                    NULL,
3128                                    dio_flags);
3129
3130         /*
3131          * Put our reference to io_end. This can free the io_end structure e.g.
3132          * in sync IO case or in case of error. It can even perform extent
3133          * conversion if all bios we submitted finished before we got here.
3134          * Note that in that case iocb->private can be already set to NULL
3135          * here.
3136          */
3137         if (io_end) {
3138                 ext4_inode_aio_set(inode, NULL);
3139                 ext4_put_io_end(io_end);
3140                 /*
3141                  * When no IO was submitted ext4_end_io_dio() was not
3142                  * called so we have to put iocb's reference.
3143                  */
3144                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3145                         WARN_ON(iocb->private != io_end);
3146                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3147                         WARN_ON(io_end->iocb);
3148                         /*
3149                          * Generic code already did inode_dio_done() so we
3150                          * have to clear EXT4_IO_END_DIRECT to not do it for
3151                          * the second time.
3152                          */
3153                         io_end->flag = 0;
3154                         ext4_put_io_end(io_end);
3155                         iocb->private = NULL;
3156                 }
3157         }
3158         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3159                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3160                 int err;
3161                 /*
3162                  * for non AIO case, since the IO is already
3163                  * completed, we could do the conversion right here
3164                  */
3165                 err = ext4_convert_unwritten_extents(NULL, inode,
3166                                                      offset, ret);
3167                 if (err < 0)
3168                         ret = err;
3169                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3170         }
3171
3172 retake_lock:
3173         if (rw == WRITE)
3174                 inode_dio_done(inode);
3175         /* take i_mutex locking again if we do a ovewrite dio */
3176         if (overwrite) {
3177                 up_read(&EXT4_I(inode)->i_data_sem);
3178                 mutex_lock(&inode->i_mutex);
3179         }
3180
3181         return ret;
3182 }
3183
3184 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3185                               const struct iovec *iov, loff_t offset,
3186                               unsigned long nr_segs)
3187 {
3188         struct file *file = iocb->ki_filp;
3189         struct inode *inode = file->f_mapping->host;
3190         ssize_t ret;
3191
3192         /*
3193          * If we are doing data journalling we don't support O_DIRECT
3194          */
3195         if (ext4_should_journal_data(inode))
3196                 return 0;
3197
3198         /* Let buffer I/O handle the inline data case. */
3199         if (ext4_has_inline_data(inode))
3200                 return 0;
3201
3202         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3203         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3204                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3205         else
3206                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3207         trace_ext4_direct_IO_exit(inode, offset,
3208                                 iov_length(iov, nr_segs), rw, ret);
3209         return ret;
3210 }
3211
3212 /*
3213  * Pages can be marked dirty completely asynchronously from ext4's journalling
3214  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3215  * much here because ->set_page_dirty is called under VFS locks.  The page is
3216  * not necessarily locked.
3217  *
3218  * We cannot just dirty the page and leave attached buffers clean, because the
3219  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3220  * or jbddirty because all the journalling code will explode.
3221  *
3222  * So what we do is to mark the page "pending dirty" and next time writepage
3223  * is called, propagate that into the buffers appropriately.
3224  */
3225 static int ext4_journalled_set_page_dirty(struct page *page)
3226 {
3227         SetPageChecked(page);
3228         return __set_page_dirty_nobuffers(page);
3229 }
3230
3231 static const struct address_space_operations ext4_aops = {
3232         .readpage               = ext4_readpage,
3233         .readpages              = ext4_readpages,
3234         .writepage              = ext4_writepage,
3235         .writepages             = ext4_writepages,
3236         .write_begin            = ext4_write_begin,
3237         .write_end              = ext4_write_end,
3238         .bmap                   = ext4_bmap,
3239         .invalidatepage         = ext4_invalidatepage,
3240         .releasepage            = ext4_releasepage,
3241         .direct_IO              = ext4_direct_IO,
3242         .migratepage            = buffer_migrate_page,
3243         .is_partially_uptodate  = block_is_partially_uptodate,
3244         .error_remove_page      = generic_error_remove_page,
3245 };
3246
3247 static const struct address_space_operations ext4_journalled_aops = {
3248         .readpage               = ext4_readpage,
3249         .readpages              = ext4_readpages,
3250         .writepage              = ext4_writepage,
3251         .writepages             = ext4_writepages,
3252         .write_begin            = ext4_write_begin,
3253         .write_end              = ext4_journalled_write_end,
3254         .set_page_dirty         = ext4_journalled_set_page_dirty,
3255         .bmap                   = ext4_bmap,
3256         .invalidatepage         = ext4_journalled_invalidatepage,
3257         .releasepage            = ext4_releasepage,
3258         .direct_IO              = ext4_direct_IO,
3259         .is_partially_uptodate  = block_is_partially_uptodate,
3260         .error_remove_page      = generic_error_remove_page,
3261 };
3262
3263 static const struct address_space_operations ext4_da_aops = {
3264         .readpage               = ext4_readpage,
3265         .readpages              = ext4_readpages,
3266         .writepage              = ext4_writepage,
3267         .writepages             = ext4_writepages,
3268         .write_begin            = ext4_da_write_begin,
3269         .write_end              = ext4_da_write_end,
3270         .bmap                   = ext4_bmap,
3271         .invalidatepage         = ext4_da_invalidatepage,
3272         .releasepage            = ext4_releasepage,
3273         .direct_IO              = ext4_direct_IO,
3274         .migratepage            = buffer_migrate_page,
3275         .is_partially_uptodate  = block_is_partially_uptodate,
3276         .error_remove_page      = generic_error_remove_page,
3277 };
3278
3279 void ext4_set_aops(struct inode *inode)
3280 {
3281         switch (ext4_inode_journal_mode(inode)) {
3282         case EXT4_INODE_ORDERED_DATA_MODE:
3283                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3284                 break;
3285         case EXT4_INODE_WRITEBACK_DATA_MODE:
3286                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3287                 break;
3288         case EXT4_INODE_JOURNAL_DATA_MODE:
3289                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3290                 return;
3291         default:
3292                 BUG();
3293         }
3294         if (test_opt(inode->i_sb, DELALLOC))
3295                 inode->i_mapping->a_ops = &ext4_da_aops;
3296         else
3297                 inode->i_mapping->a_ops = &ext4_aops;
3298 }
3299
3300 /*
3301  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3302  * up to the end of the block which corresponds to `from'.
3303  * This required during truncate. We need to physically zero the tail end
3304  * of that block so it doesn't yield old data if the file is later grown.
3305  */
3306 int ext4_block_truncate_page(handle_t *handle,
3307                 struct address_space *mapping, loff_t from)
3308 {
3309         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3310         unsigned length;
3311         unsigned blocksize;
3312         struct inode *inode = mapping->host;
3313
3314         blocksize = inode->i_sb->s_blocksize;
3315         length = blocksize - (offset & (blocksize - 1));
3316
3317         return ext4_block_zero_page_range(handle, mapping, from, length);
3318 }
3319
3320 /*
3321  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3322  * starting from file offset 'from'.  The range to be zero'd must
3323  * be contained with in one block.  If the specified range exceeds
3324  * the end of the block it will be shortened to end of the block
3325  * that cooresponds to 'from'
3326  */
3327 int ext4_block_zero_page_range(handle_t *handle,
3328                 struct address_space *mapping, loff_t from, loff_t length)
3329 {
3330         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3331         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3332         unsigned blocksize, max, pos;
3333         ext4_lblk_t iblock;
3334         struct inode *inode = mapping->host;
3335         struct buffer_head *bh;
3336         struct page *page;
3337         int err = 0;
3338
3339         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3340                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3341         if (!page)
3342                 return -ENOMEM;
3343
3344         blocksize = inode->i_sb->s_blocksize;
3345         max = blocksize - (offset & (blocksize - 1));
3346
3347         /*
3348          * correct length if it does not fall between
3349          * 'from' and the end of the block
3350          */
3351         if (length > max || length < 0)
3352                 length = max;
3353
3354         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3355
3356         if (!page_has_buffers(page))
3357                 create_empty_buffers(page, blocksize, 0);
3358
3359         /* Find the buffer that contains "offset" */
3360         bh = page_buffers(page);
3361         pos = blocksize;
3362         while (offset >= pos) {
3363                 bh = bh->b_this_page;
3364                 iblock++;
3365                 pos += blocksize;
3366         }
3367
3368         err = 0;
3369         if (buffer_freed(bh)) {
3370                 BUFFER_TRACE(bh, "freed: skip");
3371                 goto unlock;
3372         }
3373
3374         if (!buffer_mapped(bh)) {
3375                 BUFFER_TRACE(bh, "unmapped");
3376                 ext4_get_block(inode, iblock, bh, 0);
3377                 /* unmapped? It's a hole - nothing to do */
3378                 if (!buffer_mapped(bh)) {
3379                         BUFFER_TRACE(bh, "still unmapped");
3380                         goto unlock;
3381                 }
3382         }
3383
3384         /* Ok, it's mapped. Make sure it's up-to-date */
3385         if (PageUptodate(page))
3386                 set_buffer_uptodate(bh);
3387
3388         if (!buffer_uptodate(bh)) {
3389                 err = -EIO;
3390                 ll_rw_block(READ, 1, &bh);
3391                 wait_on_buffer(bh);
3392                 /* Uhhuh. Read error. Complain and punt. */
3393                 if (!buffer_uptodate(bh))
3394                         goto unlock;
3395         }
3396
3397         if (ext4_should_journal_data(inode)) {
3398                 BUFFER_TRACE(bh, "get write access");
3399                 err = ext4_journal_get_write_access(handle, bh);
3400                 if (err)
3401                         goto unlock;
3402         }
3403
3404         zero_user(page, offset, length);
3405
3406         BUFFER_TRACE(bh, "zeroed end of block");
3407
3408         err = 0;
3409         if (ext4_should_journal_data(inode)) {
3410                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3411         } else {
3412                 mark_buffer_dirty(bh);
3413                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414                         err = ext4_jbd2_file_inode(handle, inode);
3415         }
3416
3417 unlock:
3418         unlock_page(page);
3419         page_cache_release(page);
3420         return err;
3421 }
3422
3423 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3424                              loff_t lstart, loff_t length)
3425 {
3426         struct super_block *sb = inode->i_sb;
3427         struct address_space *mapping = inode->i_mapping;
3428         unsigned partial = lstart & (sb->s_blocksize - 1);
3429         ext4_fsblk_t start, end;
3430         loff_t byte_end = (lstart + length - 1);
3431         int err = 0;
3432
3433         start = lstart >> sb->s_blocksize_bits;
3434         end = byte_end >> sb->s_blocksize_bits;
3435
3436         /* Handle partial zero within the single block */
3437         if (start == end) {
3438                 err = ext4_block_zero_page_range(handle, mapping,
3439                                                  lstart, length);
3440                 return err;
3441         }
3442         /* Handle partial zero out on the start of the range */
3443         if (partial) {
3444                 err = ext4_block_zero_page_range(handle, mapping,
3445                                                  lstart, sb->s_blocksize);
3446                 if (err)
3447                         return err;
3448         }
3449         /* Handle partial zero out on the end of the range */
3450         partial = byte_end & (sb->s_blocksize - 1);
3451         if (partial != sb->s_blocksize - 1)
3452                 err = ext4_block_zero_page_range(handle, mapping,
3453                                                  byte_end - partial,
3454                                                  partial + 1);
3455         return err;
3456 }
3457
3458 int ext4_can_truncate(struct inode *inode)
3459 {
3460         if (S_ISREG(inode->i_mode))
3461                 return 1;
3462         if (S_ISDIR(inode->i_mode))
3463                 return 1;
3464         if (S_ISLNK(inode->i_mode))
3465                 return !ext4_inode_is_fast_symlink(inode);
3466         return 0;
3467 }
3468
3469 /*
3470  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471  * associated with the given offset and length
3472  *
3473  * @inode:  File inode
3474  * @offset: The offset where the hole will begin
3475  * @len:    The length of the hole
3476  *
3477  * Returns: 0 on success or negative on failure
3478  */
3479
3480 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3481 {
3482         struct inode *inode = file_inode(file);
3483         struct super_block *sb = inode->i_sb;
3484         ext4_lblk_t first_block, stop_block;
3485         struct address_space *mapping = inode->i_mapping;
3486         loff_t first_block_offset, last_block_offset;
3487         handle_t *handle;
3488         unsigned int credits;
3489         int ret = 0;
3490
3491         if (!S_ISREG(inode->i_mode))
3492                 return -EOPNOTSUPP;
3493
3494         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3495                 /* TODO: Add support for bigalloc file systems */
3496                 return -EOPNOTSUPP;
3497         }
3498
3499         trace_ext4_punch_hole(inode, offset, length);
3500
3501         /*
3502          * Write out all dirty pages to avoid race conditions
3503          * Then release them.
3504          */
3505         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3506                 ret = filemap_write_and_wait_range(mapping, offset,
3507                                                    offset + length - 1);
3508                 if (ret)
3509                         return ret;
3510         }
3511
3512         mutex_lock(&inode->i_mutex);
3513         /* It's not possible punch hole on append only file */
3514         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3515                 ret = -EPERM;
3516                 goto out_mutex;
3517         }
3518         if (IS_SWAPFILE(inode)) {
3519                 ret = -ETXTBSY;
3520                 goto out_mutex;
3521         }
3522
3523         /* No need to punch hole beyond i_size */
3524         if (offset >= inode->i_size)
3525                 goto out_mutex;
3526
3527         /*
3528          * If the hole extends beyond i_size, set the hole
3529          * to end after the page that contains i_size
3530          */
3531         if (offset + length > inode->i_size) {
3532                 length = inode->i_size +
3533                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3534                    offset;
3535         }
3536
3537         first_block_offset = round_up(offset, sb->s_blocksize);
3538         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3539
3540         /* Now release the pages and zero block aligned part of pages*/
3541         if (last_block_offset > first_block_offset)
3542                 truncate_pagecache_range(inode, first_block_offset,
3543                                          last_block_offset);
3544
3545         /* Wait all existing dio workers, newcomers will block on i_mutex */
3546         ext4_inode_block_unlocked_dio(inode);
3547         inode_dio_wait(inode);
3548
3549         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3550                 credits = ext4_writepage_trans_blocks(inode);
3551         else
3552                 credits = ext4_blocks_for_truncate(inode);
3553         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3554         if (IS_ERR(handle)) {
3555                 ret = PTR_ERR(handle);
3556                 ext4_std_error(sb, ret);
3557                 goto out_dio;
3558         }
3559
3560         ret = ext4_zero_partial_blocks(handle, inode, offset,
3561                                        length);
3562         if (ret)
3563                 goto out_stop;
3564
3565         first_block = (offset + sb->s_blocksize - 1) >>
3566                 EXT4_BLOCK_SIZE_BITS(sb);
3567         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3568
3569         /* If there are no blocks to remove, return now */
3570         if (first_block >= stop_block)
3571                 goto out_stop;
3572
3573         down_write(&EXT4_I(inode)->i_data_sem);
3574         ext4_discard_preallocations(inode);
3575
3576         ret = ext4_es_remove_extent(inode, first_block,
3577                                     stop_block - first_block);
3578         if (ret) {
3579                 up_write(&EXT4_I(inode)->i_data_sem);
3580                 goto out_stop;
3581         }
3582
3583         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584                 ret = ext4_ext_remove_space(inode, first_block,
3585                                             stop_block - 1);
3586         else
3587                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3588                                             stop_block);
3589
3590         ext4_discard_preallocations(inode);
3591         up_write(&EXT4_I(inode)->i_data_sem);
3592         if (IS_SYNC(inode))
3593                 ext4_handle_sync(handle);
3594         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3595         ext4_mark_inode_dirty(handle, inode);
3596 out_stop:
3597         ext4_journal_stop(handle);
3598 out_dio:
3599         ext4_inode_resume_unlocked_dio(inode);
3600 out_mutex:
3601         mutex_unlock(&inode->i_mutex);
3602         return ret;
3603 }
3604
3605 /*
3606  * ext4_truncate()
3607  *
3608  * We block out ext4_get_block() block instantiations across the entire
3609  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3610  * simultaneously on behalf of the same inode.
3611  *
3612  * As we work through the truncate and commit bits of it to the journal there
3613  * is one core, guiding principle: the file's tree must always be consistent on
3614  * disk.  We must be able to restart the truncate after a crash.
3615  *
3616  * The file's tree may be transiently inconsistent in memory (although it
3617  * probably isn't), but whenever we close off and commit a journal transaction,
3618  * the contents of (the filesystem + the journal) must be consistent and
3619  * restartable.  It's pretty simple, really: bottom up, right to left (although
3620  * left-to-right works OK too).
3621  *
3622  * Note that at recovery time, journal replay occurs *before* the restart of
3623  * truncate against the orphan inode list.
3624  *
3625  * The committed inode has the new, desired i_size (which is the same as
3626  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3627  * that this inode's truncate did not complete and it will again call
3628  * ext4_truncate() to have another go.  So there will be instantiated blocks
3629  * to the right of the truncation point in a crashed ext4 filesystem.  But
3630  * that's fine - as long as they are linked from the inode, the post-crash
3631  * ext4_truncate() run will find them and release them.
3632  */
3633 void ext4_truncate(struct inode *inode)
3634 {
3635         struct ext4_inode_info *ei = EXT4_I(inode);
3636         unsigned int credits;
3637         handle_t *handle;
3638         struct address_space *mapping = inode->i_mapping;
3639
3640         /*
3641          * There is a possibility that we're either freeing the inode
3642          * or it completely new indode. In those cases we might not
3643          * have i_mutex locked because it's not necessary.
3644          */
3645         if (!(inode->i_state & (I_NEW|I_FREEING)))
3646                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3647         trace_ext4_truncate_enter(inode);
3648
3649         if (!ext4_can_truncate(inode))
3650                 return;
3651
3652         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3653
3654         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3655                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3656
3657         if (ext4_has_inline_data(inode)) {
3658                 int has_inline = 1;
3659
3660                 ext4_inline_data_truncate(inode, &has_inline);
3661                 if (has_inline)
3662                         return;
3663         }
3664
3665         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3666                 credits = ext4_writepage_trans_blocks(inode);
3667         else
3668                 credits = ext4_blocks_for_truncate(inode);
3669
3670         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3671         if (IS_ERR(handle)) {
3672                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3673                 return;
3674         }
3675
3676         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3677                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3678
3679         /*
3680          * We add the inode to the orphan list, so that if this
3681          * truncate spans multiple transactions, and we crash, we will
3682          * resume the truncate when the filesystem recovers.  It also
3683          * marks the inode dirty, to catch the new size.
3684          *
3685          * Implication: the file must always be in a sane, consistent
3686          * truncatable state while each transaction commits.
3687          */
3688         if (ext4_orphan_add(handle, inode))
3689                 goto out_stop;
3690
3691         down_write(&EXT4_I(inode)->i_data_sem);
3692
3693         ext4_discard_preallocations(inode);
3694
3695         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3696                 ext4_ext_truncate(handle, inode);
3697         else
3698                 ext4_ind_truncate(handle, inode);
3699
3700         up_write(&ei->i_data_sem);
3701
3702         if (IS_SYNC(inode))
3703                 ext4_handle_sync(handle);
3704
3705 out_stop:
3706         /*
3707          * If this was a simple ftruncate() and the file will remain alive,
3708          * then we need to clear up the orphan record which we created above.
3709          * However, if this was a real unlink then we were called by
3710          * ext4_delete_inode(), and we allow that function to clean up the
3711          * orphan info for us.
3712          */
3713         if (inode->i_nlink)
3714                 ext4_orphan_del(handle, inode);
3715
3716         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3717         ext4_mark_inode_dirty(handle, inode);
3718         ext4_journal_stop(handle);
3719
3720         trace_ext4_truncate_exit(inode);
3721 }
3722
3723 /*
3724  * ext4_get_inode_loc returns with an extra refcount against the inode's
3725  * underlying buffer_head on success. If 'in_mem' is true, we have all
3726  * data in memory that is needed to recreate the on-disk version of this
3727  * inode.
3728  */
3729 static int __ext4_get_inode_loc(struct inode *inode,
3730                                 struct ext4_iloc *iloc, int in_mem)
3731 {
3732         struct ext4_group_desc  *gdp;
3733         struct buffer_head      *bh;
3734         struct super_block      *sb = inode->i_sb;
3735         ext4_fsblk_t            block;
3736         int                     inodes_per_block, inode_offset;
3737
3738         iloc->bh = NULL;
3739         if (!ext4_valid_inum(sb, inode->i_ino))
3740                 return -EIO;
3741
3742         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3743         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3744         if (!gdp)
3745                 return -EIO;
3746
3747         /*
3748          * Figure out the offset within the block group inode table
3749          */
3750         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3751         inode_offset = ((inode->i_ino - 1) %
3752                         EXT4_INODES_PER_GROUP(sb));
3753         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3754         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3755
3756         bh = sb_getblk(sb, block);
3757         if (unlikely(!bh))
3758                 return -ENOMEM;
3759         if (!buffer_uptodate(bh)) {
3760                 lock_buffer(bh);
3761
3762                 /*
3763                  * If the buffer has the write error flag, we have failed
3764                  * to write out another inode in the same block.  In this
3765                  * case, we don't have to read the block because we may
3766                  * read the old inode data successfully.
3767                  */
3768                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3769                         set_buffer_uptodate(bh);
3770
3771                 if (buffer_uptodate(bh)) {
3772                         /* someone brought it uptodate while we waited */
3773                         unlock_buffer(bh);
3774                         goto has_buffer;
3775                 }
3776
3777                 /*
3778                  * If we have all information of the inode in memory and this
3779                  * is the only valid inode in the block, we need not read the
3780                  * block.
3781                  */
3782                 if (in_mem) {
3783                         struct buffer_head *bitmap_bh;
3784                         int i, start;
3785
3786                         start = inode_offset & ~(inodes_per_block - 1);
3787
3788                         /* Is the inode bitmap in cache? */
3789                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3790                         if (unlikely(!bitmap_bh))
3791                                 goto make_io;
3792
3793                         /*
3794                          * If the inode bitmap isn't in cache then the
3795                          * optimisation may end up performing two reads instead
3796                          * of one, so skip it.
3797                          */
3798                         if (!buffer_uptodate(bitmap_bh)) {
3799                                 brelse(bitmap_bh);
3800                                 goto make_io;
3801                         }
3802                         for (i = start; i < start + inodes_per_block; i++) {
3803                                 if (i == inode_offset)
3804                                         continue;
3805                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3806                                         break;
3807                         }
3808                         brelse(bitmap_bh);
3809                         if (i == start + inodes_per_block) {
3810                                 /* all other inodes are free, so skip I/O */
3811                                 memset(bh->b_data, 0, bh->b_size);
3812                                 set_buffer_uptodate(bh);
3813                                 unlock_buffer(bh);
3814                                 goto has_buffer;
3815                         }
3816                 }
3817
3818 make_io:
3819                 /*
3820                  * If we need to do any I/O, try to pre-readahead extra
3821                  * blocks from the inode table.
3822                  */
3823                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3824                         ext4_fsblk_t b, end, table;
3825                         unsigned num;
3826                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3827
3828                         table = ext4_inode_table(sb, gdp);
3829                         /* s_inode_readahead_blks is always a power of 2 */
3830                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3831                         if (table > b)
3832                                 b = table;
3833                         end = b + ra_blks;
3834                         num = EXT4_INODES_PER_GROUP(sb);
3835                         if (ext4_has_group_desc_csum(sb))
3836                                 num -= ext4_itable_unused_count(sb, gdp);
3837                         table += num / inodes_per_block;
3838                         if (end > table)
3839                                 end = table;
3840                         while (b <= end)
3841                                 sb_breadahead(sb, b++);
3842                 }
3843
3844                 /*
3845                  * There are other valid inodes in the buffer, this inode
3846                  * has in-inode xattrs, or we don't have this inode in memory.
3847                  * Read the block from disk.
3848                  */
3849                 trace_ext4_load_inode(inode);
3850                 get_bh(bh);
3851                 bh->b_end_io = end_buffer_read_sync;
3852                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3853                 wait_on_buffer(bh);
3854                 if (!buffer_uptodate(bh)) {
3855                         EXT4_ERROR_INODE_BLOCK(inode, block,
3856                                                "unable to read itable block");
3857                         brelse(bh);
3858                         return -EIO;
3859                 }
3860         }
3861 has_buffer:
3862         iloc->bh = bh;
3863         return 0;
3864 }
3865
3866 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3867 {
3868         /* We have all inode data except xattrs in memory here. */
3869         return __ext4_get_inode_loc(inode, iloc,
3870                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3871 }
3872
3873 void ext4_set_inode_flags(struct inode *inode)
3874 {
3875         unsigned int flags = EXT4_I(inode)->i_flags;
3876
3877         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3878         if (flags & EXT4_SYNC_FL)
3879                 inode->i_flags |= S_SYNC;
3880         if (flags & EXT4_APPEND_FL)
3881                 inode->i_flags |= S_APPEND;
3882         if (flags & EXT4_IMMUTABLE_FL)
3883                 inode->i_flags |= S_IMMUTABLE;
3884         if (flags & EXT4_NOATIME_FL)
3885                 inode->i_flags |= S_NOATIME;
3886         if (flags & EXT4_DIRSYNC_FL)
3887                 inode->i_flags |= S_DIRSYNC;
3888 }
3889
3890 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3891 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3892 {
3893         unsigned int vfs_fl;
3894         unsigned long old_fl, new_fl;
3895
3896         do {
3897                 vfs_fl = ei->vfs_inode.i_flags;
3898                 old_fl = ei->i_flags;
3899                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3900                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3901                                 EXT4_DIRSYNC_FL);
3902                 if (vfs_fl & S_SYNC)
3903                         new_fl |= EXT4_SYNC_FL;
3904                 if (vfs_fl & S_APPEND)
3905                         new_fl |= EXT4_APPEND_FL;
3906                 if (vfs_fl & S_IMMUTABLE)
3907                         new_fl |= EXT4_IMMUTABLE_FL;
3908                 if (vfs_fl & S_NOATIME)
3909                         new_fl |= EXT4_NOATIME_FL;
3910                 if (vfs_fl & S_DIRSYNC)
3911                         new_fl |= EXT4_DIRSYNC_FL;
3912         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3913 }
3914
3915 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3916                                   struct ext4_inode_info *ei)
3917 {
3918         blkcnt_t i_blocks ;
3919         struct inode *inode = &(ei->vfs_inode);
3920         struct super_block *sb = inode->i_sb;
3921
3922         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3923                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3924                 /* we are using combined 48 bit field */
3925                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3926                                         le32_to_cpu(raw_inode->i_blocks_lo);
3927                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3928                         /* i_blocks represent file system block size */
3929                         return i_blocks  << (inode->i_blkbits - 9);
3930                 } else {
3931                         return i_blocks;
3932                 }
3933         } else {
3934                 return le32_to_cpu(raw_inode->i_blocks_lo);
3935         }
3936 }
3937
3938 static inline void ext4_iget_extra_inode(struct inode *inode,
3939                                          struct ext4_inode *raw_inode,
3940                                          struct ext4_inode_info *ei)
3941 {
3942         __le32 *magic = (void *)raw_inode +
3943                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3944         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3945                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3946                 ext4_find_inline_data_nolock(inode);
3947         } else
3948                 EXT4_I(inode)->i_inline_off = 0;
3949 }
3950
3951 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3952 {
3953         struct ext4_iloc iloc;
3954         struct ext4_inode *raw_inode;
3955         struct ext4_inode_info *ei;
3956         struct inode *inode;
3957         journal_t *journal = EXT4_SB(sb)->s_journal;
3958         long ret;
3959         int block;
3960         uid_t i_uid;
3961         gid_t i_gid;
3962
3963         inode = iget_locked(sb, ino);
3964         if (!inode)
3965                 return ERR_PTR(-ENOMEM);
3966         if (!(inode->i_state & I_NEW))
3967                 return inode;
3968
3969         ei = EXT4_I(inode);
3970         iloc.bh = NULL;
3971
3972         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3973         if (ret < 0)
3974                 goto bad_inode;
3975         raw_inode = ext4_raw_inode(&iloc);
3976
3977         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3978                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3979                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3980                     EXT4_INODE_SIZE(inode->i_sb)) {
3981                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3982                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3983                                 EXT4_INODE_SIZE(inode->i_sb));
3984                         ret = -EIO;
3985                         goto bad_inode;
3986                 }
3987         } else
3988                 ei->i_extra_isize = 0;
3989
3990         /* Precompute checksum seed for inode metadata */
3991         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3992                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3993                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3994                 __u32 csum;
3995                 __le32 inum = cpu_to_le32(inode->i_ino);
3996                 __le32 gen = raw_inode->i_generation;
3997                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3998                                    sizeof(inum));
3999                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4000                                               sizeof(gen));
4001         }
4002
4003         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4004                 EXT4_ERROR_INODE(inode, "checksum invalid");
4005                 ret = -EIO;
4006                 goto bad_inode;
4007         }
4008
4009         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4010         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4011         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4012         if (!(test_opt(inode->i_sb, NO_UID32))) {
4013                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4014                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4015         }
4016         i_uid_write(inode, i_uid);
4017         i_gid_write(inode, i_gid);
4018         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4019
4020         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4021         ei->i_inline_off = 0;
4022         ei->i_dir_start_lookup = 0;
4023         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4024         /* We now have enough fields to check if the inode was active or not.
4025          * This is needed because nfsd might try to access dead inodes
4026          * the test is that same one that e2fsck uses
4027          * NeilBrown 1999oct15
4028          */
4029         if (inode->i_nlink == 0) {
4030                 if ((inode->i_mode == 0 ||
4031                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4032                     ino != EXT4_BOOT_LOADER_INO) {
4033                         /* this inode is deleted */
4034                         ret = -ESTALE;
4035                         goto bad_inode;
4036                 }
4037                 /* The only unlinked inodes we let through here have
4038                  * valid i_mode and are being read by the orphan
4039                  * recovery code: that's fine, we're about to complete
4040                  * the process of deleting those.
4041                  * OR it is the EXT4_BOOT_LOADER_INO which is
4042                  * not initialized on a new filesystem. */
4043         }
4044         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4045         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4046         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4047         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4048                 ei->i_file_acl |=
4049                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4050         inode->i_size = ext4_isize(raw_inode);
4051         ei->i_disksize = inode->i_size;
4052 #ifdef CONFIG_QUOTA
4053         ei->i_reserved_quota = 0;
4054 #endif
4055         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4056         ei->i_block_group = iloc.block_group;
4057         ei->i_last_alloc_group = ~0;
4058         /*
4059          * NOTE! The in-memory inode i_data array is in little-endian order
4060          * even on big-endian machines: we do NOT byteswap the block numbers!
4061          */
4062         for (block = 0; block < EXT4_N_BLOCKS; block++)
4063                 ei->i_data[block] = raw_inode->i_block[block];
4064         INIT_LIST_HEAD(&ei->i_orphan);
4065
4066         /*
4067          * Set transaction id's of transactions that have to be committed
4068          * to finish f[data]sync. We set them to currently running transaction
4069          * as we cannot be sure that the inode or some of its metadata isn't
4070          * part of the transaction - the inode could have been reclaimed and
4071          * now it is reread from disk.
4072          */
4073         if (journal) {
4074                 transaction_t *transaction;
4075                 tid_t tid;
4076
4077                 read_lock(&journal->j_state_lock);
4078                 if (journal->j_running_transaction)
4079                         transaction = journal->j_running_transaction;
4080                 else
4081                         transaction = journal->j_committing_transaction;
4082                 if (transaction)
4083                         tid = transaction->t_tid;
4084                 else
4085                         tid = journal->j_commit_sequence;
4086                 read_unlock(&journal->j_state_lock);
4087                 ei->i_sync_tid = tid;
4088                 ei->i_datasync_tid = tid;
4089         }
4090
4091         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4092                 if (ei->i_extra_isize == 0) {
4093                         /* The extra space is currently unused. Use it. */
4094                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4095                                             EXT4_GOOD_OLD_INODE_SIZE;
4096                 } else {
4097                         ext4_iget_extra_inode(inode, raw_inode, ei);
4098                 }
4099         }
4100
4101         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4102         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4103         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4104         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4105
4106         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4107         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4108                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4109                         inode->i_version |=
4110                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4111         }
4112
4113         ret = 0;
4114         if (ei->i_file_acl &&
4115             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4116                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4117                                  ei->i_file_acl);
4118                 ret = -EIO;
4119                 goto bad_inode;
4120         } else if (!ext4_has_inline_data(inode)) {
4121                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4122                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4123                             (S_ISLNK(inode->i_mode) &&
4124                              !ext4_inode_is_fast_symlink(inode))))
4125                                 /* Validate extent which is part of inode */
4126                                 ret = ext4_ext_check_inode(inode);
4127                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4128                            (S_ISLNK(inode->i_mode) &&
4129                             !ext4_inode_is_fast_symlink(inode))) {
4130                         /* Validate block references which are part of inode */
4131                         ret = ext4_ind_check_inode(inode);
4132                 }
4133         }
4134         if (ret)
4135                 goto bad_inode;
4136
4137         if (S_ISREG(inode->i_mode)) {
4138                 inode->i_op = &ext4_file_inode_operations;
4139                 inode->i_fop = &ext4_file_operations;
4140                 ext4_set_aops(inode);
4141         } else if (S_ISDIR(inode->i_mode)) {
4142                 inode->i_op = &ext4_dir_inode_operations;
4143                 inode->i_fop = &ext4_dir_operations;
4144         } else if (S_ISLNK(inode->i_mode)) {
4145                 if (ext4_inode_is_fast_symlink(inode)) {
4146                         inode->i_op = &ext4_fast_symlink_inode_operations;
4147                         nd_terminate_link(ei->i_data, inode->i_size,
4148                                 sizeof(ei->i_data) - 1);
4149                 } else {
4150                         inode->i_op = &ext4_symlink_inode_operations;
4151                         ext4_set_aops(inode);
4152                 }
4153         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4154               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4155                 inode->i_op = &ext4_special_inode_operations;
4156                 if (raw_inode->i_block[0])
4157                         init_special_inode(inode, inode->i_mode,
4158                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4159                 else
4160                         init_special_inode(inode, inode->i_mode,
4161                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4162         } else if (ino == EXT4_BOOT_LOADER_INO) {
4163                 make_bad_inode(inode);
4164         } else {
4165                 ret = -EIO;
4166                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4167                 goto bad_inode;
4168         }
4169         brelse(iloc.bh);
4170         ext4_set_inode_flags(inode);
4171         unlock_new_inode(inode);
4172         return inode;
4173
4174 bad_inode:
4175         brelse(iloc.bh);
4176         iget_failed(inode);
4177         return ERR_PTR(ret);
4178 }
4179
4180 static int ext4_inode_blocks_set(handle_t *handle,
4181                                 struct ext4_inode *raw_inode,
4182                                 struct ext4_inode_info *ei)
4183 {
4184         struct inode *inode = &(ei->vfs_inode);
4185         u64 i_blocks = inode->i_blocks;
4186         struct super_block *sb = inode->i_sb;
4187
4188         if (i_blocks <= ~0U) {
4189                 /*
4190                  * i_blocks can be represented in a 32 bit variable
4191                  * as multiple of 512 bytes
4192                  */
4193                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4194                 raw_inode->i_blocks_high = 0;
4195                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4196                 return 0;
4197         }
4198         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4199                 return -EFBIG;
4200
4201         if (i_blocks <= 0xffffffffffffULL) {
4202                 /*
4203                  * i_blocks can be represented in a 48 bit variable
4204                  * as multiple of 512 bytes
4205                  */
4206                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4207                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4208                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4209         } else {
4210                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4211                 /* i_block is stored in file system block size */
4212                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4213                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4214                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4215         }
4216         return 0;
4217 }
4218
4219 /*
4220  * Post the struct inode info into an on-disk inode location in the
4221  * buffer-cache.  This gobbles the caller's reference to the
4222  * buffer_head in the inode location struct.
4223  *
4224  * The caller must have write access to iloc->bh.
4225  */
4226 static int ext4_do_update_inode(handle_t *handle,
4227                                 struct inode *inode,
4228                                 struct ext4_iloc *iloc)
4229 {
4230         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4231         struct ext4_inode_info *ei = EXT4_I(inode);
4232         struct buffer_head *bh = iloc->bh;
4233         int err = 0, rc, block;
4234         int need_datasync = 0;
4235         uid_t i_uid;
4236         gid_t i_gid;
4237
4238         /* For fields not not tracking in the in-memory inode,
4239          * initialise them to zero for new inodes. */
4240         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4241                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4242
4243         ext4_get_inode_flags(ei);
4244         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4245         i_uid = i_uid_read(inode);
4246         i_gid = i_gid_read(inode);
4247         if (!(test_opt(inode->i_sb, NO_UID32))) {
4248                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4249                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4250 /*
4251  * Fix up interoperability with old kernels. Otherwise, old inodes get
4252  * re-used with the upper 16 bits of the uid/gid intact
4253  */
4254                 if (!ei->i_dtime) {
4255                         raw_inode->i_uid_high =
4256                                 cpu_to_le16(high_16_bits(i_uid));
4257                         raw_inode->i_gid_high =
4258                                 cpu_to_le16(high_16_bits(i_gid));
4259                 } else {
4260                         raw_inode->i_uid_high = 0;
4261                         raw_inode->i_gid_high = 0;
4262                 }
4263         } else {
4264                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4265                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4266                 raw_inode->i_uid_high = 0;
4267                 raw_inode->i_gid_high = 0;
4268         }
4269         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4270
4271         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4272         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4273         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4274         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4275
4276         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4277                 goto out_brelse;
4278         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4279         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4280         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4281             cpu_to_le32(EXT4_OS_HURD))
4282                 raw_inode->i_file_acl_high =
4283                         cpu_to_le16(ei->i_file_acl >> 32);
4284         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4285         if (ei->i_disksize != ext4_isize(raw_inode)) {
4286                 ext4_isize_set(raw_inode, ei->i_disksize);
4287                 need_datasync = 1;
4288         }
4289         if (ei->i_disksize > 0x7fffffffULL) {
4290                 struct super_block *sb = inode->i_sb;
4291                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4292                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4293                                 EXT4_SB(sb)->s_es->s_rev_level ==
4294                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4295                         /* If this is the first large file
4296                          * created, add a flag to the superblock.
4297                          */
4298                         err = ext4_journal_get_write_access(handle,
4299                                         EXT4_SB(sb)->s_sbh);
4300                         if (err)
4301                                 goto out_brelse;
4302                         ext4_update_dynamic_rev(sb);
4303                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4304                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4305                         ext4_handle_sync(handle);
4306                         err = ext4_handle_dirty_super(handle, sb);
4307                 }
4308         }
4309         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4310         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4311                 if (old_valid_dev(inode->i_rdev)) {
4312                         raw_inode->i_block[0] =
4313                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4314                         raw_inode->i_block[1] = 0;
4315                 } else {
4316                         raw_inode->i_block[0] = 0;
4317                         raw_inode->i_block[1] =
4318                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4319                         raw_inode->i_block[2] = 0;
4320                 }
4321         } else if (!ext4_has_inline_data(inode)) {
4322                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4323                         raw_inode->i_block[block] = ei->i_data[block];
4324         }
4325
4326         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4327         if (ei->i_extra_isize) {
4328                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4329                         raw_inode->i_version_hi =
4330                         cpu_to_le32(inode->i_version >> 32);
4331                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4332         }
4333
4334         ext4_inode_csum_set(inode, raw_inode, ei);
4335
4336         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4337         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4338         if (!err)
4339                 err = rc;
4340         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4341
4342         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4343 out_brelse:
4344         brelse(bh);
4345         ext4_std_error(inode->i_sb, err);
4346         return err;
4347 }
4348
4349 /*
4350  * ext4_write_inode()
4351  *
4352  * We are called from a few places:
4353  *
4354  * - Within generic_file_write() for O_SYNC files.
4355  *   Here, there will be no transaction running. We wait for any running
4356  *   transaction to commit.
4357  *
4358  * - Within sys_sync(), kupdate and such.
4359  *   We wait on commit, if tol to.
4360  *
4361  * - Within prune_icache() (PF_MEMALLOC == true)
4362  *   Here we simply return.  We can't afford to block kswapd on the
4363  *   journal commit.
4364  *
4365  * In all cases it is actually safe for us to return without doing anything,
4366  * because the inode has been copied into a raw inode buffer in
4367  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4368  * knfsd.
4369  *
4370  * Note that we are absolutely dependent upon all inode dirtiers doing the
4371  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4372  * which we are interested.
4373  *
4374  * It would be a bug for them to not do this.  The code:
4375  *
4376  *      mark_inode_dirty(inode)
4377  *      stuff();
4378  *      inode->i_size = expr;
4379  *
4380  * is in error because a kswapd-driven write_inode() could occur while
4381  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4382  * will no longer be on the superblock's dirty inode list.
4383  */
4384 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4385 {
4386         int err;
4387
4388         if (current->flags & PF_MEMALLOC)
4389                 return 0;
4390
4391         if (EXT4_SB(inode->i_sb)->s_journal) {
4392                 if (ext4_journal_current_handle()) {
4393                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4394                         dump_stack();
4395                         return -EIO;
4396                 }
4397
4398                 if (wbc->sync_mode != WB_SYNC_ALL)
4399                         return 0;
4400
4401                 err = ext4_force_commit(inode->i_sb);
4402         } else {
4403                 struct ext4_iloc iloc;
4404
4405                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4406                 if (err)
4407                         return err;
4408                 if (wbc->sync_mode == WB_SYNC_ALL)
4409                         sync_dirty_buffer(iloc.bh);
4410                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4411                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4412                                          "IO error syncing inode");
4413                         err = -EIO;
4414                 }
4415                 brelse(iloc.bh);
4416         }
4417         return err;
4418 }
4419
4420 /*
4421  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4422  * buffers that are attached to a page stradding i_size and are undergoing
4423  * commit. In that case we have to wait for commit to finish and try again.
4424  */
4425 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4426 {
4427         struct page *page;
4428         unsigned offset;
4429         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4430         tid_t commit_tid = 0;
4431         int ret;
4432
4433         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4434         /*
4435          * All buffers in the last page remain valid? Then there's nothing to
4436          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4437          * blocksize case
4438          */
4439         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4440                 return;
4441         while (1) {
4442                 page = find_lock_page(inode->i_mapping,
4443                                       inode->i_size >> PAGE_CACHE_SHIFT);
4444                 if (!page)
4445                         return;
4446                 ret = __ext4_journalled_invalidatepage(page, offset,
4447                                                 PAGE_CACHE_SIZE - offset);
4448                 unlock_page(page);
4449                 page_cache_release(page);
4450                 if (ret != -EBUSY)
4451                         return;
4452                 commit_tid = 0;
4453                 read_lock(&journal->j_state_lock);
4454                 if (journal->j_committing_transaction)
4455                         commit_tid = journal->j_committing_transaction->t_tid;
4456                 read_unlock(&journal->j_state_lock);
4457                 if (commit_tid)
4458                         jbd2_log_wait_commit(journal, commit_tid);
4459         }
4460 }
4461
4462 /*
4463  * ext4_setattr()
4464  *
4465  * Called from notify_change.
4466  *
4467  * We want to trap VFS attempts to truncate the file as soon as
4468  * possible.  In particular, we want to make sure that when the VFS
4469  * shrinks i_size, we put the inode on the orphan list and modify
4470  * i_disksize immediately, so that during the subsequent flushing of
4471  * dirty pages and freeing of disk blocks, we can guarantee that any
4472  * commit will leave the blocks being flushed in an unused state on
4473  * disk.  (On recovery, the inode will get truncated and the blocks will
4474  * be freed, so we have a strong guarantee that no future commit will
4475  * leave these blocks visible to the user.)
4476  *
4477  * Another thing we have to assure is that if we are in ordered mode
4478  * and inode is still attached to the committing transaction, we must
4479  * we start writeout of all the dirty pages which are being truncated.
4480  * This way we are sure that all the data written in the previous
4481  * transaction are already on disk (truncate waits for pages under
4482  * writeback).
4483  *
4484  * Called with inode->i_mutex down.
4485  */
4486 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4487 {
4488         struct inode *inode = dentry->d_inode;
4489         int error, rc = 0;
4490         int orphan = 0;
4491         const unsigned int ia_valid = attr->ia_valid;
4492
4493         error = inode_change_ok(inode, attr);
4494         if (error)
4495                 return error;
4496
4497         if (is_quota_modification(inode, attr))
4498                 dquot_initialize(inode);
4499         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4500             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4501                 handle_t *handle;
4502
4503                 /* (user+group)*(old+new) structure, inode write (sb,
4504                  * inode block, ? - but truncate inode update has it) */
4505                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4506                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4507                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4508                 if (IS_ERR(handle)) {
4509                         error = PTR_ERR(handle);
4510                         goto err_out;
4511                 }
4512                 error = dquot_transfer(inode, attr);
4513                 if (error) {
4514                         ext4_journal_stop(handle);
4515                         return error;
4516                 }
4517                 /* Update corresponding info in inode so that everything is in
4518                  * one transaction */
4519                 if (attr->ia_valid & ATTR_UID)
4520                         inode->i_uid = attr->ia_uid;
4521                 if (attr->ia_valid & ATTR_GID)
4522                         inode->i_gid = attr->ia_gid;
4523                 error = ext4_mark_inode_dirty(handle, inode);
4524                 ext4_journal_stop(handle);
4525         }
4526
4527         if (attr->ia_valid & ATTR_SIZE) {
4528
4529                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4530                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4531
4532                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4533                                 return -EFBIG;
4534                 }
4535         }
4536
4537         if (S_ISREG(inode->i_mode) &&
4538             attr->ia_valid & ATTR_SIZE &&
4539             (attr->ia_size < inode->i_size)) {
4540                 handle_t *handle;
4541
4542                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4543                 if (IS_ERR(handle)) {
4544                         error = PTR_ERR(handle);
4545                         goto err_out;
4546                 }
4547                 if (ext4_handle_valid(handle)) {
4548                         error = ext4_orphan_add(handle, inode);
4549                         orphan = 1;
4550                 }
4551                 EXT4_I(inode)->i_disksize = attr->ia_size;
4552                 rc = ext4_mark_inode_dirty(handle, inode);
4553                 if (!error)
4554                         error = rc;
4555                 ext4_journal_stop(handle);
4556
4557                 if (ext4_should_order_data(inode)) {
4558                         error = ext4_begin_ordered_truncate(inode,
4559                                                             attr->ia_size);
4560                         if (error) {
4561                                 /* Do as much error cleanup as possible */
4562                                 handle = ext4_journal_start(inode,
4563                                                             EXT4_HT_INODE, 3);
4564                                 if (IS_ERR(handle)) {
4565                                         ext4_orphan_del(NULL, inode);
4566                                         goto err_out;
4567                                 }
4568                                 ext4_orphan_del(handle, inode);
4569                                 orphan = 0;
4570                                 ext4_journal_stop(handle);
4571                                 goto err_out;
4572                         }
4573                 }
4574         }
4575
4576         if (attr->ia_valid & ATTR_SIZE) {
4577                 if (attr->ia_size != inode->i_size) {
4578                         loff_t oldsize = inode->i_size;
4579
4580                         i_size_write(inode, attr->ia_size);
4581                         /*
4582                          * Blocks are going to be removed from the inode. Wait
4583                          * for dio in flight.  Temporarily disable
4584                          * dioread_nolock to prevent livelock.
4585                          */
4586                         if (orphan) {
4587                                 if (!ext4_should_journal_data(inode)) {
4588                                         ext4_inode_block_unlocked_dio(inode);
4589                                         inode_dio_wait(inode);
4590                                         ext4_inode_resume_unlocked_dio(inode);
4591                                 } else
4592                                         ext4_wait_for_tail_page_commit(inode);
4593                         }
4594                         /*
4595                          * Truncate pagecache after we've waited for commit
4596                          * in data=journal mode to make pages freeable.
4597                          */
4598                         truncate_pagecache(inode, oldsize, inode->i_size);
4599                 }
4600                 ext4_truncate(inode);
4601         }
4602
4603         if (!rc) {
4604                 setattr_copy(inode, attr);
4605                 mark_inode_dirty(inode);
4606         }
4607
4608         /*
4609          * If the call to ext4_truncate failed to get a transaction handle at
4610          * all, we need to clean up the in-core orphan list manually.
4611          */
4612         if (orphan && inode->i_nlink)
4613                 ext4_orphan_del(NULL, inode);
4614
4615         if (!rc && (ia_valid & ATTR_MODE))
4616                 rc = ext4_acl_chmod(inode);
4617
4618 err_out:
4619         ext4_std_error(inode->i_sb, error);
4620         if (!error)
4621                 error = rc;
4622         return error;
4623 }
4624
4625 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4626                  struct kstat *stat)
4627 {
4628         struct inode *inode;
4629         unsigned long long delalloc_blocks;
4630
4631         inode = dentry->d_inode;
4632         generic_fillattr(inode, stat);
4633
4634         /*
4635          * We can't update i_blocks if the block allocation is delayed
4636          * otherwise in the case of system crash before the real block
4637          * allocation is done, we will have i_blocks inconsistent with
4638          * on-disk file blocks.
4639          * We always keep i_blocks updated together with real
4640          * allocation. But to not confuse with user, stat
4641          * will return the blocks that include the delayed allocation
4642          * blocks for this file.
4643          */
4644         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4645                                 EXT4_I(inode)->i_reserved_data_blocks);
4646
4647         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4648         return 0;
4649 }
4650
4651 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4652                                    int pextents)
4653 {
4654         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4655                 return ext4_ind_trans_blocks(inode, lblocks);
4656         return ext4_ext_index_trans_blocks(inode, pextents);
4657 }
4658
4659 /*
4660  * Account for index blocks, block groups bitmaps and block group
4661  * descriptor blocks if modify datablocks and index blocks
4662  * worse case, the indexs blocks spread over different block groups
4663  *
4664  * If datablocks are discontiguous, they are possible to spread over
4665  * different block groups too. If they are contiguous, with flexbg,
4666  * they could still across block group boundary.
4667  *
4668  * Also account for superblock, inode, quota and xattr blocks
4669  */
4670 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4671                                   int pextents)
4672 {
4673         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4674         int gdpblocks;
4675         int idxblocks;
4676         int ret = 0;
4677
4678         /*
4679          * How many index blocks need to touch to map @lblocks logical blocks
4680          * to @pextents physical extents?
4681          */
4682         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4683
4684         ret = idxblocks;
4685
4686         /*
4687          * Now let's see how many group bitmaps and group descriptors need
4688          * to account
4689          */
4690         groups = idxblocks + pextents;
4691         gdpblocks = groups;
4692         if (groups > ngroups)
4693                 groups = ngroups;
4694         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4695                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4696
4697         /* bitmaps and block group descriptor blocks */
4698         ret += groups + gdpblocks;
4699
4700         /* Blocks for super block, inode, quota and xattr blocks */
4701         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4702
4703         return ret;
4704 }
4705
4706 /*
4707  * Calculate the total number of credits to reserve to fit
4708  * the modification of a single pages into a single transaction,
4709  * which may include multiple chunks of block allocations.
4710  *
4711  * This could be called via ext4_write_begin()
4712  *
4713  * We need to consider the worse case, when
4714  * one new block per extent.
4715  */
4716 int ext4_writepage_trans_blocks(struct inode *inode)
4717 {
4718         int bpp = ext4_journal_blocks_per_page(inode);
4719         int ret;
4720
4721         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4722
4723         /* Account for data blocks for journalled mode */
4724         if (ext4_should_journal_data(inode))
4725                 ret += bpp;
4726         return ret;
4727 }
4728
4729 /*
4730  * Calculate the journal credits for a chunk of data modification.
4731  *
4732  * This is called from DIO, fallocate or whoever calling
4733  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4734  *
4735  * journal buffers for data blocks are not included here, as DIO
4736  * and fallocate do no need to journal data buffers.
4737  */
4738 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4739 {
4740         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4741 }
4742
4743 /*
4744  * The caller must have previously called ext4_reserve_inode_write().
4745  * Give this, we know that the caller already has write access to iloc->bh.
4746  */
4747 int ext4_mark_iloc_dirty(handle_t *handle,
4748                          struct inode *inode, struct ext4_iloc *iloc)
4749 {
4750         int err = 0;
4751
4752         if (IS_I_VERSION(inode))
4753                 inode_inc_iversion(inode);
4754
4755         /* the do_update_inode consumes one bh->b_count */
4756         get_bh(iloc->bh);
4757
4758         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4759         err = ext4_do_update_inode(handle, inode, iloc);
4760         put_bh(iloc->bh);
4761         return err;
4762 }
4763
4764 /*
4765  * On success, We end up with an outstanding reference count against
4766  * iloc->bh.  This _must_ be cleaned up later.
4767  */
4768
4769 int
4770 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4771                          struct ext4_iloc *iloc)
4772 {
4773         int err;
4774
4775         err = ext4_get_inode_loc(inode, iloc);
4776         if (!err) {
4777                 BUFFER_TRACE(iloc->bh, "get_write_access");
4778                 err = ext4_journal_get_write_access(handle, iloc->bh);
4779                 if (err) {
4780                         brelse(iloc->bh);
4781                         iloc->bh = NULL;
4782                 }
4783         }
4784         ext4_std_error(inode->i_sb, err);
4785         return err;
4786 }
4787
4788 /*
4789  * Expand an inode by new_extra_isize bytes.
4790  * Returns 0 on success or negative error number on failure.
4791  */
4792 static int ext4_expand_extra_isize(struct inode *inode,
4793                                    unsigned int new_extra_isize,
4794                                    struct ext4_iloc iloc,
4795                                    handle_t *handle)
4796 {
4797         struct ext4_inode *raw_inode;
4798         struct ext4_xattr_ibody_header *header;
4799
4800         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4801                 return 0;
4802
4803         raw_inode = ext4_raw_inode(&iloc);
4804
4805         header = IHDR(inode, raw_inode);
4806
4807         /* No extended attributes present */
4808         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4809             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4810                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4811                         new_extra_isize);
4812                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4813                 return 0;
4814         }
4815
4816         /* try to expand with EAs present */
4817         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4818                                           raw_inode, handle);
4819 }
4820
4821 /*
4822  * What we do here is to mark the in-core inode as clean with respect to inode
4823  * dirtiness (it may still be data-dirty).
4824  * This means that the in-core inode may be reaped by prune_icache
4825  * without having to perform any I/O.  This is a very good thing,
4826  * because *any* task may call prune_icache - even ones which
4827  * have a transaction open against a different journal.
4828  *
4829  * Is this cheating?  Not really.  Sure, we haven't written the
4830  * inode out, but prune_icache isn't a user-visible syncing function.
4831  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4832  * we start and wait on commits.
4833  */
4834 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4835 {
4836         struct ext4_iloc iloc;
4837         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4838         static unsigned int mnt_count;
4839         int err, ret;
4840
4841         might_sleep();
4842         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4843         err = ext4_reserve_inode_write(handle, inode, &iloc);
4844         if (ext4_handle_valid(handle) &&
4845             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4846             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4847                 /*
4848                  * We need extra buffer credits since we may write into EA block
4849                  * with this same handle. If journal_extend fails, then it will
4850                  * only result in a minor loss of functionality for that inode.
4851                  * If this is felt to be critical, then e2fsck should be run to
4852                  * force a large enough s_min_extra_isize.
4853                  */
4854                 if ((jbd2_journal_extend(handle,
4855                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4856                         ret = ext4_expand_extra_isize(inode,
4857                                                       sbi->s_want_extra_isize,
4858                                                       iloc, handle);
4859                         if (ret) {
4860                                 ext4_set_inode_state(inode,
4861                                                      EXT4_STATE_NO_EXPAND);
4862                                 if (mnt_count !=
4863                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4864                                         ext4_warning(inode->i_sb,
4865                                         "Unable to expand inode %lu. Delete"
4866                                         " some EAs or run e2fsck.",
4867                                         inode->i_ino);
4868                                         mnt_count =
4869                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4870                                 }
4871                         }
4872                 }
4873         }
4874         if (!err)
4875                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4876         return err;
4877 }
4878
4879 /*
4880  * ext4_dirty_inode() is called from __mark_inode_dirty()
4881  *
4882  * We're really interested in the case where a file is being extended.
4883  * i_size has been changed by generic_commit_write() and we thus need
4884  * to include the updated inode in the current transaction.
4885  *
4886  * Also, dquot_alloc_block() will always dirty the inode when blocks
4887  * are allocated to the file.
4888  *
4889  * If the inode is marked synchronous, we don't honour that here - doing
4890  * so would cause a commit on atime updates, which we don't bother doing.
4891  * We handle synchronous inodes at the highest possible level.
4892  */
4893 void ext4_dirty_inode(struct inode *inode, int flags)
4894 {
4895         handle_t *handle;
4896
4897         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4898         if (IS_ERR(handle))
4899                 goto out;
4900
4901         ext4_mark_inode_dirty(handle, inode);
4902
4903         ext4_journal_stop(handle);
4904 out:
4905         return;
4906 }
4907
4908 #if 0
4909 /*
4910  * Bind an inode's backing buffer_head into this transaction, to prevent
4911  * it from being flushed to disk early.  Unlike
4912  * ext4_reserve_inode_write, this leaves behind no bh reference and
4913  * returns no iloc structure, so the caller needs to repeat the iloc
4914  * lookup to mark the inode dirty later.
4915  */
4916 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4917 {
4918         struct ext4_iloc iloc;
4919
4920         int err = 0;
4921         if (handle) {
4922                 err = ext4_get_inode_loc(inode, &iloc);
4923                 if (!err) {
4924                         BUFFER_TRACE(iloc.bh, "get_write_access");
4925                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4926                         if (!err)
4927                                 err = ext4_handle_dirty_metadata(handle,
4928                                                                  NULL,
4929                                                                  iloc.bh);
4930                         brelse(iloc.bh);
4931                 }
4932         }
4933         ext4_std_error(inode->i_sb, err);
4934         return err;
4935 }
4936 #endif
4937
4938 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4939 {
4940         journal_t *journal;
4941         handle_t *handle;
4942         int err;
4943
4944         /*
4945          * We have to be very careful here: changing a data block's
4946          * journaling status dynamically is dangerous.  If we write a
4947          * data block to the journal, change the status and then delete
4948          * that block, we risk forgetting to revoke the old log record
4949          * from the journal and so a subsequent replay can corrupt data.
4950          * So, first we make sure that the journal is empty and that
4951          * nobody is changing anything.
4952          */
4953
4954         journal = EXT4_JOURNAL(inode);
4955         if (!journal)
4956                 return 0;
4957         if (is_journal_aborted(journal))
4958                 return -EROFS;
4959         /* We have to allocate physical blocks for delalloc blocks
4960          * before flushing journal. otherwise delalloc blocks can not
4961          * be allocated any more. even more truncate on delalloc blocks
4962          * could trigger BUG by flushing delalloc blocks in journal.
4963          * There is no delalloc block in non-journal data mode.
4964          */
4965         if (val && test_opt(inode->i_sb, DELALLOC)) {
4966                 err = ext4_alloc_da_blocks(inode);
4967                 if (err < 0)
4968                         return err;
4969         }
4970
4971         /* Wait for all existing dio workers */
4972         ext4_inode_block_unlocked_dio(inode);
4973         inode_dio_wait(inode);
4974
4975         jbd2_journal_lock_updates(journal);
4976
4977         /*
4978          * OK, there are no updates running now, and all cached data is
4979          * synced to disk.  We are now in a completely consistent state
4980          * which doesn't have anything in the journal, and we know that
4981          * no filesystem updates are running, so it is safe to modify
4982          * the inode's in-core data-journaling state flag now.
4983          */
4984
4985         if (val)
4986                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4987         else {
4988                 jbd2_journal_flush(journal);
4989                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4990         }
4991         ext4_set_aops(inode);
4992
4993         jbd2_journal_unlock_updates(journal);
4994         ext4_inode_resume_unlocked_dio(inode);
4995
4996         /* Finally we can mark the inode as dirty. */
4997
4998         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4999         if (IS_ERR(handle))
5000                 return PTR_ERR(handle);
5001
5002         err = ext4_mark_inode_dirty(handle, inode);
5003         ext4_handle_sync(handle);
5004         ext4_journal_stop(handle);
5005         ext4_std_error(inode->i_sb, err);
5006
5007         return err;
5008 }
5009
5010 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5011 {
5012         return !buffer_mapped(bh);
5013 }
5014
5015 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5016 {
5017         struct page *page = vmf->page;
5018         loff_t size;
5019         unsigned long len;
5020         int ret;
5021         struct file *file = vma->vm_file;
5022         struct inode *inode = file_inode(file);
5023         struct address_space *mapping = inode->i_mapping;
5024         handle_t *handle;
5025         get_block_t *get_block;
5026         int retries = 0;
5027
5028         sb_start_pagefault(inode->i_sb);
5029         file_update_time(vma->vm_file);
5030         /* Delalloc case is easy... */
5031         if (test_opt(inode->i_sb, DELALLOC) &&
5032             !ext4_should_journal_data(inode) &&
5033             !ext4_nonda_switch(inode->i_sb)) {
5034                 do {
5035                         ret = __block_page_mkwrite(vma, vmf,
5036                                                    ext4_da_get_block_prep);
5037                 } while (ret == -ENOSPC &&
5038                        ext4_should_retry_alloc(inode->i_sb, &retries));
5039                 goto out_ret;
5040         }
5041
5042         lock_page(page);
5043         size = i_size_read(inode);
5044         /* Page got truncated from under us? */
5045         if (page->mapping != mapping || page_offset(page) > size) {
5046                 unlock_page(page);
5047                 ret = VM_FAULT_NOPAGE;
5048                 goto out;
5049         }
5050
5051         if (page->index == size >> PAGE_CACHE_SHIFT)
5052                 len = size & ~PAGE_CACHE_MASK;
5053         else
5054                 len = PAGE_CACHE_SIZE;
5055         /*
5056          * Return if we have all the buffers mapped. This avoids the need to do
5057          * journal_start/journal_stop which can block and take a long time
5058          */
5059         if (page_has_buffers(page)) {
5060                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5061                                             0, len, NULL,
5062                                             ext4_bh_unmapped)) {
5063                         /* Wait so that we don't change page under IO */
5064                         wait_for_stable_page(page);
5065                         ret = VM_FAULT_LOCKED;
5066                         goto out;
5067                 }
5068         }
5069         unlock_page(page);
5070         /* OK, we need to fill the hole... */
5071         if (ext4_should_dioread_nolock(inode))
5072                 get_block = ext4_get_block_write;
5073         else
5074                 get_block = ext4_get_block;
5075 retry_alloc:
5076         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5077                                     ext4_writepage_trans_blocks(inode));
5078         if (IS_ERR(handle)) {
5079                 ret = VM_FAULT_SIGBUS;
5080                 goto out;
5081         }
5082         ret = __block_page_mkwrite(vma, vmf, get_block);
5083         if (!ret && ext4_should_journal_data(inode)) {
5084                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5085                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5086                         unlock_page(page);
5087                         ret = VM_FAULT_SIGBUS;
5088                         ext4_journal_stop(handle);
5089                         goto out;
5090                 }
5091                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5092         }
5093         ext4_journal_stop(handle);
5094         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5095                 goto retry_alloc;
5096 out_ret:
5097         ret = block_page_mkwrite_return(ret);
5098 out:
5099         sb_end_pagefault(inode->i_sb);
5100         return ret;
5101 }